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1 | INTRODUCTION

A k-uniform hypergraph (henceforth, k-graph) G = (V, E) consists of a vertex set V and an edge set
EC ( Z) In particular, we write K for the complete k-graph with V = [n] and E = < [Z] ) Ramsey’s
theorem states that for any k-graphs H; and H, there is a positive integer N such that any k-graph G
of order N either contains H; (as a subgraph) or its complement G contains H,. The Ramsey number
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r(H,, H,) is the smallest such N and the main objective of hypergraph Ramsey theory is to determine
the size of these Ramsey numbers. In particular, for fixed k > 3, the two central problems in the area
are to determine the growth rate of the “diagonal” Ramsey number r(K,gk), K,(,k)) as n — oo and the
“off-diagonal” Ramsey number rKW, Ky where m > k is fixed and n — oo.

Seminal work of Erd6s—Rado [11] and Erdés—Hajnal (see, e.g., [6]) reduces the estimation of diag-
onal Ramsey numbers for k > 3 to the k = 3 case. For off-diagonal Ramsey numbers, the only case
for which the tower height of the growth rate is not known is r(K,E]jr)l s Kflk)), though it was noted in [16]
that this tower height could be determined by proving that the 4-uniform Ramsey number r(K§4), K,(f))
is double exponential in a power of n. Moreover, it was shown in [15] that if r(K,(f’), Kff) ) grows double
exponentially in a power of n, then the same is also true for (K. 9. Ky, Hence, the growth rate for all
diagonal and off-diagonal hypergraph Ramsey numbers with £ > 4 would follow from knowing the
growth rate of the diagonal Ramsey number when k = 3. Because of this pivotal role, we will restrict
our attention in the discussion below to the case k = 3.

Despite considerable progress in this area in recent years, our state of knowledge about the two
central problems mentioned above remains rather dismal. The best-known bounds in the diagonal case
(see, e.g., the survey [8]) are of the form

27" < kD, k) <22, (1.1)

for some positive constants ¢ and ¢, differing by an entire exponential order. For the off-diagonal case,
when s > 4 is fixed, the best-known bounds [5] are of the form

2emloen < (KD, KDy < 2 o, (1.2)

for some positive constants ¢ and ¢/, differing by a power of n in the exponent.
As a possible approach to improving the lower bounds in (1.1) and (1.2), Fox and He [13] gave new
lower-bound constructions for the Ramsey numbers r(K,(,3), S,(3)), where S§3) is the “star 3-graph” on

t+ 1 vertices whose edges are all ( ;) triples containing a given vertex. For n — oo, they showed that

r(K,(13), Sf)) > 27" for some positive constant ¢, giving a new proof of the lower bound in (1.1), while,
for t > 3 fixed, they showed that r(K,(,3), S§3)) = 2Ologm) giving another proof of the lower bound in
(1.2). In particular, when ¢ = 3, this implies that r(K,(,3), Kf) —¢) = 29¢1°¢" One surprising feature of
these results is that they give the same bounds that were previously known for clique Ramsey numbers,
but with one of the cliques replaced by the sparser corresponding star.

Fox and He essentially settled the growth rate of r(K,(f), S§3) ) in two cases: when the star is fixed in
size and the clique grows; and when the star and clique grow together. The present paper studies the
remaining regime: when the clique is fixed in size and the star grows. First, a standard application of
the Lovasz Local Lemma yields the following proposition.

Proposition 1.1. There are positive constants ¢ and ¢’ such that

2 2
n n
<r(KY —e, 8y <! 21—

log’n ~ logn’

c

Our main result is that if we replace Kf) —eby Kf), then the Ramsey number has an exotic growth
rate intermediate between polynomial and exponential. On the other hand, once we move up to K§3)
the growth rate stabilizes to exponential.
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Theorem 1.2. There are positive constants ¢ and ¢’ such that
chogzn < I”(Kf), S513)) < 20’n2/3 logn.

Moreover, for each s > 5, there are positive constants cg and c} such that 25" <
rkyY, 85y < 29,

The intermediate growth rate of r(Kf), Sﬁf)) is in striking contrast with the
“polynomial-to-exponential transition” conjecture of Erdés and Hajnal [10], whose exact statement
is technical but roughly states that all off-diagonal hypergraph Ramsey numbers against cliques are
either at most polynomial or at least exponential. This conjecture was proved to be true infinitely often
when k = 3 by Conlon, Fox and Sudakov [5] and was then settled in the affirmative for all k > 4 by
Mubayi and Razborov [14]. As a corollary of Theorem 1.2, we see that no such transition can occur
for hypergraph Ramsey numbers against stars.

Since our results for r(Kf) —e, sz3)) and r(KS(S), S,(f)) when s > 5 are straightforward applications of
known methods, we will focus our attention in the remainder of the introduction on how we estimate
rKY,SY). The key idea is to reduce to a novel Ramsey problem involving grids, somewhat reminis-
cent of the grid case of the famous cube lemma (see, e.g., [7]) developed by Shelah [17] in his proof
of primitive-recursive bounds for Hales—Jewett and van der Waerden numbers. To say more, we need
some further definitions.

