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—— Abstract

We expand on recent exciting work of Debris-Alazard, Ducas, and van Woerden [Transactions on
Information Theory, 2022], which introduced the notion of basis reduction for codes, in analogy
with the extremely successful paradigm of basis reduction for lattices. We generalize DDvW’s LLL
algorithm and size-reduction algorithm from codes over Fa to codes over Fy, and we further develop
the theory of proper bases. We then show how to instantiate for codes the BKZ and slide-reduction
algorithms, which are the two most important generalizations of the LLL algorithm for lattices.

Perhaps most importantly, we show a new and very efficient basis-reduction algorithm for codes,
called full backward reduction. This algorithm is quite specific to codes and seems to have no
analogue in the lattice setting. We prove that this algorithm finds vectors as short as LLL does in
the worst case (i.e., within the Griesmer bound) and does so in less time. We also provide both
heuristic and empirical evidence that it outperforms LLL in practice, and we give a variant of the
algorithm that provably outperforms LLL (in some sense) for random codes.

Finally, we explore the promise and limitations of basis reduction for codes. In particular, we
show upper and lower bounds on how “good” of a basis a code can have, and we show two additional
illustrative algorithms that demonstrate some of the promise and the limitations of basis reduction
for codes.
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1 Introduction

1.1 Codes and lattices

A linear code C C [Fy is a subspace of the vector space Fy over the finite field Fy, i.e., it is the
set of all F-linear combinations of a linearly independent list of vectors B := (by;...; by),

C:=C(B):={z1b1+ -+ 2zby : z, €Fy}.

We call by,...,bx a basis for the code and k the dimension of the code. We are interested in
the geometry of the code induced by the Hamming weight |c| for ¢ € Fy, which is simply
the number of coordinates of ¢ that are non-zero. For example, it is natural to ask about a
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code’s minimum distance, which is the minimal Hamming weight of a non-zero codeword,
i.e.,

Amin (C) 1= crenclilo Ic| .

At a high level, there are two fundamental computational problems associated with linear
codes. In the first, the goal is to find a short non-zero codeword—i.e., given a basis for a code
C, the goal is to find a non-zero codeword ¢ € Co with relatively small Hamming weight |c].
In the second, the goal is to find a codeword that is close to some target vector ¢ € Fy—i.e.,
given a basis for a code C and a target vector t € Fy, the goal is to find a codeword ¢ € C
such that |¢ — t| is relatively small. (Here, we are being deliberately vague about what we
mean by “relatively small.”)

We now describe another class of mathematical objects, which are also ubiquitous in
computer science. Notice the striking similarity between the two descriptions.

A lattice L C Q™ is the set of all integer linear combinations of linearly independent basis
vectors A := (aq;...;a;) € Q" ie.,

L:=L(A)={za1+ -+ zzar : 2z €EL}.

We are interested in the geometry of the lattice induced by the Euclidean norm |lal :=
(a? + --- 4+ a2)'/2. In particular, it is natural to ask about a lattice’s minimum distance,
which is simply the minimal Euclidean norm of a non-zero lattice vector, i.e.,

ML) = min iyl

At a high level, there are two fundamental computational problems associated with
lattices. In the first, the goal is to find a short non-zero lattice vector—i.e., given a basis
for a lattice £, the goal is to find a non-zero lattice vector y € Lo with relatively small
Euclidean norm ||y||. In the second, the goal is to find a lattice vector that is close to some
target vector t € Q"—i.e., given a basis for a lattice £ and a target vector t € Z", the goal
is to find a lattice vector y € £ such that ||y — t|| is relatively small. (Again, we are being
deliberately vague here.)

Clearly, there is a strong analogy between linear codes and lattices, where to move from
codes to lattices, one more-or-less just replaces a finite field IF; with the integers Z and the
Hamming weight |-| with the Euclidean norm ||-||. It is therefore no surprise that this analogy
extends to many applications. For example, lattices and codes are both used for decoding
noisy channels. They are both used for cryptography (see, e.g., [26, 3, 5, 23, 7, 30]; in fact,
both are used specifically for post-quantum cryptography). And, many complexity-theoretic
hardness results were proven simultaneously or nearly simultaneously for coding problems
and for lattice problems, often with similar or even identical techniques.!

1.2 Basis reduction for lattices

However, the analogy between lattices and codes has been much less fruitful for algorithms.
Of course, there are many algorithmic techniques for finding short or close codewords and
many algorithmic techniques for finding short or close lattice vectors. But, in many parameter

! For example, similar results that came in separate works in the two settings include [15] and [14], [4]
and [33], [27] and [19], [13, 2] and [32], etc. Works that simultaneously published the same results in
the two settings include [9] and [18].
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regimes of interest, the best algorithms for lattices are quite different from the best algorithms
for codes.

In the present work, we are interested in basis reduction, a ubiquitous algorithmic
framework in the lattice literature. At a very high level, given a basis A := (aq;...;ax)
for a lattice £, basis reduction algorithms work by attempting to find a “good” basis
of £ (and in particular, a basis whose first vector a; is short) by repeatedly making
“local changes” to the basis. Specifically, such algorithms manipulate the Gram-Schmidt
vectors @1 := aq, Qg := W{Lal}(aq), L a = 7r{lahm7ak71}(ak). Here, 7r{l017.._7ai71} represents
orthogonal projection onto the subspace orthogonal to a1, ..., a;_1. Notice that we can view
the Gram-Schmidt vector a; as a lattice vector in the lower-dimensional lattice generated
by the projected block Ay; j := 7rf-017___7ai71}(ai; ...;a;). Basis reduction algorithms work by
making many “local changes” to A, i.e., changes to the block A[; ;; that leave the lattice
L(Ay; ;) unchanged. The goal is to use such local changes to make earlier Gram-Schmidt
vectors shorter. (In particular, a; = a; is a non-zero lattice vector. So, if we can make the
first Gram-Schmidt vector short, then we will have found a short non-zero lattice vector.)
One accomplishes this, e.g., by finding a short non-zero vector y in L(Aj; ;1) and essentially
replacing the first vector in the block with this vector y. (Here, we are ignoring how exactly
one does this replacement.)

This paradigm was introduced in the celebrated work of Lenstra, Lenstra, and Lovész [25],
which described the polynomial-time LLL algorithm. Specifically, (ignoring important details
that are not relevant to the present work) the LLL algorithm works by repeatedly replacing
Gram-Schmidt vectors a; with a shortest non-zero vector in the lattice generated by the
dimension-two block A[;;11). The LLL algorithm itself has innumerable applications. (See,
e.g., [29].) Furthermore, generalizations of LLL yield the most efficient algorithms for finding
short non-zero lattice vectors in a wide range of parameter regimes, including those relevant
to cryptography.

Specifically, the Block-Korkine-Zolotarev basis-reduction algorithm (BKZ), originally
due to Schnorr [31], is a generalization of the LLL algorithm that works with larger blocks.
It works by repeatedly modifying blocks Aj; ;4 3_1] of a lattice basis A := (a1;...;ax) in
order to ensure that the Gram-Schmidt vector a; is a shortest non-zero vector in the lattice
generated by the block. Here, the parameter § > 2 is called the block size, and the case
B = 2 corresponds to the LLL algorithm (ignoring some technical details). Larger block size
[ yields better bases consisting of shorter lattice vectors. But, to run the algorithm with
block size 8, we must find shortest non-zero vectors in a S-dimensional lattice, which requires
running time 29 with the best-known algorithms [6, 1, 12]. So, BKZ yields a tradeoff
between the quality of the output basis and the running time of the algorithm. (Alternatively,
one can view BKZ as a reduction from an approximate lattice problem in high dimensions to
an exact lattice problem in lower dimensions, with the approximation factor depending on
how much lower the resulting dimension is.)

