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ABSTRACT

We address the problem of rooting an unrooted species tree given a set of unrooted gene
trees, under the assumption that gene trees evolve within the model species tree under the
multispecies coalescent (MSC) model. Quintet Rooting (QR) is a polynomial time algorithm
that was recently proposed for this problem, which is based on the theory developed by
Allman, Degnan, and Rhodes that proves the identifiability of rooted 5-taxon trees from
unrooted gene trees under the MSC. However, although QR had good accuracy in simula-
tions, its statistical consistency was left as an open problem. We present QR-STAR, a variant
of QR with an additional step and a different cost function, and prove that it is statistically
consistent under the MSC. Moreover, we derive sample complexity bounds for QR-STAR
and show that a particular variant of it based on ‘‘short quintets’’ has polynomial sample
complexity. Finally, our simulation study under a variety of model conditions shows that
QR-STAR matches or improves on the accuracy of QR. QR-STAR is available in open-
source form on github.

Keywords: multispecies coalescent, rooting, species tree estimation, statistical consistency.

1. INTRODUCTION

Rooted species trees are needed for many biological research problems, including comparative
genomics ( Jun et al., 2015; Skarp-de Haan et al., 2014) and dating (Renner et al., 2008). The availability

of genome-wide sequencing data for many species has made it possible to estimate species trees using
different loci from across the genome, thus enabling ‘‘multi-locus’’ species tree estimation. Typically, rooted
species trees are estimated in two steps: first the unrooted topology of the species tree is inferred using a
multi-locus species tree estimation method, and then that unrooted species tree is rooted.

Alternatively, rooted gene trees can be inferred and then combined into a rooted species tree, using
methods such as MP-EST (Liu et al., 2010), STAR (Liu et al., 2009), and GLASS (Mossel and Roch,
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2008). However, the estimation of rooted gene trees is itself challenging, making this approach less reliable
than methods that operate in the two-step procedure where the unrooted species tree is estimated first and
then rooted (Simmons and Gatesy, 2015; Simmons et al., 2022).

The problem of estimating an unrooted species tree has been actively investigated over the past several
decades. The classical approach is ‘‘concatenation,’’ where the alignments for the different loci are con-
catenated into one large ‘‘super-alignment,’’ which is then given to a tree estimation method, such as
RAxML (Stamatakis, 2014).

However, evolutionary processes, such as incomplete lineage sorting (ILS) or gene duplication and loss
(GDL), can result in different genomic regions (referred to as ‘‘loci’’) having different evolutionary
histories, so that gene trees and species trees can have different topologies (Maddison, 1997). Moreover,
when ILS is high, then standard concatenation analyses can have poor accuracy (Kubatko and Degnan,
2007; Molloy and Warnow, 2018), and may even be statistically inconsistent (Roch and Steel, 2015; Roch
et al., 2019).

Therefore, to estimate highly accurate species trees in the presence of ILS or GDL, new methods have
been developed that take the source of heterogeneity into consideration (Chifman and Kubatko, 2014;
Mirarab et al., 2014b; Ogilvie et al., 2017). Species tree estimation in the presence of ILS, as modeled by
the multispecies coalescent (MSC) model (Hudson, 1983), is the most well studied, and many methods
have been developed for this problem; see Posada (2016) for a survey.

Given an estimate of the unrooted species tree, various methods can be used to infer the root location.
Perhaps the most commonly used approach is the use of one or more outgroup species (e.g., the addition of
a lizard within a collection of bird species), which allows the unrooted tree on this enlarged set of species to
be rooted on the edge leading to the outgroup (Maddison et al., 1984).

Although this approach is natural, there are many challenges in selecting an appropriate outgroup
species: if the outgroup is too distantly related to the other species, then it may be attached fairly randomly
to the tree containing the remaining species, and if it is too closely related, it may even be an ingroup taxon
rather than an outgroup (Felsenstein, 1978; Graham et al., 2002; Holland et al., 2003; Li et al., 2012).

It is also possible to use estimated branch lengths on the species tree to find the root based on specific
optimization criteria, often using molecular clock analysis (Drummond et al., 2006); however, these app-
roaches may only be highly accurate when evolutionary rates are close to following the strict molecular
clock (which assumes that all sites along the genome evolve under a constant rate) (Hess and De Moraes
Russo, 2007; Mai et al., 2017; Tria et al., 2017).

There are also recent developments that seek to find the root based on non-reversible models of DNA
substitution (Bettisworth and Stamatakis, 2021; Naser-Khdour et al., 2022). However, none of the methods
mentioned so far consider biological processes that cause discord between species trees and gene trees, and
they are mainly used and evaluated for rooting gene trees (Wade et al., 2020).

Recently, a few methods have been developed that are specifically designed for rooting species trees
under the MSC; these include a rooting method by Tian and Kubatko (2017) that uses site pattern prob-
abilities, and a method that uses approximate Bayesian computation by Alanzi and Degnan (2017). The first
method assumes a strict molecular clock and degrades in accuracy when there is deviation from the clock
(Tian and Kubatko, 2017), and the second approach relies on a large number of calculations and may not be
scalable (Alanzi and Degnan, 2017). Further, the software for these methods is not publicly available, and
their performance compared with other methods is not explored in the literature.

We recently introduced Quintet Rooting (QR) (Tabatabaee et al., 2022), a polynomial-time method for
rooting an unrooted species tree with at least five leaves given a set of unrooted gene trees, which is
designed for use when the gene trees differ from the species tree due to ILS. QR is based on the mathe-
matical theory by Allman, Degnan, and Rhodes (ADR) (Allman et al., 2011) that established that the rooted
topology of every 5-leaf species tree is identifiable from the distribution of the unrooted 5-leaf gene tree
topologies; a trivial extension to any number n ! 5 species then follows.

The experimental study in Tabatabaee et al. (2022) showed that QR had good accuracy on simulated ILS
datasets in comparison to alternative methods. However, we did not establish whether it was statistically
consistent under the MSC. That is, we did not establish whether QR would return the correct root location
with probability converging to 1 as the number of true gene trees in the input increases, when given the true
unrooted species tree as input.

Although there has been much focus on proving statistical consistency for species tree estima-
tion methods and several methods such as ASTRAL (Mirarab et al., 2014b), SVDQuartets (Wascher and
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Kubatko, 2021) and BUCKy (Larget et al., 2010) have been proven statistically consistent estimators of the
unrooted species tree under the MSC, to the best of our knowledge, no prior study has addressed the
statistical consistency properties of methods for rooting species trees.

In this article, we argue that QR is not guaranteed to be statistically consistent under the MSC. We
introduce a variant of QR called QR-STAR that is also polynomial-time and uses much of the same
algorithmic structure of QR, but with some important changes that enable us to prove statistical consistency
under the MSC. We also analyze the sample complexity for QR-STAR, and we provide a variant that
achieves polynomial sample complexity. Finally, our simulation study evaluating QR and QR-STAR under
a range of model conditions shows that QR-STAR matches or improves on the accuracy of QR, and its
error is close to the error of the optimal rooting under many conditions.

The rest of this article is organized as follows. We provide background information on QR in Section 2,
as well as the theory established by ADR (Allman et al., 2011). We introduce QR-STAR in Section 3. The
theoretical results are provided in Section 4. In Section 5, we report on the results of a simulation study,
including the design of QR-STAR and the evaluation of QR-STAR in comparison to QR. We conclude in
Section 6 with a discussion of future research.

2. BACKGROUND

We present the theory from Allman et al. (2011) first, which establishes identifiability of the rooted
species tree from unrooted quintet trees, and then we describe QR, our earlier method for rooting species
trees. Together, these form the basis for deriving our new method, QR-STAR, which we present in the next
section.

2.1. ADR theory

ADR (Allman et al., 2011) established that the unrooted topology of the species tree is identifiable from
four-leaf unrooted gene trees under the MSC, a result that is well known and used in several ‘‘quartet-
based’’ methods for estimating species trees under the MSC (Larget et al., 2010; Mahbub et al., 2021;
Mirarab et al., 2014b). ADR also proved that the rooted species tree topology is identifiable from unrooted
five-leaf gene tree topologies; this result is much less well known, but it was recently used in the devel-
opment of QR for rooting species trees.

ADR have described the probability distribution of unrooted gene tree topologies under each 5-taxon
MSC model species tree. On a given set of 5 taxa, there exist 105 different rooted binary trees, labeled with
R1‚ . . . ‚ R105,* that can be categorized into 3 groups based on their (unlabeled) rooted shapes: caterpillar,
balanced, and pseudo-caterpillar (Rosenberg, 2007). An example of a tree from each category is shown in
Figure 1. Each 5-taxon model species tree defines a specific probability distribution over the 15 different
unrooted gene tree topologies on the same leafset, shown with T1‚ . . . ‚ T15 (see Appendix Fig. A1 in
Appendix A). Theorem 9 in Allman et al. (2011) states that this distribution uniquely determines the rooted
tree topology and its internal branch lengths for trees with at least five taxa.

To prove this identifiability result, the ADR theory specifies a set of linear invariants (i.e., equalities) and
inequalities that must hold between the probabilities of unrooted 5-taxon gene trees, for any choice of the
parameters of the model species tree. These linear invariants and inequalities define a partial order on the
probabilities of 5-taxon unrooted gene tree topologies. In other words, two gene tree probabilities ui = P(Ti)
and uj = P(Tj) can have one of four possible relationships: ui > uj, uj > ui, ui = uj, or ui and uj are not
comparable.

Figure 1 shows examples of these partial orders, described using Hasse diagrams, for a particular leaf
labeling of trees from each rooted shape. Note that some probabilities are members of the same set (e.g., for
R1, set c4 contains both u4 and u13, indicating that u4 = u13), and so we refer to the sets ci as equivalence
classes on these probabilities. Further, we will denote the set of equivalence classes associated with a
5-taxon rooted tree R with CR.

*The labeling of rooted and unrooted trees in this article is consistent with the notations and leaf-labeling used in
tables 4 and 5 in Allman et al. (2011) as well as in Tabatabaee et al. (2022).
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As can be seen in Figure 1, the number of equivalence classes for caterpillar, balanced, and pseudo-
caterpillar trees is 7, 5, and 5, respectively. Each directed edge between two equivalence classes in these
Hasse diagrams defines an inequality, so that all gene tree probabilities in class ca at the source of an edge
are greater than all gene tree probabilities in class cb at the target, and we show this by ca > cb.

The exact values of the unrooted gene tree probabilities depend on the internal branch lengths of the
model tree, and ADR provide a set of formulas that relate the model tree parameters to the probability
distribution of the unrooted gene trees in appendix B of Allman et al. (2011), which will be used in our
proofs.

2.2. Quintet Rooting

The input to QR is an unrooted species tree T with n leaves and a set G of k single-copy unrooted gene
trees where the gene trees draw their leaves from the leafset of T, denoted by L(T). Given this input, QR
searches over all possible rootings of T and returns a tree most consistent with the distribution of quintets
(i.e., 5-taxon trees) in the input gene trees.

QR approaches this problem by selecting a set Q of quintets of taxa from L(T) (called the ‘‘quintet
sampling’’ step), and scoring all rooted versions of T based on their induced trees on these quintets. The
subtree Tjq, that is, T restricted to taxa in quintet set q, can be rooted on any of its seven edges. In a
preprocessing step, QR computes a score for each of these seven different rootings for all trees induced on
the quintets in set Q, based on a cost function (described below).

This results in 7 · jQj computations, and therefore the preprocessing step takes O(k(jQj + n)). Next, for
every rooted version of T, QR sums up the costs of all its induced rooted trees on quintets in Q using the
scores computed in the preprocessing step, and it returns the rooting with the minimum overall cost. Since
T can be rooted on any of its 2n - 3 edges, the scoring step takes O(n + jQj) time.

FIG. 1. ADR invariants and inequalities for different rooted topological shapes. The invariants (i.e., equalities) and
inequalities found by ADR define a partial order on the probabilities of unrooted 5-taxon gene tree topologies for rooted
5-taxon model species trees with different rooted shapes (caterpillar, balanced, and pseudo-caterpillar). There are
15 unrooted binary trees on a given set of 5 leaves. Each of the 105 5-taxon rooted species trees define a specific
distribution on the probabilities of these unrooted trees. The topology of the rooted binary species tree can be
determined from this distribution (i.e., it is identifiable, as established by ADR). While the branch lengths of the rooted
species tree depend on the actual probabilities, the linear invariants and inequalities that hold for these distributions are
enough to determine the rooted topology of the model species tree. ADR, Allman, Degnan, and Rhodes.
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Thus, QR provides an exact solution to the optimization problem with the following input and output:

" Input: An unrooted tree topology T, a set of k unrooted gene tree topologies G= fg1‚ g2‚ . . . ‚ gkg, a set
Q containing quintets of taxa from leafset L(T), and a cost function Cost(r‚~u).

" Output: Rooted tree R with topology T such that
P

q2Q Cost(Rjq‚~̂uq) is minimized, where ~̂uq is the
distribution of unrooted quintet trees in Gjq = fg1jq‚ g2jq‚ . . . ‚ gkjqg.