Let the m X n grid graph G,,x, be the Cartesian product K,,[ 1K), that is, the graph whose vertex
set is the rectangular grid [m] X [n] and whose edges are all pairs of distinct vertices sharing exactly
one coordinate. If m > a > 1 and n > b > 1, then an a X b subgrid in G,x, is an induced copy
of G,xp. In particular, we call a 2 X 2 subgrid, that is, a set of four vertices (x, y), (x,"), (X', y"), (*', y)
with the four axis-parallel edges between them, a rectangle. We will be interested in the Ramsey num-
ber gr(Gaxz, K,,), which is the smallest N such that in any 2-edge coloring of Gyxy there is either a
monochromatic red rectangle or a monochromatic blue K,,. For such Ramsey numbers, we show the
following.

Theorem 1.3. There are positive constants ¢ and ¢’ such that

2 , 2
2C10g n < gr(GZXZ,Kn) < ZL’n2/3 logn.

In passing, we remark that the best-known lower bound for the grid case of Shelah’s cube lemma,
due to Conlon, Fox, Lee and Sudakov [7], is of the form 2¢(°¢ P/ Vloglogr g1 some positive constant
¢, curiously similar to the lower bound in Theorem 1.3, though there r refers to the number of colors.
However, despite the similarities, we were not able to find any nontrivial connection between the two
problems.

The connection between r(K(3) s Sff )) and gr(Goxo, K;,) is that the latter is equivalent to a natural
bipartite variant of the former. Let B®)(a, b) denote the complete bipartite 3-graph on [a + b] whose
edges are all triples intersecting both [a] and [a + 1,a + b]. Observe that the 3-graph B®(a, b) and
the grid graph G,x;, have the same number a (2) +b (;) of edges and we can give an explicit cor-
respondence between their edge sets by sending horizontal edges (x,y) ~ (x,y) in the grid to triples
{x,X',a+y} € E(B®(a, b)) and vertical edges (x,y) ~ (x,y’) totriples {x, a+y,a+y'} € E(B®(a, b)).It
is easy to check that rectangles in the square grid Gyxy correspond to copies of Kfﬁ) in the correspond-
ing bipartite 3-graph B®(N, N), while n-cliques in Gyxy correspond to copies of S5 in BO(N, N).
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Thus, gr(Gaxo, K,,) is exactly equal to the smallest N such that any 2-edge-coloring of B®(N, N)
contains either a red Kf) or a blue S5

As BO(N,N) C K5, it follows immediately that (K, S5) < 2gr(Gaxa, Ky, so the upper bound
in Theorem 1.3 implies that in Theorem 1.2. We do not know of a direct implication between the lower
bounds, but we will be able to glue together copies of our lower-bound construction for gr(Gaxz, K,,)
to manufacture one for r(Kf), Sy of comparable size. This suggests, and we strongly believe, that
r(Kf), Sf)) and gr(Gax2, K,) are of roughly the same order.

The final result that we mention here is a generalization of Theorem 1.3 to larger grids.

Theorem 1.4. There is a positive constant ¢ and, for all fixed a > b > 2, a positive

constant ¢’ = ¢/, such that

o 1-@b—n~1

2(-10g2n < gr(Gaxann) < oc'n logn.

The lower bound is an obvious corollary of the lower bound in Theorem 1.3, while the upper bound
involves some extra effort, in particular drawing on recent work of the authors on set-coloring Ramsey
numbers [9]. One interesting corollary of this result is that there are positive constants ¢ and ¢’ such
that

2clog2n < I"(K;S) —e, 5513)) < 2c’nz/3 logn_

The lower bound here simply follows from the fact that r(K?) —e, Sﬁf) ) > r(Kf), S§,3) ). For the upper
bound, note that, just as gr(Gax2, K;,) is equivalent to a bipartite variant of r(K(3), S,(,3)), we also have
that gr(Gsx», K;,) is equivalent to a bipartite variant of r(KS) - e, Sﬁf)), so that r(Kg) — e, Sff)) <
2g1(G3x2, K,;), yielding the required upper bound. Together with the fact that r(K§3), Sﬁf)) = 29" this
gives a more complete picture of the transition window.

Throughout the paper, for the sake of clarity of presentation, we systematically omit floor and
ceiling signs whenever they are not essential. Moreover, unless otherwise specified, all logarithms are
base 2.

2 | BASIC BOUNDS

In this short section, we prove Proposition 1.1 and the second part of Theorem 1.2. We will use the
Lovész Local Lemma in the following standard form (see, e.g., lemma 5.1.1 in [2]).

