
More basis reduction for linear codes:1

backward reduction, BKZ, slide reduction, and2

more3

Surendra Ghentiyala #4

Cornell University5

Noah Stephens-Davidowitz #6

Cornell University7

Abstract8

We expand on recent exciting work of Debris-Alazard, Ducas, and van Woerden [Transactions on9

Information Theory, 2022], which introduced the notion of basis reduction for codes, in analogy10

with the extremely successful paradigm of basis reduction for lattices. We generalize DDvW’s LLL11

algorithm and size-reduction algorithm from codes over F2 to codes over Fq, and we further develop12

the theory of proper bases. We then show how to instantiate for codes the BKZ and slide-reduction13

algorithms, which are the two most important generalizations of the LLL algorithm for lattices.14

Perhaps most importantly, we show a new and very efficient basis-reduction algorithm for codes,15

called full backward reduction. This algorithm is quite specific to codes and seems to have no16

analogue in the lattice setting. We prove that this algorithm finds vectors as short as LLL does in17

the worst case (i.e., within the Griesmer bound) and does so in less time. We also provide both18

heuristic and empirical evidence that it outperforms LLL in practice, and we give a variant of the19

algorithm that provably outperforms LLL (in some sense) for random codes.20

Finally, we explore the promise and limitations of basis reduction for codes. In particular, we21

show upper and lower bounds on how “good” of a basis a code can have, and we show two additional22

illustrative algorithms that demonstrate some of the promise and the limitations of basis reduction23

for codes.24

2012 ACM Subject Classification Theory of computation → Error-correcting codes25

Keywords and phrases Linear Codes, Basis Reduction26

Digital Object Identifier 10.4230/LIPIcs...27

Funding Surendra Ghentiyala: This work is supported in part by the NSF under Grants Nos. CCF-28

2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.29

Noah Stephens-Davidowitz: This work is supported in part by the NSF under Grants Nos. CCF-30

2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.31

Some of this work was completed while the author was visiting the National University of Singapore32

and the Centre for Quantum Technologies33

1 Introduction34

1.1 Codes and lattices35

A linear code C ¦ Fn
q is a subspace of the vector space Fn

q over the finite field Fq, i.e., it is the36

set of all Fq-linear combinations of a linearly independent list of vectors B := (b1; . . . ; bk),37

C := C(B) := {z1b1 + · · ·+ zkbk : zi ∈ Fq} .38

We call b1, . . . , bk a basis for the code and k the dimension of the code. We are interested in39

the geometry of the code induced by the Hamming weight |c| for c ∈ Fn
q , which is simply40

the number of coordinates of c that are non-zero. For example, it is natural to ask about a41

© S. Ghentiyala and N. Stephens-Davidowitz;

licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 More basis reduction for linear codes

code’s minimum distance, which is the minimal Hamming weight of a non-zero codeword,42

i.e.,43

dmin(C) := min
c∈C ̸=0

|c| .44

At a high level, there are two fundamental computational problems associated with linear45

codes. In the first, the goal is to find a short non-zero codeword—i.e., given a basis for a code46

C, the goal is to find a non-zero codeword c ∈ C̸=0 with relatively small Hamming weight |c|.47

In the second, the goal is to find a codeword that is close to some target vector t ∈ Fn
q —i.e.,48

given a basis for a code C and a target vector t ∈ Fn
q , the goal is to find a codeword c ∈ C49

such that |c− t| is relatively small. (Here, we are being deliberately vague about what we50

mean by “relatively small.”)51

We now describe another class of mathematical objects, which are also ubiquitous in52

computer science. Notice the striking similarity between the two descriptions.53

A lattice L ¢ Qn is the set of all integer linear combinations of linearly independent basis54

vectors A := (a1; . . . ; ak) ∈ Qn, i.e.,55

L := L(A) := {z1a1 + · · ·+ zkak : zi ∈ Z} .56

We are interested in the geometry of the lattice induced by the Euclidean norm ∥a∥ :=57

(a2
1 + · · · + a2

n)1/2. In particular, it is natural to ask about a lattice’s minimum distance,58

which is simply the minimal Euclidean norm of a non-zero lattice vector, i.e.,59

¼1(L) := min
y∈L̸=0

∥y∥ .60

At a high level, there are two fundamental computational problems associated with61

lattices. In the first, the goal is to find a short non-zero lattice vector—i.e., given a basis62

for a lattice L, the goal is to find a non-zero lattice vector y ∈ L̸=0 with relatively small63

Euclidean norm ∥y∥. In the second, the goal is to find a lattice vector that is close to some64

target vector t ∈ Qn—i.e., given a basis for a lattice L and a target vector t ∈ Zn, the goal65

is to find a lattice vector y ∈ L such that ∥y − t∥ is relatively small. (Again, we are being66

deliberately vague here.)67

Clearly, there is a strong analogy between linear codes and lattices, where to move from68

codes to lattices, one more-or-less just replaces a finite field Fq with the integers Z and the69

Hamming weight | · | with the Euclidean norm ∥·∥. It is therefore no surprise that this analogy70

extends to many applications. For example, lattices and codes are both used for decoding71

noisy channels. They are both used for cryptography (see, e.g., [26, 3, 5, 23, 7, 30]; in fact,72

both are used specifically for post-quantum cryptography). And, many complexity-theoretic73

hardness results were proven simultaneously or nearly simultaneously for coding problems74

and for lattice problems, often with similar or even identical techniques.175

1.2 Basis reduction for lattices76

However, the analogy between lattices and codes has been much less fruitful for algorithms.77

Of course, there are many algorithmic techniques for finding short or close codewords and78

many algorithmic techniques for finding short or close lattice vectors. But, in many parameter79

1 For example, similar results that came in separate works in the two settings include [15] and [14], [4]
and [33], [27] and [19], [13, 2] and [32], etc. Works that simultaneously published the same results in
the two settings include [9] and [18].

S. Ghentiyala and N. Stephens-Davidowitz XX:3

regimes of interest, the best algorithms for lattices are quite different from the best algorithms80

for codes.81

In the present work, we are interested in basis reduction, a ubiquitous algorithmic82

framework in the lattice literature. At a very high level, given a basis A := (a1; . . . ; ak)83

for a lattice L, basis reduction algorithms work by attempting to find a “good” basis84

of L (and in particular, a basis whose first vector a1 is short) by repeatedly making85

“local changes” to the basis. Specifically, such algorithms manipulate the Gram-Schmidt86

vectors ã1 := a1, ã2 := Ã§
{a1}(a2), . . . , ãk := Ã§

{a1,...,ak−1}(ak). Here, Ã§
{a1,...,ai−1} represents87

orthogonal projection onto the subspace orthogonal to a1, . . . , ai−1. Notice that we can view88

the Gram-Schmidt vector ãi as a lattice vector in the lower-dimensional lattice generated89

by the projected block A[i,j] := Ã§
{a1,...,ai−1}(ai; . . . ; aj). Basis reduction algorithms work by90

making many “local changes” to A, i.e., changes to the block A[i,j] that leave the lattice91

L(A[i,j]) unchanged. The goal is to use such local changes to make earlier Gram-Schmidt92

vectors shorter. (In particular, ã1 = a1 is a non-zero lattice vector. So, if we can make the93

first Gram-Schmidt vector short, then we will have found a short non-zero lattice vector.)94

One accomplishes this, e.g., by finding a short non-zero vector y in L(A[i,j]) and essentially95

replacing the first vector in the block with this vector y. (Here, we are ignoring how exactly96

one does this replacement.)97

This paradigm was introduced in the celebrated work of Lenstra, Lenstra, and Lovász [25],98

which described the polynomial-time LLL algorithm. Specifically, (ignoring important details99

that are not relevant to the present work) the LLL algorithm works by repeatedly replacing100

Gram-Schmidt vectors ãi with a shortest non-zero vector in the lattice generated by the101

dimension-two block A[i,i+1]. The LLL algorithm itself has innumerable applications. (See,102

e.g., [29].) Furthermore, generalizations of LLL yield the most efficient algorithms for finding103

short non-zero lattice vectors in a wide range of parameter regimes, including those relevant104

to cryptography.105

Specifically, the Block-Korkine-Zolotarev basis-reduction algorithm (BKZ), originally106

due to Schnorr [31], is a generalization of the LLL algorithm that works with larger blocks.107

It works by repeatedly modifying blocks A[i,i+β−1] of a lattice basis A := (a1; . . . ; ak) in108

order to ensure that the Gram-Schmidt vector ãi is a shortest non-zero vector in the lattice109

generated by the block. Here, the parameter ´ g 2 is called the block size, and the case110

´ = 2 corresponds to the LLL algorithm (ignoring some technical details). Larger block size111

