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Abstract
Let K(3)

m denote the complete 3-uniform hypergraph on m
vertices and S(3)

n the 3-uniform hypergraph on n + 1 ver-

tices consisting of all

(
n
2

)
edges incident to a given vertex.

Whereas many hypergraph Ramsey numbers grow either at

most polynomially or at least exponentially, we show that

the off-diagonal Ramsey number r(K(3)
4
, S(3)

n ) exhibits an

unusual intermediate growth rate, namely,

2
clog

2n
≤ r(K(3)

4
, S(3)

n ) ≤ 2
c′n2∕3

log n
,

for some positive constants c and c′. The proof of these

bounds brings in a novel Ramsey problem on grid graphs

which may be of independent interest: what is the minimum

N such that any 2-edge-coloring of the Cartesian product

KN□KN contains either a red rectangle or a blue Kn?

KEYWORDS

Ramsey theory, hypergraph Ramsey numbers, stepping up,

probabilistic method

1 INTRODUCTION

A k-uniform hypergraph (henceforth, k-graph) G = (V ,E) consists of a vertex set V and an edge set

E ⊆

(
V
k

)
. In particular, we write K(k)

n for the complete k-graph with V = [n] and E =
(

[n]
k

)
. Ramsey’s

theorem states that for any k-graphs H1 and H2 there is a positive integer N such that any k-graph G
of order N either contains H1 (as a subgraph) or its complement G contains H2. The Ramsey number
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r(H1,H2) is the smallest such N and the main objective of hypergraph Ramsey theory is to determine

the size of these Ramsey numbers. In particular, for fixed k ≥ 3, the two central problems in the area

are to determine the growth rate of the “diagonal” Ramsey number r(K(k)
n ,K(k)

n ) as n → ∞ and the

“off-diagonal” Ramsey number r(K(k)
m ,K(k)

n ) where m > k is fixed and n → ∞.

Seminal work of Erdős–Rado [11] and Erdős–Hajnal (see, e.g., [6]) reduces the estimation of diag-

onal Ramsey numbers for k ≥ 3 to the k = 3 case. For off-diagonal Ramsey numbers, the only case

for which the tower height of the growth rate is not known is r(K(k)
k+1

,K(k)
n ), though it was noted in [16]

that this tower height could be determined by proving that the 4-uniform Ramsey number r(K(4)
5
,K(4)

n )
is double exponential in a power of n. Moreover, it was shown in [15] that if r(K(3)

n ,K(3)
n ) grows double

exponentially in a power of n, then the same is also true for r(K(4)
5
,K(4)

n ). Hence, the growth rate for all

diagonal and off-diagonal hypergraph Ramsey numbers with k ≥ 4 would follow from knowing the

growth rate of the diagonal Ramsey number when k = 3. Because of this pivotal role, we will restrict

our attention in the discussion below to the case k = 3.

Despite considerable progress in this area in recent years, our state of knowledge about the two

central problems mentioned above remains rather dismal. The best-known bounds in the diagonal case

(see, e.g., the survey [8]) are of the form

2
cn2

≤ r(K(3)
n ,K(3)

n ) ≤ 2
2

c′n
, (1.1)

for some positive constants c and c′, differing by an entire exponential order. For the off-diagonal case,

when s ≥ 4 is fixed, the best-known bounds [5] are of the form

2
cn log n

≤ r(K(3)
s ,K(3)

n ) ≤ 2
c′ns−2

log n
, (1.2)

for some positive constants c and c′, differing by a power of n in the exponent.

As a possible approach to improving the lower bounds in (1.1) and (1.2), Fox and He [13] gave new

lower-bound constructions for the Ramsey numbers r(K(3)
n , S(3)

t ), where S(3)
t is the “star 3-graph” on

t + 1 vertices whose edges are all

(
t
2

)
triples containing a given vertex. For n → ∞, they showed that

r(K(3)
n , S(3)

n ) ≥ 2
cn2

for some positive constant c, giving a new proof of the lower bound in (1.1), while,

for t ≥ 3 fixed, they showed that r(K(3)
n , S(3)

t ) = 2
Θ(n log n)

, giving another proof of the lower bound in

(1.2). In particular, when t = 3, this implies that r(K(3)
n ,K(3)

4
− e) = 2

Θ(n log n)
. One surprising feature of

these results is that they give the same bounds that were previously known for clique Ramsey numbers,

but with one of the cliques replaced by the sparser corresponding star.

Fox and He essentially settled the growth rate of r(K(3)
n , S(3)

t ) in two cases: when the star is fixed in

size and the clique grows; and when the star and clique grow together. The present paper studies the

remaining regime: when the clique is fixed in size and the star grows. First, a standard application of

the Lovász Local Lemma yields the following proposition.

Proposition 1.1. There are positive constants c and c′ such that

c n2

log
2n

≤ r(K(3)
4

− e, S(3)
n ) ≤ c′ n2

log n
.

Our main result is that if we replace K(3)
4

−e by K(3)
4

, then the Ramsey number has an exotic growth

rate intermediate between polynomial and exponential. On the other hand, once we move up to K(3)
5

the growth rate stabilizes to exponential.
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612 CONLON ET AL.

Theorem 1.2. There are positive constants c and c′ such that

2
clog

2n
≤ r(K(3)

4
, S(3)

n ) ≤ 2
c′n2∕3

log n
.

Moreover, for each s ≥ 5, there are positive constants cs and c′s such that 2
csn ≤

r(K(3)
s , S(3)

n ) ≤ 2
c′sn.