BKZ is the fastest known algorithm in practice for the problems relevant to cryptography.
However, BKZ is notoriously difficult to understand. Indeed, we still do not have a proof
that the BKZ algorithm makes at most polynomially many calls to its S-dimensional oracle,
nor do we have a tight bound on the quality of the bases output by BKZ, despite much effort.
(See, e.g., [34]. However, for both the running time and the output quality of the basis, we
now have a very good heuristic understanding [16, 11].)

Gama and Nguyen’s slide-reduction algorithm is an elegant alternative to BKZ that is
far easier to analyze [20]. In particular, it outputs a basis whose quality (e.g., the length
of the first vector) essentially matches our heuristic understanding of the behavior of BKZ,

XX:3



XX:4

128
129
130

131

132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153

154
155
156
157
158
159
160
161

162

163

164
165
166
167
168

169

More basis reduction for linear codes

and it provably does so with polynomially many calls to a S-dimensional oracle for finding
a shortest non-zero lattice vector. Indeed, for a wide range of parameters (including those
relevant to cryptography), [20] yields the fastest algorithm with proven correctness for finding
short non-zero lattice vectors.

1.2.0.1 Dual reduction, and some foreshadowing.

One of the key ideas used in Gama and Nguyen’s slide-reduction algorithm (as well as in
other work, such as [28]) is the notion of a dual-reduced block Aj; ;. The motivation behind
dual-reduced blocks starts with the observation that the product ||a;| - ||a;|| does not
change if the lattice L(A[; ;) is not changed. Formally, this quantity is the determinant of
the lattice L(Ay; 1), which is a lattice invariant. So, while it is perhaps more natural to
think of basis reduction in terms of making earlier Gram-Schmidt vectors in a block shorter,
with the ultimate goal of making a; short, one can more-or-less equivalently think of basis
reduction in terms of making later Gram-Schmidt vectors longer.

One therefore defines a dual-reduced block as a block A[; ;) such that the last Gram-
Schmidt vector a; is as long as it can be without changing the associated lattice L(Aj; ;).
When g := j —i+4+1 > 2, a dual-reduced block is not the same as a block whose first
Gram-Schmidt vector is as short as possible. However, there is still some pleasing symmetry
here. In particular, it is not hard to show that the last Gram-Schmidt vector a; corresponds
precisely to a non-zero (primitive) vector in the dual lattice of L(A[; ;1) with length 1/|la;]|.
This of course explains the terminology. It also means that making the last Gram-Schmidt
vector a; as long as possible corresponds to finding a shortest non-zero vector in the dual
of L(A[;;1), while making the first Gram-Schmidt vector a; as short as possible of course
corresponds to finding a shortest non-zero vector in £(A[; ;1) itself. Either way, this amounts
to finding a shortest non-zero vector in a S-dimensional lattice, which takes time that is
exponential in the block size 3.

1.3 Basis reduction for codes!

As far as the authors are aware, until very recently there was no work attempting to use
the ideas from basis reduction in the setting of linear codes. This changed with the recent
exciting work of Debris-Alazard, Ducas, and van Woerden, who in particular showed a simple
and elegant analogue of the LLL algorithm for codes [17].

Debris-Alazard, Ducas, and van Woerden provide a “dictionary” ([17, Table 1]) for
translating important concepts in basis reduction from the setting of lattices to the setting
of codes, and it is the starting point of our work. Below, we describe some of the dictionary
from [17], as well as some of the barriers that one encounters when attempting to make basis
reduction work for codes.

1.3.1 Projection, epipodal vectors, and proper bases

Recall that when one performs basis reduction on lattices, one works with the Gram-Schmidt

vectors a; := wf‘al ai—l}(ai) and the projected blocks Ay; jj 1= wf‘al af_l}(ai; Sag),
i.e., the orthogonal projection of a;, ..., a; onto the subspace {a1,..., a;_1}+ orthogonal to
ay,...,q;_1.

So, if we wish to adapt basis reduction to the setting of linear codes (and we do!), it is
natural to first ask what the analogue of projection is in the setting of codes. [17] gave a
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very nice answer to this question.? In particular, for a vector = (z1,...,1,) € Fy we call
the set of indices 7 such that x; is non-zero the support of x, i.e.,

Supp(x) :=={i € [n] : x; #0}.

Then, [17] define z := Wf_mh...,me}(y) as follows. If i € J; Supp(z;), then z; = 0. Otherwise,
z; = y;. In other words, the projection simply “zeros out the coordinates in the supports
of the &;.” This notion of projection shares many (but certainly not all) of the features of
orthogonal projection in R", e.g., it is a linear contraction mapping that is idempotent.

Armed with this notion of projection, [17] then defined the epipodal vectors associated
with a basis by,..., b, as b] := by, b] = ﬂﬁn}(bg), b= W‘f—blyn-»bn—l}(bn)’ in analogy
with the Gram-Schmidt vectors. In this work, we go a bit further and define

By ;) = 7T{lbl,...,bi,l}(bi; .3 b)),

in analogy with the notation in the literature on lattice basis reduction.

Here, [17] already encounters a bit of a roadblock. Namely, the epipodal vectors b;L can
be zero! E.g., if by = (1,1,...,1) is the all-ones vector, then b will be zero for all i > 1!3
This is rather troublesome and could lead to many issues down the road. For example, we
might even encounter entire blocks By; ;) that are zero! Fortunately, [17] shows how to get
around this issue by defining proper bases, which are simply bases for which all the epipodal

vectors are non-zero. They then observe that proper bases exist and are easy to compute.

(In Section 4, we further develop the theory of proper bases.) So, this particular roadblock
is manageable, but it already illustrates that the analogy between projection over Fj and
projection over R” is rather brittle.

The LLL algorithm for codes then follows elegantly from these definitions. In particular, a
basis B = (by;...;by) is LLL-reduced if it is proper and if b} is a shortest non-zero codeword
in the dimension-two code generated by By; ;) for all i = 1,... k — 1. [17] then show
a simple algorithm that computes an LLL-reduced basis in polynomial time. Specifically,
the algorithm repeatedly makes simple local changes to any block Bj; ;1) for which this
condition is not satisfied until the basis is reduced.

In some ways, this new coding-theoretic algorithm is even more natural and elegant than
the original LLL algorithm for lattices. For example, the original LLL algorithm had to
worry about numerical blowup of the basis entries. And, the original LLL algorithm seems
to require an additional slack factor § in order to avoid the situation in which the algorithm
makes a large number of minuscule changes to the basis. Both of these issues do not arise
over finite fields, where all vectors considered by the algorithm have entries in F, and integer
lengths between 1 and n.

1.3.2 What’s a good basis and what is it good for?

Given the incredible importance of the LLL algorithm for lattices, it is a major achievement
just to show that one can make sense of the notion of “LLL for codes.” But, once [17] have

2 [17] formally worked with the case ¢ = 2 everywhere. Rather than specialize our discussion here to

Fa, we will largely ignore this distinction in this part of the introduction. While the more general
definitions that we provide here for arbitrary F; are new to the present work, when generalizing to Fy is
straightforward, we will not emphasize this in the introduction.