´ yields better bases consisting of shorter lattice vectors. But, to run the algorithm with112

block size ´, we must find shortest non-zero vectors in a ´-dimensional lattice, which requires113

running time 2O(β) with the best-known algorithms [6, 1, 12]. So, BKZ yields a tradeoff114

between the quality of the output basis and the running time of the algorithm. (Alternatively,115

one can view BKZ as a reduction from an approximate lattice problem in high dimensions to116

an exact lattice problem in lower dimensions, with the approximation factor depending on117

how much lower the resulting dimension is.)118

BKZ is the fastest known algorithm in practice for the problems relevant to cryptography.119

However, BKZ is notoriously difficult to understand. Indeed, we still do not have a proof120

that the BKZ algorithm makes at most polynomially many calls to its ´-dimensional oracle,121

nor do we have a tight bound on the quality of the bases output by BKZ, despite much effort.122

(See, e.g., [34]. However, for both the running time and the output quality of the basis, we123

now have a very good heuristic understanding [16, 11].)124

Gama and Nguyen’s slide-reduction algorithm is an elegant alternative to BKZ that is125

far easier to analyze [20]. In particular, it outputs a basis whose quality (e.g., the length126

of the first vector) essentially matches our heuristic understanding of the behavior of BKZ,127

XX:4 More basis reduction for linear codes

and it provably does so with polynomially many calls to a ´-dimensional oracle for finding128

a shortest non-zero lattice vector. Indeed, for a wide range of parameters (including those129

relevant to cryptography), [20] yields the fastest algorithm with proven correctness for finding130

short non-zero lattice vectors.131

1.2.0.1 Dual reduction, and some foreshadowing.132

One of the key ideas used in Gama and Nguyen’s slide-reduction algorithm (as well as in133

other work, such as [28]) is the notion of a dual-reduced block A[i,j]. The motivation behind134

dual-reduced blocks starts with the observation that the product ∥ãi∥ · · · ∥ãj∥ does not135

change if the lattice L(A[i,j]) is not changed. Formally, this quantity is the determinant of136

the lattice L(A[i,j]), which is a lattice invariant. So, while it is perhaps more natural to137

think of basis reduction in terms of making earlier Gram-Schmidt vectors in a block shorter,138

with the ultimate goal of making a1 short, one can more-or-less equivalently think of basis139

reduction in terms of making later Gram-Schmidt vectors longer.140

One therefore defines a dual-reduced block as a block A[i,j] such that the last Gram-141

Schmidt vector ãj is as long as it can be without changing the associated lattice L(A[i,j]).142

When ´ := j − i + 1 > 2, a dual-reduced block is not the same as a block whose first143

Gram-Schmidt vector is as short as possible. However, there is still some pleasing symmetry144

here. In particular, it is not hard to show that the last Gram-Schmidt vector ãj corresponds145

precisely to a non-zero (primitive) vector in the dual lattice of L(A[i,j]) with length 1/∥ãj∥.146

This of course explains the terminology. It also means that making the last Gram-Schmidt147

vector ãj as long as possible corresponds to finding a shortest non-zero vector in the dual148

of L(A[i,j]), while making the first Gram-Schmidt vector ãi as short as possible of course149

corresponds to finding a shortest non-zero vector in L(A[i,j]) itself. Either way, this amounts150

to finding a shortest non-zero vector in a ´-dimensional lattice, which takes time that is151

exponential in the block size ´.152

1.3 Basis reduction for codes!153

As far as the authors are aware, until very recently there was no work attempting to use154

the ideas from basis reduction in the setting of linear codes. This changed with the recent155

exciting work of Debris-Alazard, Ducas, and van Woerden, who in particular showed a simple156

and elegant analogue of the LLL algorithm for codes [17].157

Debris-Alazard, Ducas, and van Woerden provide a “dictionary” ([17, Table 1]) for158

translating important concepts in basis reduction from the setting of lattices to the setting159

of codes, and it is the starting point of our work. Below, we describe some of the dictionary160

from [17], as well as some of the barriers that one encounters when attempting to make basis161

reduction work for codes.162

1.3.1 Projection, epipodal vectors, and proper bases163

Recall that when one performs basis reduction on lattices, one works with the Gram-Schmidt164

vectors ãi := Ã§
{a1,...,ai−1}(ai) and the projected blocks A[i,j] := Ã§

{a1,...,ai−1}(ai; . . . ; aj),165

i.e., the orthogonal projection of ai, . . . , aj onto the subspace {a1, . . . , ai−1}§ orthogonal to166

a1, . . . , ai−1.167

So, if we wish to adapt basis reduction to the setting of linear codes (and we do!), it is168

natural to first ask what the analogue of projection is in the setting of codes. [17] gave a169

S. Ghentiyala and N. Stephens-Davidowitz XX:5

very nice answer to this question.2 In particular, for a vector x = (x1, . . . , xn) ∈ Fn
q we call170

the set of indices i such that xi is non-zero the support of x, i.e.,171

Supp(x) := {i ∈ [n] : xi ̸= 0} .172

Then, [17] define z := Ã§
{x1,...,xℓ}(y) as follows. If i ∈ ⋃

j Supp(xj), then zi = 0. Otherwise,173

zi = yi. In other words, the projection simply “zeros out the coordinates in the supports174

of the xj .” This notion of projection shares many (but certainly not all) of the features of175

orthogonal projection in Rn, e.g., it is a linear contraction mapping that is idempotent.176

Armed with this notion of projection, [17] then defined the epipodal vectors associated177

with a basis b1, . . . , bn as b+
1 := b1, b+

2 := Ã§
{b1}(b2), . . . , b+

n := Ã§
{b1,...,bn−1}(bn), in analogy178

with the Gram-Schmidt vectors. In this work, we go a bit further and define179

B[i,j] := Ã§
{b1,...,bi−1}(bi; . . . ; bj) ,180

in analogy with the notation in the literature on lattice basis reduction.181

Here, [17] already encounters a bit of a roadblock. Namely, the epipodal vectors b+
i can182

be zero! E.g., if b1 = (1, 1, . . . , 1) is the all-ones vector, then b+
i will be zero for all i > 1!3183

This is rather troublesome and could lead to many issues down the road. For example, we184

might even encounter entire blocks B[i,j] that are zero! Fortunately, [17] shows how to get185

around this issue by defining proper bases, which are simply bases for which all the epipodal186

vectors are non-zero. They then observe that proper bases exist and are easy to compute.187

(In Section 4, we further develop the theory of proper bases.) So, this particular roadblock188

is manageable, but it already illustrates that the analogy between projection over Fn
q and189

projection over Rn is rather brittle.190

The LLL algorithm for codes then follows elegantly from these definitions. In particular, a191

basis B = (b1; . . . ; bk) is LLL-reduced if it is proper and if b+
i is a shortest non-zero codeword192

in the dimension-two code generated by B[i,i+1] for all i = 1, . . . , k − 1. [17] then show193

a simple algorithm that computes an LLL-reduced basis in polynomial time. Specifically,194

the algorithm repeatedly makes simple local changes to any block B[i,i+1] for which this195

condition is not satisfied until the basis is reduced.196

In some ways, this new coding-theoretic algorithm is even more natural and elegant than197

the original LLL algorithm for lattices. For example, the original LLL algorithm had to198

worry about numerical blowup of the basis entries. And, the original LLL algorithm seems199

to require an additional slack factor ¶ in order to avoid the situation in which the algorithm200

makes a large number of minuscule changes to the basis. Both of these issues do not arise201

over finite fields, where all vectors considered by the algorithm have entries in Fq and integer202

lengths between 1 and n.203

1.3.2 What’s a good basis and what is it good for?204

Given the incredible importance of the LLL algorithm for lattices, it is a major achievement205

just to show that one can make sense of the notion of “LLL for codes.” But, once [17] have206

2 [17] formally worked with the case q = 2 everywhere. Rather than specialize our discussion here to
F2, we will largely ignore this distinction in this part of the introduction. While the more general
definitions that we provide here for arbitrary Fq are new to the present work, when generalizing to Fq is
straightforward, we will not emphasize this in the introduction.

3 Of course, similar issues do not occur over Rn, because if a1, . . . , ak ∈ Rn are linearly independent,
then π⊥

a1,...,ak−1
(ak) cannot be zero.

