Cooperative Infrastructure Perception

Fawad Ahmad*!, Christina Suyong Shin*?, Weiwu Pang*?, Branden Leong?, Pradipta Ghosh®, and Ramesh Govindan

IRochester Institute of Technology, Rochester, NY, USA
2University of Southern California, Los Angeles, CA, USA
3Meta, Menlo Park, CA, USA
fawad @cs.rit.edu, {cshin956, weiwupan, branden, ramesh} @usc.edu, iampradipta@meta.com

Abstract—Recent works have considered two qualitatively
different approaches to overcome line-of-sight limitations of
3D sensors used for perception: cooperative perception and
infrastructure-augmented perception. In this paper, motivated
by increasing deployments of infrastructure LiDARs, we explore
a third approach - cooperative infrastructure perception. This
approach generates perception outputs by fusing outputs of
multiple infrastructure sensors, but, to be useful, must do so
quickly and accurately. We describe the design, implementation
and evaluation of Cooperative Infrastructure Perception (CIP),
which uses a combination of novel algorithms and systems
optimizations. It produces perception outputs within 100 ms using
modest computing resources and with accuracy comparable to the
state-of-the-art. CIP, when used to augment vehicle perception,
can improve safety. When used in conjunction with offloaded
planning, CIP can increase traffic throughput at intersections.

Index Terms—Cooperative Perception, Infrastructure-assisted
Perception, Autonomous Vehicle Systems

I. INTRODUCTION

Machine perception extracts higher-level representations of a
scene from low-level sensor signals in real-time. Perception is
essential for autonomy and is now a crucial component of every
autonomous driving stack [1], [2]. The perception component of
an autonomous driving stack extracts bounding boxes and tracks
of dynamic objects in a scene such as vehicles, pedestrians
and bicyclists. It may also extract compact representations for
static scene elements such as lane markers and drivable space.

Perception has long suffered from sensor range and line-
of-sight limitations. For example, a LiDAR on the vehicle A
in Fig. 1 may not have enough range to see the bicyclist
behind the vehicle B. Even if it did, the LiDAR’s view
would be occluded by the vehicle B. To address this, prior
work has considered two qualitatively different approaches. In
cooperative perception, vehicles share sensor or perception
outputs between themselves [3] to effectively extend visual
range and address line-of-sight limitations. For example, the
vehicle A (Fig. 1) could “see” the bicyclist using vehicle B’s
perception outputs. In infrastructure-assisted perception [4],
a vehicle augments its own perception using sensors in the
infrastructure [5]. In Fig. 1, the vehicle A could “see” the
occluded bicyclist using the LiDAR at the top of the figure.

In this work, we consider a complementary capability,
cooperative infrastructure perception (or CIP). This produces

* Equal contribution to this work.

FIGURE 1: CIP deployment at an intersection with multiple LiDARs and
nearby edge compute.

bounding boxes and tracks of dynamic objects in a scene,
such as vehicles and pedestrians, by combining and processing
outputs of multiple infrastructure sensors. Fig. 1 shows an
example in which CIP can use four LiDARs placed at
an intersection to cooperatively detect and track vehicles,
pedestrians and bicyclists. Compared to cooperative perception,
CIP’s LiDARs, when mounted well above vehicle height, will
likely have a better view of objects in the scene. For example,
the LiDAR on the left might be able to view part of the bicyclist
behind the vehicle B, while the vehicle A’s LiDAR may not.
Compared to infrastructure-assisted perception, CIP’s LiDARs
can collectively obtain more complete views of an object and
so can estimate better bounding boxes. For example, each
LiDAR adjacent to the vehicle B can only view half of the
vehicle; together, they can view the entire car.

CIP enables several novel capabilities:

Perception Augmentation. CIP can deliver bounding boxes
and tracks of all traffic participants to all vehicles. An
autonomous vehicle can augment its own perception with these
and plan better paths, thereby increasing overall safety.
Planning Offload. CIP’s outputs can be used to plan trajec-
tories for all vehicles on edge compute (Fig. 1), and deliver
each vehicle’s trajectory wirelessly. Offloading planning can be
useful in restricted settings such as ports, parking lots, factories,
and so on. Indeed, industry is developing such a capability to
autonomously guiding a car without on-board perception and
planning into a parking spot [6].

Pedestrian Situational Awareness. CIP’s outputs can be pro-
cessed to deliver situational awareness to pedestrians such as
an audio cue to a visually-impaired pedestrian or rendering by
a real-time outdoor augmented reality system.

2

More generally, CIP can be deployed not just at intersections,
but in plazas, shopping malls, college and enterprise campuses
and tourist attractions, and can be used to guide pedestrians,
bicyclists and vehicles in various ways.

Three technology trends enable CIP. LiDARs are becoming
cheaper, especially with the development of solid-state Li-
DARs [7]. Large cloud providers are rolling out edge compute
deployments [8]. Finally, cellular carriers have made substantial
investments in 5G deployments [9].

Given these trends, we expect that CIP software can be
architected as a software pipeline running on commodity edge
compute (Fig. 1). CIP will process and combine LiDAR outputs
to produce objects and tracks, then deliver them wirelessly to
traffic participants. The use cases presented above motivate
two challenging requirements that CIP must meet.

« Autonomous vehicles must perceive the world and make
driving decisions at a frequency of 10 Hz with a tail latency
less than 100 ms [10]. To be applicable to autonomous
driving, CIP must also adhere to the same latency constraints.
LiDARs generate data at 10 frames per second. At 30 MB per
frame, with four LiDARSs at an intersection, this translates to
CIP having to process data at a raw rate of nearly 10 Gbps.
With commodity compute, this is not straightforward.

o CIP generates a scene description that consists of dynamic
objects along with their positions, bounding boxes, heading
vectors and motion vectors. The accuracy of these must match
or exceed the state-of-the-art computer vision algorithms.
It is not immediately obvious that CIP can meet these

requirements; for example, the most accurate 2D and 3D object

detectors on a popular autonomous driving benchmark [11]

incur a processing latency of 60-300 ms.

To address these challenges, our work makes the following
contributions:

o To fuse 3D frames from multiple LiDARs, CIP introduces a
novel alignment algorithm whose accuracy is significantly
higher than prior work (§II-A).

e With an accurate 3D fused view, CIP introduces fast and
cheap implementations of algorithms for dynamic object
extraction, tracking, and speed estimation. These are cen-
tered around a single bounding box abstraction which CIP
computes early on in the pipeline (§11-B). This design choice
is crucial for ensuring speed without sacrificing accuracy.

o Cheap algorithms for heading estimation are inaccurate, so
CIP develops a more accurate GPU-offload heading estimator
to meet the latency constraint (§11-C).

« Its outputs can be used to augment vehicle perception, or
enable offloaded planning, capabilities that can increase
vehicular safety and throughput.

Using real-world datasets and simulations, we show that
CIP can generate perception outputs with a 99th percentile
latency of less than 90 ms in scenes with 30-50 vehicles and
pedestrians, just using a 16 core desktop with a single GPU. Its
object extraction and tracking accuracy compare well with the
state-of-the-art. When used to augment perception, it can ensure
safety in 3x-5X more scenarios than standard autonomous

driving. When used with offloaded planning, it can reduce
traffic wait time by up to 5x.

II. CIP DESIGN

In this section, we describe CIP’s design, beginning with
an overview of its approach. We do this using data from
our deployment of four LiDARs at the four corners of a busy
intersection of a major metropolitan area as shown in Fig. 2(a).'

Inputs and Outputs. The input to CIP is a continuous sequence
of LiDAR frames from each LiDAR in a set of overlapping
LiDARs deployed roadside. The output of perception is a
compact abstract scene description: a list of bounding boxes
of moving objects together with their motion vectors (Fig. 2(e)).

Approach. To address the challenges described in §I, CIP
uses a three stage pipeline, each with three sub-stages (Fig. 3).
Fusion combines multiple LiDAR views into fused frames
(Fig. 2(c)), and then subtracts the static background to reduce
data for subsequent processing (Fig. 2(d)). Participant extrac-
tion identifies traffic participants by clustering and, estimates a
tight 3D bounding box around each object. Tracking associates
objects across frames, and estimates their heading and motion
vectors (Fig. 2(e)).

This design achieves CIP’s goals using three ideas:

o CIP exploits the fact that LiDARs are static to cheaply
fuse point clouds from multiple overlapping LiDARs into a
single fused frame. Such a frame may have more complete
representations of objects than individual LiDAR frames.
Fig. 2(b) shows the view from each of the four LiDARs;
in many of them, only parts of a vehicle are visible. Fig. 2(c)
shows a fused frame which combines the four LiDAR frames
into one; in this, all vehicles are completely visible.”