2.2.1. Cost function. The cost function Cost(Rjq‚~̂uq) measures the fitness of the rooted quintet tree
Rjq with the distribution of the unrooted gene trees restricted to q (i.e., ~̂uq), according to the linear invariants
and inequalities derived from the ADR theory. In particular, this cost function is designed to penalize a
rooted tree Rjq if the estimated quintet distribution ~̂uq violates some of the inequalities or invariants in its
partial order. To this end, a penalty term was considered for each invariant and inequality in the partial
order of a 5-taxon rooted tree that is violated in a quintet distribution. The cost function was defined based
on a linear combination of these penalty terms, and had the following form, where r is a 5-taxon rooted tree
and ~̂u is an estimated quintet distribution:

Cost(r‚ ~̂u) =
X

c2Cr

1

jcj
X

ua‚ ub2c

jûa - ûbj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Invariants Penalty

+
X

c>c02Cr

1

jc0j
X

ua2c‚ ub2c0

max (0‚ ûb - ûa)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inequalities Penalty

:
(1)

The normalization factors 1
jcj and 1

jc0 j were used to reduce a topological bias that arose from differences in
the sizes of the equivalence classes for each tree shape.

2.3. Quintet sampling

The set Q of quintets in the QR algorithm can be selected in different ways, and here we consider sam-
pling strategies that lead to statistical consistency. These sampling strategies differ in the number of quin-
tets they sample and therefore their runtime. A straightforward sampling strategy is to use all Y(n5)
quintets, which was the main approach used in Tabatabaee et al. (2022).

Alternatively, an O(n) sampling method called ‘‘Linear Encoding’’ was proposed, as we now describe.
The set QLE contains one quintet for each edge in the tree T, with the quintets computed as follows. If the
edge e is incident to a leaf x, we note that deleting e partitions the set of taxa into three sets fxg‚ A‚ B; for
this edge, the quintet qe is formed by selecting fxg and at least one leaf from each of the sets A and B, with
the other two leaves of qe being randomly selected.

For any edge e that is internal in the tree, the removal of e partitions the set of taxa into four subsets
A1‚ A2‚ B1 and B2, and a quintet qe is formed by picking one taxon from each of these four sets, and then
picking a fifth taxon arbitrarily. Since a tree with n leaves has 2n - 3 edges, jQLEj = 2n - 3 and therefore the
runtime of the preprocessing step is O(nk) when using the linear encoding. Note also that QLE(T) may not
be unique for trees with n > 5 taxa.

2.4. Lack of consistency for QR

QR uses the cost function in Equation (1) to select between different rootings of a 5-taxon unrooted
species tree, given the estimated quintet distribution ~̂u. Lemma 3 shows that for each balanced tree, there
are two caterpillar trees for which the set of violated inequalities becomes empty. Consider the caterpillar
tree R1 and balanced tree R76 shown in Figure 1.

Note that class c3 in R76 is the result of merging the classes c2 and c3 in R1. Moreover, class c4 in R76 is
the result of merging classes c5 and c6 in R1. Assume that the model tree is R76, and we have estimated ~̂u
given a set of k unrooted quintet gene trees. We now argue informally that even as k increases, there is no
guarantee that eventually Cost(R76‚~̂u) < Cost(R1‚~̂u) for all large enough k.

According to the proof of Lemma 6 in Section 4, as k increases, for the model tree R76, all inequal-
ity penalty terms in the form of max (0‚ ûb - ûa) will converge to zero in probability. Therefore, roughly
speaking, the cost of R76 eventually consists primarily of the invariant penalty terms.

For the caterpillar tree R1, most of its inequality penalty terms are also penalty terms in the cost of R76,
but it also has additional penalty terms between classes c2 and c3 as well as classes c5 and c6 that are
merged in R76. By simplifying the penalty terms that are eventually zero with high probability or are
included in the cost of both trees, we get:
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Cost(R1‚~̂u) - Cost(R76‚~̂u) #
max (0‚ û2 - û3) + 1

2 max (0‚ û5 - û6) + 1
2 max (0‚ û5 - û9) + 1

2 max (0‚ û12 - û6) + 1
2 max (0‚ û12 - û9)

+ 1
2 jû6 - û9j + 1

2 jû5 - û12j
- ( 1

2 jû2 - û3j + 1
4 jû5 - û6j + 1

4 jû5 - û9j + 1
4 jû5 - û12j + 1

4 jû6 - û9j + 1
4 jû6 - û12j + 1

4 jû9 - û12j)

(2)

In the limit as k! +1, all remaining terms in that difference also go to 0, since each term corresponds
to a difference between two probabilities that are in the same equivalence class under the model tree.
Hence, intuitively, there is no guarantee that R76 will be selected by QR. Based on this informal argument,
we conjecture that QR is not statistically consistent.

3. QR-STAR

QR-STAR is an extension to QR that has an additional step for determining the rooted shape (i.e., the
rooted topology without the leaf labels) of each quintet tree, as well as an associated penalty term in its cost
function. This penalty term compares the rooted shape of the 5-taxon tree, denoted by S(r), with the rooted
shape inferred by QR-STAR from the given quintet distribution, denoted by Ŝ(û). The motivation for this
additional preprocessing step is that, as argued in the previous section, the cost function of QR does not
guarantee statistical consistency. The cost function of QR-STAR takes the following general form:

Cost$(r‚~̂u) =
X

c2Cr

X

ua‚ ub2c

aa‚ bjûa - ûbj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Invariants Penalty

+
X

c>c02Cr

X

ua2c‚ ub2c0

ba‚ b max (0‚ ûb - ûa)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inequalities Penalty

+ C1jS(r) 6¼ Ŝ(û)j|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Shape Penalty

(3)

where for all a‚ b, we require aa‚ b ! 0 and ba‚ b‚ C > 0.{ Let amax = maxa‚ b (aa‚ b) and bmin = mina‚ b (ba‚ b)
where a‚ b ranges over all pairs of indices a‚ b used in the penalty terms in Equation (3).

Each of the 105 rooted binary trees on a given set of 5 leaves have a unique set of inequalities and
invariants that can be derived from the ADR theory. The cost function in Equation (3) considers a penalty
term for these inequalities and invariants as well as the shape of the tree, so that Cost$(r‚~̂u) is minimized for
a rooted 5-taxon tree r that best describes the given estimated quintet distribution ~̂u.

3.1. Determining the rooted shape

The different rooted shapes (i.e., caterpillar, balanced, pseudo-caterpillar) of model 5-taxon species trees
define equivalence classes with different class sizes on the unrooted gene tree probability distribution.
These class sizes can be used to determine the unlabeled shape of a rooted tree, when given the true gene
tree probability distribution.

For example, the size of the equivalence class with the smallest gene tree probabilities is 8 for the
pseudo-caterpillar trees and 6 for balanced or caterpillar trees. Therefore, the size of the equivalence class
corresponding to the minimal element in the partial order can differentiate a pseudo-caterpillar tree from
other tree shapes. Moreover, both caterpillar and balanced trees have a unique class with the second
smallest probability, which is of size 2 for caterpillar trees and size 4 for balanced trees, and this can be
used to differentiate a caterpillar tree from a balanced tree. This approach is used in theorem 9 in Allman
et al. (2011) for establishing the identifiability of rooted 5-taxon trees from unrooted gene trees.

However, given an estimated gene tree distribution, it is likely that none of the invariants derived from
the ADR theory exactly hold, and so the class sizes cannot be directly determined and the approach cited
earlier cannot be used as is to infer the shape of a rooted quintet. Here, we propose a simple modification
for determining the rooted shape of a tree from the estimated distribution of unrooted gene trees, by looking
for significant gaps between quintet gene tree probabilities.

Let T be the unrooted species tree with n ! 5 leaves given to QR-STAR and q be a quintet of taxa from
L(T). Let ~̂u be the quintet distribution estimated from input gene trees induced on taxa in set q. QR-STAR
first sorts ~̂u in ascending order to get ûr1

& ûr2
& . . . & ûr15

.

{See Remark 1 for why aa‚ b does not need to be strictly positive.
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We propose a general design for QR-STAR based on a given error probability d > 0, so that the
algorithm returns the true rooted tree with probability at least 1 - d. Given d, we define AQ‚ d(k) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
k ln ( 30jQj

d )
q

(refer to Lemma 4 for the derivation), where k is the number of input gene trees and Q is the

set of sampled quintets, which depends on the number n of taxa and is assumed fixed. The first step of QR-
STAR computes an estimate of the rooted shape of a quintet q, denoted by Ŝ(û) in Equation (3), as follows:

" estimate the rooted shape Ŝ(û) as pseudo-caterpillar if ûr7
- ûr6

< AQ‚ d(k);
" estimate the rooted shape Ŝ(û) as balanced if ûr7

- ûr6
! AQ‚ d(k) and ûr9

- ûr8
< AQ‚ d(k);

" estimate the rooted shape Ŝ(û) as caterpillar if ûr7
- ûr6

! AQ‚ d(k) and ûr9
- ûr8

! AQ‚ d(k).

The runtime of QR-STAR is the same as QR, as determining the topological shape for each quintet is
done in constant time, and the overall runtime remains O(nk), when a linear sampling of quintets is used.
Figure 2 shows the pipeline of QR-STAR and its individual steps.

4. THEORETICAL RESULTS

In this section, we provide the main theoretical results, starting with a series of lemmas and theorems that
will be used in the proof of statistical consistency of QR-STAR in Theorem 2. Throughout this article, we
assume that discordance between species trees and gene trees is solely due to ILS. In establishing statistical
consistency, we assume that input gene trees are true gene trees and, thus, have no gene tree estimation
error (GTEE). All trees are assumed to be fully resolved (i.e., binary).

4.1. Preliminaries

We begin with some definitions and key observations.

Definition 1 (Path length parameter). Let R be an MSC model species tree. Let f (R) be the length of
the shortest internal branch of R and g(R) be the length of the longest internal path (i.e., a path formed from
only the internal branches) of R. We define the path length parameter of R as:

h(R) = 1

18
e - 3g(R)(1 - e - f (R))2 (4)

a

c d

b

FIG. 2. QR-STAR Pipeline. The input is an unrooted species tree T and a set of unrooted gene trees G on the same
leafset. (a) The sampling step selects a set Q of quintets from the leafset of T (shown is the linear encoding sampling).
(b) The step that determines the rooted shape for each selected quintet. (c) The preprocessing step computes a cost for
each of the seven possible rootings of each selected quintet. (d) The scoring step computes a score for each rooted tree
in the search space based on the costs computed in the preprocessing step, and it returns a rooting of T with minimum
score. The QR pipeline skips the step that determines the rooted shape for each selected quintet, and it has a simpler
cost function. QR, Quintet Rooting.
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Note that h(R) 2 (0‚ 1
18 ) since exp ( - x) 2 (0‚ 1) for all x > 0 and the branch lengths have positive values.

The formula for Equation (4) is derived from the proof of Lemma 2.

Lemma 1. Let R be an MSC model species tree with n ! 5 leaves and q be an arbitrary set of 5 leaves
from L(R). Then, h(Rjq) ! h(R) where Rjq is the rooted tree R restricted to taxa in set q.

Proof. Every internal path of Rjq is also an internal path in R, and therefore g(Rjq) & g(R). Also, every
branch in Rjq is formed from one or more branches in R, so the shortest branch in Rjq is at least as long as
the shortest branch in R, and therefore f (Rjq) ! f (R). Hence:

h(Rjq) = 1
18 e - 3g(Rjq)(1 - e - f (Rjq))

2 ! 1
18 e - 3g(R)(1 - e - f (R))

2 = h(R) (5)

,

Lemma 2. Let R be an MSC model species tree with 5 leaves and internal branch lengths x‚ y, and z. Let
~u be the probability distribution that R defines on the unrooted 5-taxon gene tree topologies. If ~̂u is an
estimate of ~u such that given e > 0, we have jûi - uij < e for all 1 & i & 15, then the following inequality
holds:

8c>c02CR
8ua2c‚ ub2c0 : ûa - ûb > h(R) - 2!: (6)

Proof. Let X = e - x‚ Y = e - y, and Z = e - z. According to the explicit formulas for the probability distri-
bution of unrooted gene trees~u under a 5-taxon model species tree provided in appendix B of Allman et al.
(2011), the exact value of each ui can be expressed as a polynomial with variables X, Y, and Z.

We show that the lemma holds for all pairs ua‚ ub from different equivalence classes, for each tree
category. For each category, we only show that the lemma holds for one example tree with that rooted
shape [trees in table 1 in Tabatabaee et al. (2022)], as the rest of the trees have ~u distributions that are only
permutations of the distributions of these three example trees (see supplementary section S2 in Tabatabaee
et al., 2022) and the explicit formulas remain the same. The following equations can be derived using
elementary algebraic arguments, and the fact that X‚ Y‚ Z 2 (0‚ 1).