XX:6 More basis reduction for linear codes

defined an LLL-reduced basis for codes and shown how to compute one efficiently, an obvious207

next question emerges: what can one do with such a basis?208

In the case of lattices, the LLL algorithm is useful for many things, but primarily for the209

two most important computational lattice problems: finding short non-zero lattice vectors and210

finding close lattice vectors to a target. In particular, the first vector a1 of an LLL-reduced211

basis is guaranteed to ∥a1∥ f 2k−1¼1(L). This has proven to be incredibly useful, despite212

the apparently large approximation factor.213

For codes over F2, [17] show that the same is true, namely that if B = (b1; . . . ; bk) is an214

LLL-reduced basis for C ¦ Fn
2 , then |b1| f 2k−1dmin(C). They prove this by showing that215

if b+
i has minimal length among the non-zero codewords in C(B[i,i+1]), then |b+

i | f 2|b+
i+1|.216

It follows in particular that |b1| = |b+
1 | f 2i−1|b+

i | for all i. One can easily see that217

dmin(C) g mini |b+
i |, from which one immediately concludes that |b+

1 | f 2k−1dmin(C). A218

simple generalization of this argument shows that over Fq, we have |b+
1 | f qk−1dmin(C). (We219

prove something more general and slightly stronger in the full version [21].)220

However, notice that all codewords have length at most n and dmin(C) is always at least221

1. Therefore, an approximation factor of qk−1 is non-trivial only if n > qk−1. Otherwise,222

literally any non-zero codeword has length less than qk−1dmin(C)! On the other hand, if223

n > qk−1, then we can anyway find an exact shortest vector in time roughly qkn ≲ n2
224

by simply enumerating all codewords. (The typical parameter regime of interest is when225

n = O(k).)226

In some sense, the issue here is that the space Fn
q that codes live in is too “cramped.”227

While lattices are infinite sets that live in a space Qn with arbitrarily long and arbitrarily228

short non-zero vectors, codes are finite sets that live in a space Fn
q in which all non-zero229

vectors have integer lengths between 1 and n. So, while for lattices, any approximation factor230

between one and, say, 2k is very interesting, for codes the region of interest is simply more231

narrow.232

[17] go on to observe that because |b+
i+1| is an integer, for codes over F2 an LLL-reduced233

basis must actually satisfy234

|b+
i+1| g

⌈ |b+
i |
2

⌉
.235

With this slightly stronger inequality together with the fact that
∑
|b+

i | f n, they are able236

to show that b1 of an LLL-reduced basis will meet the Griesmer bound [22],237

k∑

i=1

⌈ |b1|
2i−1

⌉
f n , (1)238

which is non-trivial. E.g., as long as k g log n, it follows that239

|b1| −
+log |b1|,

2
f n− k

2
+ 1 (2)240

(We generalize this in the full version [21] to show that the appropriate generalization of241

LLL-reduced bases to codes over Fq also meet the q-ary Griesmer bound.)242

1.3.2.1 Finding close codewords and size reduction.243

For lattices, Babai also showed how to use an LLL-reduced basis to efficiently find close244

lattice vectors to a given target vector [10], and like the LLL algorithm itself, Babai’s245

algorithm too has innumerable applications. More generally, Babai’s algorithm tends to246

S. Ghentiyala and N. Stephens-Davidowitz XX:7

obtain closer lattice vectors if given a “better” basis, in a certain precise sense. [17] showed247

an analogous “size-reduction” algorithm that finds close codewords to a given target vector,248

with better performance given a “better” basis. Here, the notion of “better” is a bit subtle,249

but essentially a basis is “better” if the epipodal vectors tend to have similar lengths. (Notice250

that
∑

i |b+
i | = |Supp(C)|, so we cannot hope for all of the epipodal vectors to be short.)251

The resulting size-reduction algorithm finds relatively close codewords remarkably quickly.252

(Indeed, in nearly linear time.) Furthermore, [17] showed how to use their size-reduction253

algorithm combined with techniques from information set decoding to speed up some254

information set decoding algorithms for finding short codewords or close codewords to a255

target, without significantly affecting the quality of the output. For this, their key observation256

was the fact that typically most epipodal vectors actually have length one (particularly the257

later epipodal vectors, as one would expect given that later epipodal vectors by definition258

have more coordinates “zeroed out” by projection orthogonal to the earlier basis vectors)259

and that their size-reduction algorithm derives most of its advantage from how it treats the260

epipodal vectors with length greater than one. They therefore essentially run information set261

decoding on the code projected onto the support of the epipodal vectors with length one and262

then “lift” the result to a close codeword using their size-reduction algorithm.263

They call the resulting algorithm Lee-Brickell-Babai because it is a hybrid of Babai-style264

size reduction and the Lee-Brickell algorithm [24]. The running time of this hybrid algorithm265

is dominated by the cost of running information set decoding on a code with dimension266

k − k1, where267

k1 := |{i : |b+
i | > 1}|268

is the number of epipodal vectors that do not have length 1. Indeed, the (heuristic) running269

time of this algorithm is better than Lee-Brickell by a factor that is exponential in k1, so270

that even a small difference in k1 can make a large difference in the running time. They271

then show that LLL-reduced bases have k1 ≳ log n (for random codes) and show that this272

reduction in dimension can offer significant savings in the running time of information set273

decoding.274

Indeed, though the details are not yet public, the current record in the coding problem275

challenges [8] was obtained by Ducas and Stevens, apparently using such techniques.276

1.4 Our contribution277

In this work, we continue the study of basis reduction for codes, expanding on and generalizing278

the results of [17] in many ways, and beginning to uncover a rich landscape of algorithms.279

1.4.1 Expanding on the work of [17]280

1.4.1.1 Generalization to Fq.281

Our first set of (perhaps relatively minor) contributions are generalizations of many of the282

ideas in [17] from F2 to Fq, a direction proposed in that work. In fact, they quite accurately283

anticipated this direction. So, we quote directly from [17, Section 1.3]:284

In principle, the definitions, theorems and algorithms of this article should be gen-285

eralizable to codes over Fq endowed with the Hamming metric. . . Some algorithms286

may see their complexity grow by a factor Θ(q), meaning that the algorithms remains287

polynomial-time only for q = nO(1). It is natural to hope that such a generalised288

LLL would still match [the] Griesmer bound for q > 2. However, we expect that289

XX:8 More basis reduction for linear codes

the analysis of the fundamental domain [which is necessary for understanding size290

reduction]. . . would become significantly harder to carry out.291

In Section 3, we generalize from F2 to Fq the definitions of projection, epipodal vectors,292

and proper bases; the definition of an LLL-reduced bases and the LLL algorithm;4 and the293

size-reduction algorithm and its associated fundamental domain. Some of this is admittedly294

quite straightforward—e.g., given the definitions in [17] of projection, epipodal vectors,295

and proper bases for codes over F2, the corresponding definitions for codes over Fq are296

immediate (and we have already presented them in this introduction). And, the definition297

of an LLL-reduced basis and of size reduction follow more-or-less immediately from these298

definitions. In particular, we do in fact confirm that LLL over Fq achieves the Griesmer299

bound.300

As [17] anticipated, the most difficult challenge that we encounter here is in the analysis301

of the fundamental domain that one obtains when one runs size reduction with a particular302

basis B. We refer the reader to the full version [21] for the details.303

(We do not encounter the running time issue described in the quote above—except for our304

algorithm computing the number of vectors of a given length in F(B+). In particular, our305

versions of the LLL algorithm and the size-reduction algorithm—and even our generalizations306

like slide reduction—run in time that is proportional to a small polynomial in log q.)307

Along the way, we make some modest improvements to the work of [17], even in the case308

of F2. In particular, using more careful analysis, we shave a factor of roughly n from the309

proven running time of LLL. (See the full version [21].)310

1.4.1.2 More on the theory of proper bases.311

In order to develop the basis-reduction algorithms that we will describe next, we found that312

it was first necessary to develop (in Section 4) some additional tools for understanding and313

working with proper bases, which might be of independent interest. Specifically, we define the314

concept of a primitive codeword, which is a non-zero codeword c such that Supp(c) does not315

strictly contain the support of any other non-zero codeword. We then show that primitive316

codewords are closely related to proper bases. For example, we show that c is the first vector317

in some proper basis if and only if c is primitive, and that a basis is proper if and only if the318

epipodal vectors are primitive vectors in their respective projections.319

We find this perspective to be quite useful for thinking about proper bases and basis320

reduction in general. In particular, we use this perspective to develop algorithms that perform321

basic operations on proper bases, such as inserting a primitive codeword into the first entry322

of a basis without affecting properness. The resulting algorithmic tools seems to be necessary323

for the larger-block-size versions of basis reduction that we describe below, in which our324

algorithms must make more complicated changes to a basis.325

1.4.2 Backward reduction and redundant sets326

Our next contribution is the notion of backward reduction, described in Section 5. Recall327

that in the context of lattices, a key idea is the notion of a dual-reduced block A[i,j], in which328

the last Gram-Schmidt vector ãj is as long possible, while keeping L(A[i,j]) fixed.329

4 We actually describe the LLL algorithm as a special case of the more general algorithms that we describe
below. See the full version [21].

