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Abstract 
To achieve goals, people leverage cognitive control to adjust 
how they process information. Here we show that frequent 
adjustments in information processing strategies (e.g., response 
threshold) within a single task give rise to reconfiguration 
costs. In two experiments we induced different performance 
goals in a Stroop task via explicit instruction or incentives, and 
these goals either varied or were fixed across different blocks. 
Across both experiments, we find smaller adjustments in 
control intensity when people frequently adjust the amount of 
control they exert, relative to blocks in which they don’t. We 
show that these results can be accounted for with a model that 
maximizes reward rate while minimizing reconfiguration costs 
(proportional to the Euclidean distances between the previous 
and current control signals). These findings suggest that 
cognitive control adjustments are regularized to constrain 
larger adjustments in control, which has important implications 
for computational modeling and measurement of motivated 
cognitive control.   

Keywords: cognitive control; reconfiguration costs; 
motivation; drift diffusion model 

Introduction 
In order to achieve their goals, people engage cognitive 

control processes to adjust which information they pay 
attention to, and how they process this information. Many 
environments require rapid switches between different tasks, 
and frequent changes in the type of information which is 
being processed. Such situations incur switch-costs – 
detriments in behavioral performance when people need to 
focus on one aspect of their environment, after having been 
focused on a different one (Alport et al., 1994; Monsell, 
2003). A rich literature on task switching has focused on 
people’s ability to rapidly change between task sets which 
require them to process different aspects of their environment 
(Kiesel et al., 2010). However, many situations don’t require 
switching between tasks, but rather adjustments of 
information processing strategies within a single task. For 
example, when incentives in an environment change, people 
have to adjust how much attention they pay to the task at 
hand, or how cautious they are when making decisions on 
how to act. Here we investigate the costs associated with such 
adjustments in control intensity.  

Computational models of cognitive control propose that 
control intensity is determined through the maximization of 
the value of cognitive control (Shenhav et al., 2013; Verguts 
et al., 2015; Manohar et al., 2015; Alexander et al., 2018). 

These models are supported by a wide range of studies 
showing that people adjust their levels of attention and 
caution based on their current goals, as reflected in changes 
in drift rate and threshold within a Drift Diffusion model 
(e.g., focus on speed vs. accuracy; Forstmann et al., 2008; 
Ratcliff & Rouder, 1998). Crucially, people allocate more 
attention when they expect higher performance-contingent 
rewards (Padmala & Pessoa, 2011; Krebs et al., 2012), and 
they adjust both drift rates and thresholds according to the 
level of expected rewards and penalties (Leng et al., 2021). 
This work suggests that people exert optimal levels of control 
given the expected incentives in their environment. Recent 
models of cognitive control propose that such value-based 
adjustments in control come with a cost arising from the need 
to adjust control signals (Lieder et al., 2018; Musslick et al., 
2015, 2019; Musslick & Cohen, 2021). However, direct 
empirical tests of this proposal are lacking.  

Here we consider different environments in which 
people have to readjust their control settings (control 
intensity measured as the magnitude of drift rates and 
thresholds; Ratcliff & McKoon, 2008), while doing a single 
cognitive control task. We show that in such environments 
control intensity is not adjusted to the optimal level suggested 
by a reward-rate optimal model (Bogacz et al., 2006; Leng et 
al., 2021). Rather, there is an inertia in the control system 
which regularizes larger adjustments in control intensity. In 
other words, we show that cognitive control adjustments 
depend not only on the optimal level of control given the 
current environment, but also on the magnitude of control 
adjustment needed to reach the value-optimal level from the 
previous control level. This finding suggests that cognitive 
control adjustments are regularized in a way that prevents 
large adjustments in how people process information (Ritz et 
al., 2022). Such control regularization has important 
implications for computational models of cognitive control, 
as well as for measurement of motivated cognitive control.  