Caterpillar trees. For a caterpillar tree R = ((((a‚ b) : x‚ c) : y‚ d) : z‚ e) with CR = fc1 : fu1g‚ c2 : fu3g‚ c3 :
fu2g‚ c4 : fu4‚ u13g‚ c5 : fu6‚ u9g‚ c6 : fu5‚ u12g‚ c7 : fu7‚ u8‚ u10‚ u11‚ u14‚ u15gg‚ we have c1 > c3‚ c4 >
c6 > c7 and c2 > c3‚ c5 > c6 > c7. Therefore:

" ua 2 c1‚ ub 2 c3

ua - ub = (1 - 2
3 X - 2

3 Y + 1
3 XY + 1

18 XY3 + 1
90 XY3Z6) - ( 1

3 Y - 1
6 XY - 1

9 XY3 + 1
90 XY3Z6) =

1 - 2
3 X - Y + 1

2 XY + 1
6 XY3 = (1 - Y) - 1

6 X(4 - 3Y - Y3) =
(1 - Y) - 1

6 X(1 - Y)(4 + Y + Y2) ! (1 - Y) - 1
6 X(1 - Y)6 = (1 - Y)(1 - X)

0ua - ub ! (1 - Y)(1 - X) ! (1 - e - f (R))
2
> h(R)

(7)

where (1 - Y)(1 - X) ! (1 - e - f (R))2 follows from the fact that (1 - X) = 1 - e - x ! 1 - e - f (R) as x ! f (R), and
the same is true for y.

To save space, the rest of the derivations are provided in Appendix B. Therefore, we have:

8c>c02CR
8ua2c‚ ub2c0 : ua - ub >

1

18
e - 3g(R)(1 - e - f (R))2 = h(R) (8)

Since jui - ûij < !, we have - ! < ûi - ui < ! and - ! < ui - ûi < !. According to Equation (8):

ûa - ûb = (ua - ub) + (ûa - ua) + (ub - ûb)0ûa - ûb > (ua - ub) - ! - !
0ûa - ûb > h(R) - 2!

(9)

,

Definition 2. For a 5-taxon rooted tree R, we define IR as the set of ordered pairs (i‚ j), 1 & i 6¼ j & 15,
corresponding to inequalities in the form ui > uj defined according to the partial order of R. The inequ-
alities that are a result of transitivity (i.e., ui > uj and uj > uk implies ui > uk) are not included in IR.
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Definition 3. Let V(R‚ R0) be the set of violated inequalities of two rooted 5-taxon trees R and R0, that
is, all pairs fi‚ jg such that (i‚ j) 2 IR and (j‚ i) 2 IR0 .

Figure 3a shows an example of V(R‚ R0) computed for caterpillar trees, and Figure 3b is a heatmap
showing the function jV(R‚ R0)j computed for the seven possible rootings of an unrooted quintet tree. The
set V(R‚ R0) can be easily computed from IR and IR0 for all pairs of rooted 5-taxon trees, and IR is derived
from the ADR theory for all 105 5-taxon rooted trees in the supplementary section S2 in Tabatabaee et al.
(2022).

Lemma 3. (a) For 5-taxon binary rooted trees R and R0 with the same rooted shape, the set V(R‚ R0) is
always non-empty. (b) For each balanced tree B, there exist two caterpillar trees C1 and C2 such that
V(B‚ Ci) = ; for i = 1‚ 2.

Proof. (a) In Appendix A, we provide Appendix Figures A2–A4, which show the function jV(R‚ R0)j
(number of violated inequalities) for all rooted quintet tree pairs R and R0 with the same unlabeled
topological shape (i.e., caterpillar, balanced, and pseudo-caterpillar), computed using the invariants and
inequalities derived from the ADR theory [for details on how these are computed, refer to Tabatabaee et al.
(2022), supplementary section S2]. It is clear that, except for the numbers on the main diagonal, all other
values are non-zero. Therefore, V(R‚ R0) is always non-empty when R and R0 have the same rooted
topological shape.

(b) W.L.O.G. (Without loss of generality) assume we have a particular unrooted quintet tree T1 (see table
5 in Allman et al., 2011) so that its seven possible rootings are caterpillar trees R1‚ R2‚ R59‚ R60, pseudo-
caterpillar tree R67, and balanced trees R76 and R105. Figure 3b shows the function jV(R‚ R0)j for all these
trees, and it is evident that for the balanced trees R76 and R105, there are two caterpillar trees (R1 and R2 for
R76, and R59 and R60 for R105) for which jV(R‚ R0)j becomes zero. The same can be observed for trees with
other unrooted topologies in Appendix Figure A5 in Appendix A. ,

Lemma 4. Let R be an MSC model species tree with n ! 5 leaves and Q be a set of quintets of taxa
from L(R). Given d > 0 and k > 0 unrooted gene tree topologies, the following inequality holds, where

AQ‚ d(k) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
k ln ( 30jQj

d )
q

P 8q2Q81&i&15j(ûq)i - (uq)ij <
AQ‚ d(k)

2

# $
! 1 - d: (10)

a b

FIG. 3. Conflicting inequality penalty terms between rooted 5-taxon species trees. (a) Set of violated inequality
penalty terms in the partial orders of R1 and R7 with respect to R4, which are all caterpillar trees. The red edges show
violations of inequalities in tree R4, highlighted in blue. (b) Heatmap showing the number of pairwise violated penalty
terms [function jV(R‚ R0)j] of seven possible rooted trees having unrooted topology with bipartitions abjcde and abcjde.
The dark colors indicate more violations, and the lightest color corresponds to no violations (jV(R‚ R0)j = 0).
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Proof. For an arbitrary ! > 0, we have:

P(8q2Q81&i&15j(ûq)i - (uq)ij < !) = 1 - P(9q2Q‚ 1&i&15j(ûq)i - (uq)ij ! !)

! 1 -
P
q2Q

P15

i = 1

P(j(ûq)i - (uq)ij ! !)
(11)

according to the union bound. Using the Hoeffding inequality (Mitzenmacher and Upfal, 2017) for each of
the 15 unrooted 5-taxon tree topologies, we get:

P 1
k

Pk

j = 1

Xq‚ j‚ i - l

%%%%%

%%%%% ! !

 !

& 2e
- 2ke2

(b - a)2 0P(j(ûq)i - (uq)ij ! !) & 2e - 2k!2
(12)

where Xq‚ j‚ i is a binary random variable that is 1 when the quintet gene tree gjqj
has the unrooted topology

Ti and is zero otherwise, and so 0 & Xq‚ j‚ i & 1 almost surely. Substituting Equation (12) in Equation (11),
we obtain:

P(8q2Q81&i&15j(ûq)i - (uq)ij < !) ! 1 -
P
q2Q

P15

i = 1

P(j(ûq)i - (uq)ij ! !) ! 1 - 30jQje - 2k!2

(13)

Setting ! =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2k ln ( 30jQj

d )
q

= AQ‚ d(k)
2 in the equation cited earlier proves the lemma:

P(8q2Q81&i&15j(ûq)i - (uq)ij < !) ! 1 - 30jQje - 2k!2 = 1 - d: (14)

,

4.2. Statistical consistency for 5-leaf trees

We now establish statistical consistency for QR-STAR under the MSC and provide a sufficient condition
for a set of sampled quintets that leads to consistency. That is, we prove that as the number of input true gene
trees increases, the probability that QR-STAR and its variants correctly root the given unrooted species tree
converges to 1. We first prove statistical consistency for QR-STAR when the model tree has only five taxa in
Theorem 1 and then extend the proofs to trees with arbitrary numbers of taxa in Theorem 2.

The main idea of the proof of consistency for 5-taxon trees is that we show as the number of input gene
trees increases, the cost of the true rooted tree becomes arbitrarily close to zero, but the cost of any other
rooted tree is bounded away from zero, where the bound depends on the path length parameter of the model
tree h(R) (see Definition 1).

To establish statistical consistency in Theorems 1 and 2, we assume that d (now seen as a sequence
depending on k) is such that limk!1 d = 0 and limk!1 AQ‚ d(k) = 0. For instance, the choice d = 1=k satisfies
these assumptions. Throughout this section, we will write A(k) instead of AQ‚ d(k) since the species tree has
only five leaves and the d-sequence is fixed.

Lemma 5 (Correct determination of rooted shape). Let R be a 5-taxon model species tree and ~u be the
probability distribution that it defines on the unrooted 5-taxon gene tree topologies. There is an integer
k > 0 such that if we are given at least k unrooted gene trees drawn i.i.d. (independent and identically
distributed) from the distribution ~u, the first step of QR-STAR will correctly determine the rooted shape of
R with probability at least 1 - d.

Proof. Let E be the event that jûi - uij < A(k)
2 for all 1 & i & 15. Assume k is large enough so that

A(k) < 1
2 h(R). This is, indeed, possible under our assumption that limk!1 A(k) = 0. According to Lemma 4,

the probability that E occurs is at least 1 - d. We assume that E holds in the rest of this proof. In this case,
according to Lemma 2, we have

8c>c02CR
8ua2c‚ ub2c0 : ûa - ûb > h(R) - A(k) > A(k) (15)

where the last inequality is a result of the assumption A(k) < 1
2 h(R). Therefore, the minimum distance

between elements of any two equivalence classes that are related by an inequality in the partial order, that
is, c > c0 2 CR, is greater than A(k). Moreover, we now show that the maximum distance between elements
inside an equivalence class is less than A(k). Since ua = ub and according to the triangle inequality, we obtain:

ua‚ ub 2 c : jûa - ûbj < jûa - uaj + jua - ubj + jub - ûbj <
A(k)

2
+ 0 + A(k)

2
= A(k) (16)
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The partial orders on unrooted gene trees defined for each of the three topological shapes have a unique
equivalence class whose members have the minimum probability, and for the caterpillar and balanced
shapes, there is a unique class whose members have the second smallest probability. Since the distance
between elements in different equivalence classes related by an inequality is greater than A(k), and the
distance between elements inside an equivalence class is less than A(k), after sorting ~̂u in ascending order,
the elements of the equivalence class with the smallest probability appear at the beginning, followed by the
elements of the second smallest class (for caterpillar and balanced shapes).

Let ûr1
& ûr2

& . . . & ûr15
be the result of sorting ~̂u in ascending order. For a pseudo-caterpillar tree, the

class with the minimum probability has eight elements, and for caterpillar or balanced trees it has six elements.

" The first step of QR-STAR determines the tree shape as pseudo-caterpillar if ûr7
- ûr6

< A(k) and else
it will determine the shape as either caterpillar or balanced. When ûr7

and ûr6
belong to different

classes, their distance must be greater than A(k). Therefore, when ûr7
- ûr6

< A(k) holds, ûr7
and ûr6

must belong to the same equivalence class, and this only happens when the model tree is a pseudo-
caterpillar tree. On the other hand, if R is a pseudo-caterpillar tree, then ûr7

- ûr6
< A(k), as the first

eight elements in the sorted list must belong to the same class. Therefore, condition ûr7
- ûr6

< A(k)
holds if and only if R has a pseudo-caterpillar shape and QR-STAR determines the correct unlabeled
shape in this case.

" If ûr7
- ûr6

> A(k), then R is either a balanced or a caterpillar tree. The equivalence class with the
second smallest probability values, for both caterpillar and balanced trees, is unique and has size 2 for
caterpillar trees and size 4 for balanced trees. The first step of QR-STAR determines the tree shape as
balanced if condition ûr9

- ûr8
< A(k) holds and else it would determine the tree shape as caterpillar.

Similar to the explanation cited earlier for the case of pseudo-caterpillar trees, when ûr9
- ûr8

< A(k),
ûr8

and ûr9
must belong to the same equivalence class and this only happens for balanced trees.

Moreover, when R is balanced, ûr9
- ûr8

< A(k). Therefore, conditions ûr7
- ûr6

> A(k) and
ûr9

- ûr8
< A(k) hold if and only if R is a balanced tree, so that QR-STAR correctly determines the tree

shape in this case as well.
" Finally, when R is a caterpillar tree, ûr8

and ûr9
belong to different equivalence classes; therefore,

ûr9
- ûr8

> A(k), and the other side can be shown similarly. Therefore, by comparing ûr7
- ûr6

and
ûr9

- ûr8
against A(k) when k is large enough so that A(k) < 1

2 h(R), QR-STAR will correctly determine
the rooted shape of the model tree with probability at least 1 - d.

The argument is summarized next:

Pseudo - caterpillar : ûr1
& ûr2

& . . . & ûr6
& ûr7|fflfflfflfflffl{zfflfflfflfflffl}

ûr7
- ûr6

<A(k)

& ûr8
< ûr9|fflfflfflfflffl{zfflfflfflfflffl}

ûr9
- ûr8

>A(k)

& ûr10
& . . . & ûr15

Balanced : ûr1
& ûr2

& . . . & ûr6
< ûr7|fflfflfflfflffl{zfflfflfflfflffl}

ûr7
- ûr6

>A(k)

& ûr8
& ûr9|fflfflfflfflffl{zfflfflfflfflffl}

ûr9
- ûr8

<A(k)

& ûr10
& . . . & ûr15

Caterpillar : ûr1
& ûr2

& . . . & ûr6
< ûr7|fflfflfflfflffl{zfflfflfflfflffl}

ûr7
- ûr6

>A(k)

& ûr8
< ûr9|fflfflfflfflffl{zfflfflfflfflffl}

ûr9
- ûr8

>A(k)

& ûr10
& . . . & ûr15

(17)

,

Lemma 6 (Upper bound on the cost of the model tree). Let R be a 5-taxon model species tree and ~u be
the probability distribution that it defines on the unrooted 5-taxon gene tree topologies. There is an integer
k > 0 such that if we are given at least k unrooted gene trees drawn i.i.d. from distribution ~u, then
Cost$(R‚~̂u) is less than 31amaxA(k) with probability at least 1 - d.