 CIP builds most algorithms around a single abstraction, the
3D bounding box of an object (Fig. 2(e)). Its tracking, speed
estimation, and motion vector estimation rely on the observation
that the centroid of the bounding box is a convenient consistent
point for estimating these quantities, especially when fused
LiDAR frames provide comprehensive views of an object.

o CIP uses, when possible, cheap algorithms rather than
expensive deep neural networks (DNNs). Only when higher
accuracy is required does CIP resort to expensive algorithms,
but employs hardware acceleration to meet the latency budget;
its use of a specialized heading vector estimation is an example.

To appreciate the novelty of this approach, consider Ta-
ble I which compares CIP’s design to that of open-source
autonomous driving perception designs [1], [2]:

o These approaches rely on a pre-built 3D map (called HD
map), and localize the ego-vehicle (the one on which the
autonomous driving stack runs) by matching its LiDAR scans
against the HD map. In contrast, CIP does not require a map
for positioning: all vehicle positions can be directly estimated
from the fused frame.

!Practical deployments of roadside LiDARs need to consider coverage
redundancy and other placement geometry issues, which are beyond the scope
of this paper.

2Not immediately obvious from the figure, but a LIDAR frame, or a fused
frame is a 3D object, of which Fig. 2(c) is a 2D projection.

e g
% AP S ‘
7 Ew N D o
4 < 2

) e o -

g = ey . T e

B0 3 Y el g: o =

ot § ; R E

(a) (b) (d) (e)

FIGURE 2: CIP deployment at a busy intersection with heavy vehicular and pedestrian traffic in a large metropolitan city. (a) A top down view of the
intersection (taken from Google Maps [12]). We mounted four LiDARs near each of traffic light poles situated at the four corners of the intersection. (b)
An individual frame from each one of the four LiDARs. (c) A fused frame. (d) Point clouds of traffic participants (dynamic objects) at the intersection. (e)
Bounding boxes and motion vectors for traffic participants, calculated over successive frames.

Fusion Tracking
Alignment (§11-A) Track Association
Stitching Heading Vector Estimation (§11-C)
Background Subtraction Motion Vector Estimation

2
— Participant Extraction —

Clustering
> Bounding Box Estimation (§11-B)
Cyber-physical Association

FIGURE 3: Perception stages. Bold sub-stages described in detail.

[cIp [AV Perception [1], [2]
Mapping None Pre-built HD map
Localization Live Fused Point Cloud | LiDAR scan matching,
($1I-A) Fusion with GPS-RTK or
IMU
Object Detection | 3D Object Detection Obstacle detection in 2D
(§11-B) BEV projection, 2D ob-

ject detection in camera,
projected to 3D

Kalman filter with match- Kalman filter with match-
ing, Heading Estimation ing

(11-0)
TABLE I: CIP and autonomous vehicle perception.

Tracking/Motion
Estimation

o Autonomous driving stacks use different ways to identify
traffic participants. They extract obstacles from a 2D birds-eye-
view or use a 2D object detector on images, then back-project
these to the 3D LiDAR view. CIP, on the other hand, directly
extracts the 3D point cloud associated with each participant.
It does this cheaply using background subtraction because its
LiDARs are relatively static.

o Autonomous driving stacks use Kalman filters to estimate
motion properties® (e.g., speed and heading) of other vehicles.
For heading, CIP uses a more sophisticated algorithm to ensure
higher tail accuracy.

Below, we describe parts of CIP’s novel perception relative
to autonomous driving stacks (bold text in Table I).

A. Accurate Alignment for Fast Fusion

Point Cloud Alignment. Each frame of a LiDAR contains a
point cloud, a collection of points with 3D coordinates. These
coordinates are in the LiDAR’s own frame of reference. Fusing
frames from two different LiDARs is the process of converting
all 3D coordinates of both point clouds into a common frame
of reference. Alignment computes the transformation matrix

3Vehicles use SLAM to estimate their own motion and heading.

for this conversion.

Prior work has developed Iterative Closest Point (ICP) [13]
techniques that search for the lowest error alignment. The
effectiveness of these approaches depends upon the initial
guess for LIDARS’ poses. Poor initial guesses can result in local
minima. SAC-IA [14] is a well-known algorithm to quickly
obtain an initial guess for ICP. As we demonstrate in §1V, with
SAC-IA’s initial guesses, ICP generates poor alignments on
full LiDAR frames.

Initial Guess using Minimal Information. Besides the
point clouds, SAC-IA requires no additional input. CIP uses
an algorithm to obtain good initial guesses using minimal
additional input. Specifically, CIP only needs the distances on
the ground between a reference LiDAR and all others to get
good initial guesses.* We can measure these distances using,
for example, an off-the-shelf laser rangefinder [15].

We now describe the algorithm for two LiDARs L; and Lo
(as shown in Fig. 4(a)); the technique generalizes to multiple
LiDARs as described in Alg. 1. The inputs are two point
clouds C; and C3 (more generally, N point clouds captured
from the corresponding LiDARs at the same instant (Fig. 4(b)
and Fig. 4(c)), and the distance d on the ground between
the LiDARs. The output is an initial guess for the pose of
each LiDAR. We feed these guesses into ICP to obtain good
alignments. The algorithm conceptually consists of three steps:

Fix base coordinates. Set L1’s x and y coordinates to be
(0,0) i.e., base at origin (Alg. 1 line 3). Then, assume that
Ly’s base is at (d,0) (Fig. 4(d)).

Estimate height, roll and pitch. In this step, we determine:
the height of each LiDAR z;, the roll (angle around the z axis),
and pitch (angle around the y axis). For these, CIP relies on fast
plane-finding algorithms [16] that extract planes (Alg. 1 lines 1
and 4) from a collection of points. These techniques output the
equations of the planes. Assuming that the largest plane is the
ground-plane (a reasonable assumption for roadside LiDARS),
CIP aligns the z axis of two LiDARs with the normal to the
ground plane (Alg. 1 line 5). In this way, it implicitly fixes the
roll and pitch of the LiDAR. Moreover, after the alignment,
the height of the LiDARSs z; is also known (because the z axis

4LiDAR GPS locations as input result in poor alignment (§IV).

FIGURE 4: An illustration of CIP’s point cloud alignment algorithm. (a) A top down view of a parking lot with two LiDARs shown by red (L1) and blue (L2)
icons. (b) The inputs to initial guess algorithm are point clouds (C7 and C?3) in the respective LIDAR’s coordinate system along with the ground distance d
between them. (c) Figure (b) with background removed. (d) To fix the base coordinates, CIP displaces Co by the ground distance d. (e) CIP rotates both C
and Cq by small yaw increments to find the combination with the least distance between the point clouds.

Input : 1. C={C4,---,Cn}; C; is LIDAR L;’s point
cloud.
2. D ={da, -+ ,dn}; d; is the distance from L; to
the reference LiDAR L1.
Output: 7' = {1%,T5,--- ,Tn}; T; is the transformation
matrix from C; to L;’s coordinate system.
1 SegmentGroundPlane (C);
2 for i < 2 to N by 1 do
3 AlignPosition (C;, C1, d;);
4 SegmentGroundPlane (C;);
5 AlignGroundPlane (C;, Cy);
6 EstimateYaw (C;);
7 end
Algorithm 1. Estimating an initial guess for alignment.

is perpendicular to the ground plane).

Estimate yaw. Finally, to determine yaw (angle around the

z axis), we use the technique illustrated in Fig. 4(e) (Alg. 1
line 6). In this technique, CIP rotates both point clouds C
and Co with different yaw settings until it finds a combination
that results in the smallest 3D distance® between the two point
clouds. We have found that ICP is robust to initial guesses for
yaw that are within about 15-20° of the actual yaw, so CIP
discretizes the search space by this amount. In case of Fig. 4(e),
CIP calculates the initial guess for the yaw by rotating the blue
point cloud (C5).
Obtaining Alignment. CIP repeats this procedure for every
other LiDAR L; with respect to L, to obtain initial guesses
for the poses of every LiDAR (Alg. I line 2). It feeds these
into ICP to obtain an alignment.

Alignment is run only once when installing the LiDARs.

Re-alignment may be necessary if a LiDAR is replaced or re-
positioned. Alignment is performed infrequently but is crucial
to CIP’s accuracy (§1V-C).
Per-frame Stitching. LiDARs generate frames at 10 fps (or
more). In Fig. 2, when each LiDAR generates a frame, the
fusion stage performs stitching. Stitching applies the coordinate
transformation for each LiDAR generated by the alignment
resulting in a fused frame (Fig. 2(c)).