S. Ghentiyala and N. Stephens-Davidowitz XX:9

Backward-reduced blocks are what we call the analogous notion for codes. Specifically,330

we say that a block B[i,j] is backward reduced if the last epipodal vector b+
j is as long as331

possible, while keeping C(B[i,j]) fixed. Just like in the case of lattices, this idea is motivated332

by an invariant. Here, the invariant is |b+
i |+ · · ·+ |b+

j |, which is precisely the support of the333

code C(B[i,j]). So, if one wishes to make earlier epipodal vectors shorter (and we do!), then334

one will necessarily make later epipodal vectors longer, and vice versa. In particular, in the335

case of LLL, when the block size ´ := j − i + 1 is equal to 2, there is no difference between336

minimizing the length of the first epipodal vector and maximizing the length of the second337

epipodal vector. So, if one wishes, one can describe the LLL algorithm in [17] as working by338

repeatedly backward reducing blocks B[i,i+1].339

The above definition of course leads naturally to two questions. First of all, how do we340

produce a backward-reduced block (for block size larger than 2)? And, second, what can we341

say about them? Specifically, what can we say about the length |b+
j | of the last epipodal342

vector in a backward-reduced block B[i,j]?343

One might get discouraged here, as one quickly discovers that long last epipodal vectors do344

not correspond to short non-zero codewords in the dual code. So, the beautiful duality that345

arises in the setting of lattices simply fails in our new context. (The only exception is that346

last epipodal vectors with length exactly two correspond to dual vectors with length exactly347

two.) This is why we use the terminology “backward reduced” rather than “dual reduced.”348

One might fear that the absence of this correspondence would make backward-reduced blocks349

very difficult to work with.350

Instead, we show that long last epipodal vectors b+
j in a block B[i,j] have a simple351

interpretation. They correspond precisely to large redundant sets of coordinates of the code352

C(B[i,j]). In the special case when q = 2, a redundant set S ¦ [n] of coordinates is simply a353

set of coordinates in the support of the code such that for every a, b ∈ S and every codeword354

c, ca = cb. For larger q, we instead have the guarantee that ca = zcb for fixed non-zero355

scalar z ∈ F∗
q depending only on a and b. In particular, maximal redundant sets correspond356

precisely to the non-zero coordinates in a last epipodal vector. (See Lemma 8.)357

This characterization immediately yields an algorithm for backward reducing a block.358

(See Algorithm 2.) In fact, finding a backward-reduced block boils down to finding a set of359

most common elements in a list of at most n non-zero columns, each consisting of ´ := j−i+1360

elements from Fq. One quite surprising consequence of this is that one can actually find361

backward-reduced blocks efficiently, even for large ´! (Compare this to the case of lattices,362

where finding a dual-reduced block for large ´ is equivalent to the NP-hard problem of finding363

a shortest non-zero vector in a lattice of dimension ´.)364

Furthermore, this simple combinatorial characterization of backward-reduced blocks365

makes it quite easy to prove a simple tight lower bound on the length of b+
j in a backward-366

reduced block B[i,j]. (See the full version [21].) Indeed, such a proof follows immediately367

from the pigeonhole principle. This makes backward-reduced blocks quite easy to analyze.368

In contrast, as we will see below, forward-reduced blocks, in which the first epipodal vector369

b+
i is as short as possible, are rather difficult to analyze for ´ > 2.370

1.4.3 Fully backward-reduced bases371

With this new characterization of backward-reduced blocks and the realization that we can372

backward reduce a block quite efficiently, we go on to define the notion of a fully backward-373

reduced basis. We say that a basis is fully backward reduced if all of the prefixes B[1,j] are374

XX:10 More basis reduction for linear codes

backward reduced for all 1 f j f k.5 In fact, we are slightly more general than this, and375

consider bases that satisfy this requirement for all j up to some threshold Ä f k.376

We show that a fully backward-reduced basis achieves the Griesmer bound (Equation (1)377

for q = 2), just like an LLL-reduced basis. This is actually unsurprising, since it is not378

difficult to see that when the threshold Ä = k is maximal, a fully backward-reduced basis is379

also LLL reduced. However, even when Ä = logq n, we still show that a backward-reduced380

basis achieves the Griesmer bound. (See Theorem 16.)381

We then show a very simple and very efficient algorithm for computing fully backward-382

reduced bases. In particular, if the algorithm is given as input a proper basis, then it will383

convert it into a fully backward-reduced basis up to threshold Ä in time O(Ä2n polylog(n, q)).384

Notice that this is extremely efficient when Ä f poly(logq n).6 Indeed, for most parameters385

of interest, this running time is in fact less than the time O(nk log q) needed simply to read386

the input basis B ∈ Fk×n
q . (Of course, this is possible because the algorithm only looks at387

the first Ä rows of the input basis.) So, if one already has a proper basis, one can convert it388

into a fully backward-reduced basis nearly for free.7389

In contrast, the LLL algorithm runs in time O(kn2 log2 q). One can perform a similar390

“threshold” trick and run the LLL algorithm only on the first Ä basis vectors for Ä = +logq n,391

(which would still imply that |b1| must be bounded by the Griesmer bound). But, this would392

still yield a running time of Ω(Än2 log2 q) in the worst case. The speedup that we achieve393

from fully backward reduction comes from the combination of this threshold trick together394

with the fact that fully backward reduction runs in time proportional to Ä2n, rather than395

Än2.396

Furthermore, we show empirically that the resulting algorithm tends to produce better397

bases than LLL in practice. (See the full version [21].)398

(It seems unlikely that any similar algorithm exists for lattices for two reasons. First, in399

the setting of lattices, computing a dual-reduced basis for large block sizes is computationally400

infeasible. Second, while for codes it is not unreasonable to look for a short non-zero codeword401

in the subcode generated by the first Ä basis vectors, for lattices the lattice generated by the402

first k − 1 basis vectors often contains no shorter non-zero vectors than the basis vectors403

themselves, even when the full lattice contains much shorter vectors.)404

1.4.3.1 Heuristic analysis of full backward reduction.405

We also provide heuristic analysis of full backward reduction, providing a compelling heuristic406

explanation for why its performance in practice seems to be much better than what worst-case407

analysis suggests. In particular, recall that we essentially characterize the length of the last408

epipodal vector of a backward-reduced block B[i,j] in terms of the maximal number of times409

that a column in B[i,j] repeats. We then naturally use the pigeonhole principle to argue that410

for suitable parameters there must be a column that repeats many times.411

E.g., for q = 2, there must be at least one repeated non-zero column if the number of412

non-zero columns s is larger than the number of possible non-zero columns 2β − 1, where413

´ := j − i + 1 is the length of a column. This analysis is of course tight in the worst case.414

5 Notice that this implies that B[i,j] is also backward reduced for any 1 ≤ i < j. So, such bases really are
fully backward reduced.

6 We argue (in the full version [21]) that there is not much point in taking τ significantly greater than
log2

q(n).
7 Computing a proper basis seems to require time O(nk2 log2 q) (without using fast matrix multiplication

algorithms), but in many contexts the input basis is in systematic form and is therefore proper.

S. Ghentiyala and N. Stephens-Davidowitz XX:11

However, in the average case, we know from the birthday paradox that we should expect to415

see a repeated column even if s is roughly 2β/2, rather than 2β .416

So, under the (mild but unproven) heuristic that the blocks B[1,j] in a fully backward-417

reduced basis behave like a random matrices for all j (in terms of the number of redundant418

coordinates), it is easy to see that k1 ≳ 2 logq n, which is significantly better than what LLL419

achieves (both in the worst case and empirically).420

This heuristic argument is backed up by experiments. (See the full version [21].) We421

also show (in the full the version [21]) a less natural variant of this algorithm that provably422

achieves k1 ≳ 2 logq n when its input is a random matrix. This variant works by carefully423

“choosing which coordinates to look at” for each block, in order to maintain independence.424

We view this as an additional heuristic explanation for full backward reduction’s practical425

performance, since one expects an algorithm that “looks at all coordinates” to do better426

than one that does not.427

This result about k1 for backward-reduced bases also compares favorably with the study428

of the LLL algorithm in [17]. In particular, in [17], they proved that LLL achieves k1 ≳ log n429

for a random code for q = 2, but in their experiments they observed that LLL combined with430

a preprocessing step called EpiSort actually seems to achieve k1 ≈ c log n for some constant431