Proof. Let E be the event that jûi - uij < A(k)
2 for all 1 & i & 15. According to Lemma 4, the probability

that E holds is at least 1 - d. When E holds, according to Lemma 2, the following inequality is true for ~̂u and
the path length parameter h(R) of the model tree R:

8c>c02CR
8ua2c‚ ub2c0 : ûa - ûb > h(R) - A(k): (18)

when k is sufficiently large that A(k) < 1
2 h(R) (which is possible under our assumption that limk!1 A(k) = 0),

then ûa - ûb will be positive. Therefore, all inequality penalty terms that are defined as max (0‚ ûb - ûa) in
Cost$(R‚~̂u) become zero, since ûb - ûa is a negative term.
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Therefore, the total sum of the inequality penalty terms in Cost$(R‚~̂u) will be zero for large enough k.
Moreover, Lemma 5 states that the topological shape of R can be correctly determined when A(k) < 1

2 h(R)
and E holds, and hence the shape penalty term 1jS(R) 6¼ Ŝ(û)j also becomes zero. Therefore, all elements of
Cost$(R‚~̂u) except the invariant penalty terms become zero.

According to Equation (16), for each invariant penalty term, we have jûa - ûbj < A(k). Hence:

Cost$(R‚~̂u) =
X

c2CR

X

ua‚ ub2c

aa‚ bjûa - ûbj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Invariants Penalty

< amax

P
c2CR

P
ua‚ ub2c

A(k) = amaxA(k)
P

c2CR

jcj
2

# $
& 31amaxA(k):

(19)

The last inequality holds since (1) caterpillar trees have seven equivalence classes with class sizes 1, 1, 1,

2, 2, 2, 6 and therefore
P

c2CR

jcj
2

# $
= 18, (2) balanced trees have five equivalence classes with sizes 1, 2, 2,

4, 6 and
P

c2CR

jcj
2

# $
= 23, and (3) pseudo-caterpillar trees have five equivalence classes with sizes 1, 2, 2, 2, 8

and
P

c2CR

jcj
2

# $
= 31. Hence, in all cases, we have

P
c2CR

jcj
2

# $
& 31 and the inequality follows. ,

Theorem 1 (Statistical Consistency of QR-STAR for 5-taxon trees). Let R be a rooted 5-taxon model
species tree and ~u be the distribution that it defines on the unrooted 5-taxon gene tree topologies. Given a
set G of unrooted true quintet gene trees drawn i.i.d. from~u, QR-STAR is a statistically consistent estimator
of R under the MSC.

Proof. We will show that we can find k large enough so that QR-STAR will correctly return the rooted
version of R with probability at least 1 - d when given at least k true gene trees. Hence, QR-STAR is
statistically consistent for rooting R, since limk!1 d = 0 by assumption.

According to Lemma 6, when k is large enough so that A(k) < 1
2 h(R), if ~̂u is the distribution estimated

from G, then Cost$(R‚~̂u) is at most 31amaxA(k) with probability at least 1 - d. We now prove that for every
other rooted 5-taxon tree R0, Cost$(R0‚~̂u) is bounded away from zero. Note that according to Lemma 3, for
every rooted 5-taxon tree R0 6¼ R with the same rooted shape as R, we have V(R‚ R0) 6¼ ; and therefore,
there exists 1 & x 6¼ y & 15 such that (x‚ y) 2 IR‚ (y‚ x) 2 IR0 .

Let E be the event that jûi - uij < A(k)
2 for all 1 & i & 15. According to Lemma 2, when E holds, then

ûx - ûy > h(R) - A(k) as (x‚ y) 2 IR. However, since (y‚ x) 2 IR0 , an inequality penalty term in the form of
max (0‚ ûx - ûy) is added to Cost$(R0‚~̂u) when R0 has the same shape as R.

Moreover, according to Lemma 5, when E holds and A(k) < 1
2 h(R), the first step of QR-STAR correctly

determines the rooted shape of R. Therefore, if R0 has a different rooted shape than R, then the penalty
1jS(R0) 6¼ Ŝ(û)j becomes 1 and a positive cost C is added to the cost of R0. Therefore, both cases (i.e.,
whether R0 has a different topology from R or not) lead to a positive penalty in the cost function for R0 that
is bounded away from zero. Hence:

Cost$(R0‚~̂u) =
X

c2CR0

X

ua‚ ub2c

aa‚ bjûa - ûbj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Invariants Penalty

+
X

c>c02CR0

X

ua2c‚ ub2c0

ba‚ b max (0‚ ûb - ûa)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inequalities Penalty

+ C1jS(R0) 6¼ Ŝ(û)j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Shape Penalty

08R0 6¼RCost$(R0‚~̂u) ! min (bmin(ûx - ûy)‚ C) > min bmin h(R) - A(k)ð Þ‚ Cð Þ

(20)

Equation (20) defines a lower bound for the cost of any tree other than the true rooted tree and Lemma 6
gives an upper bound for the cost of the true tree, both with respect to the estimated quintet distribution ~̂u.
Therefore, when k is large enough so that:

A(k) < min
C

31amax
‚

h(R)

31 amax

bmin
+ 1

‚
1

2
h(R)

 !

(21)
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(which, once again, is possible under our assumption that limk!1 A(k) = 0), we will have:

Cost$(R‚~̂u) < 31amaxA(k) < min bmin h(R) - A(k)ð Þ‚ Cð Þ < Cost$(R0‚~̂u) (22)

which means that the cost of the true rooted tree will be less than the cost of any other rooted tree on the
same leafset with probability at least 1 - d. Precisely, 8R0 6¼RCost$(R‚~̂u) < Cost$(R0‚~̂u) when Equation (21)
holds, where bmin‚ C‚ h(R) > 0 and amax ! 0 are constants.

As a result, QR-STAR will return the true rooted species tree topology with probability converging to 1
as the number of gene trees grows large, proving the statistical consistency for 5-leaf trees.

Remark 1. Note that when amax = 0, meaning that the invariant penalty terms are removed from the cost
function, the cost of the true tree is exactly zero according to the proof of Lemma 6, and the cost of any
other tree is positive when k is large enough. Hence in this case, the condition in Equation (21) reduces to
A(k) < 1

2 h(R).

Remark 2. Note that Lemma 3(a) holds for all pairs of 5-taxon rooted trees with the same rooted shape
and with different permutations of the leaf-labeling, regardless of whether they have the same (leaf-labeled)
unrooted topology or not. Due to this property, it is possible to differentiate all pairs of 5-taxon rooted trees
in a statistically consistent manner with the cost function of QR-STAR without prior knowledge about the
unrooted tree topology, and hence Theorem 1 does not need to assume that the unrooted topology is given
as input.

4.3. Extending to larger trees

The next lemma and theorem extend the proof of statistical consistency to trees with n > 5 taxa. Recall
that linear encodings of T were defined in Section 2.3.

Lemma 7 (Identifiability of the root from the linear encoding). Let R and R0 be rooted trees with
unrooted topology T and distinct roots. Let QLE(T) be the set of quintets of leaves in a linear encoding of T.
There is at least one quintet of taxa q 2 QLE(T) so that Rjq and R0jq have different rooted topologies.

Proof. Let e be the edge in T corresponding to the root of R. Let q(e) be the quintet of leaves corre-
sponding to edge e in QLE(T). It is clear that Rjq(e) is also rooted at edge e. The following cases can happen:

" When edge e is not incident to a leaf, it partitions the set of leaves of T into four subsets. Let A1‚ A2‚ B1

and B2 be the subsets resulting from deleting edge e from T, where A1 and A2 are incident to one
endpoint of e and B1 and B2 are incident to the other. According to the definition of quintets in the
linear encoding, q(e) must have at least one leaf in each subset, which we call a1‚ a2‚ b1‚ and b2

respectively.
For every other rooted tree R0 with topology T, the root edge e0 of R0 will fall into one of the four
subsets A1‚ A2‚ B1‚ B2, including the edges sharing an endpoint with e. W.L.O.G. assume that e0 falls
into A1. Then when T is rooted at edge e0 (resulting in R0), the leaves a2‚ b1 and b2 in q(e) fall into one
side of the root and a1 falls into another.
Therefore, the leaves a1‚ a2, and b1 form the rooted triplet ((a2‚ b1)‚ a1). However, when T is rooted
at e (producing R), these leaves form the rooted triplet ((a1‚ a2)‚ b1), as edge e separates a1 and a2 from
b1. Hence, in this case, Rjq(e) and R0jq(e) are topologically different because they induce different rooted
triplets.

" When edge e is adjacent to a leaf x, it partitions the set of taxa into three subsets, where one of them
contains the single node fxg. Let A‚ B be the two other subsets resulting from deleting the edge e,
where e separates x from the sets A and B. According to the definition of linear encoding, q(e) must
contain x and at least one leaf in A and B, which we call a and b respectively.
For every other rooted tree R0 with topology T, the root edge e0 of R0 will fall into A or B (including
the edges directly adjacent to e). W.L.O.G. assume that it falls in A. Then when T is rooted at e
(producing R), the nodes a‚ b‚ x form the rooted triplet ((a‚ b)‚ x), but when T is rooted at e0 (producing
R0), they form the rooted triplet ((b‚ x)‚ a). Therefore, this case also leads to different rooted topologies
for Rjq(e) and R0jq(e). Therefore, in both cases, R and R0 restricted to the leaves in quintet q(e) produce
topologically different rooted quintet trees, completing the proof. ,
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Lemma 7 states that no two distinct rooted trees with topology T induce the same set of rooted quintet
trees on quintets of taxa in a linear encoding QLE(T). Clearly, the same is true for any superset Q such that
QLE(T) ) Q, including the set Q5 of all quintets of taxa on the leafset of T.

There are also other quintet sets that are not a superset of QLE(T), but have the property that no two
rooted versions of T define the same set of rooted quintets on their elements. We generalize the proof of
consistency to all sets of sampled quintets with this property.

Definition 4. Let T be an unrooted tree and Q be a set of quintets of taxa from L(T). We say Q is
‘‘root-identifying’’ if every rooted tree R with topology T is identifiable from T and the set of rooted quintet
trees in fRjq : q 2 Qg, that is, no two rooted trees with topology T induce the same set of rooted quintet
trees on Q.

Theorem 2 (Statistical Consistency of QR-STAR). Let R be an MSC model species tree with n ! 5
leaves and let T denote its unrooted topology. Given T and a set G of unrooted true gene trees on the leafset
L(T), QR-STAR is a statistically consistent estimator of the rooted version of T under the MSC, if the set of
sampled quintets Q is root-identifying.

Proof. QR-STAR computes the score of each rooted tree R with topology T as
P

q2Q Cost$(Rjq‚~̂uq). Let
Eq be the event that j(ûq)i - (uq)ij <

AQ‚ d(k)
2 for all 1 & i & 15 for a quintet q 2 Q. Arguing as in the proof of

Theorem 1, when Eq holds and k is large enough so that AQ‚ d(k) < min C
31amax

‚ h(R)
31amax

bmin
+ 1 ‚ 1

2 h(R)

# $
(that

guarantees AQ‚ d(k) < min C
31amax

‚
h(Rjq)

31amax
bmin

+ 1 ‚ 1
2 h(Rjq)

# $
according to Lemma 1), Cost(Rjq‚ ~̂uq) will be less

than the cost of each of the six alternative rooted trees on the five taxa in q with high probability, as Rjq is

the true rooting of the unrooted quintet tree T jq.

According to Lemma 4, Eq simultaneously holds for all q 2 Q with probability at least 1 - d. In this
event, for every other rooted tree R0 6¼ R and each q 2 Q, we have Cost$(R0jq‚ ~̂uq) ! Cost$(Rjq‚~̂uq), acc-
ording to Theorem 1. This means that for every rooted tree R0 with topology T,

P
q2Q Cost$(R

0 jq‚ ~̂uq) !P
q2Q Cost$(Rjq‚ ~̂uq).
Also, according to Definition 4, Q has the property that no other rooted tree R0 induces the exact same set

of rooted quintet trees as R on Q. Hence, there exists q$ 2 Q such that Cost$(R0jq$‚ ~̂uq$) > Cost$(Rjq$ ‚~̂uq$ ),
as the cost of Rjq$ is strictly less than the cost of each of the six alternative rooted trees on q$ when the
conditions in Theorem 1 hold. Therefore, the function

P
q2Q Cost$(rjq‚ ~̂uq) obtains its unique minimum for

the rooted tree R.
As a result, QR-STAR returns the true rooted topology of T with probability converging to 1 as the

number of input gene trees increases, establishing the statistical consistency given trees with an arbitrary
number of taxa. ,

4.4. Sample complexity of QR-STAR

Having established statistical consistency, we now discuss sample complexity—that is, the number of
genes that suffice for QR-STAR to correctly root the model species tree with probability at least 1 - d, for
an arbitrary d > 0.