B. Reusing 3D Bounding Boxes

CIP’s efficiency results from reusing the 3D bounding box
of a participant (Fig. 2(e)) in processing steps. After stitching,
5The 3D distance between two point clouds is the average distance between

every point in the first point cloud to its nearest neighboring point in the
second point cloud.

Centroid | Axes | Dimension
. Speed Cyber-phy Heading .
Tracking Estimation | Association | Estimation Planning

TABLE II: CIP reuses properties of the bounding boxes in multiple modules
to ensure low latency.

CIP extracts the bounding box by performing background
subtraction on the fused point cloud to extract points belonging
to dynamic objects. On these points, it applies clustering to
determine points belonging to individual objects. Finally, it runs
a bounding box estimation algorithm on these points. These
use well-known algorithms, albeit with some optimizations;
we describe these in §II-D. CIP uses the bounding box for
many of its algorithms (Table II); we describe these below.

Tracking. To associate objects across frames (tracking), CIP
uses a Kalman filter to predict the position of the centroid
of the 3D bounding box. Then, it finds the best match (in a
least-squares sense) between predicted positions and the actual
positions of the centroids in the frame. Although tracking in
point clouds is a challenging problem [17] for which research
is exploring deep learning, a Kalman filter works exceedingly
well in our setting. The biggest challenge in tracking is
occlusions: when one object occludes another in a frame, it
may be mistaken for the other in subsequent frames (ID-switch).
Because our fused frame includes perspectives from multiple
LiDARs, ID-switches occur rarely (§IV).

Speed Estimation. To estimate speed of a dynamic object, CIP
measures the distance between the centroid of the bounding
box in one frame and the centroid w frames in the past (w is a
configurable window size). It then estimates speed by dividing
the distance by the time to generate w frames.

Cyber-physical Association. CIP needs to associate an object
seen in the LIDAR with a cyber endpoint (e.g., an IP address).
This is important so that CIP can send that object customized
results i.e.,, perception results relevant to that object or a
customized trajectory planned for that vehicle. For this step,
CIP uses a calibration step performed once. Given a vehicle for
which we know the cyber-physical association (e.g., LIDAR
installer’s vehicle), we estimate the transformation between
the trajectory of the vehicle seen in the LiDAR view with the
GPS trajectory (details omitted for brevity). CIP uses this to
transform a vehicle’s GPS trajectory to its expected trajectory
in the scene, then matches actual scene trajectory to expected
trajectory in a least-squares sense. To define the scene trajectory,

Selected!‘@

(a) (b)

FIGURE 5: The figure shows the points belonging to a vehicle in two
successive frames ¢ and £+1. (a) Strawman approach for heading determination.
(b) CIP’s approach.

we use the centroid of the vehicle’s bounding box.

The centroid of the bounding box is an easily computed
and consistent point within the vehicle that simplifies these
tasks. Because we have multiple LiDARSs that capture a vehicle
from multiple directions, the centroid of the bounding box is

generally a good estimate of the actual centroid of the vehicle.

Besides these, CIP (a) estimates heading direction from the
axes of the bounding box (discussed in §II-C) and (b) uses
the dimensions of the box to represent spatial constraints for
planning (discussed in §III).

C. Fast, Accurate Heading Vectors

To compute the motion vector of a vehicle, CIP first
determines, for each object, its instantaneous heading (direction
of motion), which is one of the three surface normals of the
bounding box of the vehicle. It estimates the motion vector as
the average of the heading vectors in a sliding window of w
frames. Most autonomous driving stacks can obtain heading
from SLAM or visual odometry (§V), so little prior work has

explored extracting heading from infrastructure LiDAR frames.

A Strawman Approach. Consider an object A at time ¢ and

time ¢ 4 1. Fig. 5(a) shows the points belonging to that object.

Since those points are already in the same frame of reference,
a strawman algorithm finds the vector between the centroid
of A at time ¢ and centroid of A at time ¢ + 1. Then, the
heading direction is the surface normal from the bounding box
that is most closely aligned with this vector (Fig. 5(a)). We
have found that the error distribution of this approach can have
a long tail (although average error is reasonable). If A has
fewer points in ¢4 1 than in ¢ (Fig. 5(b), upper), the computed
centroid will be different from the true centroid, which can
induce significant error.

CIP’s Approach. To overcome this, CIP uses ICP to find the

transformation matrix between A’s point cloud in ¢ and in ¢+ 1.

Then, it places A’s point cloud from ¢ in frame ¢+ 1 (Fig. 5(b),
lower). Finally, it computes the vector between the centroids
of these two (so that the centroid calculations are based on
the same set of points). As before, the heading direction is the
surface normal that is most closely aligned with this vector.
GPU Acceleration. ICP is compute-intensive even for small
object point clouds. If there are multiple objects in the frame,
CIP must run ICP for each of them. We have experimentally
found this step to be the bottleneck. Thus, we developed a
fast GPU-based implementation of heading vector estimation,
which reduces the overhead of this stage (§IV-D).

A typical ICP implementation has four steps: (1) estimating
correspondence between the two input point clouds, (2)
estimating transformation between the two point clouds, (3)
applying the transformation to the source point cloud and
(4) checking for ICP convergence. The first step requires a
nearest neighbor search; instead of using octrees, we adapt
a parallelizable version described in [18] but use CUDA’s
parallel scanning to find the nearest neighbor. The second
step shuffles points in the source point cloud then applies the
Umeyama algorithm [19] for the transformation matrix. We
re-implemented this algorithm using CUDA’s demean kernel
and a fast SVD implementation [20]. For the third and fourth
steps, we developed custom CUDA kernels. This step scales
linearly with the number of vehicles but parallelizes easily to
multiple GPUs; at intersections with many vehicles, CIP can
use edge computing resources with multiple GPUs.

D. Optimizations

Background Subtraction. CIP removes points belonging to
static parts of the scene®. This is: (a) especially crucial for
voluminous LiDAR data, and (b) feasible in our setting because
LiDARs are static. It requires a calibration step to extract a
background point cloud from each LiDAR [21], then creates a
background fused frame using the results from alignment. To
extract the background point cloud, CIP takes the intersection of
a few successive point clouds and the aggregating intersections
taken at a few different time intervals.

Subtraction before Stitching. CIP can subtract the background
fused frame from each fused frame generated by stitching. We
have found that removing the background from each LiDAR
frame (using its background point cloud), and then stitching
points in the residual point clouds can significantly reduce
latency. Stitching scales with the number of points, which this
optimization reduces significantly.

Leveraging LiDAR Characteristics. Many LiDAR devices
only output returns from reflected laser beams. Generic
background subtraction algorithm requires a nearest-neighbor
search to match a return with the corresponding return on the
background point cloud. Some LiDARs (like Ouster [22]),
however, indicate non-returns as well, so that the point
cloud contains the output of every beam of the LiDAR. For
these, it is possible to achieve fast background subtraction by
comparing corresponding beam outputs in a point cloud and
the background point cloud.

Computing 3D Bounding Boxes. On the points in the
fused frame remaining after background subtraction, CIP uses
a standard clustering algorithm (DBSCAN) [23] to extract
multiple clusters of points where each cluster represents one
traffic participant. Then, it uses an off-the-shelf algorithm [24],
which determines a minimum oriented bounding box of a
cluster using principal component analysis (PCA). From these,
it extracts the three surface normals of the object: the vertical

6Static parts of the scene (e.g., an object on the drivable surface) might be
important for path planning. CIP uses the static background point cloud to

determine the drivable surface; this is an input to the planner (§11I-B). We
omit this for brevity.

7777777 ! D %y A N
FIGURE 6: The orange truck ob- FIGURE The orange trucks ob-
structs ego-vehicle’s (yellow box) struct the ego-vehicle’s (yellow box)
view of the red-light violator. view of the left-turning car (red box).

axis, the axis in the direction of motion, and the lateral axis.

III. USE CASES

Beyond describing CIP, it is important to demonstrate its
utility. To this end, we describe its use in (a) augmenting
vehicle perception and (b) offloading planning to the edge.
These improve traffic safety and throughput respectively (§IV).

A. Augmenting a Vehicle’s Perception

3D sensors mounted on autonomous vehicles are prone to
line-of-sight-limitations and occlusions. NHTSA [25] has high-
lighted a number of scenarios where line-of-sight limitations
can cause potential traffic accidents [26]. For instance, in Fig. 6
the ego-vehicle (bounded in yellow) has the right-of-way and
attempts to cross the intersection. However, it is unaware of an
oncoming red-light violating vehicle (bounded in red) which is
occluded by the orange truck. As a result, the ego-vehicle will
crash into the red-light violating vehicle. The same is true for
Fig. 7 where the ego-vehicle (bounded in yellow) cannot see
the vehicle taking the unprotected left turn (bounded in red).