Reward rate model with reconfiguration costs 
To simulate reward-optimal adjustments in cognitive control 
we used a reward-rate model (Figure 1) which finds the 
optimal levels of drift rate and threshold given the current 
performance goals (Bogacz et al., 2006; Leng et al., 2021). 
This model (Eq. 1) calculates the expected value of control 
(𝐸𝐸𝐸𝐸𝐸𝐸) by considering the weights on the current value of 
giving a correct response (𝑤𝑤1) and making an error (𝑤𝑤2). 



These weights are specified by the current performance goals 
(e.g., valuing speed over accuracy) which generate different 
experimental conditions (i). The weights scale the rate of 
correct responses (1 − 𝐸𝐸𝐸𝐸) and the error rate (𝐸𝐸𝐸𝐸) obtained 
from the Drift Diffusion model (DDM; Bogacz et al., 2006) 
for specific values of drift rate (v) and threshold (a). The 
expected value of control includes two types of costs. The 
opportunity cost (Kurzban et al., 2013; Otto & Daw, 2019) 
which discounts the overall outcome and includes both the 
decision time (𝐷𝐷𝐷𝐷) and non-decision time (𝑁𝑁𝑁𝑁𝑁𝑁). The 
second cost is the intensity cost (Musslick et al., 2015; 
Shenhav et al., 2013) represents the quadratic cost on 
cognitive control intensity, operationalized as the drift rate. 
The expected value of control is scaled by the probability of 
the occurrence of different conditions.  
 
𝐸𝐸𝐸𝐸𝐸𝐸(𝑉𝑉,𝐴𝐴,𝑊𝑊,𝑁𝑁𝑁𝑁𝑁𝑁) =
∑ 𝑝𝑝𝑖𝑖 �

𝑤𝑤1𝑖𝑖 ×�1−𝐸𝐸𝐸𝐸(𝑣𝑣𝑖𝑖,𝑎𝑎𝑖𝑖)�−𝑤𝑤2𝑖𝑖×𝐸𝐸𝐸𝐸(𝑣𝑣𝑖𝑖,𝑎𝑎𝑖𝑖)
𝐷𝐷𝐷𝐷(𝑣𝑣𝑖𝑖,𝑎𝑎𝑖𝑖)+𝑁𝑁𝑁𝑁𝑁𝑁

− 𝑣𝑣𝑖𝑖2�𝑁𝑁
𝑖𝑖=1              (Eq. 1)  

 
The model then finds the optimal set of drift rates (𝑉𝑉) and 
thresholds (𝐴𝐴) which maximize the expected value of control 
for a given set of weights (𝑊𝑊), as specified by the different 
condition, and a non-decision time.  
 
𝑉𝑉,𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉,𝐴𝐴[𝐸𝐸𝐸𝐸𝐸𝐸|𝑊𝑊,𝑁𝑁𝑁𝑁𝑁𝑁]                              (Eq. 2)  
 
However, this model predicts no differences in drift rates and 
thresholds between the environment in which people have to 
switch between different conditions and the environment 
which doesn’t require switches. Crucially, here we extended 
the previous model by including a reconfiguration cost 
associated with readjusting drift rate and threshold levels 
across different experimental conditions (e.g., speed and 
accuracy; cf. Lieder et al., 2018; Musslick et al., 2018). We 
implemented this cost (Eq. 3) of moving between different 
conditions as the exponentiated Euclidian distance between 
the drift rate and threshold configurations in the two different 
conditions i and j. We opted for the exponentiated Euclidian 
distance following previous computational implementations 
of the EVC model (Musslick et al., 2015), but we confirmed 
that the qualitative pattern of results produced by the model 

remains the same when using different distance metrics (e.g., 
Euclidian and Manhattan distance). This model reduces to the 
model in Equation 1 if the weight on the reconfiguration cost 
(𝑅𝑅𝐶𝐶) is set to 0. Otherwise, the model includes a certain level 
of reconfiguration cost. We included the weights on drift rate 
and threshold adjustments so that the model could capture the 
situation in which people weigh the reconfiguration cost on 
each dimension differently. We included 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑎𝑎 to capture 
potential bias between drift rate and threshold change in the 
cost of reconfiguration. 
 