Theorem 3 (Sample Complexity of QR-STAR). Let R be an MSC model species tree with n ! 5 leaves
and let T denote its unrooted topology. Given T, Q (a root-identifying set of sampled quintet trees), d > 0,
and k true unrooted gene trees on the leafset of T, QR-STAR returns the true tree R with probability at least
1 - d, when the number of gene trees satisfies:

k > 2 · 362 ln
30jQj

d

# $
e6g

(1 - e - f )4
(23)

where f and g are the lengths of the shortest internal branch and the longest internal path in R, respectively.
When the linear encoding is used so that jQj = 2n - 3 and in the limit of small f, QR-STAR returns the true
rooted tree with probability at least 1 - d when the number k of gene trees satisfies:

k =O(f - 4e6g( ln (n) - ln (d))): (24)
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Proof. According to the proof of Theorem 2, when k is large enough so that AQ‚ d(k) <

min C
31amax

‚ h(R)
31amax

bmin
+ 1 ‚ 1

2 h(R)

# $
, the function

P
q2Q Cost$(rjq‚ ~̂uq) will be minimized for rooted tree R and

QR-STAR will return the true tree with probability at least 1 - d. For simplicity, we consider the case where

the weights ai‚ bi‚ C in the cost function of QR-STAR are set such that min C
31amax

‚ h(R)
31amax

bmin
+ 1

‚ 1
2 h(R)

# $

reduces to 1
2 h(R) (also see Remark 1). Substituting the definitions of AQ‚ d(k) and h(R), we get:

AQ‚ d(k) < 1
2 h(R)5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
k ln 30jQj

d

& 'r
< 1

36 e - 3g(1 - e - f )
2
5

2
k ln 30jQj

d

& '
< 1

36

( )2
e - 6g(1 - e - f )

4
5

k > 2 · (36)2 ln 30jQj
d

& '
e6g

(1 - e - f )4

(25)

When the linear encoding is used so that jQj = 2n - 3 and in the limit of small f, we have
limf!0

1 - e - f

f = 1, and hence QR-STAR returns the true rooted tree with probability at least 1 - d when the
number of gene trees satisfy:

k =O(f - 4e6g( ln (n) - ln (d))): (26)

,
Theorem 3 yields a sample complexity that is exponential in g, the length of the longest internal path in

R. However, an improved sample complexity can be obtained through a more nuanced analysis as well as
using a modified version of the linear encoding, as we now show.

Definition 5 (Q-Restricted path length parameter). Let R be an MSC model species tree. Let Q be a set
of quintets of taxa from L(R), and let RjQ = fRjq : q 2 Qg be the corresponding set of rooted quintet trees.
Let fQ be the length of the shortest internal branch in any (rooted) quintet tree in RjQ and gQ be the length of the
longest internal path of any quintet tree in RjQ. We define the path length parameter of R restricted to Q as:

hQ(R) = 1

18
e - 3gQ (1 - e - fQ )2 (27)

Note that fQ ! f (R) and gQ & g(R), where f (R) and g(R) are defined in Definition 1. However, if Q is the
set of all quintets of taxa on the leafset of R, then fQ = f (R) and gQ = g(R), so that the Q-restricted path length
parameter of R is identical to the path length parameter of R, as given in Definition 1. Finally, note that we
can replace h(R) by hQ(R), without any change in the theoretical results.

We now define a variant of the linear encoding, which we refer to as a ‘‘short quintet encoding’’ of the
tree. This variant is motivated by the concept of ‘‘short quartets’’ (which are quartets of leaves sampled
around each internal edge in a tree so that they are the closest leaves to that edge) and the strong theoretical
properties of the ‘‘short quartet methods,’’ which estimate phylogenetic trees from aligned sequences by
first estimating quartet trees that seem likely to be short quartets and then combining the quartet trees into a
tree on the full dataset (Erd}os et al., 1999a; Erd}os et al. 1999b; Roch, 2019; Warnow et al., 2001).

As proven in Erd}os et al. (1999a, 1999b), even simple versions of these methods have provably poly-
nomial sample complexity under standard models of sequence evolution down trees [e.g., the Generalized
Time Reversible model (Tavaré, 1986)], after bounding (arbitrarily) the length of the shortest and longest
internal edges in the model tree.

Definition 6 (Short Quintet Encoding). Let T be an unrooted tree and e an internal edge in T, so that
deleting e and its endpoints produces four subtrees. A short quintet around edge e contains a nearest leaf (in
topological distance) in each of the four subtrees around e, and one other leaf that is chosen so that it is
either tied for nearest in its subtree or second nearest within its subtree. For the case where e is incident
with a leaf x, removing e and its endpoints splits the tree into two subtrees, A and B. A short quintet around
e will include x and then four other leaves. If each of A and B has at least two leaves, then we pick the two
nearest leaves in each of them. Otherwise, we pick the single leaf from one subtree and the three nearest
leaves from the other subtree. We modify the linear encoding algorithm to ensure that each of the sampled
quintets is a short quintet, and we refer to this as a Short Quintet Encoding of T.
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Note that there can be more than one short quintet encoding of a tree, and that every short quintet
encoding is root-identifying (since each is a linear encoding).

Theorem 4. Let R be an MSC model species tree with n ! 5 leaves with unrooted topology T, let f (R) be
the length of the shortest internal edge in R, and let zT be the length of the longest internal edge in the
unrooted topology T for R. Given d > 0, k true unrooted gene trees on the leafset of T, short quintet
encoding Q of T, and tree T, in the limit of small f with probability at least 1 - d, QR-STAR returns the
correct rooting of T (i.e., true tree R), when the number k of gene trees satisfies:

k =O
nO(zT )( ln (n) - ln (d))

f (R)4

# $
: (28)

Proof. Recall that for any set Q of quintets, fQ ! f (R). Note also that any short quintet encoding is root-
identifying since this is just a special case of a linear encoding.

By arguments similar to the proof provided for Theorem 3 and by substituting h(R) with hQ(R), in the
limit of small f (R), QR-STAR returns R with probability at least 1 - d if:

k =O(f (R) - 4e6gQ ln (n) - ln (d)ð Þ): (29)

Note also that gQ (the length of the longest internal path of the quintet trees using the short quintets in Q)
is O(zT log n), since the topological diameter within T of any short quintet is O( log n) [based on the same
arguments that short quartets have topological diameters that are O( log n) (Erd}os et al., 1999a)]. Hence,
e6gQ = eO(zt log n) = O(nO(zt)). The result follows. ,

This means that QR-STAR has a polynomial sample complexity when we fix f (R) and zT, the length of
the shortest internal edge in R and longest internal edge in T, respectively.

5. EXPERIMENTAL STUDY

5.1. Overview

We performed four experiments in this study. Experiment 0 was used for the design of QR-STAR, where
we used a training dataset with 101-taxon species trees to set the numeric parameters in its cost function.
Experiments 1–3 are on test datasets, which are separate from the training data. Experiments 1 and 2
examine rooting of the true or estimated species trees, respectively, on a dataset with 201-taxon trees
generated using SimPhy (Mallo et al., 2016) under different model conditions.

Experiment 3 examines rooting of estimated species trees on two simulated datasets with model
trees resembling real biological datasets [a 48-taxon avian species tree from Jarvis et al. (2014) and a
37-taxon mammalian tree from Song et al. (2012)]. Overall, the model conditions in the test datasets vary in
terms of the number of taxa, number of genes, GTEE, level of ILS, and topological shape of the species
tree.

For each model condition (both in training and in test datasets), we report the level of ILS using the
average normalized RF [i.e., Robinson-Foulds (Robinson and Foulds, 1981)] distance between the model
species tree and true gene trees, and denote this value by AD, or average distance. We also report the
average GTEE using normalized RF distance between true and estimated gene trees.

We evaluated rooting error using normalized clade distance (nCD) (Tabatabaee et al., 2022), which is a
rooted version of the normalized RF distance. For the training experiments, we also report the proportion of
the trees that are correctly rooted.

For the training experiment, we only rooted the true species tree topology to directly observe the rooting
error. In the test experiments, we rooted both the model species tree and estimated species tree, as produced
by ASTRAL, using both true and estimated gene trees. Throughout these experiments, we set d = 1

k in QR-
STAR, where k is the number of gene trees in the input.

All datasets, along with the estimated gene trees, are from prior studies (Mirarab and Warnow, 2015;
Mirarab et al., 2014a; Zhang et al., 2018) and are available online. Additional information about the
simulation study is provided in Appendix C.
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5.2. Designing QR-STAR

We used the 101-taxon simulated datasets from Zhang et al. (2018) as our training data, which had model
conditions characterized by four GTEE levels, ranging from 0.23 to 0.55 for 1000 genes. The normalized
RF distance between the model species tree and true gene trees (denoted AD) in this dataset was 0.46,
which indicates moderate ILS.

We explored a range of values for the shape coefficient (parameter C) and the relative weight of
inequalities and invariants (the ratio amax

bmin
) in the cost function of QR-STAR on the training dataset. When

amax > 0, these two values can impact the sample complexity of QR-STAR as Equation (21) suggests. We
report the proportion of the trees (from the 50 replicates in each condition) that are correctly rooted, as well
as the rooting error (nCD values) for rooting the true species tree topology.

Figure 4 shows the impact of shape coefficient on the accuracy of QR-STAR, where the weights of
invariant and inequality penalty terms are fixed to the weights in the original cost function of QR. For small
C values (i.e., less than 1E-02), the accuracy of QR-STAR does not seem to be affected by the shape
coefficient, but as C gets larger, the accuracy degrades until it reaches a stationary point again.

This suggests that the shape coefficient should be kept relatively small compared with the invariant and
inequality penalty weights, as they may better capture the difference between two rooted quintet trees.
Since Equation (21) suggests that larger C values are theoretically preferred, on the experiments on the test
dataset, we set the value of C as 1E-02 (the largest value before accuracy degrades).

Figure 5 shows the impact of the ratio amax

bmin
on QR-STAR. Here, all a and b values are set as equal. The

results suggest that when the inequalities are weighed more than the invariants (and so amax

bmin
is <1), QR-

STAR has its optimal accuracy, and the accuracy degrades when the invariants are weighed more.
For both figures, the trends for different sequence lengths are similar, and the degradation in accuracy

starts almost at the same point, but the accuracy is higher for longer sequence lengths, which is expected as
shorter sequence lengths correspond to higher levels of GTEE. In general, these experiments show that
optimal accuracy could be achieved for a wide range of parameters in QR-STAR. For experiments on the
test dataset, we set C as 1E-02 and amax

bmin
as 0 (essentially removing invariants from the cost function),

although we note that the optimal values could be dataset-dependant, and better training procedures might
be needed to find robust parameter values that work well across different datasets.

5.3. Evaluating QR-STAR

Using the numeric parameters selected in Experiment 0, we compared QR-STAR to QR in two basic
experiments on the test datasets. Experiment 1 compares QR and QR-STAR when rooting the true (model)
species tree, given true or estimated gene trees, where the final error solely shows the rooting error.

a b

FIG. 4. Impact of shape coefficient (C) on QR-STAR. (a) Proportion of the trees correctly rooted and (b) rooting
error (nCD) is shown for the 101-taxon dataset from Zhang et al. (2018) averaged over 50 replicates. The number of
genes is 1000, and the average AD level is 0.46. The sequence length used to produce estimated gene trees varies
between 200 and 1600 bp. The black dashed line corresponds to the average among sequence lengths. The weights of
invariant and inequality penalty terms are set as in the cost function of QR. The value of C varies between 0 and 103,
with C = 0 corresponding to the cost function of QR that does not guarantee consistency. AD, average distance; nCD,
normalized clade distance.
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Experiment 2 compares these methods when rooting an estimated species tree produced by ASTRAL, given
true or estimated gene trees, where the final error is a combination of species tree estimation and rooting
error.

For this second experiment, as the clade distance from the rooted version of the ASTRAL tree is a
combination of RF distance between the estimated species tree and the true species tree as well as the error
produced by the rooting method, we also report the optimal rooted species tree error, which is the lowest
nCD error rate achieved across all possible rootings of the ASTRAL tree (see Appendix D for additional
comments).

5.3.1. Datasets. We used a set of 201-taxon simulated datasets from Mirarab and Warnow (2015) as
our test data; these are characterized by two different speciation rates and three tree heights (thus six tree
shapes), and three number of genes for each tree shape. The AD levels for this dataset for 1000 genes
ranged from 0.09 (for the 10M, 1e-07 condition) to 0.69 (for the 500K, 1e-06 condition).

The estimated gene trees were inferred using FastTree 2 (Price et al., 2010). The GTEE levels on the test
data varied from 0.22 (for the 10M, 1e-06 condition) to 0.49 (for the 500K, 1e-06 condition). Appendix
Table C1 in the Appendix C summarizes these statistics. The number of replicates for each model condition
in this dataset was 50.

We also performed experiments on the 48-taxon avian-like and 37-taxon mammalian-like simulated
datasets from Mirarab et al. (2014a), which had model species trees based on biological datasets from Jarvis
et al. (2014) and Song et al. (2012), respectively. The default model condition in these datasets (shown with
1X ILS) had an ILS level that resembled the gene tree discordance in the corresponding biological data, but
additional model conditions were created by multiplying or dividing branch lengths by two, thus decreasing
or increasing the level of ILS, respectively (i.e., the highest ILS level we test for each biological dataset is
indicated by 0.5X).