In such traffic scenarios, if the vehicle had access to other 3D
views that could sense the oncoming vehicle, it could avoid the
traffic accident. With LiDARs mounted at the intersection, CIP
can wirelessly transmit its perception outputs to all vehicles.
Vehicles, after positioning these bounding boxes and motion
vectors in their own coordinate system [27], can fuse them
with results from their on-board perception stack.

Finally, they feed the fused results to their on-board planning
module. In an autonomous vehicle, the planner [28] generates,
every LiDAR frame, short-term frajectories (at the timescale of
100s of milliseconds) that the vehicle must follow. A trajectory
is a sequence of way-points, together with the precise times
at which the vehicle must arrive at those way-points. Because
the fused perception results contain the obstructed vehicles,
the planner is aware of their presence and their motion. As a
result, it can devise collision-free trajectories for vehicles to
enable safer driving.

B. Offloading Planning to the Edge

In §III-A, each vehicle plans its trajectory independently.
However, because CIP has a comprehensive view of the
intersection, it can actually plan trajectories for all vehicles on
edge compute. While this may seem far-fetched, there already
exists at least one company [6] exploring this capability in
limited settings. In malls and airports, this capability uses
infrastructure sensors and edge-based planning to guide vehicles
to and out of their parking spaces.

(a) (b) (c)
FIGURE 8: (a) The first planned vehicle (red) can use the entire drivable
space. (b) The second vehicle (blue) treats the first as an obstacle (orange).
Different shades represent different times at which grids are occupied. (c)
The motion-adaptive buffer around a vehicle is proportional to its speed.

FIGURE 9: With autonomous driving’s decentralized planning, in the absence
of a traffic light controller, vehicles come to a deadlock at the intersection
where they are unable to cross it.

Offloading planning to the edge can improve traffic through-
put at intersections. Instead of traffic lights, the planner can
regulate the speed of each car so that all cars can traverse
the intersection safely, possibly without stopping. Traffic-light
free intersections [29] are a long sought after goal in the
transportation literature.

To demonstrate this, we have adapted a fast single-robot
motion planner, SIPP [30]. The input to SIPP is a goal for a
robot, the positions over time of the dynamic obstacles and an
occupancy grid of the environment (Fig. 8(a)). The output is
a provably collision-free shortest path for the robot. At each
frame, the planner must plan trajectories for every CIP-capable
vehicle. Without loss of generality, assume that vehicles are
sorted in some order. The edge-offloaded planner iteratively
plans trajectories for vehicles in that order: when running SIPP
on the ¢-th vehicle, it represents all ¢ — 1 previously planned
vehicles as dynamic obstacles in SIPP. Fig. 8(b) illustrates
this, in which the trajectory of a previously planned vehicle is
represented as an obstacle when planning a trajectory for the
blue vehicle.

This approach has two important properties:

1) All trajectories are collision-free. Two cars ¢ and j cannot
collide, since, if j > 4, j’s trajectory would have used i’s as
an obstacle, and SIPP generates a collision-free trajectory for
each vehicle.

2) This planner cannot result in a traffic deadlock. A
deadlock occurs when there is a cycle of cars in which each
car’s forward progress is hampered by another. Fig. 9 shows
examples of deadlocked traffic with two, three, and four cars
(these scenarios under which these deadlocks occurred are
described in §1V-G). However, our edge-offloaded planner
cannot deadlock. If there exists a cycle, there must be at
least one pair of cars ¢,j where 7 < j and ¢ blocks j. But
this is not possible, because, when planning for j, the planner
represents ¢’s trajectory as an obstacle.

Because it was designed for robots, SIPP makes some

idealized assumptions: all robots use the planned trajectories,
all have the same dimensions, no trajectories are lost and robots
can start and stop instantaneously. In our implementation, we
adapted SIPP to relax these but omit details for brevity.

IV. EVALUATION

Our evaluations demonstrate CIP’s performance and accuracy,
and its potential for improving traffic safety and throughput.

A. Methodology

Implementation. We implemented CIP and the two use cases
discussed in §III on the Robot Operating System (ROS [31]).
ROS provides inter-node (ROS modules are called nodes)
communication using publish-subscribe, and natively supports
points clouds and other data types used in perception-based
systems. CIP runs as a ROS node that subscribes to point
clouds, processes them as described in §II, and publishes the
results. The offloaded planner (§11I-B) builds on top of an
open-source SIPP implementation [32], runs as a ROS node,
subscribes to the CIP results, and publishes trajectories for
each vehicle. CIP requires 6909 lines of C++ code, and the
use cases 3800.

Real-world Traces. We evaluated CIP on a large open source
multi-LiDAR intersection dataset (LUMPI [33]). This dataset
contains approximately 2.5 hours of 3D data collected across
several days from upto five LIDARs mounted at a busy inter-
section in Hanover, Germany. These LiDARs include two 16-
beam LiDARs (Velodnye VLP-16) and three 64-beam LiDARs
(Velodyne HDL-64, Hesai Pandar64, and Hesai PandarQT).
CIP is designed to handle such sensor heterogeneity.

For all evaluations in this paper, we ran CIP on an “edge
compute” device, an AMD 5950x CPU (16 cores, 3.4 GHz)
and a GeForce RTX 3080 GPU. This device has significantly
less compute than a commercial edge offering; for example, a
server on Google’s distributed cloud edge has 96 vCPUs and 4
GPUs [8]. In that sense, our evaluation is conservative relative
to what one might expect from a real deployment.
Real-world Testbed. Besides evaluating CIP on real-world
traces, we also built our own real-world testbed consisting of
four Ouster LiDARs [22] (an OS-1 64, an OS-0 128, and two
0OS-0 64). Three of these have a field of view of 90° while
the last one has a 45° field of view.

Simulation. The LUMPI dataset does not contain ground-truth,
so we complement our evaluations with a simulator, which
helps us evaluate CIP accuracy and scaling. We use CarL A [26],
an industry-standard photo-realistic simulator for autonomous
driving perception and planning. It contains descriptions of
virtual urban and suburban streets, and, using a game engine,
can (a) simulate the control of vehicles in these virtual worlds,
and (b) produce LiDAR point clouds of time-varying scenes.
Unless otherwise noted, our simulation based evaluations focus
on intersections; several challenge scenarios for autonomous
driving focus on intersections [34].

Metrics. We quantify end-to-end performance in terms of the
99th percentile of the latency (p99 latency) between when a
LiDAR generates a frame and when CIP produces its outputs

for that frame. To quantify accuracy of individual components,
we use metrics described in prior works (defined later).

B. CIP Performance

We ran CIP on 2.25 hours of point clouds traces from the
LUMPI dataset. In these experiments, we measured the average,
99th percentile and end-to-end latency of CIP. Our results show
that CIP is able to achieve the 99th percentile latency less than
100 ms.

The LUMPI dataset provides two traces (Fig. 10), one with
three infrastructure LiDARs and another with five. In the 3-
LiDAR setup, the LiDARs are deployed on one side of a 4-way
intersection. The 5-LiDAR setup adds two more lidars to cover
the other side of the intersection. The latter covers more of
the intersection, so CIP detects more traffic participants.

Fig. 11 and Fig. 12 show the perception latency and number
of participants for each frame. In the 3-LiDAR setup, CIP’s
median latency is 38.7ms and p99th latency is 71.6ms. In the
5-LiDAR setup, CIP’s median latency is 56.1ms and p99th
is 88.8ms. CIP’s latency roughly scale with the number of
participants in the intersection. In the trace with the 5-LiDAR
setup, a small number of frames exceed the 100ms target;
these frames have more than 50 participants and more than 30
vehicles. The number of participants in the 5-LiDAR setup is
about 1.5x more than the 3-LiDAR setup. Overall, it shows that
CIP can comfortably support, with modest computing resources,
such an busy intersection with more than 40 participants and
can still maintain the tail latency within 100 ms.

C. CIP Accuracy

Because the LUMPI dataset does not have ground-truth, we
evaluated CIP’s accuracy using real-world data that we collected
using our own testbed.” On this dataset, we manually labeled
ground-truth positions. We also evaluated CIP’s accuracy using
CarLA. We show that CIP’s positioning, heading, speed, and
tracking accuracies are comparable to that reported in other
works.