Lemma 2.1 (Lovész Local Lemma). Let A1, A,, ... ,A, be events in an arbitrary prob-
ability space. A directed graph D = (V,E) on the set of vertices V = [n] is called a
dependency digraph for the events Ay, ... ,A, if for each i, 1 < i < n, the event A; is
mutually independent of all the events {A; . (i,j) &€ E}. Suppose that D = (V,E) is a
dependency digraph for the above events and suppose there are real numbers xy, ... , X
such that 0 < x; < 1 and Pr[A;]] < x; H(meE(l —x) forall 1 < i < n. Then

Pr [/\?=1A7,~] > H?zl(l — x;). In particular, with positive probability no event A; holds.

The proof of Proposition 1.1 is now a direct application of Lemma 2.1 to a suitable random 3-graph.

Proof of Proposition 1.1. The upper bound follows from the fact that r(Kf) —e, Sﬁf)) <
(K3, K,) + 1, by2 specializing to the link of a single vertex, and then applying the bound

(K3, K,) = O(I:gn) due to Ajtai, Komlés and Szemerédi [1].
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For the lower bound, we will use Lemma 2.1, assuming throughout that 7 is sufficiently
large. Consider a random hypergraph I' = G®(N,p) on N = 1073n*(logn)=? vertices
(which we identify with [N] for convenience) with p = 4(log n)/n. We would like to show
that, with positive probability, I" contains no Kf) — e and its complement I contains no

Sﬁf). Let S be the collection of all N (N; ) copies of Kf) —eon[N]and, fors € S, let A,

be the event that s C I'. Let T be the collection of all N (N;l ) copies of 55,3) on [N] and,
for t € T, let B; be the event that  C T". The probabilities of these events are Pr[A,] = p?

and Pr(B,] = (1 — p)3).

Let D be the digraph whose vertex set is S U T and whose edges are pairs (i,j) €
(S U T)? which intersect in at least one edge. Thus, D is a dependency digraph for the events
{As}ses U{B:}er- Each vertex in S is adjacent to at most 9N other vertices in S and at most
|T| vertices in T, while each vertex in T is adjacent to at most (;) 3N < 2n®N vertices

in S and at most |T| vertices in T. Let x = 3p> be the local lemma weight for all the A,
events and y = 1/|T| be the local lemma weight for all the B, events. With this choice of

parameters and using that n is sufficiently large and |T| = N (N_l > < N(eN/n)", we have

n

x(1 =M1 =) > p3,

YA =02 N1 - T > (1 —p)(g),

so the conditions of Lemma 2.1 are satisfied. Thus, with positive probability none of the
events A or B; hold and we obtain r(Kf) —e, S,(,3)) > N, as desired. [ ]

The close connection between r(Kf) —e, S§,3)) and r(K3, K,,) suggests that r(Kf) —e, S,(13)) = @(%).

It seems likely that a proof of this may be possible through a careful analysis of the (Kf) — e)-free
process (see, e.g., [4] for results of this type in a similar context). However, we have chosen not to
pursue this here.

We now prove the bounds on r(KSG) s Sﬁf)) for s > 5 stated in Theorem 1.2.

Proof of Theorem 1.2 for s > 5. The upper bound follows from theorem 1.4 of [13], which
says that

r(K,S0) < (29),

for all s,n > 3. The lower bound construction is as follows. Let Ky be a complete graph
on N vertices, labelled vy, ... ,vy, and let ¢ be a 3-coloring of the edges of Ky which
independently colors each edge by a uniform random element of Z/37Z. If K,(V3) is a com-
plete 3-graph on the same vertex set, define a 2-coloring y of the edges of Kz(v3) where
x (i, v, vi) is red if (v, vj) + @p(vi, vi) + d(v;, vi) = 1 (mod 3) and blue otherwise.
Suppose, for the sake of contradiction, that a red K§3) appears in the coloring y at
vertices uy, ... ,us. If we sumup ¢(u;, u;)+d(u;, up) +P(u;, uy) across all <§ ) = 10triples
of these vertices, the sum is 1 (mod 3), since each triple sums to 1 (mod 3). On the other
hand, each summand ¢(u;, ;) appears three times in this sum, so the total sum of all these
triples must be 0 (mod 3). This is a contradiction, so no such coloring can have a red K§3).
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Next, we show that for N = (3/2)"/? and n > 5, the probability of a blue s appearing
in y isless than 1. Indeed, consider any given copy of s in Kf\?), with central vertex u and
clique wy, ... ,w, in the link of u. In order for every edge in this copy of S to be blue,

every color ¢p(w;, w;) must satisfy ¢p(w;, w;) + ¢(u, w;) + ¢(u, w;) # 1 (mod 3). Each such

WILEY— L5
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event is independent with probability 2/3, so we obtain that the probability this particular
copy of s is blue in x is exactly (2/ 3)(; ) As there are N (N ;1 ) copies of s in Kl((?),

we see that the expected number of blue s is
N (N -1 ) - 2/3)\5) < NNy @3y D2 = 3ejany < 1.
n

Hence, there is such a coloring with no blue S§,3). ]

3 | THELOWER BOUND

The key ingredient for our lower bound on r(K(S), 55,3)) is the following lemma, which states that it is
possible to construct a random subgraph of the grid where each row and column looks like a sparse
Erd6s—Rényi random graph, but they are coupled in such a way that there are no rectangles and their
edge unions are sparse.