3 Of course, similar issues do not occur over R”, because if a1, ...,a; € R™ are linearly independent,
then Wél,-u,ak_l (ar) cannot be zero.
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defined an LLL-reduced basis for codes and shown how to compute one efficiently, an obvious
next question emerges: what can one do with such a basis?

In the case of lattices, the LLL algorithm is useful for many things, but primarily for the
two most important computational lattice problems: finding short non-zero lattice vectors and
finding close lattice vectors to a target. In particular, the first vector a; of an LLL-reduced
basis is guaranteed to ||a;| < 27!\, (L£). This has proven to be incredibly useful, despite
the apparently large approximation factor.

For codes over Fa, [17] show that the same is true, namely that if B = (by;...;by) is an
LLL-reduced basis for C C F%, then |b;| < 2¥7'd:n(C). They prove this by showing that
if b has minimal length among the non-zero codewords in C(B; ;11), then [b]| < 2|bj",|.
It follows in particular that |b;| = |bf| < 2°7!|b]| for all i. One can easily see that
dmin(C) > min; |b;r|, from which one immediately concludes that |bf| < 2¢~1di,(C). A
simple generalization of this argument shows that over F,, we have b7 | < ¢" tdmin(C). (We
prove something more general and slightly stronger in the full version [21].)

However, notice that all codewords have length at most n and dyi, (C) is always at least

k=1 is non-trivial only if n > ¢*~!. Otherwise,

1. Therefore, an approximation factor of ¢
literally any non-zero codeword has length less than ¢*~'d,;,(C)! On the other hand, if
n > ¢*1, then we can anyway find an exact shortest vector in time roughly ¢*n < n?
by simply enumerating all codewords. (The typical parameter regime of interest is when
n = 0(k).)

In some sense, the issue here is that the space Fy that codes live in is too “cramped.”
While lattices are infinite sets that live in a space Q™ with arbitrarily long and arbitrarily
short non-zero vectors, codes are finite sets that live in a space Fy in which all non-zero
vectors have integer lengths between 1 and n. So, while for lattices, any approximation factor
between one and, say, 2¥ is very interesting, for codes the region of interest is simply more
Narrow.

[17] go on to observe that because |b2’+1| is an integer, for codes over Fy an LLL-reduced
basis must actually satisfy

b/ |
+ > |7’

With this slightly stronger inequality together with the fact that > |b;"| < n, they are able
to show that b; of an LLL-reduced basis will meet the Griesmer bound [22],

i Hﬂ <n, (1)

which is non-trivial. E.g., as long as k > logn, it follows that

_ [log |bi]] < n—k
2 -2

b1 +1 (2)

(We generalize this in the full version [21] to show that the appropriate generalization of
LLL-reduced bases to codes over F, also meet the g-ary Griesmer bound.)

1.3.2.1 Finding close codewords and size reduction.

For lattices, Babai also showed how to use an LLL-reduced basis to efficiently find close
lattice vectors to a given target vector [10], and like the LLL algorithm itself, Babai’s
algorithm too has innumerable applications. More generally, Babai’s algorithm tends to
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obtain closer lattice vectors if given a “better” basis, in a certain precise sense. [17] showed
an analogous “size-reduction” algorithm that finds close codewords to a given target vector,
with better performance given a “better” basis. Here, the notion of “better” is a bit subtle,
but essentially a basis is “better” if the epipodal vectors tend to have similar lengths. (Notice
that >, |b; | = |Supp(C)|, so we cannot hope for all of the epipodal vectors to be short.)

The resulting size-reduction algorithm finds relatively close codewords remarkably quickly.

(Indeed, in nearly linear time.) Furthermore, [17] showed how to use their size-reduction
algorithm combined with techniques from information set decoding to speed up some
information set decoding algorithms for finding short codewords or close codewords to a
target, without significantly affecting the quality of the output. For this, their key observation
was the fact that typically most epipodal vectors actually have length one (particularly the
later epipodal vectors, as one would expect given that later epipodal vectors by definition
have more coordinates “zeroed out” by projection orthogonal to the earlier basis vectors)
and that their size-reduction algorithm derives most of its advantage from how it treats the
epipodal vectors with length greater than one. They therefore essentially run information set
decoding on the code projected onto the support of the epipodal vectors with length one and
then “lift” the result to a close codeword using their size-reduction algorithm.

They call the resulting algorithm Lee-Brickell-Babai because it is a hybrid of Babai-style
size reduction and the Lee-Brickell algorithm [24]. The running time of this hybrid algorithm
is dominated by the cost of running information set decoding on a code with dimension
k — k1, where

k=1 [oF] > 1

is the number of epipodal vectors that do not have length 1. Indeed, the (heuristic) running
time of this algorithm is better than Lee-Brickell by a factor that is exponential in k1, so
that even a small difference in k; can make a large difference in the running time. They
then show that LLL-reduced bases have k; 2 logn (for random codes) and show that this
reduction in dimension can offer significant savings in the running time of information set
decoding.

Indeed, though the details are not yet public, the current record in the coding problem
challenges [8] was obtained by Ducas and Stevens, apparently using such techniques.

1.4 Qur contribution

In this work, we continue the study of basis reduction for codes, expanding on and generalizing
the results of [17] in many ways, and beginning to uncover a rich landscape of algorithms.

1.4.1 Expanding on the work of [17]
1.4.1.1 Generalization to F,.

Our first set of (perhaps relatively minor) contributions are generalizations of many of the
ideas in [17] from Fy to [y, a direction proposed in that work. In fact, they quite accurately
anticipated this direction. So, we quote directly from [17, Section 1.3]:

In principle, the definitions, theorems and algorithms of this article should be gen-
eralizable to codes over I, endowed with the Hamming metric... Some algorithms
may see their complexity grow by a factor ©(g), meaning that the algorithms remains
polynomial-time only for ¢ = n®M. Tt is natural to hope that such a generalised
LLL would still match [the] Griesmer bound for ¢ > 2. However, we expect that
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the analysis of the fundamental domain [which is necessary for understanding size
reduction]. .. would become significantly harder to carry out.

In Section 3, we generalize from Iy to IF, the definitions of projection, epipodal vectors,
and proper bases; the definition of an LLL-reduced bases and the LLL algorithm;* and the
size-reduction algorithm and its associated fundamental domain. Some of this is admittedly
quite straightforward—e.g., given the definitions in [17] of projection, epipodal vectors,
and proper bases for codes over Fj, the corresponding definitions for codes over F, are
immediate (and we have already presented them in this introduction). And, the definition
of an LLL-reduced basis and of size reduction follow more-or-less immediately from these
definitions. In particular, we do in fact confirm that LLL over I, achieves the Griesmer
bound.

As [17] anticipated, the most difficult challenge that we encounter here is in the analysis
of the fundamental domain that one obtains when one runs size reduction with a particular
basis B. We refer the reader to the full version [21] for the details.

(We do not encounter the running time issue described in the quote above—except for our
algorithm computing the number of vectors of a given length in F (B+). In particular, our
versions of the LLL algorithm and the size-reduction algorithm—and even our generalizations
like slide reduction—run in time that is proportional to a small polynomial in logg.)

Along the way, we make some modest improvements to the work of [17], even in the case
of Fy. In particular, using more careful analysis, we shave a factor of roughly n from the
proven running time of LLL. (See the full version [21].)