Metrics. We report positioning error (in m), which chiefly
depends upon the accuracy of alignment. We measure heading
accuracy using the average deviation of the heading vector,
in degrees, from ground truth. For the accuracy of velocity
estimation, we report both absolute and relative errors. Finally,
we use two measures to capture tracking performance [35]:
multi-object tracking accuracy (MOTA) and precision (MOTP).
The former measures false positives and negatives as well as
ID switches (§1I); the latter measures average distance error
from the ground-truth track.

Results. Table III summarizes our findings. Positioning error
is about 8-10 cm in CIP, both in simulation and in the real
world; the state-of-the-art LIDAR SLAM [36] reports about
15 cm error. Our heading estimates are comparable to prior
work that uses a neural network to estimate heading. Speed
estimates are highly accurate, both in an absolute sense (error
of a few cm/s) and in a relative sense (over 97%).

TWe also use this dataset to quantify latency with offloaded planning; §I1V-D.

W Perception

— Participant = Perception — Participant

120 60, 60,

g A &

__ 100 50 2 _ 502

g 80 b £ b

E 405 Z 405

g 60 5 2 5

@ 309 @ 30°

® 40 o ® @

- 20E - 208

~ BN 20 E E

i 0 10° 10%
3-LiDAR/ 0 10 20 30 40 50 60 70 80 90 10 20 30 40

\
; " A 5-LiDAR|
FIGURE 10: LiDARs placement in the LUMPI FIGURE 11: CIP performance with a 3-LiDAR setup FIGURE 12: CIP performance with a 5-LiDAR setup

dataset. in the LUMPI dataset.

Metric [Real | Sim | Prior
Positioning Error (m) 0.10 0.08 0.15 [36], [38]
Heading Error (°) 8.17 6.45 5.10 [39]

Speed Error (m/s) 0.04 0.06 —

Speed Accuracy (%) | 98.80 | 97.49 —
MOTA (%) 100 99.54 84.52 [37]

MOTP (m) 0.12 0.08 —

TABLE III: Perception accuracies from real-world data and simulation
compared to prior works.

Finally, tracking is also highly accurate. In the real-world ex-
periment, tracking was perfect. In simulation, with 10 vehicles
concurrently visible, MOTA is over 99%, and CIP outperforms
the state-of-the-art neural network in 3D tracking [37], for two
reasons. The neural network solves a harder problem, tracking
from a moving LiDAR. Our fused LiDAR views increase
tracking accuracy; when using a single LiDAR to track, MOTA
falls to 93%. Finally, MOTP is largely a function of positioning
error, so it is comparable to that value.

Alignment Accuracy. Although alignment is performed only
once, its accuracy is crucial for CIP; without accurate alignment,
CIP’s perception components could not have matched the state-
of-the-art (Table III).

Comparison alternatives. To contextualize CIP’s alignment
performance, we compared it against two other ways of
obtaining an initial guess for ICP: a standard feature-based
approach, SAC-IA [14]; and using GPS. In this experiment,
we use point clouds from our simulations and real-world
experiments. The three approaches estimate initial guesses
for the pose of three LiDARs, and feed those poses to ICP
for building a stitched point cloud. In our evaluations, we
report the average root mean square error (RMSE) between the
stitched point cloud (after running ICP on the initial guesses)
for every approach against a ground-truth.

Results. CIP’s alignment results in errors of a few cm
(Table 1V), almost 2-3 orders of magnitude lower error than
the competing approaches, which explains why we chose this
approach. SAC-IA [14] does not take any inputs other than
the point clouds and estimates the transformation between
two point clouds using 3D feature matching. However, this
works well only when point clouds have a large amount of
overlap. In our setting, LiDARSs are deployed relatively far from
each other resulting in less overlap, and SAC-IA is unable to

extract matching features from multiple LiDAR point clouds.

Using GPS for alignment provides a good initial guess for the

Minutes

Minutes

in the LUMPI dataset.

RMSE (m)
Average [Std Dev
CIP 0.03 0.02
Simulation | SAC-IA 39.2 13.4
GPS 23.8 11.1
CIP 0.09 0.04
Real-world | SAC-TA 11.8 13.9
GPS 13.0 1.2

TABLE I'V: CIP’s novel alignment algorithm outperforms existing state-of-
the-art initial alignment algorithms.

relative translation between the LiDARs. However, GPS cannot
estimate the relative rotation between LiDARS, so results in
poor accuracy.

D. Latency Breakdown and Scaling

Setup. To explore the total latency with more vehicles and
to understand the breakdown of latency by component, we
designed several scenarios in CarLA with increasing numbers
of vehicles traversing a 4-way intersection. At this intersection,
both streets have two lanes in each direction. We varied the
number of vehicles from 2 to 14, to understand how CIP’s
components scale. To justify this range of the number of
vehicles, we use the following data: the average car length is
15 ft [40] and the width of a lane is 12 ft [41]. Allowing for lane
markers, medians, and sidewalks, let us conservatively assume
that the intersection is 60 ft across. Suppose the intersection has
traffic lights. Then, if traffic is completely stalled or moving
very slowly, at most 4 cars can be inside the intersection per
lane, resulting in a maximum of 16 cars (i.e., the maximum
capacity of the intersection is 16). If cars are stalled, CIP
does not incur much latency since it does not have to estimate
motion, heading, or plan for these, so we limit our simulations
to 14 vehicles.® On the other hand, if traffic is moving at
45 mph (or 66 fps) and cars maintain a 3-second [42] safe
following distance, then at most one car can be within the
intersection per lane, for a total of 4 cars.

Breakdown for CIP. Table V depicts the breakdown of 99-th
percentile (p99) latency by component for CIP as well as the
total p99 latency, as a function of the number of vehicles in
the scene. In all our experiments, CIP processed frames at the
full frame rate (10 fps).

The total p99 latency for CIP increases steadily up to 82 ms

8We have verified that, above 14 vehicles, end-to-end latencies actually
drop.

[Number of Vehicles

Component 2 4 7 10 12 14
BG Subtraction | 7.5 8.9 9.9 9.9 11.0 | 18.7
Stitching 0.08 | 0.11 | 0.13 | 0.13 | 0.17 | 0.19
Clustering 4.3 5.8 11.2 | 13.0 | 222 | 20.5
Bounding Box | 0.06 | 0.07 | 0.09 | 0.15 | 0.17 | 0.16
Tracking 0.1 0.15 | 021 | 0.28 | 0.37 | 0.38
Heading Vector 8.8 129 | 240 | 288 | 419 | 52.6
Total 185 | 264 | 43.7 | 471 | 69.9 | 815

TABLE V: p99 per-frame latency (in milliseconds) for perception. We exclude
latency numbers for motion vector estimation which are on the order of a
few microseconds.

for 14 vehicles’ from 19 ms for 2 vehicles. This highlights
perception’s data dependency (§II); performance of some
components depends on the number of participants. These
numbers suggest that modest off-the-shelf compute hardware
that we have used in our experiments might be sufficient for
traffic management at moderately busy intersections. This data
dependency also suggests that deployments of CIP will need
to carefully provision their infrastructures based on historical
traffic (similar to network planning and provisioning).

The three most expensive components are background sub-
traction, clustering and heading vector estimation. Background
subtraction accounts for about 10 ms, but depends slightly on
the number of vehicles; to be robust, it uses a filter (details
omitted in §1I-A) that is sensitive to the number of points (or
vehicles). Clustering accounts for about 20 ms with 14 vehicles
and is strongly dependent on the number of vehicles since each
vehicle corresponds to a cluster.

Heading estimation accounts for nearly 65% of perception
latency, even after GPU acceleration (§II-C). These results
show that heading vector estimation not only depends on the
number of vehicles, but on their dynamics as well. When we
ran perception on 16 vehicles, p99 latency actually dropped;
in this setting, 16 vehicles congested the intersection, so each
vehicle moved very slowly. Heading vector estimation uses
ICP between successive object point clouds; if a vehicle hasn’t
moved much, ICP converges faster, accounting for the drop.

Other components are lightweight. Stitching is fast because
of the optimization described in §II-A. Bounding box estima-
tion is inherently fast. Track association is cheap because it
tracks a single point per vehicle, the centroid of the bounding
box. Motion estimation takes a few microseconds and relies
on positions computed during stitching. Thus, leveraging
abstractions and reusing values from earlier in the pipeline
help CIP meet latency targets (§1I-C).

