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Abstract
The maximal coding rate reduction (MCR2) ob-
jective for learning structured and compact deep
representations is drawing increasing attention,
especially after its recent usage in the derivation
of fully explainable and highly effective deep net-
work architectures. However, it lacks a complete
theoretical justification: only the properties of its
global optima are known, and its global landscape
has not been studied. In this work, we give a com-
plete characterization of the properties of all its
local and global optima, as well as other types of
critical points. Specifically, we show that each
(local or global) maximizer of the MCR2 problem
corresponds to a low-dimensional, discriminative,
and diverse representation, and furthermore, each
critical point of the objective is either a local max-
imizer or a strict saddle point. Such a favorable
landscape makes MCR2 a natural choice of objec-
tive for learning diverse and discriminative rep-
resentations via first-order optimization methods.
To validate our theoretical findings, we conduct
extensive experiments on both synthetic and real
data sets.

1. Introduction
In the past decade, deep learning has exhibited remarkable
empirical success across a wide range of engineering and
scientific applications (LeCun et al., 2015), such as com-
puter vision (He et al., 2016; Simonyan & Zisserman, 2014),
natural language processing (Sutskever et al., 2014; Vaswani
et al., 2017), and health care (Esteva et al., 2019), to name
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a few. As argued by Bengio et al. (2013); Ma et al. (2022),
one major factor contributing to the success of deep learning
is the ability of deep networks to perform powerful nonlin-
ear feature learning by converting the data distribution to a
compact and structured representation. This representation
greatly facilitates various downstream tasks, including clas-
sification (Dosovitskiy et al., 2020), segmentation (Kirillov
et al., 2023), and generation (Saharia et al., 2022).

Based on the theory of data compression and optimal coding
(Ma et al., 2007), Chan et al. (2022); Yu et al. (2020) pro-
posed a principled and unified framework for deep learning
to learn a compact and structured representation. Specif-
ically, they proposed to maximize the difference between
the coding rate of all features and the sum of coding rates
of features in each class, which is referred to as maximal
coding rate reduction (MCR2). This problem is presented
in Problem (4) and visualized in Figure 1(a). Here, the cod-
ing rate measures the “compactness” of the features, which
is interpreted as the volume of a particular set spanned by
the learned features: a lower coding rate implies a more
compact feature set1. Consequently, the MCR2 objective
aims to maximize the volume of the set of all features while
minimizing the volumes of the sets of features from each
class. Motivated by the structural similarities between deep
networks and unrolled optimization schemes for sparse cod-
ing (Gregor & LeCun, 2010; Monga et al., 2021), Chan et al.
(2022) constructed a new deep network based on an iterative
gradient descent scheme to maximize the MCR2 objective.2

Notably, each component of this deep network has precise
optimization and geometric interpretations. Moreover, it has
achieved strong empirical performance on various vision
and language tasks (Chu et al., 2023; Yu et al., 2023a).

Although the MCR2-based approach to deep learning is con-
ceptually “white-box” and has achieved remarkable empiri-
cal performance, its theoretical foundations have been rela-
tively under-explored. In fact, the effective feature learning
mechanism and “white-box” network architecture design
based on MCR2 are direct consequences of these founda-
tions, and understanding them will pave the way to improv-

1Please refer to Chan et al. (2022, Section 2.1) for more details
on measuring compactness of feature sets via coding rates.

2When performing maximization, we actually mean that we use
gradient ascent. However, we write gradient descent to maintain
consistency with existing optimization literature.
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(a) Visualization of feature learning via the principle of MCR2. (b) Idealized landscape of an MCR2 objective.

Figure 1. An illustration of the properties of MCR2. (a) The high-dimensional data {xi} ⊆ Rn lies on a union of low-dimensional
submanifolds. The objective of MCR2 is to learn a feature mapping fΘ(·) : Rn → Rd such that zi = fΘ(xi) for all i are low-dimensional,
discriminative, and diverse. (b) According to Theorems 3.1 and 3.3, the regularized MCR2 problem has a benign optimization landscape:
each critical point is either a local maximizer or a strict saddle point. Furthermore, each local maximizer, just like the global maximizer,
corresponds to a feature representation that consists of a family of orthogonal subspaces, as illustrated in the middle.

ing model interpretability and training efficiency of deep
networks. Nevertheless, a comprehensive theoretical un-
derstanding of the MCR2 problem remains lacking. In this
work, we take a step towards filling this gap by studying its
optimization properties. Notably, analyzing these proper-
ties, including local optimality and global landscape, of the
MCR2 objective is extremely challenging. To be precise, its
objective function (see Problem (4)) is highly non-concave3

and complicated, as it involves quadratic functions and the
difference between log-determinant functions. To the best
of our knowledge, characterizing the local optimality and
global optimization landscape of the MCR2 problem re-
mains an open question.

1.1. Our Contributions

In this work, we study the optimization foundations of the
MCR2-based approach to deep learning. Towards this goal,
we characterize the local and global optimality of the regu-
larized MCR2 problem and analyze its global optimization
landscape (see Problem (5)). Our contributions can be high-
lighted as follows.

Characterizing the local and global optimality. For the
regularized MCR2 problem, we derive the closed-form ex-
pressions for its local and global optima for the first time.
Our characterization shows that each local maximizer of
the regularized MCR2 problem is within-class compressible
and between-class discriminative in the sense that features
from the same class belong to a low-dimensional subspace,
while features from different classes belong to different
orthogonal subspaces. Besides these favorable properties,
each global maximizer corresponds to a maximally diverse
representation, which attains the highest possible dimension
in the space.

3We are maximizing the MCR2 objective. Maximizing a con-
cave function is equivalent to minimizing a convex function.

Studying the global optimization landscape. Next, we
show that the regularized MCR2 function possesses a benign
global optimization landscape, despite its complicated struc-
tures. More precisely, each critical point is either a local
maximizer or strict saddle point of the regularized MCR2

problem; see Figure 1(b). Consequently, any gradient-based
optimization, such as (stochastic) gradient descent, with
random initialization can escape saddle points and at least
converge to a local maximizer efficiently.

Finally, we conduct extensive numerical experiments on
synthetic data sets to validate our theoretical results. More-
over, we use the regularized MCR2 objective to train deep
networks on real data sets. These experimental results con-
stitute an application of the rigorously derived MCR2 theory
to more realistic and complex deep learning problems.

Our results not only establish optimization foundations for
the MCR2 problem but also yield some important impli-
cations for the MCR2-based approach to deep learning.
Namely, our theoretical characterizations of local and global
optimality offer a compelling explanation for the empiri-
cal observations that both deep networks constructed via
gradient descent applied to the MCR2 objective and over-
parameterized deep networks trained by optimizing the
MCR2 objective learn low-dimensional, discriminative, and
diverse representations. These results align with the motiva-
tions of Chan et al. (2022); Yu et al. (2020) for employing
the MCR2 principle for deep learning, and elucidate the
outstanding performance of MCR2-based neural networks
across a wide range of vision and language tasks (Chu et al.,
2023; Yu et al., 2024). Moreover, our results underscore
the potential of MCR2-based approaches to serve as a cor-
nerstone for future advancements in deep learning, offering
a principled approach to pursuing structured and compact
representations in practical applications.
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1.2. Related Work

Low-dimensional structures in deep representation
learning. In the literature, it has long been believed that
the role of deep networks is to learn certain (nonlinear)
low-dimensional and informative representations of the data
(Hinton & Salakhutdinov, 2006; Ma et al., 2022). For exam-
ple, Papyan et al. (2020) showed that the features learned
by cross-entropy (CE) loss exhibit a neural collapse phe-
nomenon during the terminal phase of training, where the
features from the same class are mapped to a vector while
the features from different classes are maximally linearly
separable. Ansuini et al. (2019); Recanatesi et al. (2019)
demonstrated that the dimension of the intermediate fea-
tures first rapidly increases and then decreases from shallow
to deep layers. Masarczyk et al. (2023) concluded that
the deep layers of neural networks progressively compress
within-class features to learn low-dimensional features. No-
tably, Wang et al. (2023) proposed a theoretical framework
to analyze hierarchical feature learning for learning low-
dimensional representations. They showed that each layer
of deep linear networks progressively compresses within-
class features and discriminates between-class features in
classification problems.

The MCR2-based approach to deep learning. The
MCR2-based approach to deep learning for seeking struc-
tured and compact representations was first proposed by
Yu et al. (2020). Notably, they provided a global optimal-
ity analysis of the MCR2 problem (4) with additional rank
constraints on the feature matrix of each class. Chan et al.
(2022) designed a new multi-layer deep network architec-
ture, named ReduNet, based on an iterative gradient descent
scheme for maximizing the MCR2 objective. To learn self-
consistent representations, Dai et al. (2022) extended this
approach to the closed-loop transcription (CTRL) frame-
work, which is formulated as a max-min game to optimize
a modified MCR2 objective. This game was shown to have
global equilibria corresponding to compact and structured
representations (Pai et al., 2022). Recently, Yu et al. (2023b)
showed that a transformer-like architecture named CRATE,
which obtains strong empirical performance (Chu et al.,
2023; Yu et al., 2023a; 2024), can be naturally derived
through an iterative optimization scheme for maximizing
the sparse rate reduction objective, which is an adaptation to
sequence data of the MCR2 objective studied in this work.

Notation. Given a matrix A ∈ Rm×n, we use ∥A∥ to
denote its spectral norm, ∥A∥F to denote its Frobenius
norm, and aij its (i, j)-th element. Given a vector a ∈ Rd,
we use ∥a∥ to denote its ℓ2-norm, ai its i-th element, and
diag(a) the diagonal matrix with a on its diagonal. Given
a positive integer n, we denote by [n] the set {1, . . . , n}.
Given a set of integers {nk}Kk=1, let nmax = max{nk : k ∈
[K]}. Let Om×n =

{
Z ∈ Rm×n : ZTZ = In

}
denote

the set of all m× n orthonormal matrices.

2. Problem Setup
In this section, we first review the basic concepts of MCR2

for deep representation learning in Section 2.1, and then
introduce our studied problem in Section 2.2.

2.1. An Overview of MCR2

In deep representation learning, given data {xi}mi=1 ⊆ Rn

from multiple (say K) classes, the goal is to learn neural-
network representations of these samples that facilitate
downstream tasks. Recent empirical studies have shown
that good features can be learned for tasks such as classifi-
cation or autoencoding by using heuristics to promote either
the contraction of samples in the same class (Rifai et al.,
2011) or the contrast of samples between different classes
(He et al., 2020; Oord et al., 2018) during the training of neu-
ral networks. Notably, Chan et al. (2022); Yu et al. (2020)
unified and formalized these practices and demonstrated
that the MCR2 objective is an effective objective to learn
within-class compressible and between-class discriminative
representations of the data.

The formulation of MCR2. In this work, we mainly con-
sider an MCR2 objective for supervised learning problems.
Specifically, let zi = fΘ(xi) for all i ∈ [m] denote the
features learned via the feature mapping fΘ(·) : Rn → Rd

parameterized by Θ. For each k ∈ [K], let πk ∈ {0, 1}m
be a label vector denoting membership of the samples in the
k-th class, i.e., πk

i = 1 if sample i belongs to class k and
πk
i = 0 otherwise for all i ∈ [m], and mk :=

∑m
i=1 π

k
i be

the number of samples in the k-th class.