True gene trees were simulated within the model species trees under the MSC, and then sequences with
varying lengths were evolved under each gene tree. Finally, RAxML (Stamatakis, 2014) was used to
estimate gene trees from these sequence alignments, creating conditions with varying GTEE levels. These
datasets had 20 replicates in each model condition, but the model tree in all replicates was the same tree
from the corresponding biological study. Appendix Tables C2 and C3 in the Appendix C summarize the
statistics for these two datasets.

5.3.2. Results for experiment 1: rooting the true species tree. Figure 6 (left) shows the result of
rooting the model species tree with true gene trees on the test datasets. These results show that rooting error
for both QR and QR-STAR decreases with the number of genes, as expected. We also see that rooting error
is lowest for the highest ILS level (left-most column), and it increases as the ILS level decreases.

a b

FIG. 5. Impact of amax

bmin
on QR-STAR. (a) Proportion of the trees correctly rooted and (b) rooting error (nCD) is shown

for the 101-taxon dataset from Zhang et al. (2018) averaged over 50 replicates. The number of genes is 1000, and the
average AD level is 0.46. The sequence length used to produce estimated gene trees varies between 200 and
1600 bp. The black dashed line corresponds to the average among sequence lengths. The value of amax

bmin
varies between

10 - 5 to 103, in addition to 0. All a and b values are set as equal for all invariant or inequality penalty terms.
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The impact of speciation rate on rooting error is seen by comparing the top and bottom rows; this impact
is small except for the lowest ILS case, where deep speciation (1e-07) generally leads to lower error than
recent speciation (1e-06). A comparison of nCD error rates for QR and QR-STAR shows that the two
methods are close in accuracy for some conditions (notably for high or moderately high ILS with a
sufficient number of genes) but when there are differences, QR-STAR has lower rooting error.

The advantage for QR-STAR over QR is largest for conditions with moderate to low ILS, and a few
genes. However, under the lowest ILS condition and with speciation rate 1E-06 (bottom right subfigure),
there is a consistent advantage to QR-STAR across all numbers of genes.

Figure 6 (right) shows the same comparison with estimated gene trees. As with true gene trees,
increasing the ILS level (by reducing tree height) decreases the rooting error, increasing the number of
genes also generally reduces rooting error (although much less under the lowest ILS level where tree height
is 10M), and changing the speciation rate has a small impact (even on the low ILS condition).

A comparison between QR and QR-STAR shows that the relative accuracy depends on the ILS level. For
the highest ILS condition (leftmost column), QR and QR-STAR are very close but with possibly a small
advantage to QR. However, for moderate to low ILS conditions, QR-STAR matched or improved on QR.

5.3.3. Results for experiment 2: rooting an estimated species tree. Figure 7 show results on the
test dataset, when rooting species trees estimated using ASTRAL with true or estimated gene trees. For all
three methods (QR, QR-STAR, and optimal rooting), and using both true and estimated gene trees,
increasing the number of genes improves accuracy, but increasing the ILS level reduces accuracy (in
contrast to Experiment 1).

We also see that under high ILS, the error in the rooted species tree is high (on average 14.6% when
using only 50 true gene trees, and 21.4% when using 50 estimated gene trees), but decreases rapidly as the
number of genes increases. Error is higher for speciation close to the leaves (1e-06) than for speciation
closer to the root (1e-07), a pattern that was also observed when rooting the model species tree.

The trends relating QR-STAR and QR are interesting to discuss. When using true gene trees, the relative
accuracy of QR and QR-STAR depends on the ILS level, with an essentially identical error for the high ILS
condition, but then an advantage to QR-STAR for the moderate or low ILS conditions (except when there is
a sufficient number of genes).

When used with estimated gene trees, the relative accuracy between QR and QR-STAR depends on the
ILS level, but the gap between QR and QR-STAR is smaller. There is essentially no difference for the high
ILS condition, a very small difference for the moderate ILS condition (but only if the number of genes is
small), and a small difference for the low ILS condition that holds across both low and moderate numbers
of genes.

FIG. 6. Rooting the model species tree on 201-taxon simulated datasets. Comparison between QR and QR-STAR in
terms of rooting error (nCD) for rooting the true unrooted species tree topology using true or estimated gene trees on the
201-taxon datasets, with 50 replicates in each model condition. The columns show tree height (500K for high ILS, 2M
for moderate ILS, and 10M for low ILS), and the rows show speciation rate (1e-06 for recent speciation, 1e-07 for deep
speciation). ILS, incomplete lineage sorting.
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Thus, the trends for rooting ASTRAL species trees are somewhat different in terms of absolute rooting
error (which increases, compared with rooting the true species tree), but the relative performance of QR-
STAR and QR shows similar results as for rooting true species trees. The main difference is that the
difference between the methods seems to have decreased.

Finally, a comparison between QR-STAR and the optimal rooting provides some noteworthy trends.
Specifically, for both true and estimated gene trees and under both high and moderate ILS, QR-STAR and
optimal rooting are extremely close in terms of rooting error (with no detectable differences under high ILS
and only a small difference under moderate ILS with only 50 genes).

Thus, under these conditions, there is little room for improvement over QR-STAR. Interestingly, there is
a bigger gap between QR-STAR and optimal rooting for low ILS than under the higher ILS conditions,
especially when the speciation rate is 1e-06 (i.e., speciation toward the leaves). We also see that there is a
slightly bigger gap between QR-STAR and the optimal rooting when QR-STAR is using estimated gene
trees than when using true gene trees; as expected.

5.3.4. Results for experiment 3: rooting an estimated species tree on biological model
trees. Figure 8 shows results when using QR or QR-STAR to root the ASTRAL species trees on the avian
or mammalian simulated datasets. Most trends are similar to the trends seen on 201-taxon datasets:
accuracy with true gene trees is better than with estimated gene trees, and using more genes improve the
results, as expected. The accuracy advantage of QR-STAR over QR can be seen in these two datasets as
well, especially with true gene trees or low ILS.

FIG. 7. Rooting the ASTRAL species tree on 201-taxon datasets. Comparison between QR, QR-STAR, and optimal
rooting in terms of rooted species tree error (nCD) for rooting the species trees estimated by ASTRAL, using true or
estimated gene trees on the 201-taxon datasets across 50 replicates. The columns show tree height (500K for high ILS,
2M for moderate ILS, and 10M for low ILS), and the rows show speciation rate (1e-06 for recent speciation, 1e-07 for
deep speciation). The y-axes are cut at 0.4 to improve clarity, removing five outliers in the bottom figure from all
methods in the 500K, 1e-06 model condition (see Appendix Fig. A6 in Appendix A for the full-scale figure).
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However, unlike the 201-taxon datasets where the accuracy of QR-STAR was close to optimal in most
cases, here we see a bigger gap between the optimal rooting and QR-STAR in general. On the mammalian
simulated datasets, this gap is small under the highest ILS condition (0.54 AD) and the medium ILS (0.33
AD) with true gene trees, but there is a larger gap in the other three conditions.

On the avian simulations, this gap is visible in all model conditions, but it becomes smaller as ILS level
increases. For the avian simulations, the overall rooted species tree error is higher under high ILS con-
ditions, suggesting that the error is dominated by species tree estimation error (Appendix Table C6 in
Appendix C), and is consistent with the trend seen on the 201-taxon datasets.

However, this trend is reversed for the mammalian simulations, and the final rooted tree error is higher
under the lowest ILS (0.18 AD) condition when rooting with QR-STAR (also see Appendix Table C5 in the
Appendix C for ASTRAL RF rates).

5.4. Discussion of experimental results

Some trends seen here are as expected: for example, accuracy generally improves for both QR and QR-
STAR with the number of genes, and using true gene trees produces better accuracy than using estimated
gene trees. These trends can be explained by noting that more data and better-quality data improve
accuracy. On the other hand, we also see that the combination of low ILS and deep speciation (toward the
root) makes for easier conditions for both QR and QR-STAR, whereas low ILS and recent speciation
(toward the leaves) makes for more challenging conditions for QR and QR-STAR; it is not clear why this is
true.

An interesting trend seen in our experimental study is that rooting with QR and QR-STAR is more
accurate under higher levels of discordance due to ILS, and becomes less accurate as the ILS level
decreases. An explanation for this is that for a fixed number of gene trees, with less discordance due to ILS,
it is likely that many gene trees that have low probability of appearing will not appear in the input, or will
appear with very low frequencies, thus leading to higher error in the estimated probability distribution on
quintet trees.

This will increase error in the rooting performed by QR and QR-STAR. Further, when enough gene trees
fail to appear in the distribution, some estimates of quintet probabilities would become zero, and it may not
be possible to differentiate some of the rooted quintets using the inequalities and invariants derived from
the ADR theory.

In the extreme case where there is no discordance due to ILS (and so all true gene trees are identical to
the species tree), there will be only one quintet gene tree with non-zero probability: when this happens, the
identifiability theorem in Allman et al. (2011) would not hold and it becomes impossible to find the root.
In contrast, the accuracy of ASTRAL and other species tree estimation methods decreases under higher
levels of ILS (Mirarab and Warnow, 2015; Mirarab et al., 2014b; Molloy and Warnow, 2018).

FIG. 8. Rooting the ASTRAL species tree on biological simulations. Comparison between QR, QR-STAR, and
optimal rooting on (left) 48-taxon avian simulated datasets, (right) 37-taxon mammalian simulated datasets, both from
Mirarab et al. (2014a). The columns show the ILS level, and the rows show whether true or estimated gene trees (based
on 500 bp sequences) were used. For both datasets, the number of replicates in each model condition is 20, but the
model species tree is fixed across all replicates.
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Inference of the rooted species tree depends on both accurate estimation of the unrooted species tree
topology as well as correct rooting of that tree. However, the level of ILS has a very different impact on
these two steps. In most cases in our study, the overall error was dominated by species tree estimation error,
and hence increased as the ILS level increased.

However, we saw a different trend on the mammalian dataset, in which the species tree estimation error was
very low in the lowest ILS condition, but the rooting error was high such that the overall error was dominated
by rooting error. In general, for the purposes of estimating a rooted species tree using this approach, moderate
levels of ILS may make for a better overall outcome than very low or very high levels of ILS.

Another important trend is that QR-STAR is nearly always at least as accurate as QR, and it is more
accurate under most conditions. In general, there is a clear advantage to QR-STAR over QR for the low ILS
condition that holds across the different conditions (varying number of genes, using true or estimated gene
trees, and rooting true or estimated species trees), and this advantage is also seen for the moderate ILS
condition when the number of genes is small.

In contrast, for the high ILS condition, there is typically no or very little difference between the two
methods, and in some cases QR can be somewhat more accurate. We also note that QR-STAR’s advantage
over QR is largest when using true gene trees, even under high ILS (Fig. 6), which suggests that QR may be
somewhat more robust to GTEE than QR-STAR. Thus, QR-STAR has a theoretical advantage over QR but
not always an accuracy advantage.

For many conditions, we observed a small gap between optimal rooting and QR-STAR. For example, on
the 201-taxon dataset in moderate or high ILS conditions (Experiment 2), there was a very small difference
in rooting error between QR-STAR and the optimal rooting, even using estimated gene trees, suggesting
that QR-STAR is doing very well in these conditions.

Under the low ILS conditions of the 201-taxon data, however, there is a larger gap between QR-STAR
and optimal rooting, especially when using only a small to moderate number of estimated gene trees. We
also saw a larger gap between QR-STAR and the optimal rooting in Experiment 3 where the model trees
were based on the avian and mammalian datasets, although the gap was less under the high ILS conditions
than for the low ILS conditions.

These differences indicate that there are conditions where improvements to QR-STAR for its empirical
performance should be sought, especially when the ILS level in the data is low. There are at least two ways
to improve empirical performance, without sacrificing statistical consistency—modifying the cost function
and changing the quintet sampling strategy—and both of these should be explored in future work.

6. CONCLUSIONS

We have presented QR-STAR, a polynomial-time statistically consistent method for rooting species trees
under the MSC model. QR-STAR is an extension to QR, a method for rooting species trees introduced in
Tabatabaee et al. (2022). QR-STAR differs from QR in that it has an additional step for determining the
topological shape of each unrooted quintet selected in the QR algorithm, and incorporates the knowledge of
this shape in its cost function, alongside the invariants and inequalities previously used in QR.

We also showed that the statistical consistency for QR-STAR holds for a larger family of optimization
problems based on cost functions and sampling methods, and that modifying the linear encoding to be
based on short quintets enables QR-STAR to have polynomial sample complexity.

To the best of our knowledge, this is the first work that established the statistical consistency of any
method for rooting species trees under a model that incorporates gene tree heterogeneity. It remains to be
investigated whether other rooting methods can also be proven statistically consistent under models of gene
evolution inside species trees, such as the MSC or models of GDL.

For example, STRIDE (Emms and Kelly, 2017) and DISCO+QR (Willson et al., 2023) are methods that
have been developed for rooting species trees from gene family trees, where genes evolve under GDL;
however, it is not known whether these methods are statistically consistent under any GDL model.

This study suggests several directions for future research. For example, we proved statistical consistency
for one class of cost functions, which was a linear combination of the invariant, inequality, and shape penalty
terms; however, cost functions in other forms could also be explored and proven statistically consistent.