Lemma 3.1. (Erd6s—Rényi [12]) There exists a positive constant ¢ such that, for all n suf-
ficiently large and N = 2608 there is a random subgraph H C Gyxy with the following
properties:

(1) Foreveryrowry, H[r,] ~ G(N, n=3/ 4), that is, the marginal distribution of the induced
subgraph H[r,] is G(N, n=3/4, Similarly, for every column c,, H[c,] ~ G(N, n=3/4).

(2) There are no rectangles, that is, no x,x',y,y' with (x,y) ~ (x,y'") ~ (X',y') ~ (', y) ~
(x,y), inH.

(3) The edge union of all the row graphs H[r,] lies in a G(N, n='/8). Similarly, the edge
union of all the column graphs H|c,] lies in a G(N, n=1/8).

Note that properties (1) and (2) of the random graph H are already enough to prove the lower
bound in Theorem 1.3, since if we let H determine the set of red edges in Gyxy and its comple-
ment the blue edges, then (2) shows that there are no red rectangles and (1) implies that w.h.p. there
are no blue K,. We will use the additional property (3) to prove the lower bound on rKS, s9)
in Theorem 1.2.

Proof of Lemma 3.1. We give a construction for H which starts by choosing the column
graphs in such a way that every pair of columns is edge-disjoint on some large vertex
subset. This then allows us to place many edges between these columns without creating
a rectangle.

Setting up. Let N = 2¢clog’n We start by picking a family of subsets {U;},<r of
[N] with T = n'/?(logn)'® such that each element y lies in d(y) sets, where d(y) €
[%(log m'o, %(log n)'°], and every pair of elements lies in at most ilogn subsets. Such
a family exists by the probabilistic method. To see this, pick the sets U; independently
such that each j € [N] lies in U; independently with probability n~!/2. The expected
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value of d(y) is (log n)'?. The multiplicative Chernoff bound for a binomial random vari-
able X implies that Pr(|X — EX| > %]EX) < Zexp(—éEX). Together with a union
bound over the N elements y, this yields that the probability there exists y with d(y) &
[%(log o, %(log n)']is less than N - 2 exp(— 1—12 (logn)'%) < % for n large. The probability
that distinct elements y, y’ are both in a given U; is n™!, so the probability they are both in
at least i log n of the U; is at most

1 1 1, 2
~logn —1y~ logn ——log'n
Ta%8" . (n1)a 8" <2718,

for n large enough. Hence, for ¢ sufficiently small, the probability that there exists a pair
of vertices v, y' that lies in at least i log n sets is at most <IZ ) 2 eloE’n o % Therefore, the
required family {U;};<r exists.

Next we show that there is a collection of bipartitions P; U Q; = [N], one for each
1 <i < T, of the set of columns satisfying the following two properties:

(a) Every pair of columns x, x" lies on opposite sides of (% + o(1))T bipartitions.
(b) For every horizontal edge (x,y) ~ (x',y), the number of i for which y € U; and x, x’
lie on opposite sides of the bipartition P; LI Q; is ®((log n)'?).

To see that properties (a) and (b) can be satisfied simultaneously, we show that for a ran-
dom choice of the bipartitions P; LI Q; = [N], both properties hold with high probability.
Indeed, if D, is the set of all i for which x,x’ lie on opposite sides of the bipartition
P; U Q;, then |D, | ~ Bin(T, 1/2) for all choices of x and x’. By the Chernoff bound,

Pr[|Bin(T, 1/2) = T/2| > €T] < ™ %D,

0(10g2n)

. N .
so, even after a union bound over all ( 5 ) =e choices of x and x’, we have that

w.h.p. Dy | = (1/2 + o(1))T for all x, x". That is, property (a) holds w.h.p. To check that
property 3 also holds w.h.p., note that another application of the Chernoff bound shows
that if D, »(y) is the set of all i € D, satisfying the additional condition that y € U;, then
|D,.v(y)| ~ Bin(d(y),1/2) must be tightly concentrated around d(y)/2 = ©((logn)'),
even after taking a union bound over all choices of x,x" and y. We may therefore fix a
partition P; LI Q; for each i € [T] such that the collection of such partitions satisfies (a)
and (b).

To force property (3), we sample two random graphs R ~ G(N,n~'/%) and C ~
G(N,n~'/3) in advance; we will make sure that the rows of H only take edges from R and
the columns of H only take edges from C. Finally, for each i € [T], let A; = G(|U;|, 1/2)
be a random graph on vertex set U; and let B; = A; be the edge-complement of A;.

We emphasize here that for each i € [T], the sets U; and the pairs (P;, Q;) are now
fixed. Our goal is to define a probability space (a random subgraph H C Gyxy) and, thus,
all probabilistic statements that follow are with respect to the product space (H A 5) XRXC.