For each k ∈ [K], let Zk ∈ Rd×mk be the matrix whose
columns are the features in the k-th class. Without loss
of generality, we reorder the samples in a class-by-class
manner, so that we can write the matrix of all features as

Z = [Z1, . . . ,ZK ] ∈ Rd×m. (1)

On one hand, to make features between different classes
discriminative or contrastive, one can maximize the lossy
coding rate of all features in Z, as argued in (Chan et al.,
2022; Yu et al., 2020), as follows:

R(Z) :=
1

2
log det

(
I +

d

mϵ2
ZZT

)
, (2)

where ϵ > 0 is a prescribed quantization error.4 On the other
hand, to make features from the same class compressible or
contractive, one can minimize the average lossy coding rate
of features in the k-th class as follows:

Rc

(
Z;πk

)
=

mk

2m
log det

(
I +

d

mkϵ2
ZkZ

T
k

)
. (3)

4Here, R(Z) is also known as the rate-distortion function in
information theory (Cover, 1999), which represents the average
number of binary bits needed to encode the data Z.
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Consequently, a good representation tends to maximize the
difference between the coding rate for the whole and that
for each class as follows:

max
Z∈Rd×m

R(Z)−
K∑

k=1

Rc

(
Z;πk

)
(4)

s.t. ∥Zk∥2F = mk, ∀k ∈ [K].

This is referred to as the principle of maximal coding rate
reduction in (Chan et al., 2022; Yu et al., 2020). It is
worth mentioning that this principle can be extended to self-
supervised and even unsupervised learning settings, where
we learn the label vectors {πk}Kk=1 during training.

2.2. The Regularized MCR2 Problem

Due to the Frobenius norm constraints, it is a tremendously
difficult task to analyze Problem (4) from an optimization-
theoretic perspective, as all the analysis would occur on a
product of spheres instead of on Euclidean space. Therefore,
we consider the Lagrangian formulation of (4). This can be
viewed as a tight relaxation or even an equivalent problem
of (4) whose optimal solutions agree under specific settings
of the regularization parameter; see Proposition 3.2. Specif-
ically, the formulation we study, referred to henceforth as
the regularized MCR2 problem, is as follows:

max
Z

F (Z) := R(Z)−
K∑

k=1

Rc(Z;πk)− λ

2
∥Z∥2F , (5)

where λ > 0 is the regularization parameter. Remark that
our study on this problem applies meaningfully to at least
two approaches to learning deep representations using the
MCR2 principle.

Applications of our formulation to deep representation
learning via unrolled optimization. The first approach,
as argued by Chan et al. (2022); Yu et al. (2023a), is to con-
struct a new deep network architecture, i.e., ReduNet (Chan
et al., 2022) or CRATE (Yu et al., 2023a), based on an iter-
ative gradient descent scheme to optimize the MCR2-type
objective. In this approach, each layer of the constructed net-
work approximates a gradient descent step to optimize the
MCR2-type objective given the input representation. The
key takeaway is that these networks approximately imple-
ment gradient descent directly on the representations, so our
analysis of the optimization properties of the MCR2-type
objective translates to explanations of the corresponding
properties of the learned representations and architectures
of these deep networks. In particular, our argument that
the optima and optimization landscape of (5) are favorable
directly translates to a justification of the correctness of
learned representations of the ReduNet and a validation of
its architecture design. Moreover, this study enables princi-
pled improvement of deep network architectures constructed

via unrolled optimization by leveraging more advanced opti-
mization techniques better suited for problems with benign
landscapes. This can improve model interpretability and
efficiency.

Applications of our formulation to deep representation
learning with standard neural networks. In the second
approach, one parameterizes the feature mapping fΘ(·) via
standard deep neural networks such as a multi-layer percep-
tron or ResNet (He et al., 2016), and treats the MCR2-type
objective like other loss functions applied to outputs of a
neural network, such as mean-squared error or cross-entropy
loss. Studying Problem (5) from this perspective would re-
quire us to optimize over Θ instead of over Z. This new
optimization problem would be extraordinarily difficult to
analyze, because modern neural networks have nonlinear
interactions across many layers, so the parameters Θ would
affect the final representation Z in a complex way. For-
tunately, since modern neural networks are often highly
over-parameterized, they can interpolate or approximate any
continuous function in the feature space (Lu et al., 2017),
so we may omit these constraints by assuming the uncon-
strained feature model, where zi for all i ∈ [N ] are treated
as free optimization variables (Mixon et al., 2020; Yaras
et al., 2022; Zhu et al., 2021; Wang et al., 2022a). Conse-
quently, studying the optimization properties of Problem
(5) provides valuable insights into the structures of learned
representations and the efficiency of training deep networks
using MCR2-type objectives.

Difficulties of analyzing Problem (5). Although Prob-
lem (5) has no constraints, one can observe that Problem
(5) is highly non-concave due to the quadratic form ZkZ

T
k

and the difference of log-determinant functions. Notably,
this problem shares similarities with low-rank matrix factor-
ization problems. However, it employs the log-determinant
function instead of the Frobenius norm, and the computation
of the objective gradient involves matrix inverses. There-
fore, from an optimization point of view, it is extremely
challenging to analyze Problem (5).

3. Main Results
In this section, we first characterize the local and global
optimal solutions of Problem (5) in Section 3.1, and then
analyze the global landscape of the objective function in
Section 3.2.

3.1. Characterization of Local and Global Optimality

Although Problem (5) is highly non-concave and involves
matrix inverses in its gradient computation, we can still
explicitly characterize its local and global optima as follows.
Theorem 3.1 (Local and global optimality). Suppose that
the number of training samples in the k-th class is mk > 0
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for each k ∈ [K]. Given a coding precision ϵ > 0, if the
regularization parameter satisfies

λ ∈

(
0,

d(
√
m/mmax − 1)

m(
√
m/mmax + 1)ϵ2

]
, (6)

then the following statements hold:
(i) (Characterization of local maximizers) Z =
[Z1, . . . ,ZK ] is a local maximizer of Problem (5) if and
only if the k-th block admits the following decomposition

Zk = σkUkV
T
k , (7)

where (a) rk = rank(Zk) satisfies rk ∈ [0,min{mk, d})
and

∑K
k=1 rk ≤ min{m, d}, (b) Uk ∈ Od×rk satisfies

UT
k Ul = 0 for all l ̸= k, Vk ∈ Omk×rk , and (c) the singu-

lar value σk is given in (16) for each k ∈ [K].
(ii) (Characterization of global maximizers) Z =
[Z1, . . . ,ZK ] is a global maximizer of Problem (5) if
and only if (a) it satisfies the above all conditions and∑K

k=1 rk = min{m, d}, and (b) for all k ̸= l ∈ [K] satis-
fying mk < ml and rl > 0, we have rk = min{mk, d}.

We defer the proof to Section 4.1 and Appendix D.1. In
this theorem, we explicitly characterize the local and global
optima of Problem (5). Intuitively, this demonstrates that
the features represented by each local maximizer of Problem
(5) are low-dimensional and discriminative in the sense that
(i) Within-class compressible: According to (7), at each
local maximizer, the features from the same class belong to
the same low-dimensional linear subspace.
(ii) Between-class discriminative: It follows from (7) and
UT

k Ul = 0 for all k ̸= l that, at each local maximizer, the
features from different classes belong to different subspaces
that are orthogonal to each other.
Moreover, the features represented by each global maxi-
mizer of Problem (5) are not only low-dimensional and
discriminative but also diverse in the sense that
(iii) Maximally Diverse Representation: According to∑K

k=1 rk = min{m, d}, at each global maximizer, the total
dimension of all features is maximized to match the highest
dimension that it can achieve in the feature space.

Quality of local versus global optima. Our above dis-
cussion explains the merits of achieving both local and
global optima. At each maximizer, the representations are
within-class compressible and between-class discriminative
(Theorem 3.1 (i)). Moreover, global maximizers further
satisfy that the representations are all maximally diverse
(Theorem 3.1 (ii) (a)). If all classes were balanced, i.e.,
m1 = · · · = mK , then Theorem 3.1 (ii) (b) would not
apply, and these properties would be all that Theorem 3.1
asserts. In this case, global optima would clearly be desired
over local optima. However, in the unbalanced case, the sit-
uation is more complex, because Theorem 3.1 (ii) (b) would

apply. It says that for global optima, the classes with the
smallest numbers of samples would fill to the largest dimen-
sion possible, and the very largest classes could collapse to
0, an undesirable situation. A dramatic example of this is
when m1 > · · · > mK > d, for then any global optimum
would have rank(ZK) = d and Z1, . . . ,ZK−1 all collapse
to 0. Overall, in the unbalanced case, global optima may not
always correspond to the best representations. In particular,
local optima with more equitable rank distributions (like
bigger classes span more dimensions) which are still maxi-
mally diverse (i.e., ranks of each class sum to the dimension
d) could be preferred in applications. As demonstrated in
Section 5.1, these kinds of potentially useful local optima
are realized in experiments, even with unbalanced classes.

Relation between Problems (4) and (5). Based on the
characterization of global optimality in Theorem 3.1, we
show the following proposition that establishes the relation-
ship between the constrained MCR2 problem (4) and the
regularized MCR2 problem (5) in terms of their global so-
lutions under an appropriate choice of the regularization
parameter. The proof of this result can be found in Ap-
pendix D.2.

Proposition 3.2. Suppose that the number of training sam-
ples in each class is the same, i.e., m1 = · · · = mK , and
the coding precision ϵ > 0 satisfies

ϵ ≤ 1

6

√
d

m
exp

(
−1

2

)
K− 1

K−1

(
1 +

1√
K

)− m
K−1

. (8)

The following statements hold:
(i) If m < d and the regularization parameter in Problem
(5) is set as

λ =
α

1 + α
− α

1 +Kα
, (9)

Problems (4) and (5) have the same global solution set.
(ii) If m ≥ d, d/K is an integer, and the regularization
parameter in Problem (5) is set as

λ =
α

1 + αm/d
− α

1 + αKm/d
, (10)

the global solution set of Problem (4) is a subset of that of
Problem (5).

According to this proposition, if ϵ and λ are appropriately
chosen for Problem (5), when m < d, Problems (4) and
(5) are equivalent in terms of their global optimal solutions;
when m ≤ d, Problem (5) is a tight Lagrangian relaxation
of Problem (4) such that the global solution set of the former
contains that of the latter.

3.2. Analysis of Global Optimization Landscape

While we have characterized the local and global optimal so-
lutions in Theorem 3.1, it remains unknown whether these
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solutions can be computed efficiently using GD to solve
Problem (5), as GD may get stuck at a saddle point. Fortu-
nately, Sun et al. (2015); Lee et al. (2016) showed that if a
function is twice continuously differentiable and satisfies
strict saddle property, i.e., each critical point is either a
local minimizer or a strict saddle point5, GD converges to
its local minimizer almost surely with random initialization.
We investigate the global optimization landscape of Problem
(5) by characterizing all of its critical points as follows.

Theorem 3.3 (Benign optimization landscape). Suppose
that the number of training samples in the k-th class is
mk > 0 for each k ∈ [K]. Given a coding precision ϵ > 0,
if the regularization parameter satisfies (6), it holds that any
critical point Z of Problem (5) that is not a local maximizer
is a strict saddle point.

We defer the proof to Section 4.2 and Appendix D.3. Here,
we make some remarks on this theorem and also on the
consequences of the results derived so far.

Differences from existing results on the MCR2 problem.
Chan et al. (2022); Yu et al. (2020) have characterized the
global optimality of Problem (4) with Frobenius norm con-
straints on each Zk in the UFM. However, their analysis
requires an additional rank constraint on each Zk and only
characterizes globally optimal representations. In contrast,
our analysis eliminates the need for the rank constraint,
and we characterize local and global optimality in Problem
(5), as well as its optimization landscape. Interestingly, we
demonstrate that the features represented by each local max-
imizer — not just global maximizers — are also compact
and structured. Furthermore, we demonstrate that the regu-
larized MCR2 objective (5) is a strict saddle function. To the
best of our knowledge, Theorems 3.1 and 3.3 constitute the
first analysis of local optima and optimization landscapes for
MCR2 objectives. According to Daneshmand et al. (2018);
Lee et al. (2016); Xu et al. (2018), Theorems 3.1 and 3.3 im-
ply that low-dimensional and discriminative representations
can be efficiently found by (stochastic) GD on Problem (5)
from a random initialization.