The intermediate growth rate of r(K(3)
4
, S(3)

n ) is in striking contrast with the

“polynomial-to-exponential transition” conjecture of Erdős and Hajnal [10], whose exact statement

is technical but roughly states that all off-diagonal hypergraph Ramsey numbers against cliques are

either at most polynomial or at least exponential. This conjecture was proved to be true infinitely often

when k = 3 by Conlon, Fox and Sudakov [5] and was then settled in the affirmative for all k ≥ 4 by

Mubayi and Razborov [14]. As a corollary of Theorem 1.2, we see that no such transition can occur

for hypergraph Ramsey numbers against stars.

Since our results for r(K(3)
4

−e, S(3)
n ) and r(K(3)

s , S(3)
n ) when s ≥ 5 are straightforward applications of

known methods, we will focus our attention in the remainder of the introduction on how we estimate

r(K(3)
4
, S(3)

n ). The key idea is to reduce to a novel Ramsey problem involving grids, somewhat reminis-

cent of the grid case of the famous cube lemma (see, e.g., [7]) developed by Shelah [17] in his proof

of primitive-recursive bounds for Hales–Jewett and van der Waerden numbers. To say more, we need

some further definitions.

Let the m × n grid graph Gm×n be the Cartesian product Km□Kn, that is, the graph whose vertex

set is the rectangular grid [m] × [n] and whose edges are all pairs of distinct vertices sharing exactly

one coordinate. If m ≥ a ≥ 1 and n ≥ b ≥ 1, then an a × b subgrid in Gm×n is an induced copy

of Ga×b. In particular, we call a 2 × 2 subgrid, that is, a set of four vertices (x, y), (x, y′), (x′, y′), (x′, y)
with the four axis-parallel edges between them, a rectangle. We will be interested in the Ramsey num-

ber gr(G2×2,Kn), which is the smallest N such that in any 2-edge coloring of GN×N there is either a

monochromatic red rectangle or a monochromatic blue Kn. For such Ramsey numbers, we show the

following.

Theorem 1.3. There are positive constants c and c′ such that

2
clog

2n
≤ gr(G2×2,Kn) ≤ 2

c′n2∕3
log n

.

In passing, we remark that the best-known lower bound for the grid case of Shelah’s cube lemma,

due to Conlon, Fox, Lee and Sudakov [7], is of the form 2
c(log r)2.5∕

√
log log r

for some positive constant

c, curiously similar to the lower bound in Theorem 1.3, though there r refers to the number of colors.

However, despite the similarities, we were not able to find any nontrivial connection between the two

problems.

The connection between r(K(3)
4
, S(3)

n ) and gr(G2×2,Kn) is that the latter is equivalent to a natural

bipartite variant of the former. Let B(3)(a, b) denote the complete bipartite 3-graph on [a + b] whose

edges are all triples intersecting both [a] and [a + 1, a + b]. Observe that the 3-graph B(3)(a, b) and

the grid graph Ga×b have the same number a
(

b
2

)
+ b

(
a
2

)
of edges and we can give an explicit cor-

respondence between their edge sets by sending horizontal edges (x, y) ∼ (x′, y) in the grid to triples

{x, x′, a+y} ∈ E(B(3)(a, b)) and vertical edges (x, y) ∼ (x, y′) to triples {x, a+y, a+y′} ∈ E(B(3)(a, b)). It

is easy to check that rectangles in the square grid GN×N correspond to copies of K(3)
4

in the correspond-

ing bipartite 3-graph B(3)(N,N), while n-cliques in GN×N correspond to copies of S(3)
n in B(3)(N,N).
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CONLON ET AL. 613

Thus, gr(G2×2,Kn) is exactly equal to the smallest N such that any 2-edge-coloring of B(3)(N,N)
contains either a red K(3)

4
or a blue S(3)

n .

As B(3)(N,N) ⊆ K(3)
2N , it follows immediately that r(K(3)

4
, S(3)

n ) ≤ 2gr(G2×2,Kn), so the upper bound

in Theorem 1.3 implies that in Theorem 1.2. We do not know of a direct implication between the lower

bounds, but we will be able to glue together copies of our lower-bound construction for gr(G2×2,Kn)
to manufacture one for r(K(3)

4
, S(3)

n ) of comparable size. This suggests, and we strongly believe, that

r(K(3)
4
, S(3)

n ) and gr(G2×2,Kn) are of roughly the same order.

The final result that we mention here is a generalization of Theorem 1.3 to larger grids.

Theorem 1.4. There is a positive constant c and, for all fixed a ≥ b ≥ 2, a positive
constant c′ = c′a such that

2
clog

2n
≤ gr(Ga×b,Kn) ≤ 2

c′n1−(2b−1)−1

log n
.

The lower bound is an obvious corollary of the lower bound in Theorem 1.3, while the upper bound

involves some extra effort, in particular drawing on recent work of the authors on set-coloring Ramsey

numbers [9]. One interesting corollary of this result is that there are positive constants c and c′ such

that

2
clog

2n
≤ r(K(3)

5
− e, S(3)

n ) ≤ 2
c′n2∕3

log n
.

The lower bound here simply follows from the fact that r(K(3)
5

− e, S(3)
n ) ≥ r(K(3)

4
, S(3)

n ). For the upper

bound, note that, just as gr(G2×2,Kn) is equivalent to a bipartite variant of r(K(3)
4
, S(3)

n ), we also have

that gr(G3×2,Kn) is equivalent to a bipartite variant of r(K(3)
5

− e, S(3)
n ), so that r(K(3)

5
− e, S(3)

n ) ≤

2gr(G3×2,Kn), yielding the required upper bound. Together with the fact that r(K(3)
5
, S(3)

n ) = 2
Θ(n)

, this

gives a more complete picture of the transition window.

Throughout the paper, for the sake of clarity of presentation, we systematically omit floor and

ceiling signs whenever they are not essential. Moreover, unless otherwise specified, all logarithms are

base 2.

2 BASIC BOUNDS

In this short section, we prove Proposition 1.1 and the second part of Theorem 1.2. We will use the

Lovász Local Lemma in the following standard form (see, e.g., lemma 5.1.1 in [2]).