The columns. We first decide the columns of H. Let ¢, be the column indexed x in
Gyxn. We define H, to be the (random) graph with vertex set ¢, = [N] such that (y,y")
is an edge of H, if and only if, for every U; containing both y and y’, either x € P; and
(y,y") € E(A)) or x € Q; and (y,Y") € E(B;). In words, on each column we stipulate that
within each of the subsets Uj;, the induced subgraph H,[U;] is a subgraph of one of the two

d ‘€ €T0T “81HT8601

//:sdny wo1y papeoy

1[uo//:sdNy) suonipuo) pue sua ] Ay 39S “[H70T/L0/ST] U0 AreIqry duiuQ LA ‘GST1TeSY/T001 01/10p/Wwod Adim Areiqr[our

119)/W09° K[

P!

ASUDOI'T SUOWIWOY) dANLAI) d[qedtdde ay) Aq pauIdA0T a1e sa[oNIR Y 9N JO SI[NI 10 AIRIqIT AUIUQ AJ[IA\ UO (SUONIp



CONLON ET AL.

complementary random graphs A; or B;, according to which part of the partition P; U Q;
the x-coordinate falls into.

Let E,(y,y’) be the event that a given edge (y,y’) appears in the random graph H,. By
definition, E,(y, y") occurs if and only if for every U; containing both y and y’, either x € P;
and (v,y') € E(A;) or x € Q; and (y,y") € E(B;). We have

Pri(x € P; A (1)) € EA)) \/(x € Qi A (3,)) € EB))] = 1/2.

There are at most ilogn choices of i for which U; contains both y and y’ and these
1

events are independent over i. Thus, Pr[E,(y,y’)] > 274
further that E,(y,y’) depends only on the randomness of the single edge (y,y’) in the
A; and B;, so, for a fixed x, these events are mutually independent as (y,y’) varies
through the possible edges of H,. Thus, we may choose a random subgraph H;, C H,
with distribution exactly G(N,n>/®). Finally, we take H[c,] = H, N R, which is a
random graph with distribution exactly G(V, n=3/#), proving properties (1) and (3) for
the columns.

The rows. Next, we define the horizontal edges of H by picking the edges between
each pair of columns independently. For each pair of columns cy, ¢y, recall that D, is
the set of all i € [N] for which x, x’ fall on opposite sides of the partition P; LI Q;. By our
choice of the bipartitions, we know that |D, | = (1/2 + o(1))T. For each pair x, X, pick a
uniform random i, ,» € D, . Now, in each row y, let H, be the random graph whose edges
are exactly those pairs (x,x") for which U; , 3 y. A given edge (x,x’) appears in H, if

logn -1/4

=n . We observe

and only if the random index i, is chosen to be one of the d(y) € [%(log )10, %(log n)10]
indices i € D, for which y € U;, while i,y is uniform out of |D, | = (% +o(1)T =
(% + o(1))n'/?(log n)'° choices. Thus, each edge appears in H, with probability ®(n~'/?).
Furthermore, for fixed y these events are mutually independent over all choices of possible
(x,x"), since the random indices i, are chosen independently. We may therefore find a
random subgraph Hj C H, with distribution exactly G(N, n~>/®). Finally, we take H[r,] =
Hj n C, which is again a random graph with distribution exactly G(N, n=3/%), proving
properties (1) and (3) for the rows.

Property (2). Suppose that there is a rectangle in H, say (x,y), (x,y"), (x',y), &, y").
By the way we picked the horizontal edges, this means that, for i = i, ,», we have y,y’ € U;
and x, x’ fall on opposite sides of the bipartition P; LI Q;. If, say, x € P; and X’ € Q;, then
we see that H[c,][U;] C A; and H[cy][U;] C B; are disjoint graphs on the set U;, so at
most one of the two vertical edges (x,y) ~ (x,y") and (x’, y) ~ (x',y') can lie in H. Hence,
there are no rectangles in H, as desired. ]

WILEY— 7
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Now that Lemma 3.1 is proved, we layer log N copies of this bipartite construction on top of each
other to obtain the lower bound on r(K 3 S5,3)) in Theorem 1.2, namely, (K 3 & ) > 298" for some

c>0.

Proof of the lower bound on r(K{", ). For N as in Lemma 3.1, draw ¢ = log N inde-

pendent samples Hy, ... , H; from the distribution H. Identify the vertices of K](\?) with
[N] :={0, ... ,N —1} (we use this convention so that each vertex has at most ¢ bits when

written in binary).
Each Hy, 1 < ¢ < t, gives rise to a two-edge-coloring y, of a bipartite subgraph
of Kf\?) as follows. Let (i1, i, i3) denote the maximum binary bit on which three distinct
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i1,12,i3 € [N] do not agree. Let ', denote the spanning subgraph of K,(\?) consisting of all
edges with £(iy, i, i3) = £. For clarity, we write the vertices of an edge in 'y as {x,y,y"}
if x is the vertex which is 0 on bit # and y,y’ are the vertices which are 1, calling these
“vertical edges,” and as {x,x’,y} if x, x’ are 0 on bit £ and y is 1, calling these “horizontal
edges.” Let y, denote the coloring of I', for which vertical edges {x,y,y'} € T, are
colored red if and only if (x,y) ~ (x,)’) is an edge of H, and horizontal edges {x,x',y} €
I'y are colored red if and only if (x,y) ~ (x,y) is an edge of Hy.