1 < c f 2. However, the behavior of LLL and EpiSort seems to be much more subtle than432

the behavior of full backwards reduction. We therefore still have no decent explanation (even433

a heuristic one) for why LLL and EpiSort seem to achieve k1 ≈ c log n or for what the value434

of this constant c actually is.435

1.4.4 BKZ and slide reduction for codes436

Our next set of contributions are adaptations of the celebrated BKZ and slide-reduction437

algorithms to the setting of codes.438

1.4.4.1 BKZ for codes.439

Our analogue of the BKZ algorithm for codes is quite natural.8 Specifically, our algorithm440

works by repeatedly checking whether the epipodal vector b+
i is a shortest non-zero codeword441

in the code generated by the block B[i,i+β−1]. If not, it updates the basis so that this is the442

case (using the tools that we have developed to maintain properness). The algorithm does443

this repeatedly until no further updates are possible. At least intuitively, a larger choice of ´444

here requires a slower algorithm because the resulting algorithm will have to find shortest445

non-zero codewords in ´-dimensional codes. But, larger ´ will result in a better basis.446

As we mentioned above, in the setting of lattices, the BKZ algorithm is considered to be447

the best performing basis-reduction algorithm in most parameter regimes, but it is notoriously448

difficult to analyze. We encounter a roughly similar phenomenon in the setting of linear449

codes. In particular, we run experiments that show that the algorithm performs quite well in450

practice. (Though it requires significantly more running time than full backward reduction451

8 We note that the name “BKZ algorithm for codes” is perhaps a bit misleading. In the case of lattices, the
BKZ algorithm is named after Korkine and Zolotarev due to their work on Korkine-Zolotarev-reduced
bases (which can be thought of as BKZ-reduced bases with maximal block size β = k, and is sometimes
also called a Hermite-Korkine-Zolotarev-reduced basis). A Block-Korkine-Zolotarev-reduced basis is
(unsurprisingly) a basis in which each block B[i,i+β−1] is a Korkine-Zolotarev-reduced basis. For codes,
the analogous notion of a Korkine-Zolotarev-reduced basis was called a Griesmer-reduced basis in [17].
So, we should perhaps call our notion “Block-Griesmer-reduced bases” and the associated algorithm
“the block-Griesmer algorithm.” However, the authors decided to use the term “BKZ” here in an attempt
to keep terminology more consistent between lattices and codes.

XX:12 More basis reduction for linear codes

to achieve a similar profile. See the full version [21].) However, we are unable to prove that452

it terminates efficiently, except in the special case of ´ = 2, in which case we recover the LLL453

algorithm of [17]. For ´ > 2, we offer only an extremely weak bound on the running time.454

As in the case of lattices, the fundamental issue is that it is difficult to control the effect that455

changing b+
i can have on the other epipodal vectors b+

i+1, . . . , b+
i+β−1 in the block.456

Here, we encounter an additional issue as well. In the case of lattices, there is a relatively457

simple tight bound on the minimum distance of the lattice generated by the block A[i,i+β−1]458

to the lengths of the Gram-Schmidt vectors ∥ãi∥, . . . , ∥ãi+β−1∥ in the block. In particular,459

Minkowski’s celebrated theorem tells us that ¼1(L(A[i,i+β−1])) f C
√

´(∥ãi∥ · · · ∥ãi+β−1∥)1/β
460

for some constant C > 0, and one applies this inequality repeatedly with different i to461

understand the behavior of basis reduction for lattices.462

However, in the case of codes, there is no analogous simple tight bound on dmin(C(B[i,i+β−1]))463

in terms of the lengths of the epipodal vectors |b+
i |, . . . , |b+

i+β−1|, except in the special case464

when ´ = 2. Instead, there are many known incomparable upper bounds on dmin in terms of465

the dimension ´ and the support size s := |b+
i |+ · · ·+ |bi+β−1| (and, of course, the alphabet466

size q). Each of these bounds is tight or nearly tight for some support sizes s (for fixed ´)467

but rather loose in other regimes. The nature of our basis-reduction algorithms is such that468

different blocks have very different support sizes s, so that we cannot use a single simple469

bound that will be useful in all regimes. And, due to the relatively “cramped” nature of470

Fn
q , applying loose bounds on dmin can easily yield trivial results, or results that do offer no471

improvement over the ´ = 2 case. As a result, the bound that we obtain on the length of b1472

for a BKZ-reduced basis does not have a simple closed form. (Since the special case of ´ = 2473

yields a very simple tight bound dmin f (1− 1/q)s, this is not an issue in the analysis of the474

LLL algorithm in [17].)475

In fact, we do not even know if the worst-case bound on |b1| for a BKZ-reduced basis is476

efficiently computable, even if one knows the optimal minimum distance of ´-dimensional477

codes for all support sizes. However, we do show an efficiently computable bound that is478

nearly as good. And, we show empirically that in practice it produces quite a good basis.479

(See the full version [21].)480

1.4.4.2 Slide reduction for codes.481

Given our difficulties analyzing the BKZ algorithm, it is natural to try to adapt Gama and482

Nguyen’s slide-reduction algorithm [20] from lattices to codes. In particular, recall that in483

the case of lattices, the slide-reduction algorithm has the benefit that (unlike BKZ) it is484

relatively easy to prove that it terminates efficiently.485

In fact, recall that the idea for backward-reduced bases was inspired by dual-reduced bases486

for lattices, which are a key component of slide reduction. We therefore define slide-reduced487

bases for codes by essentially just substituting backward-reduced blocks for dual-reduced488

blocks in Gama and Nguyen’s definition for lattices. Our slide-reduction algorithm (i.e., an489

algorithm that produces slide-reduced bases) follows similarly.490

We then give a quite simple proof that this algorithm terminates efficiently. Indeed, our491

proof is a direct translation of Gama and Nguyen’s elegant potential-based argument from492

the case of lattices to the case of codes. (Gama and Nguyen’s proof is itself a clever variant493

of the beautiful original proof for the case when ´ = 2 in [25].)494

Finally, we give an efficiently computable upper bound on |b1| for a slide-reduced basis495

in a similar spirit to our upper bound on BKZ. Here, we again benefit from our analysis of496

backward-reduced blocks described above. Indeed, the behavior of the epipodal vectors in497

our backward-reduced blocks is quite easy to analyze. However, our bound does not have a498

S. Ghentiyala and N. Stephens-Davidowitz XX:13

simple closed form because the behavior of the forward-reduced blocks still depends on the499

subtle relationship between the minimal distance of a code and the parameters n and k, as500

we described in the context of BKZ above.501

In our experiments (in the full version [21]), slide reduction is far faster than BKZ but502

does not find bases that are as good.503

1.4.5 Two illustrative algorithms504

In the full version [21], we show yet two more basis-reduction algorithms for codes. We think505

of the importance of these algorithms as being less about their actual usefulness and more506

about what they show about the potential and limitations of basis reduction for codes. We507

explain below.508

1.4.5.1 One-block reduction.509

The one-block-reduction algorithm is quite simple. It finds a short non-zero codeword510

in a code C generated by some basis B by first ensuring that B is proper, and then by511

simply finding a shortest non-zero codeword in the subcode C(B[1,β]) generated by the512

prefix basis B[1,β]. Notice that if ´ f O(logq n), then this algorithm runs in polynomial513

time. In particular, enumerating all codewords in the subcode can be done in time roughly514

O(nqβ log q).515

Furthermore, it is not hard to see that when ´ = +logq n,, this simple algorithm actually516

meets the Griesmer bound! (See the full version [21].) At a high level, this is because (1) the517

worst case in the Griesmer bound has |b+
i | = 1 for all i g ´; and (2) the resulting bound is518

certainly not better than the minimum distance of a code with dimension ´ and support size519

n−(k−´). Here, the k−´ term comes from the fact that Supp(B[1,β]) = n−|b+
β+1|−· · ·−|b+

k |.520

(Similar logic explains why full backward reduction achieves the Griesmer bound with521

Ä ≈ logq n.)522

More generally, it seems unlikely that a basis-reduction algorithm will be able to find b1523

that is shorter than what is achieved by this simple approach if we take ´ g max{k∗
1 , ´′},524

where ´′ is the size of the largest block in the basis reduction algorithm and k∗
1 is the maximal525

index of an epipodal vector that has length larger than one. (In practice, k∗
1 is almost never526

much larger than k1.) In particular, for a basis reduction algorithm to do better than this,527

it must manage to produce a block B[1,β] that has minimum distance less than what one528

would expect given its support size.529

We therefore think of this algorithm as illustrating two points.530

First, the existence of this algorithm further emphasizes the importance of the parameter531

k∗
1 (and the closely related parameter k1) as a sort of “measure of non-triviality.” If an532

algorithm achieves large k∗
1 , then the above argument becomes weaker, since we must take533

´ g k∗
1 . Indeed, if ´ is significantly larger than 2 logq k, then the running time of one-block534

reduction (if implemented by simple enumeration) becomes significantly slower.535

Second, the existence of the one-block-reduction algorithm illustrates that we should be536

careful not to judge basis-reduction algorithms entirely based on |b1|. We certainly think537

that |b1| is an important measure of study, and indeed it is the main way that we analyze538

the quality of our bases in this work. However, the fact that one-block-reduction exists shows539

that this should not be viewed as the only purpose of a basis-reduction algorithm.540