Theorem 3 shows that the sample complexity of QR-STAR depends on both the length of the shortest
branch and the longest path in the model tree. This suggests that having very short or very long branches

QR-STAR 1167

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f W

is
co

ns
in

 M
ad

is
on

 fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
25

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



can both confound rooting under ILS, which is also suggested in previous studies (Alanzi and Degnan,
2017; Allman et al., 2011). This is unlike what is known for species tree estimation methods such as
ASTRAL, where the sample complexity is only affected by the shortest branch of the model tree (Chan
et al., 2022; Shekhar et al., 2017), and trees with long branches are easier to estimate.

Another theoretical direction is the construction of the rooted species tree directly from the unrooted
gene trees. As explained in Remark 2, the proof of consistency of QR-STAR for 5-taxon trees does not
depend upon the knowledge of the unrooted tree topology; this suggests that it is possible to estimate the
rooted topology of the species tree in a statistically consistency manner directly from unrooted gene tree
topologies. Future work could focus on developing statistically consistent methods for this problem, which
is significantly harder than the problem of rooting a given tree.

There are also directions for improving empirical results. An important consideration in designing a good
cost function is its empirical performance, as many cost functions can lead to statistical consistency but
may not provide accurate estimations of the rooted tree in practice (Figs. 4 and 5).

One potential direction is to incorporate estimated branch lengths, whether of the gene trees or of the
unrooted species tree, into the rooting procedure. These improvements can especially be useful for datasets
with low levels of ILS, which create the most difficult conditions for QR-STAR and where there is a gap
between the accuracy of QR-STAR and the optimal rooting.

Finally, the experiments in this study were limited to comparisons between QR, QR-STAR, and the
optimal rooting of the ASTRAL species trees. In our prior study presenting QR (Tabatabaee et al., 2022),
we showed that QR had good accuracy compared with many prior rooting methods. That study, however,
was restricted to a small number of model conditions. Hence, future work should also include a comparison
of QR-STAR to a larger number of rooting methods, including outgroup rooting, and under a wider range
of model conditions.

CODE AND DATA AVAILABILITY

QR-STAR is available at https://github.com/ytabatabaee/Quintet-Rooting. The scripts and data used in
this study are available at https://github.com/ytabatabaee/QR-STAR-paper.
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7. Appendix

A. ADDITIONAL FIGURES

(Appendix continues /)

APPENDIX FIG. A1. Topologies of the 15 unrooted 5-taxon gene trees labeled according to Allman et al. (2011).

APPENDIX FIG. A2. Conflicts between 5-taxon pseudo-caterpillar trees. Heatmap showing the number of con-
flicting inequality penalty terms [the function jV(R‚ R0)j] for pairs of pseudo-caterpillar 5-taxon rooted trees.
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(Appendix continues /)

APPENDIX FIG. A3. Conflicts between 5-taxon caterpillar trees. Heatmap showing the number of conflicting
inequality penalty terms [the function jV(R‚ R0)j] for pairs of caterpillar 5-taxon rooted trees.
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(Appendix continues /)

APPENDIX FIG. A4. Conflicts between 5-taxon balanced trees. Heatmap showing the number of conflicting
inequality penalty terms [the function jV(R‚ R0)j] for pairs of balanced 5-taxon rooted trees.
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(Appendix continues /)

APPENDIX FIG. A5. Conflicts between all 5-taxon rooted trees. Heatmap showing the number of conflicting
inequality penalty terms [the function jV(R‚ R0)j] for all pairs of binary 5-taxon rooted trees.
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APPENDIX FIG. A6. Rooting the ASTRAL species tree on 201-taxon datasets with estimated gene trees. Full
version of Figure 7 for estimated gene trees (including outliers). The results are shown across 50 replicates. The
columns show tree height (500K for high ILS, 2M for moderate ILS, and 10M for low ILS) and the rows show
speciation rate (1e-06 for recent speciation, 1e-07 for deep speciation). ILS, incomplete lineage sorting.

APPENDIX FIG. A7. Rooting the ASTRAL species tree on avian simulated dataset. Comparison between QR, QR-
STAR, and optimal rooting on 48-taxon avian simulated dataset for 1X ILS model condition. The columns show
whether true or estimated gene trees were used, and the sequence length used to produce the gene trees. The number of
replicates in each model condition is 20.

APPENDIX FIG. A8. Rooting the ASTRAL species tree on mammalian simulated dataset. Comparison between
QR, QR-STAR, and optimal rooting on 37-taxon mammalian simulated dataset for 1X ILS model condition. The
columns show whether true or estimated gene trees were used, and the sequence length used to produce the gene trees.
The number of replicates in each model condition is 20.

(Appendix continues /)
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B. PROOF OF LEMMA 2 CONTINUED

Proof. Caterpillar Trees

" ua 2 c1‚ ub 2 c4

ua - ub = (1 - 2
3 X - 2

3 Y + 1
3 XY + 1

18 XY3 + 1
90 XY3Z6) - ( 1

3 X - 1
3 XY + 1

18 XY3 + 1
90 XY3Z6) =

1 - X - 2
3 Y + 2

3 XY = (1 - X)(1 - 2
3 Y) > 1

3 (1 - X)

0ua - ub > 1
3 (1 - X) ! 1

3 (1 - e - f (R)) > h(R)

" ua 2 c2‚ ub 2 c3

ua - ub = ( 1
3 Y - 1

6 XY - 1
18 XY3 - 2

45 XY3Z6) - ( 1
3 Y - 1

6 XY - 1
9 XY3 + 1

90 XY3Z6) =
1

18 XY3 - 1
18 XY3Z6 = 1

18 XY3(1 - Z6) = 1
18 XY3(1 - Z)(1 + Z + Z2)(1 + Z3)

> 1
18 XY3(1 - Z)

0ua - ub > 1
18 XY3(1 - Z) ! 1

18 e - 3g(R)(1 - e - f (R)) > h(R)

where XY3 ! e - 3g(R) follows from the fact that XY = e - xe - y = e - (x + y) ! e - g(R) as x + y correspond to a
(sub)-length of an internal path in R and hence x + y & g(R) and Y2 ! e - 2g(R) as y & g(R).
" ua 2 c2‚ ub 2 c5

ua - ub = ( 1
3 Y - 1

6 XY - 1
18 XY3 - 2

45 XY3Z6) - ( 1
6 XY - 1

18 XY3 - 2
45 XY3Z6) =

1
3 Y - 1

3 XY = 1
3 Y(1 - X)

0ua - ub = 1
3 Y(1 - X) ! 1

3 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c3‚ ub 2 c6

ua - ub = ( 1
3 Y - 1

6 XY - 1
9 XY3 + 1

90 XY3Z6) - ( 1
6 XY - 1

9 XY3 + 1
90 XY3Z6) =

1
3 Y - 1

3 XY = 1
3 Y(1 - X)

0ua - ub = 1
3 Y(1 - X) ! 1

3 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c4‚ ub 2 c6

ua - ub = ( 1
3 X - 1

3 XY + 1
18 XY3 + 1

90 XY3Z6) - ( 1
6 XY - 1

9 XY3 + 1
90 XY3Z6) =

1
3 X - 1

2 XY + 1
6 XY3 = 1

6 X(2 - 3Y + Y3) = 1
6 X(1 - Y)2(Y + 2) > 1

3 X(1 - Y)2

0ua - ub > 1
3 X(1 - Y)2 ! 1

3 e - g(R)(1 - e - f (R))
2
> h(R)

" ua 2 c5‚ ub 2 c6

ua - ub = ( 1
6 XY - 1

18 XY3 - 2
45 XY3Z6) - ( 1

6 XY - 1
9 XY3 + 1

90 XY3Z6) =
1

18 XY3 - 1
18 XY3Z6 = 1

18 XY3(1 - Z6) = 1
18 XY3(1 - Z)(1 + Z + Z2)(1 + Z3)

> 1
18 XY3(1 - Z)

0ua - ub > 1
18 XY3(1 - Z) ! 1

18 e - 3g(R)(1 - e - f (R)) > h(R)

(Appendix continues /)
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" ua 2 c6‚ ub 2 c7

ua - ub = ( 1
6 XY - 1

9 XY3 + 1
90 XY3Z6) - ( 1

18 XY3 + 1
90 XY3Z6) =

1
6 XY - 1

6 XY3 = 1
6 XY(1 - Y2) = 1

6 XY(1 - Y)(1 + Y) > 1
6 XY(1 - Y)

0ua - ub > 1
6 XY(1 - Y) ! 1

6 e - g(R)(1 - e - f (R)) > h(R)

Balanced Trees

For a balanced model species tree R = (((a‚ b) : x‚ c) : y‚ (d‚ e) : z), with CR = fc1 : fu1g‚ c2 : fu4‚ u13g‚
c3 : fu2‚ u3g‚ c4 : fu5‚ u6‚ u9‚ u12g‚ c5 : fu7‚ u8‚ u10‚ u11‚ u14‚ u15gg, we have c1 > c2‚ c3 > c4 > c5.
Therefore,

" ua 2 c1‚ ub 2 c3

ua - ub = (1 - 2
3 X - 2

3 YZ + 1
3 XYZ + 1

15 XY3Z) - ( 1
3 YZ - 1

6 XYZ - 1
10 XY3Z) =

1 - 2
3 X - YZ + 1

2 XYZ + 1
6 XY3Z = 1 - YZ - 1

6 X(4 - 3YZ - Y3Z) >

1 - YZ - 1
6 (4 - 3YZ - Y3Z) = 1

3 - 1
6 YZ(3 - Y2) >

1
3 - 1

6 Y(3 - Y2) = 1
6 (2 - 3Y + Y3) = 1

6 (1 - Y)2(2 + Y) > 1
3 (1 - Y)2

0ua - ub > 1
3 (1 - Y)2 ! 1

3 (1 - e - f (R))
2
> h(R)

" ua 2 c1‚ ub 2 c2

ua - ub = (1 - 2
3 X - 2

3 YZ + 1
3 XYZ + 1

15 XY3Z) - ( 1
3 X - 1

3 XYZ + 1
15 XY3Z) =

1 - X - 2
3 YZ + 2

3 XYZ = (1 - X)(1 - 2
3 YZ) > 1

3 (1 - X)

0ua - ub > 1
3 (1 - X) ! 1

3 (1 - e - f (R)) > h(R)

" ua 2 c3‚ ub 2 c4

ua - ub = ( 1
3 YZ - 1

6 XYZ - 1
10 XY3Z) - ( 1

6 XYZ - 1
10 XY3Z) =

1
3 YZ - 1

3 XYZ = 1
3 YZ(1 - X)

0ua - ub = 1
3 YZ(1 - X) ! 1

3 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c2‚ ub 2 c4

ua - ub = ( 1
3 X - 1

3 XYZ + 1
15 XY3Z) - ( 1

6 XYZ - 1
10 XY3Z) =

1
3 X - 1

2 XYZ + 1
6 XY3Z = 1

6 X(2 - 3YZ + Y3Z) > 1
6 X(2Z - 3YZ + Y3Z) =

1
6 XZ(2 - 3Y + Y3) = 1

6 XZ(2 + Y)(1 - Y)2 > 1
3 XZ(1 - Y)2

0ua - ub > 1
3 XZ(1 - Y)2 ! 1

3 e - g(R)(1 - e - f (R))
2
> h(R)

" ua 2 c4‚ ub 2 c5

ua - ub = ( 1
6 XYZ - 1

10 XY3Z) - ( 1
15 XY3Z) =

1
6 XYZ - 1

6 XY3Z = 1
6 (XYZ)(1 - Y2) = 1

6 (XYZ)(1 - Y)(1 + Y) > 1
6 (XYZ)(1 - Y)

0ua - ub > 1
6 (XYZ)(1 - Y) ! 1

6 e - g(R)(1 - e - f (R)) > h(R)

where XYZ ! e - g(R) follows from x + y + z & g(R).