We first claim that the colorings y, contain no red copies of Kf) . Indeed, since I'; is
bipartite, a copy of Kf) in I', must lie on four vertices {x, x’,y,y’} where x, x’ are 0 on bit
¢ and y,y" are 1 on bit . This induced subhypergraph is red if and only if the four edges
{x,y,y'}, {&,y,y'}, {x,x/,y} and {x,x’,y’} are all red in y,. This in turn means that the
four edges (x,y) ~ (x,y"), (X, y) ~ (', "), (x,y) ~ (X', y) and (x,y") ~ (x’,y") are edges of
Hp,, forming a rectangle in H and contradicting property (2) of Lemma 3.1. Thus, no red
Kf) appears in any of the colorings y,.

Write Ng(v) for the set of all u € [N] which disagree with v on bit £ but agree on all
higher bits and write L¢(v) for the link of v in I'y restricted to Nz(v). By the definition of
I's, Ly(v) is a complete graph. Moreover, the coloring y, induces a coloring on L/(v) for
each v, which, by property (1) of Lemma 3.1, has red edges distributed as in G(N, n=3/*).

We now build a coloring y of K](\?) out of the colorings y, as follows. Note that
I'y, ... ,I; form an edge partition of Kﬁ) . As a starting point, we let y'(e) = y,(e) for
that # such that ¢ € I',. However, this coloring ' may now contain some red copies of
Kf), so we modify it as follows. For each red Kf) in y', say with vertices {iy, i, i3,i4},
mark the triple of vertices {ij, i, i3} that has the smallest value £ of £(i}, iz, i3). To see
that this triple is unique, suppose it were not and £ (iy, i, i3) = (i1, I»,i4) = . But then
all four vertices agree on all higher bits than £, so the £-values of all four 3-tuples are at
most £ by definition. Thus, all four 3-tuples among {i}, i», i3,i4} lie in 'y, giving a red
Kf) in the coloring y, of I'y, which is a contradiction. We also observe that if {iy, i, i3}
is marked by a red clique on {i, i1, i, i3}, then £(i, iy, i2) = £(i,iy,i3) = £(i, Ip,i3) = ' for
some £’ > £. That is, the other three edges in this red clique all belong to the same y,,
so we may say that the edge {iy, iz, i3} is marked by level £’ (note that a single edge can
be marked by multiple levels). The coloring y is now defined as follows: the red edges of
x are exactly the unmarked red edges of y’.

We claim that y is a coloring of K1(v3) that contains no red Kf) and, with positive prob-
ability, no 55,3,). Since every Kf) which is red under y’ contains a marked triple, y indeed
has no red Kf). It remains to bound the probability of finding a blue S,(ft).

Fix a vertex u € V(KS)) and suppose a blue Sff,) appears in y with u as the central ver-
tex. The sets Ny(u), ... , N(u) form a partition of V(KI(\?)), so at least one of these contains
at least n of the vertices of our K,,. Thus, for some Z, there must be vy, ... ,v, € Ng(u)
forming a blue Sf?) with u as the central vertex. By the union bound, it will suffice to show
that the probability of such an occurrence is smaller than N7,

Let ¢ be the coloring of the copy of K,, formed by the vertices of this copy of s
other than u, with colors given by ¢(v;, v;) = y(u, v;,v;). By construction, the red edges in
¢ correspond to red edges in Ly(u) in y, that are unmarked. We first bound the number
of marked edges. For each 7’ > ¢, let M, be the graph on {v, ... ,v,} whose edges are
pairs {v;,v;} for which {u,v;,v;}, if it were red, would be marked by level ¢’ as defined
previously. In other words, v; ~ v; in M if and only if there exists a fourth vertex w for
which {w,u,v;}, {w,u,v;} and {w,v;,v;} are all red in y,.
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4

We claim that for each level £/ > ¢, the graph M, is contained inside a copy of
G(n,n~'/%). Indeed, because of property (3) of Lemma 3.1 and the definition of y,, there
exists a random graph M’, ~ G(n,n~'/®) such that if {w,v;, vj} is red for any w, then
{vi,v;} is an edge of M/,. In particular, if {v;,v;} is an edge of M, then {w, v;,v;} is red
in y, for some w and thus {v;,v;} is an edge of M/, as well. That is, M, is a spanning
subgraph of M/,, which has distribution G(n,n~1/%).