Comparison to existing landscape analyses in non-
convex optimization. In recent years, there has been a
growing body of literature exploring optimization land-
scapes of non-convex problems in machine learning and
deep learning. These include low-rank matrix factoriza-
tion (Ge et al., 2017; Sun et al., 2018; Chi et al., 2019;
Zhang et al., 2020), community detection (Wang et al.,
2021; 2022b), dictionary learning (Sun et al., 2017; Qu
et al., 2020; Zhai et al., 2020), and deep neural networks
(Sun et al., 2020; Yaras et al., 2022; Zhou et al., 2022; Zhu

5We say that a critical point is a strict saddle point of Problem
(5) if it has a direction with strictly positive curvature; see Defini-
tion A.2. This includes classical saddle points with strictly positive
curvature as well as local minimizers.

et al., 2021; Jiang et al., 2024). The existing analyses in the
literature cannot be applied to the MCR2 problem due to its
special structure, which involves the log-determinant of all
features minus the sum of the log-determinant of features
in each class. Our work contributes to the literature on op-
timization landscape analyses of non-convex problems by
showing that the MCR2 problem has a benign optimization
landscape. Our approach may be of interest to analyses of
the landscapes of other intricate loss functions in practical
applications.

4. Proofs of Main Results
In this section, we sketch the proofs of our main theorems
in Section 3. The complete proofs can be found in Sections
B and C of the appendix. For ease of exposition, let

α :=
d

mϵ2
, αk :=

d

mkϵ2
, ∀k ∈ [K]. (11)

4.1. Analysis of Optimality Conditions

Our goal in this subsection is to characterize the local and
global optima of Problem (5). Towards this goal, we first
provide an upper bound on the objective function F in Prob-
lem (5). In particular, this upper bound is tight when the
blocks {Zk}Kk=1 are orthogonal to each other. This result is
a direct consequence of (Chan et al., 2022, Lemma 10).

Lemma 4.1. For any Z = [Z1, . . . ,ZK ] ∈ Rd×m with
Zk ∈ Rd×mk , we have

F (Z) ≤
K∑

k=1

(
1

2
log det

(
In + αZkZ

T
k

)
− (12)

mk

2m
log det

(
In + αkZkZ

T
k

)
− λ

2
∥Zk∥2F

)
,

where the inequality becomes equality if and only if
ZT

k Zl = 0 for all 1 ≤ k ̸= l ≤ K.

Next, we study the following set of critical points, which
are between-class discriminative (i.e., ZT

k Zl = 0):

Z :=
{
Z : ∇F (Z) = 0, ZT

k Zl = 0, ∀k ̸= l
}
. (13)

Proposition 4.2. Consider the setting of Theorem 3.1. It
holds that Z = [Z1, . . . ,ZK ] ∈ Z if and only if each Zk

admits the following singular value decomposition

Zk = UkΣ̃kV
T
k , Σ̃k = diag (σk,1, . . . , σk,rk) , (14)

where (i) rk ∈ [0,min{mk, d}) satisfies
∑K

k=1 rk ≤ d, (ii)
Uk ∈ On×rk satisfies UT

k Ul = 0 for all 1 ≤ k ̸= l ≤ K,
Vk ∈ Omk×rk for all k ∈ [K], and (iii) the singular values
satisfy

σk,i ∈ {σk, σk} , ∀i ∈ [rk], (15)
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(a) Heatmap of cosine simi-
larity among features. (b) The number and magnitude of singular values of each class matrix.

Figure 2. Validation of theory for the MCR2 problem. (a) We visualize the heatmap of cosine similarity among learned features by GD
for solving Problem (5). The lighter pixels represent lower cosine similarities between pairwise features. (b) The blue dots are plotted
based on the singular values by applying SVD to the solution returned by GD, and the red line is plotted according to the closed-form
solution in (7). The number of nonzero singular values in each subspace is 24, 23, 27, 26, respectively.

where ηk = (αk − α)− λ (m/mk + 1) and

σk =

(
ηk +

√
η2k − 4λ2m/mk

2λαk

)1/2

, (16)

σk =

(
ηk −

√
η2k − 4λ2m/mk

2λαk

)1/2

. (17)

This proposition shows that each critical point that is
between-class discriminative (i.e., ZT

k Zl = 0) exhibits
a specific structure: the singular values of Zk can only take
on two possible values, σk and σk. We will leverage this
structure and further show that Z is a strict saddle if there
exists a Zk with a singular value σk.

4.2. Analysis of Optimization Landscape

Our goal in this subsection is to show that the function F in
Problem (5) has a benign optimization landscape. Towards
this goal, we denote the set of critical point of F by

X =
{
Z ∈ Rd×m : ∇F (Z) = 0

}
. (18)

According to (13), we divide the critical point set X into
two disjoint sets Z and Zc, i.e., X = Z ∪ Zc, where

Zc :=
{
Z : ∇F (Z) = 0, ZT

k Zl ̸= 0, ∃k ̸= l
}
. (19)

Moreover, according to Proposition 4.2, we further divide Z
into two disjoint sets Z1 and Z2, i.e., Z = Z1 ∪ Z2. Here,

Z1 := Z ∩ {Z : σk,i(Zk) = σk, ∀i ∈ [rk], k ∈ [K]} ,
Z2 := Z \ Z1, (20)

where σk,i(Zk) denotes the i-th largest singular value of
Zk. Our first step is to show that any point belonging to Z1

is a local maximizer, while any point belonging to Z2 is a
strict saddle point.

Proposition 4.3. Consider the setting of Theorem 3.3. Sup-
pose that Z ∈ Z . Then, the following statements hold:

(i) If Zk takes the form of (14) with σk,i = σk for all
i ∈ [rk] and all k ∈ [K], i.e., Z ∈ Z1, then Z is a local
maximizer.
(ii) If there exists a k ∈ [K] and i ∈ [rk] with rk ≥ 1 such
that σk,i = σk, i.e., Z ∈ Z2, then Z is a strict saddle point.

Next, we proceed to the second step to show that any point
belonging to Zc is a strict saddle point. It suffices to find
a direction D ∈ Rd×m such that ∇2F (Z)[D,D] > 0 for
each Z ∈ Zc according to Definition A.2.

Proposition 4.4. Consider the setting of Theorem 3.3. If
Z ∈ Rd×m is a critical point and there exists 1 ≤ k ̸= l ≤
K such that ZT

k Zl ̸= 0, i.e., Z ∈ Zc, then Z is a strict
saddle point.

With the above preparations that characterize all the critical
points, we can prove Theorem 3.1 and Theorem 3.3. We
refer the reader to Appendix D for the detailed proof.

5. Experimental Results
In this section, we first conduct numerical experiments on
synthetic data in Section 5.1 to validate our theoretical re-
sults, and then on real-world data sets using deep neural
networks in Section 5.2 to further support our theory. All
codes are implemented in Python mainly using NumPy and
PyTorch. All of our experiments are executed on a com-
puting server equipped with NVIDIA A40 GPUs. Due to
space limitations, we defer some implementation details and
additional experimental results to Appendix E.

5.1. Validation of Theory for Solving Problem (5)

In this subsection, we employ GD for solving Problem (5)
with different parameter settings. We visualize the optimiza-
tion dynamics and structures of the solutions returned by
GD to verify and validate Theorems 3.1 and 3.3.

Verification of Theorem 3.1. In this experiment, we set
the parameters in Problem (5) as follows: the dimension of
features d = 100, the number of classes K = 4, the num-
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(a) Convergence for m = 200 and d ∈ {40, 80, 120}. (b) Convergence for d = 50 and m ∈ {100, 200, 400}.

Figure 3. Convergence performance of GD for solving the regularized MCR2 problem. The x-axis is number of iterations (also
denoted by t), and the y-axis is the function value gap F t − F ∗, where F t = F (Zt) denotes the function value at the t-th iterate Zt

generated by GD, and F ∗ is the optimal value of Problem (5) computed according to (7) in Theorem 3.1.

(a) MNIST: m = 1500,K = 6 (b) MNIST: m = 2500,K = 10 (c) CIFAR: m = 1500,K = 6 (d) CIFAR: m = 2500,K = 10

Figure 4. Heatmap of cosine similarity among features produced by deep networks trained on MNIST and CIFAR-10. The darker
pixels represent higher absolute cosine similarity between features.

ber of samples in each class is m1 = 30,m2 = 70,m3 =
40,m4 = 60, the regularization parameter λ = 0.1, and
the quantization error ϵ = 0.5. Then, one can verify that λ
satisfies (6). For the solution Z returned by GD, we first
plot the heatmap of the cosine similarity between pairwise
columns of Z in Figure 2(a). We observe that the features
from different classes are orthogonal to each other, while
the features from the same class are correlated. Next, we
compute the singular values of Zk via singular value de-
composition (SVD) and plot the singular values using blue
dots for each k ∈ [K] in Figure 2(b). According to the
closed-form solution (7) in Theorem 3.1, we also plot the
theoretical bound of singular values in red in Figure 2(b).
One can observe that the number of singular values of each
block is respectively 24, 23, 27, 26, summing up to 100, and
the red line perfectly matches the blue dots. These results
all provide strong support for Theorem 3.1.

Verification of Theorem 3.3. In this experiment, we main-
tain the same setting as above, except that the number of
samples in each class is equal. We first fix m = 200 and
vary d ∈ {40, 80, 120}, and then fix d = 50 and vary
d ∈ {100, 200, 400} to run GD. We plot the distances be-
tween function values of the iterates to the optimal value,
which is computed according to (7) in Theorem 3.1, against

the iteration numbers in Figure 3. We observe that GD with
random initialization converges to an optimal solution at
a linear rate. This indicates that the MCR2 has a benign
global landscape, which supports Theorem 3.3.

5.2. Training Deep Networks Using Regularized MCR2

In this subsection, we conduct numerical experiments on the
image datasets MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky et al., 2009) to provide evidence that our theory
also applies to deep networks. More specifically, we employ
a multi-layer perceptron network with ReLU activation as
the feature mapping z = fΘ(x) with output dimension
32 for MNIST and 128 for CIFAR-10. Then, we train the
network parameters Θ via Adam (Kingma & Ba, 2014) by
optimizing Problem (5).

Experimental setting and results. In the experiments,
we randomly sample a balanced subset with K classes and
m samples from MNIST or CIFAR-10, where each class
has the same number of samples. We set λ = 0.001 and
ϵ = 0.5. For different subsets with corresponding values of
(m,K), we run experiments and report the function value
F̂ obtained by training deep networks and the optimal value
F ∗ computed using the closed-form solution in Theorem 3.1

8
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Table 1. Function value F̂ obtained by training deep networks, the
optimal value F ∗ computed by our theory on subsets of MNIST
or CIFAR-10, and discrimination metric s of features.

MNIST (m,K) F̂ F ∗ s

(1000, 4) 37.38 37.38 5.9 · 10−6

(1500, 6) 38.96 38.96 3.8 · 10−6

(2000, 8) 38.48 38.48 0.011
(2500, 10) 37.41 37.41 0.008

CIFAR-10 (m,K) F̂ F ∗ s

(1000, 4) 215.61 215.61 0.004
(1500, 6) 229.14 229.14 0.029
(2000, 8) 230.70 230.70 0.059
(2500, 10) 228.48 228.49 0.171

in Table 1. To verify the discriminative nature of the fea-
tures obtained by training deep networks across different
classes, we measure the discrimination between features be-
longing to different classes by computing the cosine of the
principal angle (Björck & Golub, 1973) between the class
subspaces: s = max

{
∥UT

k Ul∥ : k ̸= l ∈ [K]
}

∈ [0, 1],
where the columns of Uk ∈ Rd×rk are the right singular
vectors corresponding to the top rk singular values of Zk

defined in (14) and rk is its rank6 for each k ∈ [K]. In par-
ticular, when s is smaller, the spaces spanned by each pair
Zk and Zl for k ̸= l are closer to being orthogonal to each
other. Then, we record the value s in Table 1 in different
settings. Moreover, we visualize the pairwise cosine simi-
larities between learned features on MNIST and CIFAR-10
when (m,K) = (1500, 6) and (2500, 10) in Figure 4.