(Appendix continues /)
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Pseudo-Caterpillar Trees

For a pseudo-caterpillar model species tree R = (((a‚ b) : x‚ (d‚ e) : y) : z‚ c) with CR = fc1 : fu1g‚
c2 : fu4‚ u13g‚ c3 : fu2‚ u3g‚ c4 : fu8‚ u11g‚ c5 : fu5‚ u6‚ u7‚ u9‚ u10‚ u12‚ u14gg, we have c1 > c2‚ c3‚ c4 > c5.
Therefore,

" ua 2 c1‚ ub 2 c2

ua - ub = (1 - 2
3 X - 2

3 Y + 4
9 XY - 2

45 XYZ6) - ( 1
3 X - 5

18 XY + 1
90 XYZ6) =

1 - X - 2
3 Y + 13

18 XY - 1
18 XYZ6 = 1 - X - 2

3 Y + 2
3 XY + 1

18 XY - 1
18 XYZ6

= (1 - X)(1 - 2
3 Y) + 1

18 XY(1 - Z6) > 1
18 XY(1 - Z)(1 + Z + Z2)(1 + Z3) > 1

18 XY(1 - Z)

0ua - ub > 1
18 XY(1 - Z) ! 1

18 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c1‚ ub 2 c3

ua - ub = (1 - 2
3 X - 2

3 Y + 4
9 XY - 2

45 XYZ6) - ( 1
3 Y - 5

18 XY + 1
90 XYZ6) =

1 - 2
3 X - Y + 13

18 XY - 1
18 XYZ6 = 1 - 2

3 X - Y + 2
3 XY + 1

18 XY - 1
18 XYZ6

= (1 - Y)(1 - 2
3 X) + 1

18 XY(1 - Z6) > 1
18 XY(1 - Z)(1 + Z + Z2)(1 + Z3) > 1

18 XY(1 - Z)

0ua - ub > 1
18 XY(1 - Z) ! 1

18 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c1‚ ub 2 c4

ua - ub = (1 - 2
3 X - 2

3 Y + 4
9 XY - 2

45 XYZ6) - ( 1
9 XY - 2

45 XYZ6) =
1 - 2

3 X - 2
3 Y + 1

3 XY = (1 - X)(1 - Y) - 2
3 XY + 1

3 X + 1
3 Y = (1 - X)(1 - Y) + 1

3 (X + Y - 2XY)

> (1 - X)(1 - Y) + 1
3 (X2 + Y2 - 2XY) = (1 - X)(1 - Y) + 1

3 (X - Y)2 > (1 - X)(1 - Y)

0ua - ub > (1 - X)(1 - Y) ! (1 - e - f (R))
2
> h(R)

" ua 2 c2‚ ub 2 c5

ua - ub = ( 1
3 X - 5

18 XY + 1
90 XYZ6) - ( 1

18 XY + 1
90 XYZ6) =

1
3 X - 1

3 XY = 1
3 X(1 - Y)

0ua - ub = 1
3 X(1 - Y) ! 1

3 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c3‚ ub 2 c5

ua - ub = ( 1
3 Y - 5

18 XY + 1
90 XYZ6) - ( 1

18 XY + 1
90 XYZ6) =

1
3 Y - 1

3 XY = 1
3 Y(1 - X)

0ua - ub = 1
3 Y(1 - X) ! 1

3 e - g(R)(1 - e - f (R)) > h(R)

" ua 2 c4‚ ub 2 c5

ua - ub = ( 1
9 XY - 2

45 XYZ6) - ( 1
18 XY + 1

90 XYZ6) =
1
18 XY - 1

18 XYZ6 = 1
18 XY(1 - Z6) = 1

18 XY(1 - Z)(1 + Z + Z2)(1 + Z3) > 1
18 XY(1 - Z)

0ua - ub > 1
18 XY(1 - Z) ! 1

18 e - g(R)(1 - e - f (R)) > h(R)

,

C. DETAILS OF THE EXPERIMENTAL STUDY

C.1. Details of the Datasets

For the training dataset (101-taxon dataset from Zhang et al., 2018), the incomplete lineage sorting (ILS)
level (measured using the average distance between the true gene trees and the model species tree, or AD)
for most replicates ranged from 0.3 to 0.6 with an average of 0.46. The mean gene tree estimation error
(GTEE) values for the four sequence lengths were 0.23, 0.31, 0.42, and 0.55 for the 1600, 800, 400, and
200 bp sequences, respectively. The speciation rate for this dataset was 1e-07.

(Appendix continues /)
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Appendix Table C1. Statistics for the 201-Taxon Simulated Datasets

Speciation rate Tree height ILS level (AD) GTEE

1E-06 500K 0.69 0.49
1E-06 2M 0.34 0.28
1E-06 10M 0.21 0.22
1E-07 500K 0.68 0.46
1E-07 2M 0.34 0.34
1E-07 10M 0.09 0.29

ILS level (measured using the average distance between the true gene trees and the model species tree, or AD) and average GTEE of

the estimated gene trees for the six model conditions of the 201-taxon datasets with 1000 gene trees. The two speciation rates used in

this dataset indicate whether speciation happened close to the leaves (i.e., recent speciation for 1e-06) or close to the root (i.e., deep
speciation for 1e-07). The shorter tree height (500K) indicates shorter branches and therefore higher levels of ILS.

AD, average distance; GTEE, gene tree estimation error; ILS, incomplete lineage sorting.

Appendix Table C2. Statistics for the 48-Taxon Avian Simulated Dataset

Model condition Sequence length (bp) ILS level (AD) GTEE

0.5X 500 0.59 0.59
1X 250 0.47 0.67

500 0.47 0.54
1000 0.47 0.39
1500 0.47 0.31

2X 500 0.35 0.57

ILS level (measured using the average distance between the true gene trees and the model species tree, or AD) and
average GTEE of the estimated gene trees for different model conditions of the avian datasets with 1000 gene trees.

Appendix Table C3. Statistics for the 37-Taxon Mammalian Simulated Dataset

Model condition Sequence length (bp) ILS level (AD) GTEE

0.5X 500 0.54 0.27
1X 500 0.33 0.27

1000 0.33 0.16
2X 500 0.18 0.27

ILS level (measured using the average distance between the true gene trees and the model species tree, or AD) and
average GTEE of the estimated gene trees for different model conditions of the mammalian datasets with 200 gene trees.

Appendix Table C4. ASTRAL RF Error Rates on the 201-Taxon Datasets

Speciation rate Tree height Number of genes RF (true gene trees) RF (est gene trees)

1E-06 500K 1000 0:028* 0:012 0:067* 0:065
200 0:065* 0:021 0:118* 0:103
50 0:137* 0:030 0:208* 0:118

1E-06 2M 1000 0:010* 0:008 0:034* 0:041
200 0:023* 0:011 0:052* 0:045
50 0:045* 0:015 0:084* 0:042

1E-06 10M 1000 0:006* 0:006 0:020* 0:028
200 0:012* 0:010 0:031* 0:029
50 0:027* 0:014 0:053* 0:037

1E-07 500K 1000 0:028* 0:011 0:065* 0:036
200 0:066* 0:018 0:107* 0:038
50 0:143* 0:024 0:197* 0:046

1E-07 2M 1000 0:010* 0:007 0:045* 0:040
200 0:024* 0:011 0:062* 0:038
50 0:049* 0:017 0:102* 0:041

1E-07 10M 1000 0:002* 0:003 0:050* 0:054
200 0:004* 0:004 0:055* 0:055
50 0:011* 0:007 0:072* 0:061

Species tree estimation error in terms of normalized RF distance for ASTRAL trees given true and estimated gene trees for the 201-

taxon datasets. The values show mean and standard deviation of RF errors across 50 replicates for each model condition.

RF, Robinson-Foulds.

(Appendix continues /)
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Appendix Table C5. ASTRAL RF Error Rates on the Mammalian Simulated Dataset

Model condition Sequence length (bp) Number of genes RF rate

0.5X NA (true gene trees) 200 0:035* 0:024
50 0:094* 0:044

500 200 0:049* 0:025
50 0:107* 0:049

1X NA (true gene trees) 200 0:013* 0:017
50 0:057* 0:039

1000 200 0:022* 0:021
50 0:063* 0:031

500 200 0:038* 0:032
50 0:079* 0:044

2X NA (true gene trees) 200 0:003* 0:009
50 0:018* 0:020

500 200 0:025* 0:021
50 0:066* 0:031

Species tree estimation error in terms of normalized RF distance for ASTRAL trees on the 37-taxon mammalian

simulated dataset. The values show mean and standard deviation of RF errors across 20 replicates for each model

condition. For true gene trees, sequence length is not applicable and hence shown as NA.

Appendix Table C6. ASTRAL RF Error Rates on the Avian Simulated Dataset

Model condition Sequence length (bp) Number of genes RF rate

0.5X NA (true gene trees) 1000 0:048* 0:030
200 0:151* 0:029
50 0:242* 0:040

500 1000 0:131* 0:040
200 0:243* 0:042
50 0:332* 0:053

1X NA (true gene trees) 1000 0:033* 0:023
200 0:076* 0:030
50 0:154* 0:041

1500 1000 0:049* 0:028
200 0:111* 0:031
50 0:211* 0:032

1000 1000 0:056* 0:029
200 0:126* 0:032
50 0:228* 0:042

500 1000 0:078* 0:038
200 0:189* 0:053
50 0:283* 0:035

250 1000 0:158* 0:045
200 0:260* 0:043
50 0:343* 0:040

2X NA (true gene trees) 1000 0:021* 0:016
200 0:046* 0:025
50 0:104* 0:039

500 1000 0:043* 0:019
200 0:126* 0:043
50 0:226* 0:047

Species tree estimation error in terms of normalized RF distance for ASTRAL trees on the 48-taxon avian

simulated dataset. The values show mean and standard deviation of RF errors across 20 replicates for each model

condition. For true gene trees, sequence length is not applicable and hence shown as NA.

(Appendix continues /)
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C.2. Software Commands and Version Numbers

" ASTRAL: We used ASTRAL (v5.7.8) to estimate unrooted species trees, with the specified number of
true or estimated gene trees for each model condition. ASTRAL is available at https://github.com/
smirarab/ASTRAL. We used the following command:
java -jar astral.5.7.8.jar -i <input-genes.tre> -o <output.tre>

" Quintet Rooting (QR): We used QR (v1.2.4) to root unrooted species trees. QR is available at https://
github.com/ytabatabaee/Quintet_Rooting. We used the following command:
python3 quintet_rooting.py -t <input-tree.tre> -g <input-genes.tre> -o
<output.tre> -sm le
The -LE option specifies the quintet sampling method as ‘‘linear encoding.’’

" QR-STAR: QR-STAR is available as part of the QR software package, and we ran it using the
following command in the comparisons to QR, that sets C = 1E - 02 and amax

bmin
= 0:

python3 quintet_rooting.py -t <input-tree.tre> -g <input-genes.tre> -o
<output.tre> -sm le -c STAR -abratio 0 -coef 0.01

" Optimal rooting: We used the script available at https://github.com/ytabatabaee/QR-STAR-paper/
blob/main/scripts/optimal_rooting.py to find a rooting of an estimated tree that has minimum nor-
malized clade distance (nCD) error with respect to a reference rooted tree.
python3 optimal_rooting.py -r <reference-rooted.tre> -t <un-
rooted.tre> -o <output.tre>

" GTEE, AD and Rooting (nCD) Error: GTEE and average distance between model species trees and
true gene was computed using a script for computing normalized Robinson-Foulds (RF) distance
written by Erin. K. Molloy available at https://github.com/ekmolloy/njmerge/blob/master/python/
compare_trees.py
Rooting error was measured in terms of average nCD using the script available at https://github.com/
ytabatabaee/Quintet-Rooting/blob/main/scripts/clade_distance.py

D. COMPUTING THE OPTIMAL ROOTING SCORE

In Experiments 2 and 3, we reported the lowest possible normalized clade distance (nCD) rate achievable
across all rootings of the estimated species tree; this was performed through an exhaustive search (rooting
on all possible edges and computing the nCD rate). However, here we show that this best possible nCD has
a close relationship to the missing branch (false negative or FN) rate of the unrooted estimated species tree
with respect to the model species tree.

Let R be the true rooted species tree and let T denote its unrooted topology. Let T̂ be an estimate of T. We
are interested in rooting T̂ to minimize the number of its missing clades with respect to R, and we will call
this the missing clade number (not a rate). We define FN(T̂‚ T) to be the number of bipartitions in T that are
not found in T̂ . We will show that the missing clade number for an optimal rooting of T̂ with respect to R is
either FN(T̂‚ T) or FN(T̂‚ T) + 1, depending on whether the bipartition at the root of R is present in T̂ or not.

Lemma 8. Let R be the true rooted species tree with T the unrooted version. We draw R with root r
having two children vA and vB. Let A be the clade below vA and B be the clade below vB. Let T̂ be an
estimate of T. If bipartition AjB is present in T̂ , induced by edge e, then the optimal rooting of T̂ that
minimizes the number of missing clades in R is achieved by rooting on edge e, and results in FN(T̂‚ T)
missing clades. If AjB is not present in T̂ , then the optimal rooting of T̂ that minimizes the number of clades
in R missing from the rooted version of T̂ results in FN(T̂‚ T) + 1 missing clades.

Proof. Assume AjB is not present in T̂ . Take R and mark all edges of T that define bipartitions that do not
appear in T̂ . Since the bipartition that is defined by the edge that the root bisects is not present in T̂ , those
two edges incident to r [i.e., the edges (r‚ vA) and (r‚ vB)] are both marked. Make r a leaf, by attaching a
new leaf that is adjacent to the original root location. Collapse all marked edges, to obtain an unresolved
tree. Now refine this unresolved tree so that it induces T̂ (and so produces T̂ when the root leaf is removed).
Since this tree contains the root, this can be seen as a rooted version of T̂ . Note that the missing clade
number for this rooted tree is identical to FN(T̂‚ T) + 1. That is, the two edges that define the bipartition AjB
in T each contribute 1 to the missing clade number, and every other missing edge also contributes 1 to the
missing clade number. The proof for when AjB is present in T̂ is similar and is omitted. ,
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https://github.com/smirarab/ASTRAL
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https://github.com/ytabatabaee/Quintet_Rooting
https://github.com/ytabatabaee/QR-STAR-paper/blob/main/scripts/optimal_rooting.py
https://github.com/ytabatabaee/QR-STAR-paper/blob/main/scripts/optimal_rooting.py
https://github.com/ekmolloy/njmerge/blob/master/python/compare_trees.py
https://github.com/ekmolloy/njmerge/blob/master/python/compare_trees.py
https://github.com/ytabatabaee/Quintet-Rooting/blob/main/scripts/clade_distance.py
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