1.4.1.2 More on the theory of proper bases.

In order to develop the basis-reduction algorithms that we will describe next, we found that
it was first necessary to develop (in Section 4) some additional tools for understanding and
working with proper bases, which might be of independent interest. Specifically, we define the
concept of a primitive codeword, which is a non-zero codeword ¢ such that Supp(c) does not
strictly contain the support of any other non-zero codeword. We then show that primitive
codewords are closely related to proper bases. For example, we show that ¢ is the first vector
in some proper basis if and only if ¢ is primitive, and that a basis is proper if and only if the
epipodal vectors are primitive vectors in their respective projections.

We find this perspective to be quite useful for thinking about proper bases and basis
reduction in general. In particular, we use this perspective to develop algorithms that perform
basic operations on proper bases, such as inserting a primitive codeword into the first entry
of a basis without affecting properness. The resulting algorithmic tools seems to be necessary
for the larger-block-size versions of basis reduction that we describe below, in which our
algorithms must make more complicated changes to a basis.

1.4.2 Backward reduction and redundant sets

Our next contribution is the notion of backward reduction, described in Section 5. Recall
that in the context of lattices, a key idea is the notion of a dual-reduced block Ay, ;), in which
the last Gram-Schmidt vector a; is as long possible, while keeping L(A[; 1) fixed.

4 We actually describe the LLL algorithm as a special case of the more general algorithms that we describe
below. See the full version [21].
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Backward-reduced blocks are what we call the analogous notion for codes. Specifically,
we say that a block By; j is backward reduced if the last epipodal vector b;r is as long as
possible, while keeping C(By; ;1) fixed. Just like in the case of lattices, this idea is motivated
by an invariant. Here, the invariant is |b;| + - -- + |bj+|, which is precisely the support of the
code C(By; ;7). So, if one wishes to make earlier epipodal vectors shorter (and we do!), then
one will necessarily make later epipodal vectors longer, and vice versa. In particular, in the
case of LLL, when the block size 5 :=j — i+ 1 is equal to 2, there is no difference between
minimizing the length of the first epipodal vector and maximizing the length of the second
epipodal vector. So, if one wishes, one can describe the LLL algorithm in [17] as working by
repeatedly backward reducing blocks Bi; ;1 1)-

The above definition of course leads naturally to two questions. First of all, how do we
produce a backward-reduced block (for block size larger than 2)? And, second, what can we
say about them? Specifically, what can we say about the length |b]+| of the last epipodal
vector in a backward-reduced block By; ;7

One might get discouraged here, as one quickly discovers that long last epipodal vectors do
not correspond to short non-zero codewords in the dual code. So, the beautiful duality that
arises in the setting of lattices simply fails in our new context. (The only exception is that
last epipodal vectors with length exactly two correspond to dual vectors with length exactly
two.) This is why we use the terminology “backward reduced” rather than “dual reduced.”
One might fear that the absence of this correspondence would make backward-reduced blocks
very difficult to work with.

Instead, we show that long last epipodal vectors bj' in a block By; ;1 have a simple
interpretation. They correspond precisely to large redundant sets of coordinates of the code
C(By; ;1) In the special case when ¢ = 2, a redundant set S C [n] of coordinates is simply a
set of coordinates in the support of the code such that for every a,b € S and every codeword
¢, cg = ¢. For larger ¢, we instead have the guarantee that ¢, = zc¢p for fixed non-zero
scalar z € F depending only on a and b. In particular, maximal redundant sets correspond
precisely to the non-zero coordinates in a last epipodal vector. (See Lemma 8.)

This characterization immediately yields an algorithm for backward reducing a block.
(See Algorithm 2.) In fact, finding a backward-reduced block boils down to finding a set of
most common elements in a list of at most n non-zero columns, each consisting of 5 := j—i+1
elements from F,. One quite surprising consequence of this is that one can actually find
backward-reduced blocks efficiently, even for large 8! (Compare this to the case of lattices,
where finding a dual-reduced block for large S is equivalent to the NP-hard problem of finding
a shortest non-zero vector in a lattice of dimension f.)

Furthermore, this simple combinatorial characterization of backward-reduced blocks
makes it quite easy to prove a simple tight lower bound on the length of b;r in a backward-
reduced block By; ;1. (See the full version [21].) Indeed, such a proof follows immediately
from the pigeonhole principle. This makes backward-reduced blocks quite easy to analyze.
In contrast, as we will see below, forward-reduced blocks, in which the first epipodal vector
bj is as short as possible, are rather difficult to analyze for g > 2.

1.4.3 Fully backward-reduced bases

With this new characterization of backward-reduced blocks and the realization that we can
backward reduce a block quite efficiently, we go on to define the notion of a fully backward-
reduced basis. We say that a basis is fully backward reduced if all of the prefixes By j are
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backward reduced for all 1 < j < k.% In fact, we are slightly more general than this, and
consider bases that satisfy this requirement for all 7 up to some threshold 7 < k.

We show that a fully backward-reduced basis achieves the Griesmer bound (Equation (1)
for ¢ = 2), just like an LLL-reduced basis. This is actually unsurprising, since it is not
difficult to see that when the threshold 7 = k is maximal, a fully backward-reduced basis is
also LLL reduced. However, even when 7 = log, n, we still show that a backward-reduced
basis achieves the Griesmer bound. (See Theorem 16.)

We then show a very simple and very efficient algorithm for computing fully backward-
reduced bases. In particular, if the algorithm is given as input a proper basis, then it will
convert it into a fully backward-reduced basis up to threshold 7 in time O(72n polylog(n, q)).
Notice that this is extremely efficient when 7 < poly(logq n).5 Indeed, for most parameters
of interest, this running time is in fact less than the time O(nklogq) needed simply to read
the input basis B € F’;X”. (Of course, this is possible because the algorithm only looks at
the first 7 rows of the input basis.) So, if one already has a proper basis, one can convert it
into a fully backward-reduced basis nearly for free.”

In contrast, the LLL algorithm runs in time O(kn? log? q). One can perform a similar
“threshold” trick and run the LLL algorithm only on the first 7 basis vectors for 7 = [log, n]
(which would still imply that |b;| must be bounded by the Griesmer bound). But, this would
still yield a running time of Q(7n?log? ¢) in the worst case. The speedup that we achieve
from fully backward reduction comes from the combination of this threshold trick together
with the fact that fully backward reduction runs in time proportional to 72n, rather than
™2,

Furthermore, we show empirically that the resulting algorithm tends to produce better
bases than LLL in practice. (See the full version [21].)

(It seems unlikely that any similar algorithm exists for lattices for two reasons. First, in
the setting of lattices, computing a dual-reduced basis for large block sizes is computationally
infeasible. Second, while for codes it is not unreasonable to look for a short non-zero codeword
in the subcode generated by the first 7 basis vectors, for lattices the lattice generated by the
first k — 1 basis vectors often contains no shorter non-zero vectors than the basis vectors
themselves, even when the full lattice contains much shorter vectors.)

1.4.3.1 Heuristic analysis of full backward reduction.

We also provide heuristic analysis of full backward reduction, providing a compelling heuristic
explanation for why its performance in practice seems to be much better than what worst-case
analysis suggests. In particular, recall that we essentially characterize the length of the last
epipodal vector of a backward-reduced block By; ;) in terms of the maximal number of times
that a column in By; j repeats. We then naturally use the pigeonhole principle to argue that
for suitable parameters there must be a column that repeats many times.

E.g., for ¢ = 2, there must be at least one repeated non-zero column if the number of
non-zero columns s is larger than the number of possible non-zero columns 2% — 1, where
B :=7j—1+1is the length of a column. This analysis is of course tight in the worst case.