Of course, the algorithms that we have discussed thus far are in fact non-trivial, because541

they (1) find short non-zero codewords faster than one-block reduction; and (2) find whole542

XX:14 More basis reduction for linear codes

reduced bases and not just a single short non-zero codeword. Such reduced bases have543

already found exciting applications in [17] and [8], and we expect them to find more.544

1.4.5.2 Approximate Griesmer reduction.545

Recall that [17] calls a basis B ∈ Fk×n
q Griesmer reduced if b+

i is a shortest non-zero546

codeword in C(B[i,k]) for all i. And, notice that, if one is willing to spend the time to find547

shortest non-zero codewords in codes with dimension at most k, then one can compute a548

Griesmer-reduced basis iteratively, by first setting b1 to be a shortest non-zero codeword in549

the whole code, then projecting orthogonal to b1 and building the rest of the basis recursively.550

(Griesmer-reduced bases are the analogue of Korkine-Zolotarev bases for lattices. We discuss551

Griesmer-reduced bases more below.)552

Our approximate-Griesmer-reduction algorithm is a simple variant of this idea. In553

particular, it is really a family of algorithms parameterized by a subprocedure that finds short554

(but not necessarily shortest) non-zero codewords in a code. Given such a subprocedure, the555

algorithm first finds a short non-zero codeword b1 in the input code C. It then projects the556

code orthogonally to b1 and builds the rest of the basis recursively. (To make sure that we557

end up with a proper basis, care must be taken to assure that b1 is primitive. We ignore this558

in the introduction. See the full version [21].)559

The running time of this algorithm and the quality of the basis produced of course depends560

on the choice of subprocedure. Given the large number of algorithms for finding short non-561

zero codewords with a large variety of performance guarantees for different parameters562

(some heuristic and some proven), we do not attempt here to study this algorithm in full563

generality. We instead simply instantiate it with the Lee-Brickell-Babai algorithm from [17]564

(an algorithm which itself uses [17]’s LLL algorithm as a subroutine). Perhaps unsurprisingly,565

we find that this produces significantly better basis profiles (e.g., smaller |b1| and larger k1566

and k∗
1) than all of the algorithms that we designed here. The price for this is, of course,567

that the subprocedure itself must run in enough time to find non-zero short codewords in568

dimension k codes.569

We view this algorithm as a proof of concept, showing that at least in principle one can570

combine basis-reduction techniques with other algorithms for finding short codewords to571

obtain bases with very good parameters. This meshes naturally with the Lee-Brickell-Babai572

algorithm in [17], which shows how good bases can be combined with other algorithmic573

techniques to find short non-zero codewords. Perhaps one can merge these techniques more574

in order to show a way to use a good basis to find a better basis, which itself can be used to575

find a better basis, etc?576

1.4.6 On “the best possible bases”577

Finally, in the full version [21], we prove bounds on “the best possible bases” in terms of578

the parameters k1 and k∗
1 . Indeed, recall that the (heuristic) running time of [17]’s Lee-579

Brickell-Babai algorithm beats Lee-Brickell by a factor that is exponential in k1. And, we580

argued above that k∗
1 can be viewed as a measure of the “non-triviality” of a basis reduction581

algorithm. So, it is natural to ask how large k1 and k∗
1 can be in principle.582

In the full version [21], we show that any code over F2 has a basis with k∗
1 g Ω(log k2),583

even if the support size is as small as n = k +
√

k. For this, we use Griesmer-reduced584

bases (not to be confused with the approximate-Griesmer-reduced bases described above;585

note in particular that it is NP-hard to compute a Griesmer-reduced basis). Notice that586

S. Ghentiyala and N. Stephens-Davidowitz XX:15

this is a factor of Ω(log k) better than the logarithmic k∗
1 achieved by all known efficient587

basis-reduction algorithms.588

Here, we use the parameter k∗
1 and not k1 because it is easy to see that in the worst589

case a code can have arbitrarily large support but still have no proper basis with k1 > 1.9590

Typically, of course, one expects k∗
1 and k1 to be very closely related, so that one can view591

this as heuristic evidence that typical codes have bases with k1 g Ω(log2 k).592

In the full version [21], we argue under a mild heuristic assumption that any basis for a593

random code over F2 has k1 f k∗
1 f O(log2 k), even if the support size n is a large polynomial594

in the dimension k.595

Taken together, these results suggest that the best possible bases that we should expect596

to find in practice should have k1 ≈ k∗
1 = Θ(log2 k) for typical settings of parameters. Such597

a basis would (heuristically) yield a savings of kΘ(log k) in [17]’s Lee-Brickell-Babai algorithm.598

So, it would be very exciting to find an efficient algorithm that found such a basis.599

On the other hand, our (heuristic) upper bound on k1 suggests a limitation of basis600

reduction for codes. In particular, we should not expect any improvement better than kΘ(log k)
601

in Lee-Brickell-Babai. And, the upper bound also suggests that basis-reduction algorithms602

are unlikely to outperform the simple one-block-reduction algorithm for block sizes larger603

than Ω(log2 k).604

2 Preliminaries605

2.1 Some notation606

Logarithms are base two unless otherwise specified, i.e., log(2x) = x. We write Im for the607

m×m identity matrix.608

If b1, . . . , bk ∈ Fn
q , then (b1, . . . , bk) ∈ Fn×k

q denotes the matrix where each bi is a column609

and (b1; . . . ; bk) ∈ Fk×n
q denotes the matrix where each bi is row i of B.610

We say that a matrix B ∈ Fk×n
q is in systematic form if A = (Ik, X)P , where P is a611

permutation matrix (i.e., if k contains the columns eT
1 , . . . , eT

k).612

For any basis B ∈ Fk×n
q and any subset S ¦ [n] with |S| = k such that BS has full rank,613

we call the process of replacing B by (B|S)−1 systematizing B with respect to S. When the614

set S is not important, we simply call this systematizing B. This procedure is useful at least615

in part because it results in a proper basis.616

We define two notions of the support of a vector. Specifically, we write617

Supp(x) := {i ∈ J1, nK : xi ̸= 0} ,618

and similarly619

»

Supp(x)i :=

{
0 xi = 0

1 xi ̸= 0 .
620

We can also define the support of an [n, k]q code C by extending the definitions of Supp and621

»

Supp,622

Supp(C) ≜
⋃

c∈C

Supp(c)
»

Supp(C) =
∨

c∈C

»

Supp(c) ,623

9 For example, take that code F
k−1
2 ∪ (Fk−1

2 + c) where c := (1, 1, . . . , 1) ∈ Fn
2 . Any proper basis of this

code must have k − 1 vectors with length one and therefore must have k1 = 1.

XX:16 More basis reduction for linear codes

and we define the support of a matrix B ∈ Fk×n
q as the support of the code generated by624

the matrix.625

If A ∈ Fm×n
q , B ∈ Fr×s

q , then the direct sum of A and B, denoted A·B ∈ F
(m+r)×(n+s)
q ,626

is627

A·B =

(
A 0m×s

0n×r B

)
628

We will often use the following important property regarding matrix direct sums. If A ∈ Fm×n
q ,629

B ∈ Fr×s
q , x ∈ Fn

q , y ∈ Fs
q, then630

(A·B)

(
x

y

)
=

(
Ax

By

)
.631

3 Generalizing epipodal vectors, size reduction, and the fundamental632

domain to Fq633

In this section, we generalize many of the fundamental concepts in [17] from codes over F2634

to codes over Fq. Specifically, we generalize the notions of projection, epipodal matrices, and635

the size-reduction algorithm. We then study the geometry of the fundamental domain that636

one obtains by running the size-reduction algorithm on a given input basis.637

Much of this generalization is straightforward (once one knows the theory developed638

for F2 in [17]). So, one might read much of this section as essentially an extension of639

the preliminaries. The most difficult part, in the full version [21], is the analysis of the640

fundamental domain (which is not used in the rest of the paper).641

3.1 Projection and epipodal vectors642

The notions of projection and epipodal vectors extend naturally to Fq from the notions643

outlined in [17]. However, to ensure that this work is as self-contained as possible, we will644

now explicitly outline how some of those notions extend to Fq. Notice that these operations645

are roughly analogous to orthogonal projection maps over Rn.646

▶ Definition 1. If x1 = (x1,1, . . . , x1,n), . . . , xk = (xk,1, . . . , xk,n) ∈ Fn
q , the function647