We observe from Table 1 that the function value returned
by training deep networks is extremely close to the global
optimal value of Problem (5) and from the value s and
Figure 4 that the features from different classes are nearly
orthogonal to each other. These observations, together with
Theorems 3.1 and 3.3, indicate that Problem (5) retains its
optimization properties even when Z is parameterized by a
neural network. Our theoretical analysis of Problem (5) thus
illustrates a qualitative picture of training deep networks
with the regularized MCR2 objective.

6. Conclusion
In this work, we provided a complete characterization of the
global landscape of the MCR2 objective, a highly noncon-
cave and nonlinear function used for representation learn-
ing. We characterized all critical points, including the local
and global optima, of the MCR2 objective, and showed
that — surprisingly — it has a benign global optimization

6We estimate the rank of a matrix by rounding its “stable rank”
(Horn & Johnson, 2012): rk = round(∥Zk∥2F /∥Zk∥2).

landscape. These characterizations provide rigorous justi-
fications for why such an objective can be optimized well
using simple algorithms such as gradient-based methods.
In particular, we show that even local optima of the objec-
tive leads to geometrically meaningful representations. Our
experimental results on synthetic and real-world datasets
clearly support this new theoretical characterization. With
the global landscape clearly revealed, our work paves the
way for exploring better optimization strategies, hence better
deep neural network architectures, for optimizing the MCR2

objective more efficiently and effectively. For future work,
it is natural to extend our analysis to Problem (4) with deep
network parameterizations. It is also interesting to study the
sparse MCR2 objective, which has led to high-performance
transformer-like architectures (Yu et al., 2023a;b).
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Supplementary Material

The organization of the supplementary material is as follows: In Appendix A, we introduce preliminary setups and auxiliary
results for studying the MCR2 problem. Then, we prove the technical results concerning the global optimality of Problem
(5) in Appendix B and the optimization landscape of Problem (5) in Appendix C, respectively. In Appendix D, we prove the
main theorems in Theorem 3.1 and Theorem 3.3. Finally, we provide more experimental setups and results in Appendix E.

Besides the notions introduced earlier, we shall use BlkDiag(X1, . . . ,XK) to denote the block diagonal matrix whose
diagonal blocks are X1, . . . ,XK .

A. Preliminaries
In this section, we first introduce the first-order optimality condition and the concept of a strict saddle point for F (·) in
Problem (5) in Section A.1, and finally present auxiliary results about matrix computations and properties of the log-
determinant function in Section A.2. Recall that Z = [Z1, . . . ,ZK ] ∈ Rd×m with Zk ∈ Rd×mk for each k ∈ [K], and
α, αk are defined in (11). To simplify our development, we write Rc(Z,πk) in (3) as

Rc(Z,πk) :=
mk

m
Rc(Zk), where Rc(Zk) :=

1

2
log det

(
I + αkZkZ

T
k

)
. (21)

Therefore, we can write F (Z) in Problem (5) into

F (Z) = R(Z)−
K∑

k=1

mk

m
Rc(Zk)−

λ

2
∥Z∥2F . (22)

A.1. Optimality Conditions and Strict Saddle Points

To begin, we compute the gradient and Hessian (in bilinear form along a direction D ∈ Rd×m) of R(·) in (2) as follows:

∇R(Z) = αX−1Z, (23)

∇2R(Z)[D,D] = α⟨X−1,DDT ⟩ − α2

2
Tr
(
X−1(ZDT +DZT )X−1(ZDT +DZT )

)
, (24)

where X := In + αZZT and α is defined in (11). Note that we can compute the gradient and Hessian of Rc(·) in (21)
using the same approach. Based on the above setup, we define the first-order optimality condition of Problem (5) as follows.

Definition A.1. We say that Z ∈ Rd×m is a critical point of Problem (5) if ∇F (Z) = 0, i.e.,

α(I + αZZT )−1Zk − α(I + αkZkZ
T
k )

−1Zk − λZk = 0, ∀k ∈ [K], (25)

where α and αk are defined in (11).

According to Jin et al. (2017); Lee et al. (2019), we define the strict saddle point, i.e., a critical point that has a direction
with strictly positive curvature7, of Problem (5) as follows:

Definition A.2. Suppose that Z ∈ Rd×m is a critical point of Problem (5). We say that Z is its strict saddle point if there
exists a direction D = [D1, . . . ,DK ] ∈ Rd×m with Dk ∈ Rd×mk such that

∇2F (Z)[D,D] > 0,

where

∇2F (Z)[D,D] = ∇2R(Z)[D,D]−
K∑

k=1

mk

m
∇2Rc(Zk)[Dk,Dk]− λ∥D∥2F . (26)

Remark that for the MCR2 problem, strict saddle points include classical saddle points with strictly positive curvature as
well as local minimizers.

7Note that Problem (5) is not a minimization problem but a maximization problem.
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A.2. Auxiliary Results

We provide a matrix inversion lemma, which is also known as Sherman–Morrison–Woodbury formula.

Lemma A.3 (Matrix inversion lemma). For any Z ∈ Rd×m, we have

(I + αZZT )−1 = I −Z

(
1

α
I +ZTZ

)−1

ZT . (27)

We next present a commutative property for the log-determinant function and the upper bound for the coding rate function.
We refer the reader to (Chan et al., 2022, Lemma 8 & Lemma 10) for the detailed proofs. Here, let Z = UΣV T be
a singular value decompositon (SVD) of Z ∈ Rd×m, where r = rank(Z) ≤ min{m, d}, U ∈ Od×r, Σ ∈ Rr×r is a
diagonal matrix, and V ∈ Om×r.

Lemma A.4 (Commutative property). For any Z ∈ Rd×m and α > 0, we have

1

2
log det

(
I + αZZT

)
=

1

2
log det

(
I + αZTZ

)
=

1

2
log det

(
I + αΣ2

)
. (28)

Lemma A.5. Let Z = [Z1, . . . ,ZK ] ∈ Rd×m. Given α > 0, it holds that

log det
(
I + αZZT

)
≤

K∑
k=1

log det
(
I + αZkZ

T
k

)
, (29)

where the equality holds if and only if ZT
k Zl = 0 for all k ̸= l ∈ [K].

Finally, we show that the objective function of Problem (5) is invariant under the block diagonal orthogonal matrices.

Lemma A.6. For any O = BlkDiag (O1, . . . ,OK), where Ok ∈ Omk for each k ∈ [K], we have

F (ZO) = F (Z), ∇F (ZO) = ∇F (Z)O, ∇2F (ZO)[DO,DO] = ∇2F (Z)[D,D]. (30)

Proof of Lemma A.6. Let Ok ∈ Omk be arbitrary for each k ∈ [K] and O = BlkDiag (O1, . . . ,OK). According to (2)
and (21), we have R(ZO) = R(Z) and Rc(ZkOk) = R(Zk). This, together with (5), yields that F (ZO) = F (Z).
Moreover, it follows from (23) that ∇R(ZO) = ∇R(Z)O and ∇Rc(ZkOk) = ∇Rc(Zk)Ok. This implies ∇F (ZO) =
∇F (Z). Finally, using (24), we have ∇2R(ZO)[DO,DO] = ∇2R(Z)[D,D] and ∇2Rc(ZkOk)[DkOk,DkOk] =
∇2R(Zk)[Dk,Dk]. This, together with (26), implies ∇2F (ZO)[DO,DO] = ∇2F (Z)[D,D].

B. Proofs in Section 4.1
B.1. Proof of Lemma 4.1

Proof of Lemma 4.1. It follows from Lemma A.5 that

log det
(
Id + αZZT

)
≤

K∑
k=1

log det
(
Id + αZkZ

T
k

)
, (31)

where the equality holds if and only if ZT
k Zl = 0 for all 1 ≤ k ̸= l ≤ K. Substituting this into (5) directly yields (12).

B.2. Proof of Proposition 4.2

Proof of Proposition 4.2. Let Z ∈ Z be arbitrary, where Z is defined in (13). It follows from Z = [Z1, . . . ,ZK ] ∈ Rd×m

that
∑K

k=1 rk ≤ d. According to Lemma 4.1 and ZT
k Zl = 0 for all k ̸= l due to Z ∈ Z , we have F (Z) =

∑K
k=1 fk(Zk),

where fk : Rd×mk → R takes the form of

fk(Zk) :=
1

2
log det

(
Id + αZkZ

T
k

)
− mk

2m
log det

(
Id + αkZkZ

T
k

)
− λ

2
∥Zk∥2F . (32)

14
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This, together with (23), yields that ∇F (Z) = 0 is equivalent to

α
(
Id + αZkZ

T
k

)−1
Zk − α

(
Id + αkZkZ

T
k

)−1
Zk = λZk, ∀k ∈ [K]. (33)

Obviously, Zk = 0 is a solution of the above equation for each k ∈ [K], which satisfies ZT
k Zl = 0 for all l ̸= k. Now, we

consider Zk ̸= 0, and thus 1 ≤ rk = rank(Zk) ≤ min{mk, d}. Let

Zk = PkΣkQ
T
k =

[
Pk,1 Pk,2

] [Σ̃k 0
0 0

] [
QT

k,1

QT
k,2

]
(34)

be a singular value decomposition (SVD) of Zk ∈ Rd×mk , where Σ̃k = diag(σk,1, . . . , σk,rk) with σk,1 ≥ · · · ≥ σk,rk > 0
being positive singular values of Zk, Pk ∈ Od with Pk,1 ∈ Rd×rk and Pk,2 ∈ Rd×(d−rk), and Qk ∈ Omk with
Qk,1 ∈ Rmk×rk and Qk,2 ∈ Rmk×(mk−rk). Substituting this SVD into (33) yields for all k ∈ [K],

αPk(Id + αΣkΣ
T
k )

−1ΣkQ
T
k − αPk(Id + αkΣkΣ

T
k )

−1ΣkQ
T
k = λPkΣkQ

T
k ,

which is equivalent to

α(Id + αΣkΣ
T
k )

−1Σk − α(Id + αkΣkΣ
T
k )

−1Σk = λΣk.

Using Σk = BlkDiag(Σ̃k,0), we further obtain

α(Irk + αΣ̃2
k)

−1Σ̃k − α(Irk + αkΣ̃
2
k)

−1Σ̃k = λΣ̃k.

Since Σ̃k is a diagonal matrix with diagonal entries being positive, we have for all k ∈ [K],

(Irk + αΣ̃2
k)

−1 − (Irk + αkΣ̃
2
k)

−1 =
λ

α
Irk . (35)

This implies for each i ∈ [rk] and k ∈ [K],

1

1 + ασ2
k,i

− 1

1 + αkσ2
k,i

=
λ

α
. (36)

Therefore, we obtain that σ2
k,i > 0 for each i ∈ [rk] is a positive root of the following quadratic equation with a variable

x ∈ R:

λαkx
2 − ηkx+

λ

α
= 0,

where

ηk := (αk − α)− λ
(
1 +

αk

α

)
, ∀k ∈ [K]. (37)

According to (6), one can verify that for each k ∈ [K],

ηk > 0, η2k − 4αk

α
λ2 ≥ 0.

This yields that the above quadratic equation has positive roots as follows. For each i ∈ [rk] and k ∈ [K], we have

σ2
k,i =

ηk ±
√
η2k − 4λ2m/mk

2λαk
. (38)

Finally, using ZT
k Zl = 0 and (34), we obtain QT

k,1Ql,1 = 0 for all 1 ≤ l ̸= k ≤ K. These, together with (34), yields (14).