Lemma 2.1 (Lovász Local Lemma). Let A1,A2, … ,An be events in an arbitrary prob-
ability space. A directed graph D = (V ,E) on the set of vertices V = [n] is called a
dependency digraph for the events A1, … ,An if for each i, 1 ≤ i ≤ n, the event Ai is
mutually independent of all the events {Aj ∶ (i, j) ∉ E}. Suppose that D = (V ,E) is a
dependency digraph for the above events and suppose there are real numbers x1, … , xn
such that 0 ≤ xi < 1 and Pr[Ai] ≤ xi

∏
(i,j)∈E(1 − xj) for all 1 ≤ i ≤ n. Then

Pr [
⋀n

i=1
Ai] ≥

∏n
i=1

(1 − xi). In particular, with positive probability no event Ai holds.

The proof of Proposition 1.1 is now a direct application of Lemma 2.1 to a suitable random 3-graph.

Proof of Proposition 1.1. The upper bound follows from the fact that r(K(3)
4

− e, S(3)
n ) ≤

r(K3,Kn) + 1, by specializing to the link of a single vertex, and then applying the bound

r(K3,Kn) = O( n2

log n
) due to Ajtai, Komlós and Szemerédi [1].
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614 CONLON ET AL.

For the lower bound, we will use Lemma 2.1, assuming throughout that n is sufficiently

large. Consider a random hypergraph Γ = G(3)(N, p) on N = 10
−3n2(log n)−2

vertices

(which we identify with [N] for convenience) with p = 4(log n)∕n. We would like to show

that, with positive probability, Γ contains no K(3)
4

− e and its complement Γ contains no

S(3)
n . Let S be the collection of all N

(
N−1

3

)
copies of K(3)

4
− e on [N] and, for s ∈ S, let As

be the event that s ⊆ Γ. Let T be the collection of all N
(

N−1

n

)
copies of S(3)

n on [N] and,

for t ∈ T , let Bt be the event that t ⊆ Γ. The probabilities of these events are Pr[As] = p3

and Pr[Bt] = (1 − p)
(

n
2

)
.

Let D be the digraph whose vertex set is S ∪ T and whose edges are pairs (i, j) ∈
(S ∪ T)2 which intersect in at least one edge. Thus, D is a dependency digraph for the events

{As}s∈S∪{Bt}t∈T . Each vertex in S is adjacent to at most 9N other vertices in S and at most

|T| vertices in T , while each vertex in T is adjacent to at most

(
n
2

)
3N < 2n2N vertices

in S and at most |T| vertices in T . Let x = 3p3
be the local lemma weight for all the As

events and y = 1∕|T| be the local lemma weight for all the Bt events. With this choice of

parameters and using that n is sufficiently large and |T| = N
(

N−1

n

)
< N(eN∕n)n, we have

x(1 − x)9N(1 − y)|T| ≥ p3
,

y(1 − x)2n2N(1 − y)|T| ≥ (1 − p)
(

n
2

)
,

so the conditions of Lemma 2.1 are satisfied. Thus, with positive probability none of the

events As or Bt hold and we obtain r(K(3)
4

− e, S(3)
n ) ≥ N, as desired. ▪

The close connection between r(K(3)
4
−e, S(3)

n ) and r(K3,Kn) suggests that r(K(3)
4
−e, S(3)

n ) = Θ( n2

log n
).

It seems likely that a proof of this may be possible through a careful analysis of the (K(3)
4

− e)-free

process (see, e.g., [4] for results of this type in a similar context). However, we have chosen not to

pursue this here.

We now prove the bounds on r(K(3)
s , S(3)

n ) for s ≥ 5 stated in Theorem 1.2.

Proof of Theorem 1.2 for s ≥ 5. The upper bound follows from theorem 1.4 of [13], which

says that

r(K(3)
s , S(3)

n ) < (2s)sn
,

for all s, n ≥ 3. The lower bound construction is as follows. Let KN be a complete graph

on N vertices, labelled v1, … , vN , and let 𝜙 be a 3-coloring of the edges of KN which

independently colors each edge by a uniform random element of Z∕3Z. If K(3)
N is a com-

plete 3-graph on the same vertex set, define a 2-coloring 𝜒 of the edges of K(3)
N where

𝜒(vi, vj, vk) is red if 𝜙(vi, vj) + 𝜙(vi, vk) + 𝜙(vj, vk) ≡ 1 (mod 3) and blue otherwise.

Suppose, for the sake of contradiction, that a red K(3)
5

appears in the coloring 𝜒 at

vertices u1, … , u5. If we sum up 𝜙(ui, uj)+𝜙(ui, uk)+𝜙(uj, uk) across all

(
5

3

)
= 10 triples

of these vertices, the sum is 1 (mod 3), since each triple sums to 1 (mod 3). On the other

hand, each summand 𝜙(ui, uj) appears three times in this sum, so the total sum of all these

triples must be 0 (mod 3). This is a contradiction, so no such coloring can have a red K(3)
5

.
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CONLON ET AL. 615

Next, we show that for N = (3∕2)n∕2
and n ≥ 5, the probability of a blue S(3)

n appearing

in 𝜒 is less than 1. Indeed, consider any given copy of S(3)
n in K(3)

N , with central vertex u and

clique w1, … ,wn in the link of u. In order for every edge in this copy of S(3)
n to be blue,

every color 𝜙(wi,wj) must satisfy 𝜙(wi,wj) + 𝜙(u,wi) + 𝜙(u,wj) ≢ 1 (mod 3). Each such

event is independent with probability 2∕3, so we obtain that the probability this particular

copy of S(3)
n is blue in 𝜒 is exactly (2∕3)

(
n
2

)
. As there are N

(
N−1

n

)
copies of S(3)

n in K(3)
N ,

we see that the expected number of blue S(3)
n is

N
(N − 1

n

)
⋅ (2∕3)

(
n
2

)
< N(eN∕n)n(2∕3)n(n−1)∕2 = (3e∕2n)n < 1.