Benefits of optimizations. Table VI quantifies the benefits
of our optimizations. Stitching before background subtraction
requires nearly 70 ms in total; reversing the order reduces this
time by 6.7x. By exploiting LiDAR characteristics (§II-A),
CIP can perform background subtraction in 1.5 ms per frame.'’
A CPU-based heading vector estimation requires nearly 1 s
which would have rendered CIP infeasible; GPU acceleration

9For many of our experiments, including this one, we have generated videos
to complement our textual descriptions. These are available at an anonymous
YouTube channel: https://www.youtube.com/@cip-iotdi24.

10Table V does not include this optimization, since it can only be applied
to some LiDARs

Optimization | Before | After | Ratio
BG subt before stitching 67.7 10.0 6.7
Exploiting LiDAR characteristics 9.9 1.5 6.6
Heading vector GPU acceleration | 1057.7 28.8 36.6
TABLE VI: Impact of optimizations on p99 latency

(§8II-C) reduces latency by 35x.

Calibration Steps. Finally, alignment (§II-A) of 4 LiDARs
takes about 4 minutes. This includes not just the time to guess
initial positions, but to run the ICP (on a CPU). Because it is
invoked infrequently, we have not optimized it.

E. Perception Augmentation: Safety

In this and subsequent sections, we quantify the feasibility
and benefits of the use cases in §III. We begin by demonstrating
the increased safety resulting from augmenting an autonomous
vehicle’s perception with CIP outputs (§11I-A). CIP has a com-
prehensive view of an intersection, so it can lead to increased
safety. To demonstrate this, we implemented two scenarios in
CarLA from the US National Highway Transportation Safety
Administration (NHTSA) precrash typology [34]; these are
challenging scenarios for autonomous driving [26].

Red-light violation. A orange truck and the ego-vehicle
(yellow box) approach an intersection (Fig. 6). An oncoming
vehicle (red box) on the other road violates the red traffic light.
The orange truck can see the violator and hence avoid collision,
but the ego-vehicle cannot.

Unprotected left-turn. The ego-vehicle (yellow box) heads
towards the intersection (Fig. 7). A vehicle (red box) on the
opposite side of the intersection makes an unprotected left-turn.
The ego-vehicle’s view is blocked by the orange trucks.
Methodology and Metrics. In each scenario, CIP augments
the ego-vehicle’s on-board perception. When comparing against
(un-augmented) autonomous driving, to ensure a more-than-fair
comparison, we (a) equip autonomous driving with ground-
truth (perfect) perception and (b) use an on-board SIPP planner
in single-mode (plan only for the ego-vehicle) for autonomous
driving. The alternative would have been to use an open-source
stacks like Autoware [2] which has its own perception and
planning modules. However, in these experiments, we are
trying to understand the impact of augmenting a vehicle’s
perception with CIP, so we chose a simpler approach that
equalizes implementations.

For both scenarios, we vary speeds and positions of the
ego-vehicle and oncoming vehicle to generate 16 different
experiments. We then compare for what fraction of experiments
each approach can guarantee safe passage.

Results. In both scenarios (Table VII), autonomous driving
ensures safe passage in fewer than 20-40% of the cases. CIP
ensures safety in all cases because it senses the oncoming
traffic that is occluded from the vehicle’s on-board sensors'’.
This gives the planner enough time to react and plan a collision
avoidance maneuver — in this case, stop the vehicle. Of the
two cases, the unprotected left-turn was the more difficult
one for CIP as it is for autonomous driving, which fails

Please see YouTube channel for videos. https://www.youtube.com/@cip-
iotdi24

https://www.youtube.com/@cip-iotdi24
https://www.youtube.com/@cip-iotdi24
https://www.youtube.com/@cip-iotdi24

NHTSA
Scenario

Safe Passage (%)
CIP | Autonomous Driving

Red-light Violation 100 37
Unprotected Left-turn | 100 18

TABLE VII: With more comprehensive perception, CIP can provide safe
passage to vehicles in both scenarios.

SN

N Intelligent
mm CIP

——~- Ideal-Coop
B Static

©

8

-
-
u

)
w
S

N

Stopping Distance (m)
»
S

[A—
0 20 40 60 80 100
Packet Loss Rate (%)
FIGURE 13: CIP can ensure collision-
free trajectories with up to 70%
packet-loss rates.

=)

Average wait time per vehicle (s)
~
o S

2 3 4 5 6 7 8 9 10
Number of vehicles

FIGURE 14: CIP minimizes average
wait times (seconds) for vehicles with
traffic light free intersections.

more often in this case. Yet, CIP is able to guarantee safe
passage in all 16 cases. In the red-light violation scenario, CIP
senses the oncoming traffic early on and has enough time to
react. However, in the unprotected left-turn, the ego-vehicle
is traveling relatively fast and the oncoming traffic takes the
left-turn at the last moment. Even in this case, CIP gives the
vehicle enough time to react. Though CIP has a smaller time to
react, its motion-adaptive bounding box and stopping distance
estimation ensure that the vehicle stops on time.

Robustness to Packet Loss. In our implementation, the
centralized planner transmits trajectories wirelessly to vehicles.
It generates trajectories over a longer time horizon (§II1-B)
to be robust to packet loss. To quantify its robustness, we
simulated packet losses ranging from O to 100% for in the
red-light violation scenario (Fig. 6). For each loss rate, we
measure the stopping distance between the ego-vehicle and the
oncoming traffic which violates the red-light. Higher stopping
distances are good (Fig. 13). As we increased the packet-
loss, the stopping distance decreased because the ego-vehicle
was operating on increasingly stale information. Even so, CIP
ensures collision-free passage for the ego-vehicle through the
intersection till 70% loss, with minimal degradation in stopping
distance till about 40% loss.

F. Offloaded Planner: Latency

In this section, we measure the performance of a real-
world deployment with CIP running an offloaded planner on
the same device as the CIP stack. To do this, we deployed
four LiDARs at the corners of a busy four-way intersection
(Fig. 2(a)) with heavy pedestrian and vehicular traffic in a
large metropolitan area. These LiDARs connected to the edge
compute device using Ethernet cables. The edge compute
connected to Raspberry Pis on the vehicles through Wi-Fi
(to proxy 5G). We collected data for nearly 30 minutes; we
measured and report the end-to-end latency for every frame.
Metrics. We measure the end-to-end latency of CIP and the
centralized planner. This is the time from when CIP receives
3D point clouds to when a vehicle receives its trajectory from
the centralized planner over the wireless network.

Results. Fig. 15 shows the end-to-end latency for each frame,

mE Network WM Perception EEE Planning — Participants

Latency (ms)

w
2
c
&
2
g
£
©
o
L
°
.
9
£}
£
=]
H

% 5 10 15 20 25 3
Minutes

FIGURE 15: Per-component end-to-end latency (left y-axis) along with the
number of traffic participants (right y-axis) from a deployment of CIP at a
busy intersection in the real-world for over 30 minutes.

for over 30 minutes (approximately 18,000 frames), broken
down by component. The average end-to-end latency is 57 ms
and p99 latency is 91 ms. This shows that CIP can operates
under the 100 ms latency budget for autonomous driving used
by Mobileye [43]. Moreover, CIP processed LiDAR input at
full frame rate. Lastly, unlike autonomous driving pipelines
today which plan for only a single vehicle, CIP with offloaded
perception can plan for 10 s of vehicles simultaneously within
the 100 ms latency budget.

On average, CIP detects 18 traffic participants per frame
at the intersection during our experiment. As our experiment
progressed, the traffic at the intersection steadily increased, as
shown by the dotted line in Fig. 15 (representing the running
average of traffic participants for 600 frames or 60 seconds).
Because CIP’s latency depends on the number of traffic
participants, this contributed to the slow increase in end-to-end
latency towards the end of the experiment.

From this graph, we also observe that network latency is

small i.e., the average is 9 ms, whereas p99 is 17 ms. The same
is true for planning latency for which the average is 11 ms
and p99 is 26 ms. Planning latency scales with the number of
vehicles. As the number of vehicles increase through the course
of the experiment, planning latency also increases. However,
in overall, perception latency (37 ms in average and p99 of
60 ms) dominates, which motivates the careful algorithmic and
implementation choices in §II.
Scaling Offloaded Planning. To better understand how
offloaded planning scales with the number of participants,
Table VIII depicts the p99 planning latency from simulations.
As expected, there is a dependency on the number of vehicles,
since CIP individually plans for each vehicle. Planning latencies
can be slightly non-monotonic — the planning cost for 12
vehicles is more than that for 14 — because the planner’s graph
search can depend upon the actual trajectories of the vehicles,
not just their numbers.