Conversely, suppose that each block Zk of Z satisfies Zk = 0 or takes the form (14) for some Uk ∈ Od×rk satisfying
UT

k Ul = 0 for all l ̸= k, Vk ∈ Omk×rk for all k ∈ [K], and σk,i > 0 satisfying (15). We are devoted to showing
Z ∈ Z . It is straightforward to verify that ZT

k Zl = 0 for all 1 ≤ k ̸= l ≤ K. This, together with Lemma 4.1, implies
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F (Z) =
∑K

k=1 fk(Zk). Therefore, it suffices to verify that ∇fk(Zk) = 0 for each k ∈ [K] in the rest of the proof. For
each k ∈ [K], if Zk = 0, it is obvious to verify ∇f(Zk) = 0. Otherwise, Zk takes the form (14) for some Uk ∈ Od×rk ,
Σ̃k ∈ Rrk×rk satisfying (15), and Vk ∈ Omk×rk , where rk ≥ 1. Now, we compute for all i ∈ [rk],

σ2
k,i

1/αk + σ2
k,i

−
σ2
k,i

1/α+ σ2
k,i

=
αkσ

2
k,i

1 + αkσ2
k,i

−
ασ2

k,i

1 + ασ2
k,i

=
(αk − α)σ2

k,i(
1 + αkσ2

k,i

)(
1 + ασ2

k,i

)
=

1

1 + ασ2
k,i

− 1

1 + αkσ2
k,i

=
λ

α
, (39)

where the last equality is due to (15), (16), (17), and (36). Then, we compute(
Id + αZkZ

T
k

)−1
=
(
Id + αUkΣ̃

2
kU

T
k

)−1

= Id −UkΣ̃k

(
1

α
Irk + Σ̃2

k

)−1

Σ̃kU
T
k . (40)

where the second equality follows from (27). This, together with (23), yields

∇fk(Zk) = α
(
Id + αZkZ

T
k

)−1
Zk − α

(
Id + αkZkZ

T
k

)−1
Zk − λZk

= αUkΣ̃k

((
1

αk
Irk + Σ̃2

k

)−1

−
(
1

α
Irk + Σ̃2

k

)−1
)
Σ̃2

kV
T
k − λZk = 0,

where the last equality follows from (14) and (39). Therefore, we have ∇F (Z) = 0 as desired. This, together with
ZT

k Zl = 0, implies Z ∈ Z .

C. Proofs in Section 4.2
C.1. Proof of Proposition 4.3

Proof of Proposition 4.3. For each Z ∈ Z , it follows from Lemma 4.1 that

F (Z) =
K∑

k=1

fk(Zk), (41)

where fk is defined in (32). Suppose that there exists k ∈ [K] such that rk = 0, i.e., Zk = 0. According to (24) and (32),
we compute for any Dk ̸= 0,

∇fk(Zk)[Dk,Dk] =
(α
2
− mk

2m
αk − λ

)
∥Dk∥2F = −λ∥Dk∥2F < 0,

where the second equality follows from mkαk/m = α according to (11). This implies 0 is a local maximizer of fk(Zk).
Suppose to the contrary that rk > 0 for all k ∈ [K]. For each Z ∈ Z , using Lemma 4.1 with ZT

k Zl = 0 for all k ̸= l, (14),
and (32), we have

F (Z) =

K∑
k=1

(
1

2
log det

(
In + αUkΣ̃

2
kU

T
k

)
− mk

2m
log det

(
In + αkUkΣ̃

2
kU

T
k

)
− λ

2
∥Zk∥2F

)

=
K∑

k=1

(
1

2
log det

(
I + αΣ̃2

k

)
− mk

2m
log det

(
I + αkΣ̃

2
k

)
− λ

2
∥Σ̃k∥2F

)

=
1

2

K∑
k=1

rk∑
i=1

(
log
(
1 + ασ2

k,i

)
− mk

m
log
(
1 + αkσ

2
k,i

)
− λσ2

k,i

)
, (42)

where the second equality is due to (14) and Lemma A.4. For ease of exposition, let

hk(x) = log (1 + αx)− mk

m
log (1 + αkx)− λx, ∀k ∈ [k]. (43)

Using (15), (36), (37), and (38), one can verify that h′
k(x) ≤ 0 for x ∈ (0, σk), h

′
k(x) ≥ 0 for x ∈ [σk, σk), and h′

k(x) ≤ 0
for x ∈ [σk,∞) for all k ∈ [K]. This yields that hk(σk) is a local minimizer and h(σk) is a local maximizer. This, together
with (42) and the fact that 0 is a local maximizer of fk(Zk), implies (i) and (ii).
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C.2. Proof of Proposition 4.4

Proof of Proposition 4.4. Note that Z ∈ Rd×m is a critical point that satisfies (25). Suppose that rank (Z) = r and
rank (Zk) = rk for all k ∈ [K]. Obviously, we have rk ≤ min{mk, d} for all k ∈ [K] and

∑K
k=1 rk ≤ r ≤ min{m, d}.

Now, let ZZT = QΛQT be an eigenvalue decomposition of ZZT ∈ Sd+, where Q ∈ Od×r and Λ ∈ Rr×r is a diagonal
matrix with diagonal entries being positive eigenvalues of ZZT . Suppose that ZZT has p distinct positive eigenvalues,
where 1 ≤ p ≤ r. Let λ1 > · · · > λp > 0 be its distinct eigenvalue values with the corresponding multiplicities being
h1, . . . , hp ∈ N+, respectively. Obviously, we have

∑p
i=1 hi = r. Therefore, we write

Λ = BlkDiag
(
λ1Ih1 , . . . , λpIhp

)
, Q =

[
Q1, . . . ,Qp

]
, (44)

where Qi ∈ Od×hi for all i ∈ [p].

According to Lemma A.6, we can see that Z is a critical point with curvature if and only if ZO is a critical point with the
same curvature for each O = BlkDiag (O1, . . . ,OK) with Ok ∈ Omk for all k ∈ [K]. According to the SVD of Zk in
(34), we can take Ok = Qk for each k ∈ [K]. Therefore, it suffices to study Zk = PkΣk for each k ∈ [K]. Substituting
this into (25) in Definition A.1 gives

α(I + αZZT )−1PkΣk − αPk(I + αkΣkΣ
T
k )

−1Σk − λPkΣk = 0, ∀k ∈ [K].

This is equivalent to

α(I + αZZT )−1Zk = Zk

(
α(I + αkΣkΣ

T
k )

−1 + λI
)
, ∀k ∈ [K].

This yields that each column of Zk is an eigenvector of Z for each k ∈ [K]. This, together with the decomposition in
(44), yields that we can permute the columns of Zk such that the columns belonging to the space spanned by Qi are
rearranged together. Let sk,i ∈ N denote the number of columns of Zk that belong to the space spanned by Qi for each
i ∈ [p]. Obviously, we have

∑p
i=1 sk,i = mk. Consequently, for each k ∈ [K], there exists an a column permutation matrix

Πk ∈ Rmk×mk such that

ZkΠk =
[
Z

(1)
k . . . Z

(p)
k

]
. (45)

where QiQ
T
i Z

(i)
k = Z

(i)
k ∈ Rd×sk,i . Since QT

i Qj = 0, we have Z
(i)T

k Z
(j)
k = 0 for all i ̸= j. This, together with (21)

and Lemma A.5, yields

Rc(Zk) =
mk

2m

p∑
i=1

log det
(
In + αkZ

(i)
k Z

(i)T

k

)
. (46)

Moreover, let si :=
∑K

k=1 sk,i and

Z(i) :=
[
Z

(i)
1 . . . Z

(i)
K

]
∈ Rd×si , ∀i ∈ [p]. (47)

Using this and (45), we have

ZZT =
K∑

k=1

ZkZ
T
k =

K∑
k=1

p∑
i=1

Z
(i)
k Z

(i)T

k =

p∑
i=1

Z(i)Z(i)T .

This, together with (2), Lemma A.5, and Z(i)TZ(j) = 0, yields that

R(Z) =
1

2

p∑
i=1

log det
(
I + αZ(i)Z(i)T

)
. (48)
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Characterize the structure of critical points. Now, for each k ∈ [K] and i ∈ [p], let rk,i = rank(Z
(i)
k ), where

rk,i ≤ min{d, sk,i}. Moreover, let

Z
(i)
k = U

(i)
k Σ

(i)
k V

(i)T

k =
[
U

(i)
k,1 U

(i)
k,2

] [
Σ̃

(i)
k 0
0 0

] [
V

(i)T

k,1

V
(i)T

k,2

]
(49)

be a singular value decomposition (SVD) of Z(i)
k , where Σ̃

(i)
k ∈ Rrk,i×rk,i is a diagonal matrix with diagonal entries

being positive singular values of Z(i)
k ; U (i)

k ∈ Od with U
(i)
k,1 ∈ Rd×rk,i and U

(i)
k,2 ∈ Rd×(d−rk,i); V (i)

k ∈ Osk,i with

V
(i)
k,1 ∈ Rsk,i×rk,i and V

(i)
k,2 ∈ Rsk,i×(sk,i−rk,i). This, together with QiQ

T
i Z

(i)
k = Z

(i)
k , implies for all k ∈ [K] and i ∈ [p],

QiQ
T
i U

(i)
k,1 = U

(i)
k,1. (50)

According to (5), (23), (45), and (46), we have for all k ∈ [K] and i ∈ [p],

αX−1Z
(i)
k − α

(
I + αkZ

(i)
k Z

(i)T

k

)−1

Z
(i)
k = λZ

(i)
k . (51)

Substituting the block forms of U (i)
k and Σ

(i)
k in (49) into the above equation and rearranging the terms, we obtain for all

k ∈ [K] and i ∈ [p],

X−1U
(i)
k,1 −U

(i)
k,1

(
I + αkΣ̃

(i)2

k

)−1

=
λ

α
U

(i)
k,1.

Using X = I + αZZT and rearranging the terms, we have for all k ∈ [K] and i ∈ [p],

U
(i)
k,1

((
1− λ

α

)
I −

(
I + αkΣ̃

(i)2

k

)−1
)

= αZZTU
(i)
k,1

((
I + αkΣ̃

(i)2

k

)−1

+
λ

α
I

)
. (52)

Since ZZT =
∑p

i=1 λiQiQ
T
i , QT

i Qj = 0 for all i ̸= j, and (50), we have for all k ∈ [K] and i ∈ [p],

U
(i)
k,1

((
1− λ

α

)
I −

(
I + αkΣ̃

(i)2

k

)−1
)

= αλiU
(i)
k,1

((
I + αkΣ̃

(i)2

k

)−1

+
λ

α
I

)
.

Rearranging the terms in the above equation, we obtain for each k ∈ [K] and i ∈ [p],

Σ̃
(i)
k = βiI, where βi :=

1√
αK

√
1 + αλi

1− λ/α− λλi
− 1. (53)

Substituting this back to (52) yields for each k ∈ [K] and i ∈ [p],

λiU
(i)
k,1 = ZZTU

(i)
k,1.

This, together with (49) and (53), yields λiZ
(i)
k = ZZTZ

(i)
k for all k ∈ [K] and i ∈ [p]. Using this and Z

(i)T

k Z
(j)
k = 0 for

all i ̸= j, we have for all i ∈ [p] and k ∈ [K],

λiZ
(i)
k =

K∑
l=1

Z
(i)
l Z

(i)T

l Z
(i)
k .