Hence, there is such a coloring with no blue S(3)
n . ▪

3 THE LOWER BOUND

The key ingredient for our lower bound on r(K(3)
4
, S(3)

n ) is the following lemma, which states that it is

possible to construct a random subgraph of the grid where each row and column looks like a sparse

Erdős–Rényi random graph, but they are coupled in such a way that there are no rectangles and their

edge unions are sparse.

Lemma 3.1. (Erdős–Rényi [12]) There exists a positive constant c such that, for all n suf-
ficiently large and N = 2

clog
2n, there is a random subgraph H ⊆ GN×N with the following

properties:

(1) For every row ry, H[ry] ∼ G(N, n−3∕4), that is, the marginal distribution of the induced
subgraph H[ry] is G(N, n−3∕4). Similarly, for every column cx, H[cx] ∼ G(N, n−3∕4).

(2) There are no rectangles, that is, no x, x′, y, y′ with (x, y) ∼ (x, y′) ∼ (x′, y′) ∼ (x′, y) ∼
(x, y), in H.

(3) The edge union of all the row graphs H[ry] lies in a G(N, n−1∕8). Similarly, the edge
union of all the column graphs H[cx] lies in a G(N, n−1∕8).

Note that properties (1) and (2) of the random graph H are already enough to prove the lower

bound in Theorem 1.3, since if we let H determine the set of red edges in GN×N and its comple-

ment the blue edges, then (2) shows that there are no red rectangles and (1) implies that w.h.p. there

are no blue Kn. We will use the additional property (3) to prove the lower bound on r(K(3)
4
, S(3)

n )
in Theorem 1.2.

Proof of Lemma 3.1. We give a construction for H which starts by choosing the column

graphs in such a way that every pair of columns is edge-disjoint on some large vertex

subset. This then allows us to place many edges between these columns without creating

a rectangle.

Setting up. Let N = 2
clog

2n
. We start by picking a family of subsets {Ui}i≤T of

[N] with T = n1∕2(log n)10
such that each element y lies in 𝑑(y) sets, where 𝑑(y) ∈

[ 1

2
(log n)10

,

3

2
(log n)10], and every pair of elements lies in at most

1

4
log n subsets. Such

a family exists by the probabilistic method. To see this, pick the sets Ui independently

such that each j ∈ [N] lies in Ui independently with probability n−1∕2
. The expected
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616 CONLON ET AL.

value of 𝑑(y) is (log n)10
. The multiplicative Chernoff bound for a binomial random vari-

able X implies that Pr(|X − EX| ≥
1

2
EX) < 2 exp(− 1

12
EX). Together with a union

bound over the N elements y, this yields that the probability there exists y with 𝑑(y) ∉
[ 1

2
(log n)10

,

3

2
(log n)10] is less than N ⋅2 exp(− 1

12
(log n)10) < 1

2
for n large. The probability

that distinct elements y, y′ are both in a given Ui is n−1
, so the probability they are both in

at least
1

4
log n of the Ui is at most

T
1

4
log n ⋅ (n−1)

1

4
log n

≤ 2
− 1

16
log

2n
,

for n large enough. Hence, for c sufficiently small, the probability that there exists a pair

of vertices y, y′ that lies in at least
1

4
log n sets is at most

(
N
2

)
2
− 1

16
log

2n
<

1

2
. Therefore, the

required family {Ui}i≤T exists.

Next we show that there is a collection of bipartitions Pi ⊔ Qi = [N], one for each

1 ≤ i ≤ T , of the set of columns satisfying the following two properties:

(a) Every pair of columns x, x′ lies on opposite sides of ( 1

2
+ o(1))T bipartitions.

(b) For every horizontal edge (x, y) ∼ (x′, y), the number of i for which y ∈ Ui and x, x′
lie on opposite sides of the bipartition Pi ⊔ Qi is Θ((log n)10).

To see that properties (a) and (b) can be satisfied simultaneously, we show that for a ran-

dom choice of the bipartitions Pi ⊔ Qi = [N], both properties hold with high probability.

Indeed, if Dx,x′ is the set of all i for which x, x′ lie on opposite sides of the bipartition

Pi ⊔ Qi, then |Dx,x′ | ∼ Bin(T , 1∕2) for all choices of x and x′. By the Chernoff bound,

Pr[|Bin(T , 1∕2) − T∕2| > 𝜀T] < e−Ω𝜀

(T)
,

so, even after a union bound over all

(
N
2

)
= eO(log

2n)
choices of x and x′, we have that

w.h.p. |Dx,x′ | = (1∕2 + o(1))T for all x, x′. That is, property (a) holds w.h.p. To check that

property 3 also holds w.h.p., note that another application of the Chernoff bound shows

that if Dx,x′ (y) is the set of all i ∈ Dx,x′ satisfying the additional condition that y ∈ Ui, then

|Dx,x′ (y)| ∼ Bin(𝑑(y), 1∕2) must be tightly concentrated around 𝑑(y)∕2 = Θ((log n)10),
even after taking a union bound over all choices of x, x′ and y. We may therefore fix a

partition Pi ⊔ Qi for each i ∈ [T] such that the collection of such partitions satisfies (a)

and (b).

To force property (3), we sample two random graphs R ∼ G(N, n−1∕8) and C ∼
G(N, n−1∕8) in advance; we will make sure that the rows of H only take edges from R and

the columns of H only take edges from C. Finally, for each i ∈ [T], let Ai = G(|Ui|, 1∕2)
be a random graph on vertex set Ui and let Bi = Ai be the edge-complement of Ai.