𝐸𝐸𝐸𝐸𝐸𝐸(𝑉𝑉,𝐴𝐴,𝑊𝑊,𝑁𝑁𝑁𝑁𝑁𝑁,𝑅𝑅𝑅𝑅) =
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The optimal values of drift and threshold are then calculated 
by maximizing the expected value of control (Eq. 2).  

Experiment 1 

Methods 

Participants. We recruited 48 participants on Prolific, and 
excluded 4 of them due to failed attention checks, yielding 
the final sample of 44 participants (31 female; median 
age=30). The research protocol was approved by Brown 
University’s Institutional Review Board. 
 
Design. Participants performed a Stroop task in which they 
identified the ink color of the color word by pressing one of 
the 4 corresponding keys, while ignoring the word content. 
Participants performed the interval version of the Stroop task 
(Figure 2A) in which they completed as many trials as they 
wished during a fixed time period (8-12s). This task has been 
shown to produce reliable adjustments in both drift rates and 
thresholds in response to incentives, and participant’s 
performance is well captured by a reward-rate model (Leng 
et al., 2021). Prior to each interval, participants were 
presented with a cue (1.5 s; Figure 2C) instructing them to 
perform the task either as quickly or as accurately as possible 
(cf. Forstmann et al., 2008; Ratcliff & Rouder, 1998). 
Participants received feedback (1.5 s) on how many correct 
responses they gave. Crucially, there were two types of 
blocks (Figure 2B) which yielded different levels of 
reconfiguration costs. In Fixed blocks, participants 
performed only one condition on every interval (e.g., focus 
on speed). In Varying blocks, participants performed 
multiple conditions within the block (e.g., focus on speed, 
followed by focus on accuracy). We predicted that Fixed 
blocks will not incur reconfiguration costs, while Varying 
blocks will. Participants performed 4 blocks, each of which 
included 20 intervals. For half of the blocks, the instructed 
condition was fixed over the entire block, meaning that in 
these blocks participants always received a cue telling them 
to focus on the same dimension of performance (e.g., speed). 

Figure 1. Configurations of drift rate and threshold 
which maximize the expected value of control in blocks 
with and without reconfiguration costs.  

 



The other half of the blocks were Varying, meaning that the 
performance goals changes within a block. Before each 
block, participants were informed whether this will be a 
Fixed or a Varying block, these blocks were intermixed, and  
their order was counterbalanced across participants. 

Statistical analyses and Drift Diffusion modeling. To 
predict reaction times and accuracies on each trial we fitted 
hierarchical linear mixed models (lme4 package in R; Bates 
et al., 2015) and included congruency, interval length, 
interval and block type and their interaction as predictors. All 
of the main effects and the intercept were also included as 
random effects. Reaction times were log-transformed for 
these analyses. We then fitted a hierarchical Bayesian drift 
diffusion model (HDDM; Wiecki et al., 2013) to the reaction 
time and accuracy data. The fitted model includes the effect 
of congruency on drift rate, as well as the effects of 
instruction type (speed vs. accuracy), block type (Varying vs. 
Fixed), and the interaction between instruction and block type 
on drift rate. We also included the same effects on the 
threshold, but without the effect of congruency. Finally, we 
included the effect of instruction type on non-decision time. 
We ran 5 MCMC simulations (chains; 10000 iterations; 8000 
warmup) to estimate the model. We confirmed chain 
convergence by examining trace plots and the ratio of 

variances between and within chains (Gelman-Rubin 
statistic), and posterior predictive checks. We summarized 
the obtained posterior distributions by reporting their means, 
95% credible intervals, and the probability that the parameter 
of interest is higher than 0 (e.g., pb< 0 = 0.01).  