Whether an edge is marked by a particular level is independent for each level, so the
edge union of the graphs M, with £’ > £ is contained inside the edge union of the
independent random graphs M, which is in turn contained inside a single random graph

M with distribution G(n, tn~'/%). Let E be the event that M has at least % <'21> edges. That

is, E is the event that the edge count of M, distributed like Bin(<;> st~V 8), is at least

% <; ) By the Chernoff bound, Pr[E] < 272",
An edge (v;,v;) is red in ¢ if it does not appear in M and the edge {u,v;,v;} is red in

%, The latter occurs with probability n=3/4, by property (1) of Lemma 3.1. Thus,

Pr{(vi, v)) red|(vi,v)) & E(M)] = n~>/*,

Given any particular choice of M, all such events are mutually independent, so the
probability that ¢ is monochromatic blue is at most

— l n
Pr[E] + Pr[¢ is monochromatic blue|E] < 272" 4 (1-n3/%) 2<2) < 2R,

which suffices to union bound over all N**! choices of u, vy, ... ,v,, as desired. This
completes the proof. [

| THE UPPER BOUND

In this section, we first prove the upper bound in Theorem 1.3, which states that

gr(Gasa, K;y) < 277 g,

WILEY—

“.n

for some positive constant ¢’. As observed in the introduction, r(Kf), S§,3)) < 2g1(Gaxo, Ky,), so this
immediately implies the upper bound in Theorem 1.2 as well.

The main technical tool used is the following Ramsey-type result of Erdds and Szemerédi.

Lemma 4.1. (Erd6s—Szemerédi [12]) There exists a positive constant cq such that if the
edges of the complete graph Ky are colored in r colors, then there exists a clique of order
n= CQ@ log N and a color i that does not appear on any edge in that clique.

We are now ready to prove (4.1).

Proof of (4.1). Let ¢’ = max(2,1/cgy), where ¢ is the constant in Lemma 4.1. Let N =
2em**logn We would like to show that in any 2-edge-coloring of Gyxy, there is either a
red rectangle or a blue K. Letting » = n'/3, we will in fact prove the stronger statement
that the same result holds for the rectangular grid Gyxys, where the height is chosen to be
the Ramsey number M = r(K,,K,) <n" < N.
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Fix a 2-edge-coloring of Gyxy. Each column is a 2-edge-colored Ky, so, by the
definition of M, each column contains either a red K, or a blue K,,. In the latter case we are
already done, so we may assume that every column of the grid contains a red K,. Asso-
ciate with each column x the y-coordinates y(x) = (y1, ... ,y,) of the vertices of some red
K, in that column. Since y(x) can take at most M" possible values, there exist N' = N/M"
columns with the same value ¥ = J(x). Since M < n”, we have M" < n” = 27" logn_ Ag
¢ > 2, wehave N' > \/IV

Restrict to the N’ X r subgrid where the rows are the r rows indexed by the coordinates
of y and the columns are the N’ columns x with y(x) = y. In this subgrid, every column
is a monochromatic red K,. If any pair of columns has at least two red edges between
them, then we have a red rectangle and we are done. Thus, we may assume that there is
an edge-coloring i : E(Ky') — [r] of the complete graph on [N’] such that the horizontal
edge (x,y) ~ (x',y) is blue whenever y # h(x, x").

By Lemma 4.1, there is a clique of order

1/3
L _logN' > co3n— A logN > n,
logr logn 2

o
and a color y such that y # h(x, x") for every pair of vertices x, x’ in the clique. If the vertices
of the clique are {x, ... ,x,}, then all edges between the vertices {(x1,y), ... ,(x,,y)} in
the original grid are blue, forming the desired blue K,,. This completes the proof. L

Next, we generalize this upper bound to arbitrary grids. Recall that G, is the a X b grid graph and
21(Guxp, K,) is the smallest N such that in any 2-edge-coloring of Gyxy there is either a monochromatic
red copy of G,x;, or a monochromatic blue copy of K,,. We next prove the upper bound in Theorem 1.4,
that, for all a > b > 2, there is a positive constant ¢’ = ¢/, such that

1-@b-1)-1

21(Gaxp, Kn) <2 togr, (4.2)

The proof is essentially the result of iterating the argument for Theorem 1.3. However, we will also
require a generalization of Lemma 4.1 from a recent paper of the authors [9]. Define the set-coloring
Ramsey number R(n;r, s) to be the smallest positive integer N such that if every edge of Ky receives
a set of s colors from a palette of r colors, then there must exist a copy of K,, where a single common
color appears on every edge.

Lemma 4.2. (Corollary of theorem 1.1 in [9]) There is a constant Cy such that the
following holds. For any integersn >3 andr > s > r/2 > 1,

R(I’l; 7, S) < zCon(r—s)zr'l log(r/(r—s)).

Combining the above lemma with Tur4n’s theorem, we obtain the following result, needed for the
iterative step in our proof of (4.2).