5 Notice that this implies that B [i,5] 18 also backward reduced for any 1 < i < j. So, such bases really are
fully backward reduced.

5 We argue (in the full version [21]) that there is not much point in taking 7 significantly greater than
logi (n).

7 Computing a proper basis seems to require time O(nk?log? ¢) (without using fast matrix multiplication
algorithms), but in many contexts the input basis is in systematic form and is therefore proper.
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However, in the average case, we know from the birthday paradox that we should expect to
see a repeated column even if s is roughly 28/2, rather than 2°.

So, under the (mild but unproven) heuristic that the blocks By; j in a fully backward-
reduced basis behave like a random matrices for all j (in terms of the number of redundant
coordinates), it is easy to see that ki 2 2log, n, which is significantly better than what LLL
achieves (both in the worst case and empirically).

This heuristic argument is backed up by experiments. (See the full version [21].) We
also show (in the full the version [21]) a less natural variant of this algorithm that provably
achieves k1 2 2log, n when its input is a random matrix. This variant works by carefully
“choosing which coordinates to look at” for each block, in order to maintain independence.
We view this as an additional heuristic explanation for full backward reduction’s practical
performance, since one expects an algorithm that “looks at all coordinates” to do better
than one that does not.

This result about k; for backward-reduced bases also compares favorably with the study
of the LLL algorithm in [17]. In particular, in [17], they proved that LLL achieves k; 2 logn
for a random code for ¢ = 2, but in their experiments they observed that LLL combined with
a preprocessing step called EpiSort actually seems to achieve k; &~ clogn for some constant
1 < ¢ < 2. However, the behavior of LLL and EpiSort seems to be much more subtle than
the behavior of full backwards reduction. We therefore still have no decent explanation (even
a heuristic one) for why LLL and EpiSort seem to achieve ky = clogn or for what the value
of this constant ¢ actually is.

1.4.4 BKZ and slide reduction for codes

Our next set of contributions are adaptations of the celebrated BKZ and slide-reduction
algorithms to the setting of codes.

1.4.4.1 BKZ for codes.

Our analogue of the BKZ algorithm for codes is quite natural.® Specifically, our algorithm
works by repeatedly checking whether the epipodal vector b} is a shortest non-zero codeword
in the code generated by the block By; ;1 5_1). If not, it updates the basis so that this is the
case (using the tools that we have developed to maintain properness). The algorithm does
this repeatedly until no further updates are possible. At least intuitively, a larger choice of 3
here requires a slower algorithm because the resulting algorithm will have to find shortest
non-zero codewords in S-dimensional codes. But, larger 8 will result in a better basis.

As we mentioned above, in the setting of lattices, the BKZ algorithm is considered to be
the best performing basis-reduction algorithm in most parameter regimes, but it is notoriously
difficult to analyze. We encounter a roughly similar phenomenon in the setting of linear
codes. In particular, we run experiments that show that the algorithm performs quite well in
practice. (Though it requires significantly more running time than full backward reduction

8 We note that the name “BKZ algorithm for codes” is perhaps a bit misleading. In the case of lattices, the
BKZ algorithm is named after Korkine and Zolotarev due to their work on Korkine-Zolotarev-reduced
bases (which can be thought of as BKZ-reduced bases with maximal block size 8 = k, and is sometimes
also called a Hermite-Korkine-Zolotarev-reduced basis). A Block-Korkine-Zolotarev-reduced basis is
(unsurprisingly) a basis in which each block By; ;13—1] is a Korkine-Zolotarev-reduced basis. For codes,
the analogous notion of a Korkine-Zolotarev-reduced basis was called a Griesmer-reduced basis in [17].
So, we should perhaps call our notion “Block-Griesmer-reduced bases” and the associated algorithm
“the block-Griesmer algorithm.” However, the authors decided to use the term “BKZ” here in an attempt
to keep terminology more consistent between lattices and codes.
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2 to achieve a similar profile. See the full version [21].) However, we are unable to prove that
»s3 it terminates efficiently, except in the special case of § = 2, in which case we recover the LLL
s algorithm of [17]. For 8 > 2, we offer only an extremely weak bound on the running time.
ss5  As in the case of lattices, the fundamental issue is that it is difficult to control the effect that
w6 changing bj can have on the other epipodal vectors b;;h R b;j_ g1 in the block.

as7 Here, we encounter an additional issue as well. In the case of lattices, there is a relatively
ass - simple tight bound on the minimum distance of the lattice generated by the block Ajf; ;151
a9 to the lengths of the Gram-Schmidt vectors ||a;|,. .., ||@;+p—1] in the block. In particular,
w0 Minkowski’s celebrated theorem tells us that Ay (L(Api45-17)) < CVB(@i| - - | @irs-1l)*/?
w1 for some constant C' > 0, and one applies this inequality repeatedly with different ¢ to
w2 understand the behavior of basis reduction for lattices.

463 However, in the case of codes, there is no analogous simple tight bound on din (C(Bi;,i+5-1]))
ws in terms of the lengths of the epipodal vectors b} |, ..., |b;r+671|, except in the special case
s  when 8 = 2. Instead, there are many known incomparable upper bounds on dy,;, in terms of
s the dimension 3 and the support size s := |[b; | + -+ + |bi+5_1]| (and, of course, the alphabet
wr  size q). Each of these bounds is tight or nearly tight for some support sizes s (for fixed 3)
ws  but rather loose in other regimes. The nature of our basis-reduction algorithms is such that
w0 different blocks have very different support sizes s, so that we cannot use a single simple
s bound that will be useful in all regimes. And, due to the relatively “cramped” nature of
[y, applying loose bounds on diin can easily yield trivial results, or results that do offer no
a2 improvement over the § = 2 case. As a result, the bound that we obtain on the length of by
a3 for a BKZ-reduced basis does not have a simple closed form. (Since the special case of § = 2
we yields a very simple tight bound din < (1 — 1/¢)s, this is not an issue in the analysis of the
w5 LLL algorithm in [17].)

476 In fact, we do not even know if the worst-case bound on |b1| for a BKZ-reduced basis is
a7 efficiently computable, even if one knows the optimal minimum distance of S-dimensional
as  codes for all support sizes. However, we do show an efficiently computable bound that is
as mnearly as good. And, we show empirically that in practice it produces quite a good basis.
w0 (See the full version [21].)

w1 1.4.4.2 Slide reduction for codes.

sz Given our difficulties analyzing the BKZ algorithm, it is natural to try to adapt Gama and
w3 Nguyen’s slide-reduction algorithm [20] from lattices to codes. In particular, recall that in
¢ the case of lattices, the slide-reduction algorithm has the benefit that (unlike BKZ) it is
w5 relatively easy to prove that it terminates efficiently.

486 In fact, recall that the idea for backward-reduced bases was inspired by dual-reduced bases
w7 for lattices, which are a key component of slide reduction. We therefore define slide-reduced
ws  bases for codes by essentially just substituting backward-reduced blocks for dual-reduced
w0 blocks in Gama and Nguyen’s definition for lattices. Our slide-reduction algorithm (i.e., an
w0 algorithm that produces slide-reduced bases) follows similarly.

a01 We then give a quite simple proof that this algorithm terminates efficiently. Indeed, our
w2 proof is a direct translation of Gama and Nguyen’s elegant potential-based argument from
w3 the case of lattices to the case of codes. (Gama and Nguyen’s proof is itself a clever variant
s of the beautiful original proof for the case when 8 = 2 in [25].)