We emphasize here that for each i ∈ [T], the sets Ui and the pairs (Pi,Qi) are now

fixed. Our goal is to define a probability space (a random subgraph H ⊂ GN×N) and, thus,

all probabilistic statements that follow are with respect to the product space
(∏

Ai
)
×R×C.

The columns. We first decide the columns of H. Let cx be the column indexed x in

GN×N . We define Hx to be the (random) graph with vertex set cx ≅ [N] such that (y, y′)
is an edge of Hx if and only if, for every Ui containing both y and y′, either x ∈ Pi and

(y, y′) ∈ E(Ai) or x ∈ Qi and (y, y′) ∈ E(Bi). In words, on each column we stipulate that

within each of the subsets Ui, the induced subgraph Hx[Ui] is a subgraph of one of the two
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CONLON ET AL. 617

complementary random graphs Ai or Bi, according to which part of the partition Pi ⊔ Qi
the x-coordinate falls into.

Let Ex(y, y′) be the event that a given edge (y, y′) appears in the random graph Hx. By

definition, Ex(y, y′) occurs if and only if for every Ui containing both y and y′, either x ∈ Pi
and (y, y′) ∈ E(Ai) or x ∈ Qi and (y, y′) ∈ E(Bi). We have

Pr[(x ∈ Pi ∧ (y, y′) ∈ E(Ai))
⋁

(x ∈ Qi ∧ (y, y′) ∈ E(Bi))] = 1∕2.

There are at most
1

4
log n choices of i for which Ui contains both y and y′ and these

events are independent over i. Thus, Pr[Ex(y, y′)] ≥ 2
− 1

4
log n = n−1∕4

. We observe

further that Ex(y, y′) depends only on the randomness of the single edge (y, y′) in the

Ai and Bi, so, for a fixed x, these events are mutually independent as (y, y′) varies

through the possible edges of Hx. Thus, we may choose a random subgraph H′
x ⊆ Hx

with distribution exactly G(N, n−5∕8). Finally, we take H[cx] = H′
x ∩ R, which is a

random graph with distribution exactly G(N, n−3∕4), proving properties (1) and (3) for

the columns.

The rows. Next, we define the horizontal edges of H by picking the edges between

each pair of columns independently. For each pair of columns cx, cx′ , recall that Dx,x′ is

the set of all i ∈ [N] for which x, x′ fall on opposite sides of the partition Pi ⊔ Qi. By our

choice of the bipartitions, we know that |Dx,x′ | = (1∕2+ o(1))T . For each pair x, x′, pick a

uniform random ix,x′ ∈ Dx,x′ . Now, in each row y, let Hy be the random graph whose edges

are exactly those pairs (x, x′) for which Uix,x′ ∋ y. A given edge (x, x′) appears in Hy if

and only if the random index ix,x′ is chosen to be one of the 𝑑(y) ∈ [ 1

2
(log n)10

,

3

2
(log n)10]

indices i ∈ Dx,x′ for which y ∈ Ui, while ix,x′ is uniform out of |Dx,x′ | = ( 1

2
+ o(1))T =

( 1

2
+ o(1))n1∕2(log n)10

choices. Thus, each edge appears in Hy with probability Θ(n−1∕2).
Furthermore, for fixed y these events are mutually independent over all choices of possible

(x, x′), since the random indices ix,x′ are chosen independently. We may therefore find a

random subgraph H′
y ⊆ Hy with distribution exactly G(N, n−5∕8). Finally, we take H[ry] =

H′
y ∩ C, which is again a random graph with distribution exactly G(N, n−3∕4), proving

properties (1) and (3) for the rows.

Property (2). Suppose that there is a rectangle in H, say (x, y), (x, y′), (x′, y), (x′, y′).
By the way we picked the horizontal edges, this means that, for i = ix,x′ , we have y, y′ ∈ Ui
and x, x′ fall on opposite sides of the bipartition Pi ⊔ Qi. If, say, x ∈ Pi and x′ ∈ Qi, then

we see that H[cx][Ui] ⊆ Ai and H[cx′ ][Ui] ⊆ Bi are disjoint graphs on the set Ui, so at

most one of the two vertical edges (x, y) ∼ (x, y′) and (x′, y) ∼ (x′, y′) can lie in H. Hence,

there are no rectangles in H, as desired. ▪

Now that Lemma 3.1 is proved, we layer log N copies of this bipartite construction on top of each

other to obtain the lower bound on r(K(3)
4
, S(3)

n ) in Theorem 1.2, namely, r(K(3)
4
, S(3)

n ) ≥ 2
clog

2n
for some

c > 0.

Proof of the lower bound on r(K(3)
4
, S(3)

n ). For N as in Lemma 3.1, draw t = log N inde-

pendent samples H1, … ,Ht from the distribution H. Identify the vertices of K(3)
N with

[N] ∶= {0, … ,N − 1} (we use this convention so that each vertex has at most t bits when

written in binary).

Each H𝓁 , 1 ≤ 𝓁 ≤ t, gives rise to a two-edge-coloring 𝜒𝓁 of a bipartite subgraph

of K(3)
N as follows. Let 𝓁(i1, i2, i3) denote the maximum binary bit on which three distinct
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618 CONLON ET AL.

i1, i2, i3 ∈ [N] do not agree. Let Γ𝓁 denote the spanning subgraph of K(3)
N consisting of all

edges with 𝓁(i1, i2, i3) = 𝓁. For clarity, we write the vertices of an edge in Γ𝓁 as {x, y, y′}
if x is the vertex which is 0 on bit 𝓁 and y, y′ are the vertices which are 1, calling these

“vertical edges,” and as {x, x′, y} if x, x′ are 0 on bit 𝓁 and y is 1, calling these “horizontal

edges.” Let 𝜒𝓁 denote the coloring of Γ𝓁 for which vertical edges {x, y, y′} ∈ Γ𝓁 are

colored red if and only if (x, y) ∼ (x, y′) is an edge of H𝓁 and horizontal edges {x, x′, y} ∈
Γ𝓁 are colored red if and only if (x, y) ∼ (x′, y) is an edge of H𝓁 .