Computational model. In order to simulate the environment 
in Experiment 1 we used the model presented in Equation 3. 
In this experiment, participants were instructed to focus either 
on speed or on accuracy. We relied on the empirical DDM 
fits in order to simulate the performance in the similar range 
as the empirically observed values. We employed an inverse 
reward-rate optimization procedure (Leng et al., 2021) to set 
the baseline values for the value of giving a correct response 
(𝑤𝑤1) and the value of committing an error (𝑤𝑤2). The inverse 
reward-rate optimization was based on the empirically 
obtained group-level estimates of the non-decision time, and 
the drift rate and threshold levels in the speed and accuracy 
conditions. This inverse optimization procedure yielded the 
weights for each of the 2 incentive conditions. With these 
weights we simulated the blocks in which the condition of 
each interval is fixed as speed or accuracy (RC = 0.05) and 
the blocks in which the condition varies between speed and 
accuracy randomly (RC = 0.4). We fixed the relative weight 
of drift rate adjustment in reconfiguration cost (𝐶𝐶𝑣𝑣) as 1 and 
varied the weight for threshold adjustment to generate 
predictions matched with empirical results. The model 
matches with the empirical finding with 𝐶𝐶𝑎𝑎 = 10. We then 
used a gradient descent algorithm to find the configuration of 
drift rates and thresholds which maximize the expected value 
of control. The drift rate and threshold configurations 
obtained in this way were then compared to the empirical 
findings.  

Results 

Reaction times and accuracy. As shown in Figure 3A, 
participants were faster (b=0.13; 95% CI [0.09, 0.18]; 
p<0.001) and less accurate (b=6.88; 95% CI [4.13, 11.45]; 
p<0.001) when instructed to focus on speed relative to when 
instructed to focus on accuracy. Crucially, when instructed to 
focus on speed, they were more accurate in the Varying 
compared to Fixed blocks (b=1.33; 95% CI [1.12, 1.59]; 
p<0.001). When instructed to focus on accuracy there was a 
non-significant trend toward being more accurate in the Fixed 
relative to the Varying blocks (b=0.85; 95% CI [0.70, 1.03]; 
p=0.104). Further, in the speed condition participants were 
faster to respond in Fixed than in Varying blocks (b=0.02; 
95% CI [0.70, 1.03]; p=0.104), and there were no significant 
differences in the accuracy condition (b=0.00; 95% CI [-0.01, 
0.01]; p=0.888). These results indicate that the performance 
in the speed condition was more similar to the performance 
in the accuracy condition when participants had to switch 
between these strategies within one block relative to when 
they had only one instruction per block.  

 

Figure 2. Experimental design. A. One interval. Each 
interval in the experiment consisted of a fixed time interval 
during which participants could complete as many Stroop 
trials as they wished. B. Block types. Fixed blocks refer to 
blocks in which a given condition remained constant 
throughout the block, whereas Varying blocks refer to blocks 
in which that condition (instruction in Experiment 1, 
incentive level in Experient 2) varied across the block. C. 
Experimental conditions in Experiment 1. Participants 
were presented with cues instructing them to perform the 
task as fast or as accurately as they can. D. Experimental 
conditions in Experiment 2. Participants were presented 
with cues which indicated that they could earn high or low 
rewards for correct responses, and that they could receive 
high or low penalties for errors.  

 



Drift diffusion model. When they were instructed to focus 
on accuracy, relative to when they were instructed to focus 
on speed (Figure 3B – left), participants had higher drift rates 
(b=0.68; 95% CrI [0.43, 0.94]; pb<0<0.01), thresholds 
(b=0.39; 95% CrI [0.23, 0.55]; pb<0<0.01), and non-decision 
times (b=0.04; 95% CrI [0.02, 0.07]; pb<0<0.001). Crucially, 
this difference between accuracy and speed in thresholds was 
smaller in blocks that included both conditions compared to 
blocks with only one condition (b=0.07; 95% CrI [0.01, 
0.13]; pb<0<0.01). We found no such block differences in drift 
rates (b=0.05; 95% CrI [-0.11, 0.20]; pb<0=0.27).  

Model simulation results. Results of the model simulations 
(Figure 3C) show that the model was able to capture the main 
pattern of the empirically observed effects (Figure 3B). The 
model replicated the larger adjustment of thresholds in the 
Fixed relative to the Varying blocks, and only a small 
adjustment of drift rates.  