G. Offloaded Planner: High-Throughput Traffic Management

In this section, we demonstrate CIP’s use of offloaded
planning to improving traffic throughput. Intersections con-
tribute significantly to traffic congestion [44]; traffic-light
free intersections can reduce congestion and wait times. An
offloaded planner, enabled by CIP, because it centrally plans
trajectories for all CIP-capable vehicles, can plan collision-free

Number of Vehicles [2 [4 [7 [10 [12 | 14
p99 Latency (ms) [24 [51 [11.9 [17.1 [28.7 [242
TABLE VIII: p99 per-frame planning latency in milliseconds.

trajectories at an intersection without traffic lights. We have

verified this in simulations as well.

Wait-time Comparison. A traffic-light free intersection can

significantly reduce wait times at intersections, thereby en-

abling higher throughput. To demonstrate this, we compared

CIP’s average wait times (using a centralized planner) at an

intersection against three other approaches:

o Static. An intersection with static traffic lights.

o Intelligent. Intelligent traffic light control [45] which priori-
tizes longer queues.

e Ideal-Coop. A traffic-light free intersection where au-
tonomous vehicles use centralized perception but on-board
planning (§I1I-A). This represents an idealized version of
cooperative perception [3] because it assumes that every
vehicle can see all other traffic participants.

For the first two approaches, we obtained policies from

published best practices [46]. In all experiments, we placed
four LiDARSs at an intersection in CarLA.
Results. Compared to Static and Intelligent, CIP reduces
average wait times for vehicles by up to 5x (Fig. 14). It
performs better than even Intelligent because it can minimize
the stop and start maneuvers at the intersection (by preemptively
slowing down some vehicles), and hence can increase overall
throughput, leading to lower wait times.''

Interestingly, beyond about 6 vehicles, wait times for
strategies that use traffic lights (Static and Intelligent) drop.
Recall that our intersection has two lanes in each direction.
As the number of vehicles increases, the probability that a
vehicle can pass the intersection without waiting increases. For
example, with Intelligent, a vehicle waiting at an intersection
can trigger a green light, so a vehicle arriving in the adjoining
lane can freely pass. Even so, CIP has lower wait times than
other alternatives up to 10 vehicles (wait time comparisons are
similar beyond this number, results omitted for brevity).

Fig. 14 shows infinite wait times for Ideal-Coop. That is
because, although one might expect that a decentralized planner
might have comparable throughput to CIP, we found that it led
to a deadlock (§111-B) with as few as two vehicles (each vehicle
waited indefinitely for the other to make progress, resulting
in zero throughput).'!" Fundamentally, this occurs because,
with Ideal-Coop, vehicles lack global knowledge of planning
decisions. Thus, deadlocks can happen at intersections without
traffic lights even for more practical cooperative perception
approaches which use on-board planners [3].

V. RELATED WORK

Connected Autonomous Vehicles. Network connectivity in
vehicles has opened up large avenues for research. A large
body of work [47] has explored wireless technologies and
standards (such as DSRC) for vehicle-to-vehicle and vehicle-to-
infrastructure communication. Connected autonomous vehicles
have also inspired proposals for cooperative perception [4],
[48]-[51], collaborative map updates [52], and cooperative

driving [53] in which autonomous vehicles share information
with each other to improve safety and utilization. Some
have proposed approaches to offload route planning (but not
trajectory planning) to the cloud [54]. Others explore platoon-
ing [55] in which vehicles collaboratively and dynamically form
platoons to enable smooth traffic flows. Beyond inter-vehicle
collaboration, several proposals have explored infrastructure
support for connected autonomous vehicles, with infrastructure
augmenting perception [56], [57], or delivering traffic light
status [55]. Other work focuses on infrastructure-assisted traffic
management at intersections [44]. CIP goes beyond this body
of work by demonstrating the feasibility of decoupling both
perception and planning from vehicular control.
Infrastructure LiDAR-based Perception. Prior work has
explored using infrastructure LiDAR to detect pedestrians [58]
and road features such as lanes and drivable surfaces [59],
[60], and to warn vehicles of impending collisions [61]. One
work [62] proposes a genetic algorithm based LiDAR alignment,
but unlike CIP, it has not explored the efficacy of an entire
perception pipeline built on top of LiDAR fusion.

Point Cloud Alignment. CIP’s alignment builds upon point
cloud registration techniques [63]. Prior work has matched
features [64]; these don’t work well for CIP, where LiDARSs
capture the scene from very different perspectives.

Deep Neural Nets for 3D Detection and Tracking. For
vehicle-mounted LiDARs, prior work has developed expensive
neural nets for point cloud based detection [65], [66] and
tracking [67], [68]. These are for vehicle-mounted LiDAR and
are computationally expensive; CIP exploits static LiDARs and
can use more efficient algorithms, §1V-C.

Motion Estimation. Heading and speed can be estimated using
DNNs [68], SLAM [69], or visual odometry [70]. CIP uses a
lightweight technique since it relies on static LiDARs.

VI. CONCLUSIONS

Fast cooperative infrastructure perception using multiple
infrastructure sensors can enable novel automotive and outdoor
mixed reality applications. CIP contains a suite of algorithms
that generates cooperative perception outputs with a p99 latency
of 100 ms, while still being as accurate as the state-of-the-
art. It achieves this using careful alignment, reuse of visual
abstractions, and systems optimizations including accelerator
offload. When used to augment vehicle perception, it can
improve safety. When used in conjunction with offloaded
perception, it can increase traffic throughput at intersections.
Conclusions. This work is supported in part by the US National
Science Foundation under grant number CNS 1956445.

REFERENCES

[1] Baidu, “Apollo: Open source autonomous driving,” 2017.

[2] K. Miura, S. Tokunaga, N. Ota et al., “Autoware toolbox: Matlab/simulink
benchmark suite for ros-based self-driving software platform,” in RSP,
2019.

[3] H. Qiu, P. Huang, N. Asavisanu et al., “Autocast: Scalable infrastructure-
less cooperative perception for distributed collaborative driving,” in
MobiSys, 2022.

[4] S. Shi, J. Cui, Z. Jiang et al., “Vips: Real-time perception fusion for
infrastructure-assisted autonomous driving,” in MobiCom, 2022.

[5]

[6

—

[7

—

[8

[t}

[9
[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
(31]

[32]

[33]

[34]

[35]
[36]

[37]

“How Chattanooga is Achieving Vision Zero with Ouster Li-
dar,” https://ouster.com/blog/how-chattanooga-is-achieving- vision-zero-
with-ouster-lidar/.

“Inside seoul robotics’s contrarian approach to autonomous vehicle tech,”
https://techcrunch.com/2022/09/22/seoul-robotics-aims-to-automate-
vehicles-movement- via-its- 3d-sensor- platform-closes-25m- funding/.

D. Trends, “A Self-Driving Car in Every Driveway? Solid-State Lidar
is the Key,” https://www.digitaltrends.com/cars/solid-state-lidar-for-self-
driving-cars/, 2018.

“Google distributed cloud edge,” https://cloud.google.com/distributed-
cloud-edge, 2022.

“Qualcomm 5G,” https://www.qualcomm.com/invention/5g, 2020.

S. Lin, Y. Zhang, C. Hsu et al., “The architectural implications of
autonomous driving: Constraints and acceleration,” in ASPLOS, 2018.
A. Geiger, P. Lenz, C. Stiller et al., “Vision meets robotics: The kitti
dataset,” IJRR, 2013.

“Google Maps,” www.google.com/maps.

Y. Chen and G. G. Medioni, “Object modeling by registration of multiple
range images,” in ICRA, 1991.

R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3d registration,” in /CRA, 2009.

F. Duchon, M. Dekan, L. Jurisica, and A. Vitko, “Some applications of
laser rangefinder in mobile robotics,” Journal of Control Engineering
and applied informatics, vol. 14, no. 2, pp. 50-57, 2012.

K. G. Derpanis, “Overview of the ransac algorithm,” Image Rochester
NY, 2010.

V. Vaquero, 1. del Pino, F. Moreno-Noguer et al., “Deconvolutional
networks for point-cloud vehicle detection and tracking in driving
scenarios,” in ECMR, 2017.

V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in CVPR Workshops, 2008.

S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Comput. Archit. Lett., 1991.

M. Gao, X. Wang, K. Wu ef al., “Gpu optimization of material point
methods,” TOG, 2018.

A. G. Kashani, M. J. Olsen, C. E. Parrish et al., “A review of lidar
radiometric processing: From ad hoc intensity correction to rigorous
radiometric calibration,” Sensors, 2015.

Ouster, “Ouster LiDAR,” https://ouster.com/, 2020.