It follows from this and (47) that

λiZ
(i) = Z(i)Z(i)TZ(i). (54)

Since there exists k ̸= l ∈ [K] such that ZT
k Zl ̸= 0, we can assume without loss of generality that ZT

1 Z2 ̸= 0. Then, there
exist i1 ∈ [m1] and i2 ∈ [m2] such that zT

1,i1
z2,i2 ̸= 0. This, together with Z(i)TZ(j) = 0 for all i ̸= j, implies that there

exists i∗ ∈ [p] such that z1,i1 , z2,i2 are both columns of Z(i∗). Without loss of generality, suppose that z1,i1 and z2,i2 are
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the u-th and v-th columns of Z(i∗), respectively. Therefore, we have z(i∗)T

u z
(i∗)
v ̸= 0. Using this, z(i∗)T

u z
(i∗)
v ̸= 0, and (54),

we have

λi∗z
(i∗)
u = Z(i∗)Z(i∗)T z(i∗)

u . (55)

This is equivalent to

si∗∑
j ̸=u

z
(i∗)T

j z(i∗)
u z

(i∗)
j +

(
∥z(i∗)

u ∥2 − λ
)
z(i∗)
u = 0 (56)

This, together with z
(i∗)T

u z
(i∗)
v ̸= 0, implies that the columns of Z(i∗) are linearly dependent. By letting ti∗ = rank(Z(i∗)),

we have ti∗ < si∗ due to linear dependence of columns of Z(i∗). Then, let Z(i∗) = UΣV T be an SVD of Z(i∗), where
U ∈ Od×ti∗ , Σ ∈ Rti∗×ti∗ , and V ∈ Osi∗×ti∗ . Substituting this into (54) yields λi∗Σ = Σ3, which implies Σ =

√
λi∗I

and

Z(i∗) =
√
λi∗UV T . (57)

Construct an ascent direction. For ease of exposition, we simply write i∗ as i from now on. According to (47) and (55),
we have

K∑
k=1

Z
(i)
k Z

(i)T

k z(i)
u = λiz

(i)
u . (58)

Recall that z(i)
u and z

(i)
v are a column of Z1 and Z2, respectively. Without loss of generality, suppose that z(i)

u are the first
column of Z(i)

1 , i.e., z(i)
u = Z

(i)
1 e1. Then, let c = (c1 . . . cK) ∈ Rsi with c1 = Z

(i)T

1 z
(i)
u − λie1 and ck = Z

(i)T

k z
(i)
u for

all k ̸= 1. This, together with z
(i)T

u z
(i)
v ̸= 0 and (58), implies c2 ̸= 0 and Z(i)c = 0. Now, we set qk := V

(i)
k,1V

(i)T

k,1 ck for

each k ∈ [K] and q := (q1 . . . qK). According to Z
(i)
k = βiU

(i)
k,1V

(i)T

k,1 by (49) and (53), we have for all k ̸= 1,

qk = V
(i)
k,1V

(i)T

k,1 Z
(i)T

k z(i)
u = Z

(i)T

k z(i)
u = ck.

Moreover, using Z
(i)
k = βiU

(i)
k,1V

(i)T

k,1 by (49) and (53), we have

Z(i)q =
K∑

k=1

Z
(i)
k qk = βi

K∑
k=1

U
(i)
k,1V

(i)T

k,1 ck =
K∑

k=1

Z
(i)
k ck = Z(i)c = 0 (59)

and

∥Z(i)
k qk∥ = βi∥V (i)T

k,1 ck∥ = βi∥qk∥. (60)

Let u = Ua, where U is given in (57) and a ∈ Rti is chosen such that a ∈ span(UTU
(i)
k,2) and ∥a∥ = 1. We construct

D =
[
D(1) . . . D(p)

]
with D(i) = uqT and D(j) = 0 for all j ̸= i.

Compute the bilinear form of Hessian. According to the construction of D and (59), we compute ZDT = Z(i)D(i)T =
Z(i)quT = 0. This, together with (24) and (48), yields

∇2R(Z) [D,D] = αaTUT
(
I + αZ(i)Z(i)T

)−1

Ua∥q∥2 =
α

αλi + 1
∥q∥2,

where the last equality is due to (57). With abuse of notation, let

Rc

(
Z

(i)
k

)
=

mk

2m

p∑
i=1

log det
(
In + αkZ

(i)
k Z

(i)T

k

)
.
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Since Z
(i)
k = βiU

(i)
k,1V

(i)T

k,1 and D
(i)
k = uqT

k , we compute for each k ∈ [K],

∇2Rc

(
Z

(i)
k

) [
D

(i)
k ,D

(i)
k

]
= α∥qk∥2uTX

(i)
k u− ααk

(
uTX

(i)
k Z

(i)
k qk

)2
−

ααk

(
uTX

(i)
k uqT

k Z
(i)T

k X
(i)
k Z

(i)
k qk

)
= α∥qk∥2

(
1− αk

αkβ2
i + 1

∥Z(i)T

k u∥2
)
− ααk

(αkβ2
i + 1)2

(
uTZ

(i)
k qk

)2
− ααk

(
1− αk

αkβ2
i + 1

∥Z(i)T

k u∥2
)

β2
i ∥qk∥2

αkβ2
i + 1

,

where X
(i)
k =

(
I + αkZ

(i)
k Z

(i)T

k

)−1

, the second equality follows from X
(i)
k =

(
I + αkβ

2
i U

(i)
k,1U

(i)T

k,1

)−1

= I −

αkβ
2
i U

(i)
k,1U

(i)T

k,1 /(αkβ
2
i + 1) due to (27) in Lemma A.3, Z(i)

k = βiU
(i)
k,1V

(i)T

k,1 , and (60). Summing up the above equality
for all k ∈ [K] with αk = Kα for all k ∈ [K] yields

K∑
k=1

∇2Rc

(
Z

(i)
k

) [
D

(i)
k ,D

(i)
k

]
= α

(
1− αkβ

2
i

αkβ2
i + 1

)
∥q∥2 − ααk

αkβ2
i + 1

K∑
k=1

∥qk∥2∥Z(i)T

k u∥2 − ααk

(αkβ2
i + 1)2

K∑
k=1

(
uTZ

(i)
k qk

)2
+

αα2
kβ

2
i

(αkβ2
i + 1)

2

K∑
k=1

∥qk∥2∥Z(i)T

k u∥2

=

(
α

1 + αλi
− λ

)
∥q∥2 − ααk

(αkβ2
i + 1)2

K∑
k=1

((
uTZ

(i)
k qk

)2
+ ∥qk∥2∥Z(i)T

k u∥2
)
,

where the second equality follows from the definition of βi in (53). Finally, we compute

∇2F (Z)[D,D] = ∇2R(Z)[D,D]−
K∑
j=1

∇2Rc(z
(i)
j )[d

(i)
j ,d

(i)
j ]− λ∥q∥2

=
ααk

(αkβ2
i + 1)2

K∑
k=1

((
uTZ

(i)
k qk

)2
+ ∥qk∥2∥Z(i)T

k u∥2
)

> 0,

where the inequality is due to ∥q2∥ = ∥c2∥ ̸= 0 and

∥Z(i)T

2 u∥2 = β2∥U (i)T

2,1 Ua∥ ̸= 0

due to a ∈ span(UTU
(i)
k,2).

Given a matrix Z ∈ Rd×m, let ZZT = QΛQT be an eigenvalue decomposition of ZZT ∈ Sd+, where Q ∈ Od×r and
Λ ∈ Rr×r is a diagonal matrix with diagonal entries being positive eigenvalues of ZZT . Suppose that ZZT has p distinct
positive eigenvalues, where 1 ≤ p ≤ r. Let λ1 > · · · > λp > 0 be its distinct eigenvalue values with the corresponding
multiplicities being h1, . . . , hp ∈ N+, respectively. Obviously, we have

∑p
i=1 hi = r. Therefore, we write

Λ = BlkDiag
(
λ1Ih1

, . . . , λpIhp

)
, Q =

[
Q1, . . . ,Qp

]
,

where Qi ∈ Od×hi for all i ∈ [p].

D. Proofs in Section 3
D.1. Proof of Theorem 3.1

Proof of Theorem 3.1. (i) Suppose that each block of Z satisfying (7), (a), (b), and (c). It directly follows from (i) in
Proposition 4.3 that Z is a local maximizer. Conversely, suppose that Z is a local maximizer. According to (18), (19),
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(20), (ii) in Proposition 4.3 and Proposition 4.4, if Z ∈ Zc ∪ Z2, then Z is a strict saddle point. This, together with
X = Zc ∪ Z1 ∪ Z2 and the fact that Z is a local maximizer, implies that Z ∈ Z1. Using this, (20), and Proposition 4.2
yields that Z satisfying (7), (a), (b), and (c).

(ii) According to (i) in Theorem 3.1, suppose that the k-th block of a local maximizer Z admits the decomposition in (7)
satisfying (a), (b), and (c) for all k ∈ [K]. This, together with (42) in the proof of Proposition 4.3, yields that

F (Z) =
1

2

K∑
k=1

rk∑
i=1

(
log
(
1 + ασ2

k

)
− mk

m
log
(
1 + αkσ

2
k

)
− λσ2

k

)
, (61)

where σk is defined in (16) for each k ∈ [K]. Then, we define a function g : N+ × R → R as

g(n, x) := log(1 + αx)− n

m
log

(
1 +

dx

nε2

)
− λx.

One can verify that for all n1 ≥ n2, we have g(n1, x) ≤ g(n2, x) for each x. Therefore, we have for all mk ≤ ml,

g(ml, σ
2
l ) ≤ g(mk, σ

2
l ) ≤ g(mk, σ

2
k),

where the second inequality follows from σ2
k is the maximizer of the function g(mk, x) = hk(x) according to (43). This,

together with (61), yields that Z is a global maximizer if and only if
∑K

k=1 rk = min{m, d} and for all k ̸= l satisfying
mk < ml and rl > 0, we have rk = min{mk, d}.

D.2. Proof of Proposition 3.2

To prove Proposition 3.2, we first need to characterize the global optimal solution set of Problem (4).

Proposition D.1. Suppose that m1 = · · · = mK and (8) holds. It holds that Z = [Z1, . . . ,ZK ] ∈ Rd×m with
Zk ∈ Rd×mk for each k ∈ [K] is a global solution of Problem (4) if and only if for each k ∈ [K],

Zk =
m

min{m, d}
UkV

T
k , (62)

where rk = min{m, d}/K for all k ∈ [K], Uk ∈ Od×rk with UT
k Ul = 0 for all l ̸= k, and Vk ∈ Omk×rk for all k ∈ [K].

Proof. According to Lemma A.5, we have

R(Z)−
K∑

k=1

Rc

(
Z;πk

)
≤ 1

2

K∑
k=1

log det
(
I + αZkZ

T
k

)
−

K∑
k=1

mk

2m
log det

(
I + αkZkZ

T
k

)
=: H(Z), (63)

where the inequality becomes equality if and only if ZT
k Zl = 0 for all k ̸= l. To simplify our development, let

rk := rank(Zk) denote the rank of Zk ∈ Rd×mk , where rk ≤ min{d,mk} for each k ∈ [K] and
∑K

k=1 rk ≤ min{d,m},
and

hk(Zk) :=
1

2
log det

(
I + αZkZ

T
k

)
− mk

2m
log det

(
I + αkZkZ

T
k

)
, ∀k ∈ [K]. (64)

Moreover, let

Zk = PkΣkQ
T
k =

[
Pk,1 Pk,2

] [Σ̃k 0
0 0

] [
QT

k,1

QT
k,2

]
be a singular value decomposition (SVD) of Zk, where Σ̃k = diag(σk,1, . . . , σk,rk) with σk,1 ≥ · · · ≥ σk,rk > 0 being
positive singular values of Zk, Pk ∈ Od with Pk,1 ∈ Rd×rk and Pk,2 ∈ Rd×(d−rk), and Qk ∈ Omk with Qk,1 ∈ Rmk×rk

and Qk,2 ∈ Rmk×(mk−rk). Substituting this SVD into (64), together with ∥Zk∥2F = mk, yields that to maximize H(Z), it
suffices to study for each k ∈ [K],

max
σk,1,...,σk,rk

rk∑
i=1

log
(
1 + ασ2

k,i

)
−

rk∑
i=1

mk

m
log
(
1 + αkσ

2
k,i

)
s.t.

rk∑
i=1

σ2
k,i = mk.
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To simplify our development, let xi := σ2
k,i ≥ 0 for each i ∈ [rk]. This, together with mk = m/K, implies that it suffices

to study

max
x1,...,xrk

g(x) :=

rk∑
i=1

log (1 + αxi)−
rk∑
i=1

1

K
log (1 + αkxi) s.t.

rk∑
i=1

xi =
m

K
, xi ≥ 0, ∀i ∈ [rk]. (65)

This, together with Lemma D.2 and (11), yields that the optimal solution for each k ∈ [K] is

x∗
i =

m

rkK
, ∀i ∈ [rk]. (66)

(i) Suppose that m ≤ d. Then, we have rk ≤ m/K for each k ∈ [K] and
∑K

k=1 rk ≤ m. This, together with (66) and
Lemma D.3, implies that rk = m/K, and thus x∗

i = 1 for all i ∈ [rk] and k ∈ [k].