405 Finally, we give an efficiently computable upper bound on |by]| for a slide-reduced basis
w6 in a similar spirit to our upper bound on BKZ. Here, we again benefit from our analysis of
a7 backward-reduced blocks described above. Indeed, the behavior of the epipodal vectors in
ws our backward-reduced blocks is quite easy to analyze. However, our bound does not have a
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simple closed form because the behavior of the forward-reduced blocks still depends on the
subtle relationship between the minimal distance of a code and the parameters n and k, as
we described in the context of BKZ above.

In our experiments (in the full version [21]), slide reduction is far faster than BKZ but
does not find bases that are as good.

1.4.5 Two illustrative algorithms

In the full version [21], we show yet two more basis-reduction algorithms for codes. We think
of the importance of these algorithms as being less about their actual usefulness and more
about what they show about the potential and limitations of basis reduction for codes. We
explain below.

1.4.5.1 One-block reduction.

The one-block-reduction algorithm is quite simple. It finds a short non-zero codeword
in a code C generated by some basis B by first ensuring that B is proper, and then by
simply finding a shortest non-zero codeword in the subcode C(Bj; g)) generated by the
prefix basis By g. Notice that if 5 < O(log, n), then this algorithm runs in polynomial
time. In particular, enumerating all codewords in the subcode can be done in time roughly
O(ng”log q).

Furthermore, it is not hard to see that when g = [logq n], this simple algorithm actually
meets the Griesmer bound! (See the full version [21].) At a high level, this is because (1) the
worst case in the Griesmer bound has b} | = 1 for all i > ; and (2) the resulting bound is
certainly not better than the minimum distance of a code with dimension S and support size

n—(k—f). Here, the k— 3 term comes from the fact that Supp(B; 5)) = n—|b?3'+1|—- —— b

(Similar logic explains why full backward reduction achieves the Griesmer bound with
7 =~ log, n.)

More generally, it seems unlikely that a basis-reduction algorithm will be able to find by
that is shorter than what is achieved by this simple approach if we take 5 > max{k}, 5'},
where ' is the size of the largest block in the basis reduction algorithm and &} is the maximal
index of an epipodal vector that has length larger than one. (In practice, k7 is almost never
much larger than k1.) In particular, for a basis reduction algorithm to do better than this,
it must manage to produce a block B|; g that has minimum distance less than what one
would expect given its support size.

We therefore think of this algorithm as illustrating two points.

First, the existence of this algorithm further emphasizes the importance of the parameter
k7 (and the closely related parameter ki) as a sort of “measure of non-triviality.” If an
algorithm achieves large k7, then the above argument becomes weaker, since we must take
B > ki. Indeed, if 3 is significantly larger than 2log, k, then the running time of one-block
reduction (if implemented by simple enumeration) becomes significantly slower.

Second, the existence of the one-block-reduction algorithm illustrates that we should be
careful not to judge basis-reduction algorithms entirely based on |b1|. We certainly think
that |by| is an important measure of study, and indeed it is the main way that we analyze
the quality of our bases in this work. However, the fact that one-block-reduction exists shows
that this should not be viewed as the only purpose of a basis-reduction algorithm.

Of course, the algorithms that we have discussed thus far are in fact non-trivial, because
they (1) find short non-zero codewords faster than one-block reduction; and (2) find whole
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reduced bases and not just a single short non-zero codeword. Such reduced bases have
already found exciting applications in [17] and [8], and we expect them to find more.

1.4.5.2 Approximate Griesmer reduction.

Recall that [17] calls a basis B € Fi*" Griesmer reduced if b; is a shortest non-zero
codeword in C(By; ) for all i. And, notice that, if one is willing to spend the time to find
shortest non-zero codewords in codes with dimension at most k, then one can compute a
Griesmer-reduced basis iteratively, by first setting b; to be a shortest non-zero codeword in
the whole code, then projecting orthogonal to b; and building the rest of the basis recursively.
(Griesmer-reduced bases are the analogue of Korkine-Zolotarev bases for lattices. We discuss
Griesmer-reduced bases more below.)

Our approximate-Griesmer-reduction algorithm is a simple variant of this idea. In
particular, it is really a family of algorithms parameterized by a subprocedure that finds short
(but not necessarily shortest) non-zero codewords in a code. Given such a subprocedure, the
algorithm first finds a short non-zero codeword b; in the input code C. It then projects the
code orthogonally to b; and builds the rest of the basis recursively. (To make sure that we
end up with a proper basis, care must be taken to assure that by is primitive. We ignore this
in the introduction. See the full version [21].)

The running time of this algorithm and the quality of the basis produced of course depends
on the choice of subprocedure. Given the large number of algorithms for finding short non-
zero codewords with a large variety of performance guarantees for different parameters
(some heuristic and some proven), we do not attempt here to study this algorithm in full
generality. We instead simply instantiate it with the Lee-Brickell-Babai algorithm from [17]
(an algorithm which itself uses [17]’s LLL algorithm as a subroutine). Perhaps unsurprisingly,
we find that this produces significantly better basis profiles (e.g., smaller |b;| and larger k;
and k7) than all of the algorithms that we designed here. The price for this is, of course,
that the subprocedure itself must run in enough time to find non-zero short codewords in
dimension k codes.

We view this algorithm as a proof of concept, showing that at least in principle one can
combine basis-reduction techniques with other algorithms for finding short codewords to
obtain bases with very good parameters. This meshes naturally with the Lee-Brickell-Babai
algorithm in [17], which shows how good bases can be combined with other algorithmic
techniques to find short non-zero codewords. Perhaps one can merge these techniques more
in order to show a way to use a good basis to find a better basis, which itself can be used to
find a better basis, etc?

1.4.6 On “the best possible bases”

Finally, in the full version [21], we prove bounds on “the best possible bases” in terms of
the parameters k; and kf. Indeed, recall that the (heuristic) running time of [17]’s Lee-
Brickell-Babai algorithm beats Lee-Brickell by a factor that is exponential in k. And, we
argued above that & can be viewed as a measure of the “non-triviality” of a basis reduction
algorithm. So, it is natural to ask how large k1 and kf can be in principle.

In the full version [21], we show that any code over Fy has a basis with k7 > Q(log k?),
even if the support size is as small as n = k 4+ vk. For this, we use Griesmer-reduced
bases (not to be confused with the approximate-Griesmer-reduced bases described above;
note in particular that it is NP-hard to compute a Griesmer-reduced basis). Notice that
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this is a factor of Q(logk) better than the logarithmic k} achieved by all known efficient
basis-reduction algorithms.

Here, we use the parameter k] and not k; because it is easy to see that in the worst
case a code can have arbitrarily large support but still have no proper basis with k; > 1.°
Typically, of course, one expects ki and k; to be very closely related, so that one can view
this as heuristic evidence that typical codes have bases with k; > Q(log? k).

In the full version [21], we argue under a mild heuristic assumption that any basis for a
random code over Fy has k1 < kf < O(log2 k), even if the support size n is a large polynomial
in the dimension k.

Taken together, these results suggest that the best possible bases that we should expect
to find in practice should have k; ~ ki = ©(log? k) for typical settings of parameters. Such

a basis would (heuristically) yield a savings of k®(1°¢¥) in [17]’s Lee-Brickell-Babai algorithm.

So, it would be very exciting to find an efficient algorithm that found such a basis.