Ã{x1,...,xk} : Fn
q → Fn

q is defined as follows:648

Ã{x1,...,xk}(y)i =

{
yi x1,i ̸= 0 (· · · (xk,i ̸= 0

0 otherwise.
649

We call this “projection onto the support of x1, . . . , xk.”650

▶ Definition 2. If x1 = (x1,1, . . . , x1,n), . . . , xk = (xk,1, . . . , xk,n) ∈ Fn
q , the function651

Ã§
{x1,...,xk} : Fn

q → Fn
q is defined as follows:652

Ã§
{x1,...,xk}(y)i =

{
yi x1,i = 0 ' · · · ' xk,i = 0

0 otherwise.
653

We call this “projection orthogonal to x1, . . . , xk.”654

We will often simply write Ãx to denote Ã{x} and Ã§
x to denote Ã§

{x}655

We now define the epipodal matrix of a basis for a code, which is the analogue of the656

Gram–Schmidt matrix.657

S. Ghentiyala and N. Stephens-Davidowitz XX:17

▶ Definition 3. Let B = (b1; . . . ; bk) ∈ Fk×n
q be a matrix with elements from Fq. The ith658

projection associated to the matrix B is defined as Ãi := Ã§
{b1,...,bi−1}, where Ã1 denotes the659

identity.660

The ith epipodal vector is defined as b+
i := Ãi(bi). The matrix B+ := (b+

1 ; . . . ; b+
k) ∈661

Fk×n
q is called the epipodal matrix of B.662

The following notation for a projected block will be helpful in defining our reduction663

algorithms. (The same notation is used in the lattice literature.)664

▶ Definition 4. For a basis B = (b1; . . . ; bk) ∈ Fk×n
q and i, j ∈ [1, k] where i f j, we use the665

notation B[i,j] as shorthand for (Ãi(bi); . . . ; Ãi(bj)). Furthermore, for i ∈ [1, k] and j > k,666

we define B[i,j] = B[i,k] for all j > k.667

We will often write ℓi to denote |b+
i | when the basis B = (b1; . . . ; bk) is clear from668

context.669

3.1.1 Basic operations on blocks670

See the full version [21].671

3.2 Size reduction and its fundamental domain672

See the full version [21].673

4 Proper bases and primitivity674

We will primarily be interested in bases that are proper in the sense that the epipodal vectors675

should all be non-zero.676

▶ Definition 5. A basis is said to be proper if all its epipodal vectors b+
i are non-zero.677

[17] observed that, given an arbitrary basis B ∈ Fk×n
q for a code, we can efficiently compute678

a proper basis B′ for the same code by systematizing B. In particular, let A ∈ Fk×k
q be an679

invertible matrix formed from k columns of B (which must exist because B is a full-rank680

matrix). Then, B′ := A−1B is a proper basis for the code generated by B. In particular,681

every code has a proper basis. From this, we derive the following simple but useful fact.682

See the full version [21].683

5 Redundant sets of coordinates, the last epipodal vector, and684

backward reduction685

We are now ready to develop the theory behind backward-reduced bases. A backward-reduced686

basis is one in which the last epipodal vector b+
k is as long as possible. In the context of687

lattices, such bases are called dual-reduced bases and the maximal length of the last Gram-688

Schmidt vector has a simple characterization in terms of ¼1 of the dual lattice. For codes,689

the maximal length of the last epipodal vector behaves rather differently, as we will explain690

below. In particular, we will see how to find a backward-reduced basis quite efficiently. In691

contrast, finding a dual-reduced basis is equivalent to finding a shortest non-zero vector in a692

lattice and is therefore NP-hard.693

On our way to defining backward reduction, we first define the notion of redundant694

coordinates. Notice that we only consider coordinates in the support of C.695

XX:18 More basis reduction for linear codes

▶ Definition 6. For a code C ¦ Fn
q , we say that a set S ¦ [n] of coordinates is redundant696

for C if S ¦ Supp(C) and for every c ∈ C and all i, j ∈ S, ci = 0 if and only if cj = 0.697

The following simple claim explains the name “redundant.” In particular, for any codeword698

c ∈ C, if we know ci for some i ∈ S, then we also know cj for any j ∈ S.699

▷ Claim 7. For a code C ¦ Fn
q , a set S ¦ Supp(C) is redundant for C if and only if for every700

i, j ∈ S, there exists a non-zero scalar a ∈ F∗
q such that for all c ∈ C, cj = aci.701

Furthermore, to determine whether S is a set of redundant coordinates, it suffices to702

check whether the latter property holds for all c := bi in a basis (b1; . . . ; bk) of C.703

Proof. See the full version [21]. ◀704

Next, we show that redundancy is closely connected with the last epipodal vector in a705

basis.706

▶ Lemma 8. For a code C ¦ Fn
q with dimension k and S ¦ [n], there exists a basis707

B := (b1; . . . ; bk) of C with S ¦ Supp(b+
k) if and only if S is redundant.708

Furthermore, if S is redundant, then there exists a proper basis with this property.709

Proof. See the full version [21]. ◀710

The above motivates the following definition.711

▶ Definition 9. For a code C ¦ Fn
q , the repetition number of C, written ¸(C), is the maximal712

size of a redundant set S ¦ Supp(C).713

In particular, notice that by Lemma 8, ¸(C) is also the maximum of |b+
k | over all bases714

(b1; . . . ; bk) and this maximum is achieved by a proper basis. The next lemma gives a lower715

bound on ¸(C), therefore showing that codes with sufficiently large support and sufficiently716

low rank must have bases whose last epipodal vector is long.717

▶ Lemma 10. For any code C ¦ Fn
q with dimension k,718

¸(C) g
⌈

q − 1

qk − 1
· |Supp(C)|

⌉
.719

Proof. See the full version [21]. ◀720

We present in Algorithm 1 a simple algorithm that finds the largest redundant set of721

a code C. (The algorithm itself can be viewed as a constructive version of the proof of722

Lemma 10.)723

Algorithm 1 Max Redundant Set

Input: A basis B = (b1; . . . ; bk) ∈ Fk×n
q for C

Output: A redundant set S for C with |S| = ¸(C)
for j ∈ [n] do

aj ← B−1
i,j , where i ∈ [k] is minimal such that Bi,j ̸= 0.

end

Find S ¦ Supp(C) with maximal size such that for all j1, j2 ∈ S and all i,

aj1
Bi,j1

= aj2
Bi,j2

.

return S

▷ Claim 11. Algorithm 1 outputs a redundant set S for C with |S| = ¸(C). Furthermore,724

Algorithm 1 runs in time O(kn log(q) log(qn)) (when implemented appropriately).725

Proof. See the full version [21]. ◀726

S. Ghentiyala and N. Stephens-Davidowitz XX:19

5.1 Backward reduction727

We are now ready to present our definition of backward-reduced bases.728

▶ Definition 12. Let B = (b1; . . . ; bk) ∈ Fk×n
q be a basis of a code C. We say that B is729

backward reduced if it is proper and |b+
k | = ¸(C(B)).730

Finally, we give an algorithm that finds a backward-reduced basis. See Algorithm 2.731

Algorithm 2 Backward Reduction

Input: A proper basis B = (b1; . . . ; bk) ∈ Fk×n
q for C

Output: An invertible matrix A ∈ Fk×k
q such that AB is backward reduced.

{j1, . . . , jt} ← MaxRedundantSet(B)

Let m be minimal such that Bm,j1
̸= 0.

for i ∈ [m + 1, k] do

bi ← bi −B−1
m,j1

Bi,j1
bm

end

(b1; . . . ; bk)← (b1; . . . ; bm−1; bm+1; . . . ; bk; bm)

return the matrix corresponding to the linear transformation done to B.