We first claim that the colorings 𝜒𝓁 contain no red copies of K(3)
4

. Indeed, since Γ𝓁 is

bipartite, a copy of K(3)
4

in Γ𝓁 must lie on four vertices {x, x′, y, y′} where x, x′ are 0 on bit

𝓁 and y, y′ are 1 on bit 𝓁. This induced subhypergraph is red if and only if the four edges

{x, y, y′}, {x′, y, y′}, {x, x′, y} and {x, x′, y′} are all red in 𝜒𝓁 . This in turn means that the

four edges (x, y) ∼ (x, y′), (x′, y) ∼ (x′, y′), (x, y) ∼ (x′, y) and (x, y′) ∼ (x′, y′) are edges of

H𝓁 , forming a rectangle in H and contradicting property (2) of Lemma 3.1. Thus, no red

K(3)
4

appears in any of the colorings 𝜒𝓁 .

Write N𝓁(v) for the set of all u ∈ [N] which disagree with v on bit 𝓁 but agree on all

higher bits and write L𝓁(v) for the link of v in Γ𝓁 restricted to N𝓁(v). By the definition of

Γ𝓁 , L𝓁(v) is a complete graph. Moreover, the coloring 𝜒𝓁 induces a coloring on L𝓁(v) for

each v, which, by property (1) of Lemma 3.1, has red edges distributed as in G(N, n−3∕4).
We now build a coloring 𝜒 of K(3)

N out of the colorings 𝜒𝓁 as follows. Note that

Γ1, … ,Γt form an edge partition of K(3)
N . As a starting point, we let 𝜒

′(e) = 𝜒𝓁(e) for

that 𝓁 such that e ∈ Γ𝓁 . However, this coloring 𝜒

′
may now contain some red copies of

K(3)
4

, so we modify it as follows. For each red K(3)
4

in 𝜒

′
, say with vertices {i1, i2, i3, i4},

mark the triple of vertices {i1, i2, i3} that has the smallest value 𝓁 of 𝓁(i1, i2, i3). To see

that this triple is unique, suppose it were not and 𝓁(i1, i2, i3) = 𝓁(i1, i2, i4) = 𝓁. But then

all four vertices agree on all higher bits than 𝓁, so the 𝓁-values of all four 3-tuples are at

most 𝓁 by definition. Thus, all four 3-tuples among {i1, i2, i3, i4} lie in Γ𝓁 , giving a red

K(3)
4

in the coloring 𝜒𝓁 of Γ𝓁 , which is a contradiction. We also observe that if {i1, i2, i3}
is marked by a red clique on {i, i1, i2, i3}, then 𝓁(i, i1, i2) = 𝓁(i, i1, i3) = 𝓁(i, i2, i3) = 𝓁′

for

some 𝓁′
> 𝓁. That is, the other three edges in this red clique all belong to the same 𝜒𝓁′ ,

so we may say that the edge {i1, i2, i3} is marked by level 𝓁′
(note that a single edge can

be marked by multiple levels). The coloring 𝜒 is now defined as follows: the red edges of

𝜒 are exactly the unmarked red edges of 𝜒
′
.

We claim that 𝜒 is a coloring of K(3)
N that contains no red K(3)

4
and, with positive prob-

ability, no S(3)
nt . Since every K(3)

4
which is red under 𝜒

′
contains a marked triple, 𝜒 indeed

has no red K(3)
4

. It remains to bound the probability of finding a blue S(3)
nt .

Fix a vertex u ∈ V(K(3)
N ) and suppose a blue S(3)

nt appears in 𝜒 with u as the central ver-

tex. The sets N1(u), … ,Nt(u) form a partition of V(K(3)
N ), so at least one of these contains

at least n of the vertices of our Knt. Thus, for some 𝓁, there must be v1, … , vn ∈ N𝓁(u)
forming a blue S(3)

n with u as the central vertex. By the union bound, it will suffice to show

that the probability of such an occurrence is smaller than N−n−1
.

Let 𝜙 be the coloring of the copy of Kn formed by the vertices of this copy of S(3)
n

other than u, with colors given by 𝜙(vi, vj) = 𝜒(u, vi, vj). By construction, the red edges in

𝜙 correspond to red edges in L𝓁(u) in 𝜒𝓁 that are unmarked. We first bound the number

of marked edges. For each 𝓁′
> 𝓁, let M𝓁′ be the graph on {v1, … , vn} whose edges are

pairs {vi, vj} for which {u, vi, vj}, if it were red, would be marked by level 𝓁′
, as defined

previously. In other words, vi ∼ vj in M𝓁′ if and only if there exists a fourth vertex w for

which {w, u, vi}, {w, u, vj} and {w, vi, vj} are all red in 𝜒𝓁′ .
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CONLON ET AL. 619

We claim that for each level 𝓁′
> 𝓁, the graph M𝓁′ is contained inside a copy of

G(n, n−1∕8). Indeed, because of property (3) of Lemma 3.1 and the definition of 𝜒𝓁′ , there

exists a random graph M′
𝓁′ ∼ G(n, n−1∕8) such that if {w, vi, vj} is red for any w, then

{vi, vj} is an edge of M′
𝓁′ . In particular, if {vi, vj} is an edge of M𝓁′ , then {w, vi, vj} is red

in 𝜒𝓁′ for some w and thus {vi, vj} is an edge of M′
𝓁′ as well. That is, M𝓁′ is a spanning

subgraph of M′
𝓁′ , which has distribution G(n, n−1∕8).