On the other hand, our (heuristic) upper bound on k; suggests a limitation of basis
reduction for codes. In particular, we should not expect any improvement better than k©(°g#*)
in Lee-Brickell-Babai. And, the upper bound also suggests that basis-reduction algorithms
are unlikely to outperform the simple one-block-reduction algorithm for block sizes larger
than Q(log? k).

2 Preliminaries

2.1 Some notation

Logarithms are base two unless otherwise specified, i.e., log(2*) = x. We write I, for the
m x m identity matrix.

Ifby,...,by € Fy, then (by,...,by) € Fng denotes the matrix where each b; is a column
and (by;...;by) € FF*™ denotes the matrix where each b; is row i of B.

We say that a matrix B € ]Ffjxn is in systematic form if A = (I, X)P, where P is a
permutation matrix (i.e., if k contains the columns e, ... el).

For any basis B € F¥*" and any subset S C [n] with [S| = k such that By has full rank,
we call the process of replacing B by (Blg)™! systematizing B with respect to S. When the
set S is not important, we simply call this systematizing B. This procedure is useful at least
in part because it results in a proper basis.

We define two notions of the support of a vector. Specifically, we write

Supp(@) := {i € [L,n] : & # 0},

and similarly

P 0 T; = 0
Supp(x); := {1 20

We can also define the support of an [n, k], code C by extending the definitions of Supp and
Supp,

Supp(C) £ | Supp(c) Supp(C) = \/ Supp(c) ,

ceC ceC

9 For example, take that code ]Fl;_1 U (Fg_l + ¢) where ¢:=(1,1,...,1) € F5. Any proper basis of this
code must have k — 1 vectors with length one and therefore must have k1 = 1.
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and we define the support of a matrix B € IFZ *™ as the support of the code generated by
the matrix.
If AeF,"™™", B € F,**, then the direct sum of A and B, denoted A® B € Féerr)X("H),

is

A@B(A 0m><s>

O’I’LXT B

We will often use the following important property regarding matrix direct sums. If A € Fg**™,
B eF >,z € Fj,y € Fy, then

wom(3)- (i)

3 Generalizing epipodal vectors, size reduction, and the fundamental
domain to [,

In this section, we generalize many of the fundamental concepts in [17] from codes over Foq
to codes over IFy. Specifically, we generalize the notions of projection, epipodal matrices, and
the size-reduction algorithm. We then study the geometry of the fundamental domain that
one obtains by running the size-reduction algorithm on a given input basis.

Much of this generalization is straightforward (once one knows the theory developed
for Fy in [17]). So, one might read much of this section as essentially an extension of
the preliminaries. The most difficult part, in the full version [21], is the analysis of the
fundamental domain (which is not used in the rest of the paper).

3.1 Projection and epipodal vectors

The notions of projection and epipodal vectors extend naturally to I, from the notions
outlined in [17]. However, to ensure that this work is as self-contained as possible, we will
now explicitly outline how some of those notions extend to F,. Notice that these operations
are roughly analogous to orthogonal projection maps over R™.

» Definition 1. If z1 = (z11,---,T1n)s-- Tk = (T2, Thn) € Fy, the function
T{wy,...x} : Fq — By is defined as follows:

- ()i = Yi ZTi;F0V---Vagp; #0
(@m0 0 otherwise.

”

We call this “projection onto the support of x1,...,x.

» Definition 2. If z1 = (z11,---,T1n),-- Tk = (T, Thn) € Fy, the function
ﬂ-{l:cl,...,mk} 1 Fy — Fy is defined as follows:

xl’iZO/\"'/\x}g’iZO

n Yi
T i =
{21, } (Y) {0 otherwise.

”

We call this “projection orthogonal to x1,...,x.

We will often simply write m,, to denote 7z} and 7+ to denote 7TLm
We now define the epipodal matrix of a basis for a code, which is the analogue of the
Gram—Schmidt matrix.
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» Definition 3. Let B = (by;...;b) € F¥*™ be a matriz with elements from Fy. The ith
projection associated to the matriz B is defined as m; := Wf-bl bi 1} where m denotes the
identity.

The ith epipodal vector is defined as b := m;(b;). The matriz Bt := (b];...;b}) €
IFZX” is called the epipodal matrixz of B.

,,,,,

The following notation for a projected block will be helpful in defining our reduction
algorithms. (The same notation is used in the lattice literature.)

» Definition 4. For a basis B = (by;...;bi) € IE‘ZX” and 1,7 € [1,k] where i < j, we use the
notation By; ;1 as shorthand for (m;(b;);...;mi(b;)). Furthermore, for i € [1,k] and j > k,
we define By; j1 = By for all j > k.

We will often write ¢; to denote |b;| when the basis B = (by;...;b) is clear from
context.

3.1.1 Basic operations on blocks

See the full version [21].

3.2 Size reduction and its fundamental domain

See the full version [21].

4 Proper bases and primitivity

We will primarily be interested in bases that are proper in the sense that the epipodal vectors
should all be non-zero.

» Definition 5. A basis is said to be proper if all its epipodal vectors bj are nom-zero.

[17] observed that, given an arbitrary basis B € F’;X" for a code, we can efficiently compute
a proper basis B’ for the same code by systematizing B. In particular, let A € F’;Xk be an
invertible matrix formed from & columns of B (which must exist because B is a full-rank
matrix). Then, B’ := A~!'B is a proper basis for the code generated by B. In particular,
every code has a proper basis. From this, we derive the following simple but useful fact.
See the full version [21].

5 Redundant sets of coordinates, the last epipodal vector, and
backward reduction

We are now ready to develop the theory behind backward-reduced bases. A backward-reduced
basis is one in which the last epipodal vector b;: is as long as possible. In the context of
lattices, such bases are called dual-reduced bases and the maximal length of the last Gram-
Schmidt vector has a simple characterization in terms of A\; of the dual lattice. For codes,
the maximal length of the last epipodal vector behaves rather differently, as we will explain
below. In particular, we will see how to find a backward-reduced basis quite efficiently. In
contrast, finding a dual-reduced basis is equivalent to finding a shortest non-zero vector in a
lattice and is therefore NP-hard.

On our way to defining backward reduction, we first define the notion of redundant
coordinates. Notice that we only consider coordinates in the support of C.

XX:17



XX:18

696

697

698

699

700
701
702

703

704

705

706

707
708

709

710

711

712

713

714
715
716

77

718

719

720

721
722

723

724

725

726

More basis reduction for linear codes

» Definition 6. For a code C C ]Fg, we say that a set S C [n] of coordinates is redundant

for C if S C Supp(C) and for every c € C and all i,j € S, ¢; =0 if and only if ¢; = 0.
The following simple claim explains the name “redundant.” In particular, for any codeword

c € C, if we know ¢; for some i € S, then we also know ¢; for any j € S.

> Claim 7. For a code C C Fy, a set S C Supp(C) is redundant for C if and only if for every
i,j € S, there exists a non-zero scalar a € F} such that for all ¢ € C, ¢; = ac;.

Furthermore, to determine whether S is a set of redundant coordinates, it suffices to
check whether the latter property holds for all ¢ := b; in a basis (by;...;bx) of C.

Proof. See the full version [21]. <
Next, we show that redundancy is closely connected with the last epipodal vector in a
basis.

» Lemma 8. For a code C C IF;” with dimension k and S C [n], there exists a basis
B := (by;...;by) of C with S C Supp(b}) if and only if S is redundant.
Furthermore, if S is redundant, then there exists a proper basis with this property.