Discussion 
The results of Experiment 1 show that inducing the 
performance goals of focusing on either speed or accuracy in 
a classical cognitive control task produces changes in both 
response thresholds and drift rates. While the focus on 

accuracy relative to speed increased both the thresholds and 
drift rates, this difference was reduced for thresholds when 
the participants had to switch between the two performance 
goals within a block compared to the blocks in which they 
only had one performance goal. This pattern of results can be 
successfully simulated with a computational model that 
assumes that there is a reconfiguration cost operationalized 
as the distance in the drift-threshold space between the two 
conditions. These empirical findings and model simulations 
provide evidence for the existence of reconfiguration costs in 
situations in which participants are switching between 
explicitly induced performance goals within a single task. In 
Experiment 2 we sought to provide further evidence for the 
existence of reconfiguration costs in the absence of explicitly 
induced performance goals. Rather, we implicitly induced 
performance goals by differentially incentivizing 
performance with high or low monetary incentives.  

Experiment 2 

Methods 
Participants. We recruited 80 participants who were paid to 
perform the task on Prolific. The final sample included 69 
participants (34 female; median age=21; 11 excluded due to 
failed attention checks). The research protocol was approved 
by Brown University’s Institutional Review Board.  

Design. Participants performed the same Stroop task as in 
Experiment 1 (Figure 2A), completing as many trials as they 
wished within a fixed time interval (6-9s in this experiment). 
Crucially, rather than explicitly inducing performance goals 
(via cued instructions as in Experiment 1), we differentially 
incentivized performance goals by offering rewards (earning 
100 points vs. 1 point) for correct responses, and penalties 
(losing 100 points vs. 1 point) for errors (cf. Leng et al., 
2021). Prior to each interval, participants saw a cue (1 s) 
informing them about the reward and penalty levels within 
the interval (Figure 2D). After each interval they received 
feedback (1 s) about how many rewards and penalties they 
earned. Within a block, one incentive type always varied 
(e.g., high vs. low reward), while the other was fixed (e.g., 
low penalty). This meant that in some blocks the reward 
manipulation induced reconfiguration costs, while the 
penalty manipulation did not, and vice versa (Figure 2B). 
Participants performed 4 blocks, out of which 2 were with 
varying rewards, and 2 with varying penalties. Each block 
consisted of 15 intervals, and at block onset participants were 
informed which incentive will be fixed and at which level 
(e.g., low penalty), and which incentive will be varying (e.g.,  
switching between high and low rewards). The block order 
was randomized across participants. 

Statistical analyses and Drift Diffusion modeling. We used 
the same procedure as in Experiment 1 to analyze the reaction 
time and accuracy data, and fit the Drift Diffusion model. The 
fitted model included the effect of congruency on drift rate, 
as well as the effects of the reward and penalty levels, the 

Figure 3: Experiment 1 results and model simulations. 
A. Reaction times and accuracies. Regression estimates 
of the reaction times (left) and accuracies (right) for the 
speed and accuracy conditions in blocks in which 
participants either have one performance goal (Fixed) or 
are switching between two performance goals (Varying). 
Error bars represent 95% confidence intervals and **: 
p<0.001. B. Drift diffusion modeling results. Drift rate 
and threshold differences between the accuracy and the 
speed condition in Fixed and Varying blocks. Error bars 
represent 95% credible intervals and **: the ratio of 
posterior simples on two sides of 0 is <0.001. C. Model 
predictions. Model simulations for the difference in drift 
rates and thresholds between the accuracy and speed 
conditions in Fixed and Varying blocks. 

 



effect of reward vs. penalty being fixed, and the interaction 
between the last two predictors. We allowed threshold to vary 
according to the all of the same predictors except congruency.  