M. Ester, H.-P. Kriegel, J. Sander et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in KDD, 1996.
“Find minimum oriented bounding box of point cloud,”
http://codextechnicanum.blogspot.com/2015/04/find-minimum-oriented-
bounding-box-of.html, 2015.

W. G. Najm, R. Ranganathan, G. Srinivasan et al., “Description of
light-vehicle pre-crash scenarios for safety applications based on vehicle-
to-vehicle communications,” US. NHTSA, Tech. Rep., 2013.

CarLA, “Carla autonomous driving challenge,” https://carlachallenge.org/.
K. Nawaz Khan, A. Khalid, T. Yash, K. Dantu, and F. Ahmad, “VRF:
Vehicle Road-side Point Cloud Fusion,” in MobiSys, 2024.

B. Paden, M. Cap, S. Z. Yong et al., “A survey of motion planning and
control techniques for self-driving urban vehicles,” IEEE T-1V, 2016.
R. Tachet, P. Santi, S. Sobolevsky et al., “Revisiting street intersections
using slot-based systems,” PLOS ONE, 2016.

M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for
dynamic environments,” in /CRA, 2011.

M. Quigley, K. Conley, B. Gerkey et al., “Ros: an open-source robot
operating system,” in /CRA workshop on OSS, 2009.

Whoenig, “Library with Search Algorithms for Task and Path Plan-
ning for Multi Robot/Agent Systems,” https://github.com/whoenig/
libMultiRobotPlanning.

S. Busch, C. Koetsier, J. Axmann et al., “Lumpi: The leibniz university
multi-perspective intersection dataset,” in /V. IEEE, 2022.

W. G. Najm, R. Ranganathan, G. Srinivasan et al., “Description of
light-vehicle pre-crash scenarios for safety applications based on vehicle-
to-vehicle communications,” US. NHTSA, Tech. Rep., 2013.

K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP, 2008.

J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift,
robust, and fast,” in ICRA, 2015.

H.-N. Hu, Q.-Z. Cai, D. Wang et al., “Joint monocular 3d vehicle
detection and tracking,” in /CCV, 2019.

(38]

[39]

[40]
[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]
[52]

[53]

[54]

[55]
[56]

(571

(58]

[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]

[69]

I. Cvisi¢, I. Markovi¢, and I. Petrovi¢, “Soft2: Stereo visual odometry
for road vehicles based on a point-to-epipolar-line metric,” IEEE Tran.
on Robotics, 2022.

S. Casas, W. Luo, and R. Urtasun, “IntentNet: Learning to Predict
Intention from Raw Sensor Data,” in CoRL. PMLR, 2018.

“Average car length,” https://anewwayforward.org/average-car-length/.
“Average lane width,” https://safety.thwa.dot.gov/geometric/pubs/
mitigationstrategies/chapter3/3_lanewidth.cfm.

“3-second rule for safe following distance,” https://www.travelers.com/
resources/auto/travel/3-second- rule- for-safe-following-distance.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent,
reinforcement learning for autonomous driving,” arXiv, 2016.

M. Khayatian, M. Mehrabian, E. Andert et al., “A survey on intersection
management of connected autonomous vehicles,” ACM Trans. Cyber-
Phys. Syst., 2020.

F. Ahmad, S. A. Mahmud, and F. Z. Yousaf, “Shortest processing time
scheduling to reduce traffic congestion in dense urban areas,” IEEE Trans.
Syst. Man Cybern. Syst., 2016.

“Signal cycle lengths,” https://nacto.org/publication/urban-street-design-
guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/.
J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected
vehicle landscape—architectures, enabling technologies, applications, and
development areas,” IEEE T-ITS, 2018.

H. Qiu, F. Ahmad, F. Bai et al., “Avr: Augmented vehicular reality,” in
MobiSys, 2018.

X. Zhang, A. Zhang, J. Sun et al., “Emp: edge-assisted multi-vehicle
perception,” in MobiCom, 2021.

Y. He, L. Ma, Z. Jiang et al., “Vi-eye: Semantic-based 3d point cloud
registration for infrastructure-assisted autonomous driving,” in MobiCom.
ACM, 2021.

Y. He, C. Bian, J. Xia et al., “Vi-map: Infrastructure-assisted real-time
hd mapping for autonomous driving,” in MobiCom, 2023.

F. Ahmad, H. Qiu, R. Eells ef al., “Carmap: Fast 3d feature map updates
for automobiles,” in NSDI, 2020.

R. Dariani and J. Schindler, “Cooperative strategical decision and
trajectory planning for automated vehicle in urban areas,” in ICVES,
2019.

J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated
vehicles: State of the art and future challenges,” Annual Reviews in
Control, 2018.

J. Schindler, R. Dariani, M. Rondinone et al., “Dynamic and flexible
platooning in urban areas,” in AAET, 2018.

D. Ravipati, K. Chour, A. Nayak et al., “Vision based localization for
infrastructure enabled autonomy,” in I7SC, 2019.

S. Gopalswamy and S. Rathinam, “Infrastructure enabled autonomy: A
distributed intelligence architecture for autonomous vehicles,” in /EEE
1V, 2018.

J. Zhao, H. Xu, H. Liu et al., “Detection and tracking of pedestrians and
vehicles using roadside LiDAR sensors,” Transp. Res. Part C Emerg.,
2019.

J. Wu, H. Xu, and J. Zheng, “Automatic background filtering and lane
identification with roadside LiDAR data,” in ITSC, 2017.

A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road
and lane detection: a survey,” Mach. Vis. Appl., 2014.

O. Aycard, “Intersection Safety Using Lidar and Stereo Vision Sensors
on a Demonstrator Vehicle,” Transportation, 2011.

R. Yue, H. Xu, J. Wu er al., “Data registration with ground points for
roadside LiDAR sensors,” Remote Sensing, 2019.

Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in ICRA, 1991.

R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in JROS, 2008.

Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018.

Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “Std: Sparse-to-dense 3d
object detector for point cloud,” in ICCV, 2019.

H. Qi, C. Feng, Z. Cao, F. Zhao, and Y. Xiao, “P2b: Point-to-box network
for 3d object tracking in point clouds,” in CVPR, 2020.

W. Luo, B. Yang, and R. Urtasun, “Fast and Furious: Real Time End-
to-End 3D Detection, Tracking and Motion Forecasting With a Single
Convolutional Net,” in CVPR, 2018.

R. Mur-Artal and J. D. Tardés, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robotics, 2017.

https://ouster.com/blog/how-chattanooga-is-achieving-vision-zero-with-ouster-lidar/
https://ouster.com/blog/how-chattanooga-is-achieving-vision-zero-with-ouster-lidar/
https://techcrunch.com/2022/09/22/seoul-robotics-aims-to-automate-vehicles-movement-via-its-3d-sensor-platform-closes-25m-funding/
https://techcrunch.com/2022/09/22/seoul-robotics-aims-to-automate-vehicles-movement-via-its-3d-sensor-platform-closes-25m-funding/
https://www.digitaltrends.com/cars/solid-state-lidar-for-self-driving-cars/
https://www.digitaltrends.com/cars/solid-state-lidar-for-self-driving-cars/
https://cloud.google.com/distributed-cloud-edge
https://cloud.google.com/distributed-cloud-edge
https://www.qualcomm.com/invention/5g
www.google.com/maps
https://ouster.com/
http://codextechnicanum.blogspot.com/2015/04/find-minimum-oriented-bounding-box-of.html
http://codextechnicanum.blogspot.com/2015/04/find-minimum-oriented-bounding-box-of.html
https://carlachallenge.org/
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning
https://anewwayforward.org/average-car-length/
https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
https://www.travelers.com/resources/auto/travel/3-second-rule-for-safe-following-distance
https://www.travelers.com/resources/auto/travel/3-second-rule-for-safe-following-distance
https://nacto.org/publication/urban-street-design-guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/
https://nacto.org/publication/urban-street-design-guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/

[70] A. Rosinol, M. Abate, Y. Chang et al., “Kimera: an open-source library
for real-time metric-semantic localization and mapping,” in ICRA, 2020.

	Introduction
	CIP Design
	Accurate Alignment for Fast Fusion
	Reusing 3D Bounding Boxes
	Fast, Accurate Heading Vectors
	Optimizations

	Use Cases
	Augmenting a Vehicle's Perception
	Offloading Planning to the Edge

	Evaluation
	Methodology
	CIP Performance
	CIP Accuracy
	Latency Breakdown and Scaling
	Perception Augmentation: Safety
	Offloaded Planner: Latency
	Offloaded Planner: High-Throughput Traffic Management

	Related Work
	Conclusions
	References