Whether an edge is marked by a particular level is independent for each level, so the

edge union of the graphs M𝓁′ with 𝓁′
> 𝓁 is contained inside the edge union of the

independent random graphs M′
𝓁′ , which is in turn contained inside a single random graph

M with distribution G(n, tn−1∕8). Let E be the event that M has at least
1

2

(
n
2

)
edges. That

is, E is the event that the edge count of M, distributed like Bin(
(

n
2

)
, tn−1∕8), is at least

1

2

(
n
2

)
. By the Chernoff bound, Pr[E] ≤ 2

−Ω(n2)
.

An edge (vi, vj) is red in 𝜙 if it does not appear in M and the edge {u, vi, vj} is red in

𝜒

′
𝓁 . The latter occurs with probability n−3∕4

, by property (1) of Lemma 3.1. Thus,

Pr[𝜙(vi, vj) red|(vi, vj) ∉ E(M)] ≥ n−3∕4
.

Given any particular choice of M, all such events are mutually independent, so the

probability that 𝜙 is monochromatic blue is at most

Pr[E] + Pr[𝜙 is monochromatic blue|E] ≤ 2
−Ω(n2) +

(
1 − n−3∕4

) 1

2

(
n
2

)
≤ 2

−Ω(n5∕4)
,

which suffices to union bound over all Nn+1
choices of u, v1, … , vn, as desired. This

completes the proof. ▪

4 THE UPPER BOUND

In this section, we first prove the upper bound in Theorem 1.3, which states that

gr(G2×2,Kn) ≤ 2
c′n2∕3

log n
, (4.1)

for some positive constant c′. As observed in the introduction, r(K(3)
4
, S(3)

n ) ≤ 2gr(G2×2,Kn), so this

immediately implies the upper bound in Theorem 1.2 as well.

The main technical tool used is the following Ramsey-type result of Erdős and Szemerédi.

Lemma 4.1. (Erdős–Szemerédi [12]) There exists a positive constant c0 such that if the
edges of the complete graph KN are colored in r colors, then there exists a clique of order
n = c0

r
log r

log N and a color i that does not appear on any edge in that clique.

We are now ready to prove (4.1).

Proof of (4.1). Let c′ = max(2, 1∕c0), where c0 is the constant in Lemma 4.1. Let N =
2

c′n2∕3
log n

. We would like to show that in any 2-edge-coloring of GN×N , there is either a

red rectangle or a blue Kn. Letting r = n1∕3
, we will in fact prove the stronger statement

that the same result holds for the rectangular grid GN×M , where the height is chosen to be

the Ramsey number M = r(Kr,Kn) ≤ nr ≤ N.
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620 CONLON ET AL.

Fix a 2-edge-coloring of GN×M . Each column is a 2-edge-colored KM , so, by the

definition of M, each column contains either a red Kr or a blue Kn. In the latter case we are

already done, so we may assume that every column of the grid contains a red Kr. Asso-

ciate with each column x the y-coordinates y⃗(x) = (y1, … , yr) of the vertices of some red

Kr in that column. Since y(x) can take at most Mr
possible values, there exist N′ = N∕Mr

columns with the same value y⃗ = y⃗(x). Since M ≤ nr
, we have Mr ≤ nr2 = 2

n2∕3
log n

. As

c′ ≥ 2, we have N′ ≥
√

N.

Restrict to the N′ × r subgrid where the rows are the r rows indexed by the coordinates

of y⃗ and the columns are the N′
columns x with y⃗(x) = y⃗. In this subgrid, every column

is a monochromatic red Kr. If any pair of columns has at least two red edges between

them, then we have a red rectangle and we are done. Thus, we may assume that there is

an edge-coloring h ∶ E(KN′ ) → [r] of the complete graph on [N′] such that the horizontal

edge (x, y) ∼ (x′, y) is blue whenever y ≠ h(x, x′).
By Lemma 4.1, there is a clique of order

c0

r
log r

log N′
≥ c0

3n1∕3

log n
⋅

1

2
log N ≥ n,

and a color y such that y ≠ h(x, x′) for every pair of vertices x, x′ in the clique. If the vertices

of the clique are {x1, … , xn}, then all edges between the vertices {(x1, y), … , (xn, y)} in

the original grid are blue, forming the desired blue Kn. This completes the proof. ▪

Next, we generalize this upper bound to arbitrary grids. Recall that Ga×b is the a×b grid graph and

gr(Ga×b,Kn) is the smallest N such that in any 2-edge-coloring of GN×N there is either a monochromatic

red copy of Ga×b or a monochromatic blue copy of Kn. We next prove the upper bound in Theorem 1.4,

that, for all a ≥ b ≥ 2, there is a positive constant c′ = c′a such that

gr(Ga×b,Kn) ≤ 2
c′n1−(2b−1)−1

log n
. (4.2)

The proof is essentially the result of iterating the argument for Theorem 1.3. However, we will also

require a generalization of Lemma 4.1 from a recent paper of the authors [9]. Define the set-coloring
Ramsey number R(n; r, s) to be the smallest positive integer N such that if every edge of KN receives

a set of s colors from a palette of r colors, then there must exist a copy of Kn where a single common

color appears on every edge.

Lemma 4.2. (Corollary of theorem 1.1 in [9]) There is a constant C0 such that the
following holds. For any integers n ≥ 3 and r > s ≥ r∕2 ≥ 1,

R(n; r, s) ≤ 2
C

0
n(r−s)2r−1

log(r∕(r−s))
.

Combining the above lemma with Turán’s theorem, we obtain the following result, needed for the

iterative step in our proof of (4.2).