Lemma 4.3. There is a constant C such that the following holds. Suppose r,a,n,N,N’
are positive integers satisfying r > 2a,n > (r/a)* and N > 2Cna’r~ log(r/a) N1, Ifthe vertical
edges of G .= Gyx, are colored red and the horizontal edges of G are colored red or blue,
then G contains either a blue K,, or a copy of Gnrx, where all vertices in some column are
only incident to red edges.
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Proof. Suppose that G contains no blue K,. Let T = 2Cona’r'logtr/a) g that, by
Lemma4.2, T > R(n;r,r —a). Let C = max{1,3Cy}. We claim that any T X r subgrid of
G contains a red Gox,. Indeed, let G’ be a T X r subgrid of G and define an edge-coloring
x on the complete graph K7 whose vertices are the columns of G’ which colors each edge
(x,x") by the set of all y for which the edge (x,y) ~ (x',y) is blue. If there is no copy of a
red Gox, in G’, the edge-coloring y assigns at least r — a colors to every edge, so, by the
definition of 7, we obtain a monochromatic K, in some color in y. But this implies that
we have a monochromatic blue K,, in the original graph G, a contradiction.

Define another auxiliary graph H whose vertices are the columns of G and edges
are pairs of columns containing a red Gpx,. Color each edge (x,x’) of H by a set of a
y-coordinates yy, ... ,y, such that the induced subgraph G[{x,x’} X {y1, ... ,y,}] forms a
monochromatic red G,y,. We know that among every T vertices of H, there is at least one
edge. Hence, by Turan’s theorem, there are at least N2 /2(T — 1) — N /2 > N?/T? edges in
H, at least N2 / T2 (: > of which receive the same color. Thus, there must be a vertex with

at least N /T? <; > N/T? > N’ neighbors in a single color. But this corresponds exactly

to a copy of Gyrx, with a column incident to only red edges, completing the proof. =
It remains to iterate the above lemma to obtain (4.2).

Proof of (4.2). Tobegin,leta =r  <r, <---<r,andl =N} <N, <--- < N, be
positive integers satisfying 2 < r;41 /r; < y/n and

Ni+1 — 2Cnr‘.2ri-+l1 IOg(ri+‘/ri)(N,' + 1)’

forevery 1 <i < b — 1, where C is the constant from Lemma 4.3. Let N := n' - Np. We
claim that gr(Gpx4, K,) < N.

Indeed, suppose we are given a red-blue edge-coloring of Gyyxy. We may further sup-
pose that there is no blue K,,. Let H be the induced (complete) subgraph on some single
column of Gyxy, together with the induced edge-coloring. Since 7(K,,, K,,) < n'», any set
of n'» vertices in H contains at least one red K, . It follows that the number of pairs (c, U)

where U € (‘ﬁ”) and c is a monochromatic red K, in U is at least (an ) On the other

N-r,

n'b—r,

N N—r, N n'e
G ()= ()
n' n's —rp p b
monochromatic red copies of K, in H. Moreover, the same conclusion holds for any given
column of the grid. Hence, by the pigeonhole principle, there are some r;, rows such that

hand, each such c lies in at most < > choices of U, so we find that there are at least

-1
b . . . .

a (" ) -fraction of the N columns are monochromatic red in between these rows. Since
T

n'v 2
N/< > > N/n"s = Np,

Tp

we obtain an induced subgrid of dimensions Nj, X r, with monochromatic red columns.
Applying Lemma 4.3, we find inside this subgrid another subgrid of dimensions (N,—; +
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1) X rp,—1 where one column is complete in red to the others. Iterating this process b — 1
times and setting the distinguished column aside at each step, we find a monochromatic
Gpxa, as desired.

In order to obtain (4.2), for 1 < i < b, we choose r; = a - x> =1 with x = n@ D",
One can check that these choices imply 2 < ri41/r; < 4/n and Niyy = 20,(mx" logn) .

forall 1 < i < b — 1. Consequently, N, = 20.>"1o2 and, as 12 = an/x, we also

have N = 20w logn)_Gince, by symmetry, gr(Gaxp, Kn) = g1(Gpxa, Kp), this yields the
required bound. u

5 | CONCLUDING REMARKS

The main problem left open by this paper is what the true bounds are for r(Kf) , S,(f)) and the closely
related function gr(Gox2, K,,). In particular, we have the following question.

Problem 5.1. Does there exist ¢ > 0 such that gr(Gaxo, K,;) > 2"?

We will not hazard a guess on which direction the truth should lie, though it would be much more
interesting were the answer to turn out negative.
Theorem 1.4 gives a subexponential bound for grid Ramsey numbers of the form

1-@b-1)~1

28(Gaxps Kn) < 27" togn 5.1
when a > b > 2. The dependence of the exponent of n on b, which comes from iterating Lemma 4.2, is
inverse exponential. The authors suggested in problem 6.1 of [9] that stronger bounds than Lemma 4.2
might be true for the set-coloring Ramsey number R(n; r, s), especially in the regime s ~ r— \/; where
we are applying it here. Such improved upper bounds on R(n; r, s) would immediately improve the
dependence on b in (5.1).

5.1 | Note added

After the first version of this paper appeared on arXiv, Aragdo, Collares, Marciano, Martins and Mor-
ris [3] showed that the bound in Lemma 4.2 is tight up to a logarithmic factor when s =~ r— \/;, thereby
ruling out any hope of substantially improving (5.1) by the route suggested above.
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