(ii) Suppose that m > d. Then, we have rk ≤ min{d,m/K} for each k ∈ [K] and
∑K

k=1 rk ≤ d. To compute the optimal
function value, we consider the following problem:

max
r1,...,rK∈Z

K∑
k=1

rk

(
log

(
1 +

mα

rkK

)
− 1

K
log

(
1 +

mα

rk

))
s.t.

K∑
k=1

rk = d, rk ≤ min
{
d,

m

K

}
, ∀k ∈ [K].

Now, we study the following function:

ϕ(x) := x

(
log
(
1 +

mα

Kx

)
− 1

K
log
(
1 +

mα

x

))
, where x ∈

[
1,

m

K

]
We compute

ϕ′(x) = log
(
1 +

mα

Kx

)
− 1

K
log
(
1 +

mα

x

)
− mα

Kx+mα
+

mα

K(x+mα)
,

ϕ′′(x) = − mα/x

Kx+mα
+

mα/x

K(x+mα)
+

Kmα

(Kx+mα)2
− mα

K(x+mα)2
= − m2α2/x

(Kx+mα)2
+

m2α2/x

K(x+mα)2
.

Since x ∈ [1,m/K], we have Kx2 ≤ m2/K ≤ m2α2 when α ≥ 1/
√
K, and thus ϕ′′(x) ≤ 0. Therefore, ϕ(x) is a

concave function for all x ∈ [1,m/K]. Then, applying the Jensen inequality yields

K∑
k=1

1

K
f(rk) ≤ f

(
K∑

k=1

rk

)
,

where the inequality becomes equality if and only if r1 = · · · = rk = d/K. This, together with (66), yields x∗
i = m/d.

According to (i) and (ii), we have x∗
i = m/min{m, d} and rk = min{m, d}/K. Therefore, we have Zk =

m/min{m, d}Pk,1Q
T
k,1, where Pk,1 ∈ Od×rk and Vk ∈ Omk×rk for each k ∈ [K]. Then, we complete the proof.

Based on the above proposition, we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. Let Ẑ = [Z1, . . . ,Zk] denote the optimal solution of Problem (4). According to Proposition D.1
and α = d/(mϵ2) with ϵ satisfying (8), it suffices to study the following two cases.

(i) Suppose that m < d. Using this and (62), we have Ẑk = UkV
T
k and r̂k = m/K for each k ∈ [K]. Moreover, according

to Theorem 3.1, if mk = m/K for each k ∈ [K] and λ satisfies (10), one can verify that the global solutions of Problem (5)
satisfy (7) with σ1 = · · · = σK = 1 and

∑K
k=1 rk = m. Since rk ≤ mk for each k ∈ [K], we have rk = m/K for each

k ∈ [K]. Therefore, Problem (4) and Problem (5) have the same global solution set.

(ii) Suppose that m ≥ d. Using this and (62), we have Ẑk = mUkV
T
k /d and r̂k = d/K for each k ∈ [K]. Moreover,

according to Theorem 3.1, if mk = m/K for each k ∈ [K] and λ satisfies (9), one can verify that the global solutions of
Problem (5) satisfy (7) with σ1 = · · · = σK = m/d and

∑K
k=1 rk = d. Therefore, the global solution set of Problem (4) is

a subset of that of Problem (5).
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Lemma D.2. Suppose that m,K are integers such that m/K is a positive integer, r ≤ m/K is an integer, and α > 0 is a
constant. Consider the following optimization problem

min
x∈Rr

r∑
i=1

− log (1 + αxi) +
r∑

i=1

1

K
log(1 +Kαxi) s.t.

r∑
i=1

xi =
m

K
, xi ≥ 0, ∀i ∈ [r]. (67)

If

α ≥ 6K
1

K−1 exp(1)

(
1 +

1√
K

) m
K−1

, (68)

the optimal solution is

x∗
i =

m

rK
, ∀i ∈ [r]. (69)

Proof. If r = 1, it is trivial to see that (69) is the optimal solution. Therefore, it suffices to study r ≥ 2. To simplify our
development, let f(x) := − log(1 + αx) + log(1 +Kαx)/K and F (x) :=

∑r
i=1 f(xi). Then, one can verify that for all

x ≥ 0,

f ′(x) = − α

1 + αx
+

α

1 +Kαx
< 0, f ′′(x) =

α2

(1 + αx)2
− Kα2

(1 +Kαx)2
. (70)

Introducing dual variables λ associated with the constraint
∑r

i=1 xi = m/K and µi associated with the constraint xi ≥ 0
for each i ∈ [r], we write the Lagrangian as follows

L(x;λ,µ) =
r∑

i=1

f(xi) + λ

(
r∑

i=1

xi −
m

K

)
−

r∑
i=1

µixi. (71)

Then, we write the KKT system as follows:

− α

1 + αxi
+

α

1 +Kαxi
+ λ− µi = 0, xiµi = 0, xi ≥ 0, µi ≥ 0, ∀i ∈ [r],

r∑
i=1

xi =
m

K
. (72)

Now, let S := {i ∈ [r] : xi > 0} denote the support set of a KKT point x ∈ Rr and s := |S| denote the cardinality of the
support set, where 1 ≤ s ≤ r. This, together with (72), implies that for each i ∈ S ,

− α

1 + αxi
+

α

1 +Kαxi
+ λ = 0,

∑
i∈S

xi =
m

K
. (73)

This is equivalent to the following quadratic equation:

Kλαx2
i − ((K − 1)α− (K + 1)λ)xi +

λ

α
= 0. (74)

We compute

∆ = η2 − 4Kλ2,where η := (K − 1)α− (K + 1)λ. (75)

Note that for all i ∈ S , we have xi > 0, and thus µi = 0. This, together with K ≥ 2 and the first equation in (73), implies
λ > 0. Consequently, the quadratic equation (74) has a positive root if and only if η ≥ 0 and ∆ ≥ 0. This implies

0 < λ ≤
√
K − 1√
K + 1

α. (76)

Then, the solution of Problem (74) is xi ∈ {x, x} for each i ∈ S , where

x =
η +

√
∆

2Kλα
, x =

η −
√
∆

2Kλα
. (77)
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Now, we discuss the KKT points that could potentially be optimal solutions. Let x ∈ Rr be a KKT point satisfying
xi ∈ {x, x} for each i ∈ S, where s ∈ {1, 2, . . . , r}. In particular, when s = 1, we have xi = m/K for all i ∈ S. In the
following, we consider s ∈ {2, . . . , r}.

Case 1. Suppose that xi = xj for all i, j ∈ S . This, together with
∑

i∈S xi = m/K and xi ∈ {x, x} for each i ∈ S , yields

xi =
m

sK
, ∀i ∈ S. (78)

Case 2. Suppose that there exists i ̸= j ∈ S such that xi ̸= xj . This, together with xi ∈ {x, x}, implies x > x. According
to (70), we have f ′′(x) = 0 at x̂ = 1/(α

√
K). Then, we obtain that f ′(x) is strictly decreasing in [0, x̂] and strictly

increasing in [x̂,∞]. Then, one can further verify that x < x̂ < x. This, together with (70), implies

f ′′(x) < 0, f ′′(x) > 0. (79)

For ease of exposition, let l(x) = |{i ∈ S : xi = x}| be the number of entries of x that equal to x. Then, we claim that any
optimal solution x⋆ satisfies l(x⋆) ≤ 1. Now, we prove this claim by contradiction. Without loss of generality, we assume
that x⋆

i = x for all i = 1, . . . , r − l and x⋆
i = x for all i = r − l + 1, . . . , r with l ≥ 2. This, together with (79) and l ≥ 2,

yields

f ′′(x⋆
r−1) < 0, f ′′(x⋆

r) < 0. (80)

Using the second-order necessary condition for constraint optimization problems (see, e.g., (Nocedal & Wright, 1999,
Theorem 12.5)) and x⋆

i ≥ 0 for all i ∈ [r], we obtain

r∑
i=1

f ′′(x⋆
i )v

2
i ≥ 0, ∀v ∈ Rr s.t.

r∑
i=1

vi = 0. (81)

Then, we take v ∈ Rr such that v1 = · · · = vr−2 = 0 and vr−1 = −vr ̸= 0. Substituting this into (81) yields

f ′′(x⋆
r−1) + f ′′(x⋆

r) ≥ 0,

which contradicts (80). Therefore, x⋆ cannot be an optimal solution. Then, we prove the claim. In this case, we can write
the KKT point that could be an optimal solution as follows: There exists i ∈ S such that

xi = x, xj = x, ∀j ̸= i. (82)

Now, we compute the function values for the above two cases, i.e., (78) and (82), and compare them to determine which one
is the optimal solution. To simplify our analysis, let h(x) := f(x)/x. For (78) in Case 1, we compute

F1 = sf
( m

sK

)
=

m

K
h
( m

sK

)
. (83)

For (82) in Case 2, we compute

F2 = (s− 1)f (x) + f (x) ≥ (s− 1)f

(
m

(s− 1)K

)
+ f(x) =

m

K
h

(
m

(s− 1)K

)
+ f(x), (84)

where the inequality is because x ≤ m/ ((s− 1)K) and f(x) is strictly dereasing in [0,∞). For all x ∈
[m/(sK),m/ ((s− 1)K)], we compute

h′(x) =
f ′(x)x− f(x)

x2
= − 1

x

(
α

1 + αx
− α

1 +Kαx

)
+

1

x2

(
log(1 + αx)− 1

K
log(1 +Kαx)

)
≥ − (K − 1)α2

(1 + αx)(1 +Kαx)
+

1

x2

(
log(1 + α)− 1

K
log(1 + αK)

)
≥ −K − 1

Kx2

(
1− log(1 + α) +

logK

K − 1

)
≥ − (K − 1)Ks2

m2

(
1 +

logK

K − 1
− log(1 + α)

)
, (85)
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where the first inequality follows from log(1 + αx) − log(1 + Kαx)/K ≥ log(1 + α) − log(1 + αK)/K due
to x ≥ m/(sK) ≥ 1, the second inequality uses log(1 + α) − log(1 + αK)/K = (K − 1) log(1 + α)/K +
log ((1 + α)/(1 + αK)) /K ≥ ((K − 1) log(1 + α)− logK) /K, and the last inequality is because of x ≥ m/(sK).
According to (68), we have

1 +
logK

K − 1
− log(1 + α) = log

(
K

1
K−1 exp(1)

1 + α

)
< 0. (86)

Using the mean-value theorem, there exists x ∈ (m/(sK),m/ ((s− 1)K)) such that

h

(
m

(s− 1)K

)
− h

( m

sK

)
= h′(x)

(
m

(s− 1)K
− m

sK

)
≥ (K − 1)s

m(s− 1)

(
log(1 + α)− 1− logK

K − 1

)
, (87)

where the inequality follows from (85). Now, we are devoted to bounding f(x). According to (75) and (76), we have

x =
η −

√
∆

2Kλα
=

4Kλ2

2Kλα(η +
√
∆)

≤ 2λ

αη
. (88)

This, together with the fact that f(x) is decreasing in (0,∞), yields

f(x) ≥ f

(
2λ

αη

)
= − log

(
1 +

2λ

η

)
+

1

K
log

(
1 +

2Kλ

η

)
≥ − log

(
1 +

2λ

η

)
≥ − log

(
1 +

1√
K

)
,

where the last inequality uses η = (K−1)α− (K+1)λ ≥ 2
√
Kλ due to (K−1)α ≥ (

√
K+1)2λ by (76). This, together

with (83), (84), and (87), yields

F2 − F1 =
m

K

(
h

(
m

(s− 1)K

)
− h

( m

sK

))
+ f(x)

≥ (K − 1)s

m(s− 1)

(
log(1 + α)− 1− logK

K − 1

)
− log

(
1 +

1√
K

)
≥ K − 1

m
log

(
1 + α

K
1

K−1 exp(1)

)
− log

(
1 +

1√
K

)
> 0,

where the last inequality follows from (68). This implies that the optimal solution takes the form of (78) for some s ∈ [r].
Consequently, the function value of (78) for each s ∈ [r] is

s

(
− log

(
1 +

αm

sK

)
+

1

K
log
(
1 +

αm

s

))
.