Proof. See the full version [21]. <

The above motivates the following definition.

» Definition 9. For a code C C Fy, the repetition number of C, written 1(C), is the mazximal
size of a redundant set S C Supp(C).

In particular, notice that by Lemma 8, 7(C) is also the maximum of |b; | over all bases
(by;...;bx) and this maximum is achieved by a proper basis. The next lemma gives a lower
bound on 7(C), therefore showing that codes with sufficiently large support and sufficiently
low rank must have bases whose last epipodal vector is long.

» Lemma 10. For any code C C Fy with dimension k,

qg—1
> . .
n(C) = [qk — ISupp(C)l
Proof. See the full version [21]. <

We present in Algorithm 1 a simple algorithm that finds the largest redundant set of
a code C. (The algorithm itself can be viewed as a constructive version of the proof of
Lemma 10.)

Algorithm 1 Max Redundant Set

Input: A basis B = (by;...;b;) € ]F’;X” for C
Output: A redundant set S for C with |S| = n(C)
for j € [n] do

—1
‘ aj < Bi,j s

where i € [k] is minimal such that B; ; # 0.

end

Find S C Supp(C) with maximal size such that for all j1,jo € S and all 1,
ajy Bij, = aj,Bi s

return S

> Claim 11.  Algorithm 1 outputs a redundant set S for C with |S| = n(C). Furthermore,
Algorithm 1 runs in time O(knlog(q)log(qn)) (when implemented appropriately).

Proof. See the full version [21]. <
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5.1 Backward reduction

We are now ready to present our definition of backward-reduced bases.

» Definition 12. Let B = (by;...;bi) € ]F’;X” be a basis of a code C. We say that B is
backward reduced if it is proper and |b}| = n(C(B)).

Finally, we give an algorithm that finds a backward-reduced basis. See Algorithm 2.

Algorithm 2 Backward Reduction

Input: A proper basis B = (by;...;bg) € ]F’;X” for C
Output: An invertible matrix A € ]F’;Xk such that AB is backward reduced.
{j1,--.,7¢} + MaxRedundantSet(B)
Let m be minimal such that B, ;, # 0.
for i € [m+1,k] do
| bi<b;— B, Bijbn

m,j1

end

(b1;...3bk) < (b5 bp—13bpt1; - -5l bin)
return the matrix corresponding to the linear transformation done to B.

> Claim 13.  On input a proper basis B, Algorithm 2 correctly outputs an invertible
matrix A such that AB is backward reduced. Furthermore, Algorithm 2 runs in time

O(nklog(q) log(qn)).

Proof. See the full version [21]. <

5.2 Full backward reduction

Since backward reduction can be done efficiently, it is natural to ask what happens when
we backward reduce many prefixes By, ; of a basis. We could simply do this for all i € [k],
but it is natural to be slightly more fine-grained and instead only do this for ¢ < 7 for some
threshold 7. In particular, since the last k — poly(logn) epipodal vectors tend to have length
one even in very good bases (see the full version [21]to understand why), it is natural to take
7 < poly(log n) to be quite small, which leads to very efficient algorithms. This suggests the
following definition.

» Definition 14. For some threshold T < k, a basis B € IFZX” is fully backward reduced up
to 7 if it is proper and By, ;) is backward reduced for all 1 < i < 7.

We now show how to easily and efficiently compute a fully backward-reduced basis, using
the backward-reduction algorithm (Algorithm 2) that we developed above. We present the
algorithm in Algorithm 3 and then prove its correctness and efficiency. Notice in particular
that the algorithm only changes each prefix By ; (at most) once.

» Theorem 15. On input a proper basis B := (by;...;by) € F’;X” for a code C and a
threshold T € [1,k], Algorithm 3 correctly outputs a basis B' € F’;X" for C that is fully
backward reduced up to T. Furthermore, the algorithm runs in time O(7%nlog(q)log(qn)).

Proof. See the full version [21]. <
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Algorithm 3 Full Backward Reduction
Input: A proper basis B := (by;...;by) € IF’;X” for a code C and a threshold

T € [1,K]
Output: A basis for C that is totally backward reduced up to 7.
fori=7,...,1do

A < BackwardReduction(By ;)
B+ (Ag¢I,_;)B

end

return B

We next bound |b;| of a fully backward-reduced basis. In fact, when 7 > [log, n], this
bound matches the Griesmer bound. In fact, it is not hard to see that with 7 = k, a fully
backward-reduced basis is in fact LLL-reduced as well. But, the below theorem shows that
we do not need to go all the way to 7 = k to achieve the Griesmer bound. This is because in
the worst case, |b;"| =1 for all i > log, n anyway.

» Theorem 16. For any positive integers k, n > k, and 7 < k, a basis B € IE'";X” of a code
C that is fully backward reduced up to T satisfies

Z{bﬂl-‘ <n—-k+r71.

71—
=114

Proof. See the full version [21]. <

5.3 Heuristic analysis suggesting better performance in practice

Recall that our analysis of backward-reduced bases in Section 5 relied crucially on the
repitition number 7n(C), which is the maximum over all bases of C of the last epipodal
vector. We showed that 7(C) can be equivalently thought of as the maximal set of redundant
coordinates. E.g., when g = 2, n(C) is precisely the number of repeated columns in the basis
B for C.

Our analysis of fully backward-reduced bases then relies on the lower bound on #(C) in
Lemma 10. The proof of Lemma 10 simply applies the pigeonhole principle to the (normalized,
non-zero) columns of a basis B for C to argue that, if there are enough columns, then one of
them must be repeated many times. Of course, the pigeonhole principle is tight in general
and it is therefore easy to see that this argument is tight in the worst case.

However, in the average case, this argument is not tight. For example, if the number n of
(non-zero) columns in our basis B € F§*" is smaller than the number of possible (non-zero)
columns 2% — 1, then it is certainly possible that no two columns will be identical. But, the
birthday paradox tells us that even with just n ~ 2¥/2, a random matrix B € IF’;X" will
typically have a repeated column. More generally, if a code C is generated by a random
basis B € F£*", then we expect to have n(C) > 1 with probability at least 1 — 1/ poly(n),
provided that, say, n > 10log(n)q*/?, or equivalently, provided that

k < 2(log, n —log,(101log(n))) .

We could now make a heuristic assumption that amounts to saying that the prefixes
By ;) behave like random matrices with suitable parameters (in terms of the presence of
repeated non-zero columns). We could then use such a heuristic to show that we expect the
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output of Algorithm 3 to achieve
k1 > (2 —o(1))log,n .

We choose instead to present in the full version [21] a variant of Algorithm 3 that
provably achieves the above. This variant is identical to Algorithm 3 except that instead
of looking at all of Bj; ;) and choosing the largest set of redundant coordinates in order to
properly backward reduce By, ;, the modified algorithm chooses the largest set of redundant
coordinates from some small subset of all of the coordinates. In other words, the modified
algorithm ignores information. Because the algorithm ignores this information, we are able
to rigorously prove that the algorithm achieves k; 2 2log, n when its input is a random
matrix (by arguing that at each step the algorithm has sufficiently many fresh independent
random coordinates to work with).

We think it is quite likely that Algorithm 3 performs better (and certainly not much
worse) than this information-ignoring variant. We therefore view this as strong heuristic
evidence that Algorithm 3 itself achieves k; 2 2log,n. (This heuristic is also confirmed by
experiment. See the full version [21].)

5.3.1 Backward reducing without all of the columns

See the full version [21].
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