▷ Claim 13. On input a proper basis B, Algorithm 2 correctly outputs an invertible732

matrix A such that AB is backward reduced. Furthermore, Algorithm 2 runs in time733

O(nk log(q) log(qn)).734

Proof. See the full version [21]. ◀735

5.2 Full backward reduction736

Since backward reduction can be done efficiently, it is natural to ask what happens when737

we backward reduce many prefixes B[1,i] of a basis. We could simply do this for all i ∈ [k],738

but it is natural to be slightly more fine-grained and instead only do this for i f Ä for some739

threshold Ä . In particular, since the last k− poly(log n) epipodal vectors tend to have length740

one even in very good bases (see the full version [21]to understand why), it is natural to take741

Ä f poly(log n) to be quite small, which leads to very efficient algorithms. This suggests the742

following definition.743

▶ Definition 14. For some threshold Ä f k, a basis B ∈ Fk×n
q is fully backward reduced up744

to Ä if it is proper and B[1,i] is backward reduced for all 1 f i f Ä .745

We now show how to easily and efficiently compute a fully backward-reduced basis, using746

the backward-reduction algorithm (Algorithm 2) that we developed above. We present the747

algorithm in Algorithm 3 and then prove its correctness and efficiency. Notice in particular748

that the algorithm only changes each prefix B[1,i] (at most) once.749

▶ Theorem 15. On input a proper basis B := (b1; . . . ; bk) ∈ Fk×n
q for a code C and a750

threshold Ä ∈ [1, k], Algorithm 3 correctly outputs a basis B′ ∈ Fk×n
q for C that is fully751

backward reduced up to Ä . Furthermore, the algorithm runs in time O(Ä2n log(q) log(qn)).752

Proof. See the full version [21]. ◀753

XX:20 More basis reduction for linear codes

Algorithm 3 Full Backward Reduction

Input: A proper basis B := (b1; . . . ; bk) ∈ Fk×n
q for a code C and a threshold

Ä ∈ [1, k]

Output: A basis for C that is totally backward reduced up to Ä .

for i = Ä, . . . , 1 do

A← BackwardReduction(B[1,i])

B ← (A· Ik−i)B

end

return B

We next bound |b1| of a fully backward-reduced basis. In fact, when Ä g +logq n,, this754

bound matches the Griesmer bound. In fact, it is not hard to see that with Ä = k, a fully755

backward-reduced basis is in fact LLL-reduced as well. But, the below theorem shows that756

we do not need to go all the way to Ä = k to achieve the Griesmer bound. This is because in757

the worst case, |b+
i | = 1 for all i g logq n anyway.758

▶ Theorem 16. For any positive integers k, n g k, and Ä f k, a basis B ∈ Fk×n
q of a code759

C that is fully backward reduced up to Ä satisfies760

τ∑

i=1

⌈ |b1|
qi−1

⌉
f n− k + Ä .761

Proof. See the full version [21]. ◀762

5.3 Heuristic analysis suggesting better performance in practice763

Recall that our analysis of backward-reduced bases in Section 5 relied crucially on the764

repitition number ¸(C), which is the maximum over all bases of C of the last epipodal765

vector. We showed that ¸(C) can be equivalently thought of as the maximal set of redundant766

coordinates. E.g., when q = 2, ¸(C) is precisely the number of repeated columns in the basis767

B for C.768

Our analysis of fully backward-reduced bases then relies on the lower bound on ¸(C) in769

Lemma 10. The proof of Lemma 10 simply applies the pigeonhole principle to the (normalized,770

non-zero) columns of a basis B for C to argue that, if there are enough columns, then one of771

them must be repeated many times. Of course, the pigeonhole principle is tight in general772

and it is therefore easy to see that this argument is tight in the worst case.773

However, in the average case, this argument is not tight. For example, if the number n of774

(non-zero) columns in our basis B ∈ Fk×n
2 is smaller than the number of possible (non-zero)775

columns 2k − 1, then it is certainly possible that no two columns will be identical. But, the776

birthday paradox tells us that even with just n ≈ 2k/2, a random matrix B ∈ Fk×n
2 will777

typically have a repeated column. More generally, if a code C is generated by a random778

basis B ∈ Fk×n
q , then we expect to have ¸(C) > 1 with probability at least 1− 1/ poly(n),779

provided that, say, n g 10 log(n)qk/2, or equivalently, provided that780

k f 2(logq n− logq(10 log(n))) .781

We could now make a heuristic assumption that amounts to saying that the prefixes782

B[1,i] behave like random matrices with suitable parameters (in terms of the presence of783

repeated non-zero columns). We could then use such a heuristic to show that we expect the784

S. Ghentiyala and N. Stephens-Davidowitz XX:21

output of Algorithm 3 to achieve785

k1 > (2− o(1)) logq n .786

We choose instead to present in the full version [21] a variant of Algorithm 3 that787

provably achieves the above. This variant is identical to Algorithm 3 except that instead788

of looking at all of B[1,i] and choosing the largest set of redundant coordinates in order to789

properly backward reduce B[1,i], the modified algorithm chooses the largest set of redundant790

coordinates from some small subset of all of the coordinates. In other words, the modified791

algorithm ignores information. Because the algorithm ignores this information, we are able792

to rigorously prove that the algorithm achieves k1 ≳ 2 logq n when its input is a random793

matrix (by arguing that at each step the algorithm has sufficiently many fresh independent794

random coordinates to work with).795

We think it is quite likely that Algorithm 3 performs better (and certainly not much796

worse) than this information-ignoring variant. We therefore view this as strong heuristic797

evidence that Algorithm 3 itself achieves k1 ≳ 2 logq n. (This heuristic is also confirmed by798

experiment. See the full version [21].)799

5.3.1 Backward reducing without all of the columns800

See the full version [21].801

References802

1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the803

shortest vector problem in 2n time using discrete Gaussian sampling. In STOC, 2015.804

2 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC,805

2018.806

3 Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.807

4 Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions. In808

STOC, 1998.809

5 Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case810

equivalence. In STOC, 1997.811

6 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the Shortest Lattice812

Vector Problem. In STOC, pages 601–610, 2001.813

7 Michael Alekhnovich. More on average case vs approximation complexity. In FOCS, pages814

298–307, 2003.815

8 Nicolas Aragon, Julien Lavauzelle, and Matthieu Lequesne. decodingchallenge.org, 2019. URL:816

http://decodingchallenge.org.817

9 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The Hardness of Approximate818

Optima in Lattices, Codes, and Systems of Linear Equations. J. Comput. Syst. Sci., 54(2):317–819

331, 1997.820

10 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,821

6(1):1–13, 1986.822

11 Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating and exploiting the head823

concavity phenomenon in BKZ. In Asiacrypt, 2018.824

12 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest825

neighbor searching with applications to lattice sieving. In SODA, 2016.826

13 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative827

hardness of CVP. In FOCS, 2017.828

14 E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain829

coding problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.830

XX:22 More basis reduction for linear codes

15 Peter van Emde Boas. Another NP-complete problem and the complexity of computing short831

vectors in a lattice. Technical report, University of Amsterdam, 1981.832

16 Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Asiacrypt,833

2011.834

17 Thomas Debris-Alazard, Léo Ducas, and Wessel P. J. van Woerden. An algorithmic reduction835

theory for binary codes: LLL and more. IEEE Transactions on Information Theory, 68(5):3426–836

3444, 2022. https://eprint.iacr.org/2020/869.837

18 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within almost-838

polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003.839

19 I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance of840

a linear code. IEEE Transactions on Information Theory, 49(1):22–37, 2003.841

20 Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s inequality.842

In STOC, 2008.843

21 Surendra Ghentiyala and Noah Stephens-Davidowitz. More basis reduction for linear codes:844

backward reduction, BKZ, slide reduction, and more, 2024.845

22 J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development,846

4(5):532–542, 1960.847

23 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key848

cryptosystem. In ANTS, pages 267–288, 1998.849

24 P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosys-850

tem. In Eurocrypt, 1988.851

25 Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with852

rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982.853

26 Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN854

Progress Report, Jet Propulsion Laboratory, 1978.855

27 Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to within some856

constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.857

28 Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In858

Eurocrypt, 2016. URL: http://eprint.iacr.org/2015/1123.859

29 Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm: Survey and Applications.860

Springer-Verlag, 2010.861

30 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.862

ACM, 56(6):Art. 34, 40, 2009. doi:10.1145/1568318.1568324.863

31 Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.864

Comput. Sci., 53(23):201–224, 1987.865

32 Noah Stephens-Davidowitz and Vinod Vaikuntanathan. SETH-hardness of coding problems.866

In FOCS, 2019.867

33 Alexander Vardy. Algorithmic complexity in coding theory and the Minimum Distance868

Problem. In STOC, 1997.869

34 Michael Walter. Lattice blog reduction: The Simons Institute blog. https://blog.simons.870

berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/, 2020.871

	1 Introduction
	1.1 Codes and lattices
	1.2 Basis reduction for lattices
	1.3 Basis reduction for codes!
	1.3.1 Projection, epipodal vectors, and proper bases
	1.3.2 What's a good basis and what is it good for?

	1.4 Our contribution
	1.4.1 Expanding on the work of DDvW22
	1.4.2 Backward reduction and redundant sets
	1.4.3 Fully backward-reduced bases
	1.4.4 BKZ and slide reduction for codes
	1.4.5 Two illustrative algorithms
	1.4.6 On ``the best possible bases''

	2 Preliminaries
	2.1 Some notation

	3 Generalizing epipodal vectors, size reduction, and the fundamental domain to Fq
	3.1 Projection and epipodal vectors
	3.1.1 Basic operations on blocks

	3.2 Size reduction and its fundamental domain

	4 Proper bases and primitivity
	5 Redundant sets of coordinates, the last epipodal vector, and backward reduction
	5.1 Backward reduction
	5.2 Full backward reduction
	5.3 Heuristic analysis suggesting better performance in practice
	5.3.1 Backward reducing without all of the columns