This, together with Lemma D.3, implies that when the optimal solution takes the form of (78) with s = r, Problem (67)
achieves its global minimum. Then, we complete the proof.

Lemma D.3. Consider the setting in Lemma D.2 and the following function

h(s) := s

(
1

K
log
(
1 +

mα

s

)
− log

(
1 +

mα

sK

))
, (89)

where s ∈ [1, r] and α satisfies (68). Then, h(s) is decreasing in s ∈ [1, r].

Proof. For ease of exposition, let β := mα and x := 1/s ∈ [1/r, 1]. According to (68), we have

α ≥ 6K
1

K−1 exp(1)

(
1 +

1√
K

) 2m
K−1

> 1 ≥ r
√
K

m
.

This implies β ≥ r
√
K. Then, we study

h(s) = g(x) =
1

x

(
1

K
log (1 + βx)− log

(
1 +

βx

K

))
. (90)
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Note that showing h(s) is decreasing in s ∈ [1, r] is equivalent to proving g(x) is increasing in x ∈ [1/r, 1]. Now, we
compute

g′(x) =
1

x

(
β

K(1 + βx)
− β

K + βx

)
− 1

x2

(
1

K
log (1 + βx)− log

(
1 +

βx

K

))
= − 1

x2
ϕ(x), (91)

where

ϕ(x) :=
1

K
log (1 + βx)− log

(
1 +

βx

K

)
+ βx

(
1

K + βx
− 1

K(1 + βx)

)
.

Then, it suffices to show ϕ(x) ≤ 0 for all x ∈ [K/m, 1] due to 1/r ≥ K/m. Towards this goal, we compute

ϕ′(x) =
β

K(1 + βx)
− β

K + βx
+ β

(
1

K + βx
− 1

K(1 + βx)

)
+ βx

(
−β

(K + βx)2
+

β

K(1 + βx)2

)
= −xβ2 (K − 1)(β2x2 −K)

(K + βx)2K2(1 + βx)2
≤ 0,

where the inequality follows from β2x2 ≥ β2K2/m2 ≥ K due to x ∈ [K/m, 1] and β = αm > 2m > m/
√
K. Therefore,

ϕ(x) is decreasing in [K/m, 1]. Next, we compute

ϕ

(
K

m

)
=

1

K
log

(
1 +

βK

m

)
− log

(
1 +

β

m

)
+

β

m

(
1

1 + β/m
− 1

1 + βK/m

)
=

1

K
log (1 + αK)− log (1 + α) + α

(
1

1 + α
− 1

1 + αK

)
≤ 1

K
log (1 + αK)− log (1 + α) + 1 ≤ 1

2
log (1 + 2α)− log (1 + α) + 1 ≤ 0,

where the second equality is due to β = αm, the second inequality holds because log (1 + αK) /K is decreasing as K ≥ 2
increases when α ≥ 2, and the last inequality follows from α ≥ 15 by (68). This, together with the fact that ϕ is decreasing
in [K/m, 1], yields ϕ(x) ≤ ϕ (K/m) ≤ 0. Using this and (91), we obtain g′(x) ≥ 0 in [K/m, 1]. Therefore, g(x) is
increasing in [K/m, 1]. Then, we complete the proof.

D.3. Proof of and Theorem 3.3

Proof of Theorem 3.3. According to (i) of Proposition 4.3, if Z is a critical point but not a local maximizer, we have
Z ∈ Z2 ∪ Zc. This, together with (ii) of Proposition 4.3 and Proposition 4.4, yields that Z is a strict saddle point.

E. Additional Experimental Setups and Results
In this section, we provide additional implementation details and experimental results under different parameter settings for
Sections 5.1 and 5.2 in Appendices E.1 and E.2, respectively.

E.1. Implementation Details and Additional Results in Section 5.1

Training setups. In this subsection, we employ full-batch gradient descent (GD) for solving Problem (5). Here, we use
the Gaussian distribution to randomly initialize GD. More precisely, we randomly generate an initial point Z(0) whose
entries are i.i.d. sampled from the standard normal distribution, i.e. z(0)ij

i.i.d.∼ N (0, 1). We fix the learning rate of GD as
10−1 in the training. We terminate the algorithm when the gradient norm at some iterate is less 10−5.

In addition to the results presented in Section 5.1, we perform additional experiments under different settings as follows. To
support our theorems, we visualize the heatmap of learned features and plot the number and magnitude of singular values in
each class. Unless specified otherwise, we use the training setups introduced above in the following experiments.

• Experiment 1 on balanced data. In this experiment, we consider that the number of samples in each class is same
and set the parameters in Problem (5) as follows: the dimension of features d = 100, the number of classes K = 4,
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(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 5. Heatmap of cosine similarity between pairwise features under different settings.

the number of samples in each class is m1 = m2 = m3 = m4 = 50, the regularization parameter λ = 0.1, and the
quantization error ϵ = 0.5. We visualize the heatmap between pairwise features of Z obtained by GD in Figure 5(a)
and the number and magnitude of singular values in each class in Figure 6.

• Experiment 2 on data with more classes. In this experiment, we set the parameters in Problem (5) as follows: the
dimension of features d = 100, the number of classes K = 8, the number of samples in each class is m1 = 50,m2 =
40,m3 = 30,m4 = 20,m5 = 30,m6 = 40,m7 = 40,m8 = 50, the regularization parameter λ = 0.1, and the
quantization error ϵ = 0.5. We visualize the heatmap between pairwise features of Z obtained by GD in Figure 5(b)
and the number and magnitude of singular values in each class in Figure 7.

• Experiment 3 on data where the dimension d is larger than the number of samples m. In this experiment, we
set the parameters in Problem (5) as follows: the dimension of features d = 300, the number of classes K = 4, the
number of samples in each class is m1 = 50,m2 = 50,m3 = 40,m4 = 60, the regularization parameter λ = 0.01,
and the quantization error ϵ = 5. Note that in this experiment, we set the learning rate as 1. We visualize the heatmap
between pairwise features of Z obtained by GD in Figure 5(c) and the number and magnitude of singular values in
each class in Figure 8.

According to the results in Figures 5(a), 5(b), 6, and 7 of Experiments 1 and 2, we observe that when the number of samples
is larger than its dimension, i.e., m ≥ d, the learned features via the MCR2 principle are within-class compressible and
between-class discriminative in both balanced and unbalanced data sets. Moreover, the dimension of the space spanned
by these features is maximized such that

∑K
k=1 rk = min{m, d}. This directly supports Theorem 3.1. By comparing the

function value returned by GD and that computed by the closed-form in Theorem 3.1, we found that GD with random
initialization will always converge to a global maximizer of Problem (5) when the data is balanced, while it will always
converge to a local maximizer of Problem (5) when data is unbalanced. This directly supports Theorem 3.3.

According to the results in Figures 5(c) and 8 of Experiment 3, we observe that when the number of samples is smaller
than its dimension, i.e., m ≤ d, the learned features via the MCR2 principle are orthogonal to each other and the dimension
of each subspace is equal to the number of samples, i.e., rk = mk for each k ∈ [K]. This exactly supports Theorem 3.1.
Indeed, when d ≥ m and rk = mk for each k ∈ [K], it follows from Theorem 3.1 that Vk = I and thus Zk = σkUk

for each k ∈ [K] for each local maximizer. Therefore, this also supports Theorem 3.3 as GD with random initialization
converges to a local maximizer.

E.2. Implementation Details and Additional Results in Section 5.2

Network architecture and training setups for MNIST. In the experiments on MNIST, we employ a 4-layer multilayer
perception (MLP) network with ReLU activation as the feature mapping with the intermediate dimension 2048 and output
dimension 32. In particular, each layer of MLP networks consists of a linear layer and layer norm layer followed by ReLU
activation in the implementation. We train the network parameters via Adam by optimizing the MCR2 function. For the
Adam settings, we use a momentum of 0.9, a full-batch size, and a dynamically adaptive learning rate initialized with
5×10−3, modulated by a CosineAnnealing learning rate scheduler (Loshchilov & Hutter, 2016). We terminate the algorithm
when it reaches 3000 epochs.
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Figure 6. The number and magnitude of singular values in each subspace in Experiment 1. The blue dots are plotted based on the
singular values by applying SVD to the solution returned by GD, and the red line is plotted according to the closed-form solution in (7).
The number of singular values in each subspace is 25, 24, 24, 27, respectively.

Figure 7. The number and magnitude of singular values in each subspace in Experiment 2. The blue dots are plotted based on the
singular values by applying SVD to the solution returned by GD, and the red line is plotted according to the closed-form solution in (7).
The number of singular values in each subspace is 8, 13, 13, 17, 15, 13, 12, 9, respectively.

Figure 8. The number and magnitude of singular values in each subspace in Experiment 3. The blue dots are plotted based on the
singular values by applying SVD to the solution returned by GD, and the red line is plotted according to the closed-form solution in (7).
The number of singular values in each subspace is 50, 50, 40, 60, respectively.

More experimental results on MNIST. Besides the numerical results in Table 1, we also plot the heatmap of the cosine
similarity between pairwise columns of the features in Z obtained by training deep networks in Figure 9. We observe
that the features from different classes are nearly orthogonal to each other, while those from the same classes are highly
correlated. This supports our results in Theorem 3.1.

Network architecture and training setups for CIFAR-10. In the experiments on CIFAR10, we employ a 2-layer
multilayer perceptron (MLP) network with ReLU activation as the feature mapping with the intermediate dimension 4096
and output dimension 128. In particular, each layer of MLP networks consists of a linear layer and layer norm layer followed
by ReLU activation in the implementation. We train the network parameters via Adam by optimizing the MCR2 function.
For the Adam settings, we use a momentum of 0.9, a full-batch size, and a dynamically adaptive learning rate initialized
with 5× 10−3, modulated by a CosineAnnealing learning rate scheduler (Loshchilov & Hutter, 2016). We terminate the
algorithm when it reaches 4000 epochs.

More experimental results on CIFAR-10. Besides the numerical results in Table 1, we also plot the heatmap of the
cosine similarity between pairwise columns of the features in Z obtained by training deep networks in Figure 9. We observe
that the features from different classes are nearly orthogonal to each other, while those from the same classes are highly
correlated. This supports our results in Theorem 3.1.
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(a) MNIST: m = 1000,K = 4 (b) MNIST: m = 2000,K = 8 (c) CIFAR: m = 1000,K = 4 (d) CIFAR: m = 2000,K = 8

Figure 9. Heatmap of cosine similarity among learned features by training deep networks on MNIST and CIFAR-10. We train
network parameters by optimizing the regularized MCR2 objective (5) on m samples split equally among K classes of MNIST and
CIFAR-10. In the figure, the darker pixels represent higher cosine similarity between features. In particular, when the (i, j)-th pixel is
close to 0 (very light blue), the features i and j are approximately orthogonal.
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