Lemma 4.3. There is a constant C such that the following holds. Suppose r, a, n,N,N′

are positive integers satisfying r ≥ 2a, n ≥ (r∕a)2 and N ≥ 2
Cna2r−1

log(r∕a)N′. If the vertical
edges of G ∶= GN×r are colored red and the horizontal edges of G are colored red or blue,
then G contains either a blue Kn or a copy of GN′×a where all vertices in some column are
only incident to red edges.
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CONLON ET AL. 621

Proof. Suppose that G contains no blue Kn. Let T = 2
C

0
na2r−1

log(r∕a)
, so that, by

Lemma 4.2, T ≥ R(n; r, r − a). Let C = max{1, 3C0}. We claim that any T × r subgrid of

G contains a red G2×a. Indeed, let G′
be a T × r subgrid of G and define an edge-coloring

𝜒 on the complete graph KT whose vertices are the columns of G′
which colors each edge

(x, x′) by the set of all y for which the edge (x, y) ∼ (x′, y) is blue. If there is no copy of a

red G2×a in G′
, the edge-coloring 𝜒 assigns at least r − a colors to every edge, so, by the

definition of T , we obtain a monochromatic Kn in some color in 𝜒 . But this implies that

we have a monochromatic blue Kn in the original graph G, a contradiction.

Define another auxiliary graph H whose vertices are the columns of G and edges

are pairs of columns containing a red G2×a. Color each edge (x, x′) of H by a set of a
y-coordinates y1, … , ya such that the induced subgraph G[{x, x′} × {y1, … , ya}] forms a

monochromatic red G2×a. We know that among every T vertices of H, there is at least one

edge. Hence, by Turán’s theorem, there are at least N2∕2(T − 1) −N∕2 ≥ N2∕T2
edges in

H, at least N2∕T2

(
r
a

)
of which receive the same color. Thus, there must be a vertex with

at least N∕T2

(
r
a

)
≥ N∕T3 ≥ N′

neighbors in a single color. But this corresponds exactly

to a copy of GN′×a with a column incident to only red edges, completing the proof. ▪

It remains to iterate the above lemma to obtain (4.2).

Proof of (4.2). To begin, let a = r1 < r2 < · · · < rb and 1 = N1 < N2 < · · · < Nb be

positive integers satisfying 2 ≤ ri+1∕ri ≤
√

n and

Ni+1 = 2
Cnr2

i r−1

i+1
log(ri+1

∕ri)(Ni + 1),

for every 1 ≤ i ≤ b − 1, where C is the constant from Lemma 4.3. Let N ∶= nr2

b ⋅ Nb. We

claim that gr(Gb×a,Kn) ≤ N.

Indeed, suppose we are given a red-blue edge-coloring of GN×N . We may further sup-

pose that there is no blue Kn. Let H be the induced (complete) subgraph on some single

column of GN×N , together with the induced edge-coloring. Since r(Krb ,Kn) ≤ nrb , any set

of nrb vertices in H contains at least one red Krb . It follows that the number of pairs (c,U)
where U ∈

(
V(H)
nrb

)
and c is a monochromatic red Krb in U is at least

(
N

nrb

)
. On the other

hand, each such c lies in at most

(
N−rb

nrb−rb

)
choices of U, so we find that there are at least

( N
nrb

)
∕
(

N − rb
nrb − rb

)
=
(

N
rb

)
∕
(

nrb

rb

)
,

monochromatic red copies of Krb in H. Moreover, the same conclusion holds for any given

column of the grid. Hence, by the pigeonhole principle, there are some rb rows such that

a

(
nrb

rb

)−1

-fraction of the N columns are monochromatic red in between these rows. Since

N∕
(

nrb

rb

)
≥ N∕nr2

b = Nb,

we obtain an induced subgrid of dimensions Nb × rb with monochromatic red columns.

Applying Lemma 4.3, we find inside this subgrid another subgrid of dimensions (Nb−1 +
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1) × rb−1 where one column is complete in red to the others. Iterating this process b − 1

times and setting the distinguished column aside at each step, we find a monochromatic

Gb×a, as desired.

In order to obtain (4.2), for 1 ≤ i ≤ b, we choose ri = a ⋅ x2
i−1−1

with x = n(2b−1)−1

.

One can check that these choices imply 2 ≤ ri+1∕ri ≤
√

n and Ni+1 = 2
Oa(nx−1

log n)Ni
for all 1 ≤ i ≤ b − 1. Consequently, Nb = 2

Oa(nx−1
log n)

and, as r2

b = a2n∕x, we also

have N = 2
Oa(nx−1

log n)
. Since, by symmetry, gr(Ga×b,Kn) = gr(Gb×a,Kn), this yields the

required bound. ▪

5 CONCLUDING REMARKS

The main problem left open by this paper is what the true bounds are for r(K(3)
4
, S(3)

n ) and the closely

related function gr(G2×2,Kn). In particular, we have the following question.

Problem 5.1. Does there exist c > 0 such that gr(G2×2,Kn) ≥ 2
nc

?

We will not hazard a guess on which direction the truth should lie, though it would be much more

interesting were the answer to turn out negative.

Theorem 1.4 gives a subexponential bound for grid Ramsey numbers of the form

gr(Ga×b,Kn) ≤ 2
c′n1−(2b−1)−1

log n
, (5.1)

when a ≥ b ≥ 2. The dependence of the exponent of n on b, which comes from iterating Lemma 4.2, is

inverse exponential. The authors suggested in problem 6.1 of [9] that stronger bounds than Lemma 4.2

might be true for the set-coloring Ramsey number R(n; r, s), especially in the regime s ≈ r−
√

r where

we are applying it here. Such improved upper bounds on R(n; r, s) would immediately improve the

dependence on b in (5.1).

5.1 Note added

After the first version of this paper appeared on arXiv, Aragão, Collares, Marciano, Martins and Mor-

ris [3] showed that the bound in Lemma 4.2 is tight up to a logarithmic factor when s ≈ r−
√

r, thereby

ruling out any hope of substantially improving (5.1) by the route suggested above.
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