Computational model. In order to simulate the environment 
in Experiment 2 we used the model presented in Equation 3. 
In this experiment participants received high or low rewards 
for correct responses (𝑤𝑤1𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑤𝑤1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿), and 
high or low penalties for errors (𝑤𝑤2𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 
𝑤𝑤2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿). We relied on the empirical group-level DDM 
fits in order to simulate performance in the similar range as 
the empirically observed values. We employed an inverse 
reward-rate optimization procedure (Leng et al., 2021) to set 
the baseline values for the weights on the correct responses 
(𝑤𝑤1) and errors (𝑤𝑤2) based on the empirically obtained 
estimate of non-decision time, and the drift rate and threshold 
levels for each pair of reward and penalty values. This inverse 
optimization procedure yielded the weights for each of the 4 
incentive conditions. With these weights we simulated the 
blocks in which reward levels varied (Reward-Varying; 𝑅𝑅𝑅𝑅 
= 0.4) and the blocks in which reward levels were fixed, but 
penalty levels varied (Reward-Fixed; 𝑅𝑅𝑅𝑅 = 0.05). We did the 
same for the Penalty-Varying vs. Penalty-Fixed. We then 
found the values of drift rate and threshold which maximized 
the expected value of control and compared them to the 
empirically observed results.   

Results 

Reaction times and accuracy. Participants performed faster 
(b=-0.03; 95% CI [-0.04, -0.03]; p<0.001; Figure 4A), but 
less accurately on intervals with high relative to low rewards 
(b=0.79; 95% CI [0.68, 0.91]; p<0.001). Conversely, they 
were slower (b=0.02; 95% CI [0.02, 0.03]; p<0.001), but 
more accurate (b=1.75; 95% CI [1.51, 2.04]; p<0.001) on 
high relative to low penalty intervals. Importantly, we found 
substantial performance differences between the Fixed and 
the Varying blocks. The difference between high and low 
reward intervals was larger in Reward-Varying relative to 
Reward-Fixed blocks for both reaction times (b=-0.01; 95% 
CI [-0.02, -0.01]; p<0.001) and accuracies (b=0.70; 95% CI 
[0.55, 0.89]; p<0.05). The same was true for penalty effect 
when comparing Penalty-Fixed and Penalty-Varying 
intervals on both reaction times (b=-0.02; 95% CI [-0.03, -
0.01]; p<0.001) and accuracies (b=0.60; 95% CI [0.47, 0.77]; 
p<0.001). These results show that the difference in 
performance between high and low incentive conditions was 
larger in blocks in which the relevant incentive was fixed, 
compared to blocks in which it was varying.   

 
Drift diffusion model. Consistent with the previous findings 
with this task (Leng et al., 2021), participants exhibited lower 
thresholds for high relative to low reward (b=-0.12; 95% CrI 
[-0.18, -0.05]; pb<0<0.001; Figure 4B), while maintaining a 
similar drift rate (b=0.04; 95% CrI [-0.07, 0.16]; pb<0=0.23). 
For high relative to low penalties, they exhibited higher 

thresholds (b=0.15; 95% CrI [0.07, 0.24]; pb<0,0.001) and 
higher drift rates (b=0.14; 95% CrI [0.02, 0.26]; pb<0<0.001).  
Most importantly, the difference between the threshold for 
high relative to low reward was smaller in Reward-Varying 
relative to Reward-Fixed blocks (b=-0.06; 95% CrI [-0.11, -
0.01]; pb<0<0.001). Similarly, the difference in threshold 
between high and low penalty levels was greater for Penalty-
Fixed than for Penalty-Varying blocks (b=0.10; 95% CrI 
[0.05, 0.15]; pb<0<0.001). We did not find significant effects 
of block type on drift rate adjustments.  

Figure 4: Experiment 2 results and model simulations. 
A. Reaction times and accuracies. Regression estimates 
of the reaction times and accuracies for the reward (up) and 
the penalty (down) conditions for the blocks in which the 
relevant incentive is either fixed (Fixed) or changing 
(Varying). Error bars represent 95% confidence intervals 
and **: p<0.001. B. Drift diffusion modeling results. 
Drift rate and threshold estimates of the differences 
between the high and low value of the relevant incentive in 
blocks in which that incentive is either fixed or varying. 
Error bars represent 95% credible intervals and **/*: the 
ratio of posterior simples on two sides of 0 is <0.001/0.05. 
C. Model predictions. Model simulations for the 
difference in the drift rates and thresholds between the high 
and low value of the relevant incentive when that incentive 
is either fixed or varying.   



Model simulation results. Predictions from the model 
simulations (Figure 4C) fully capture the observed empirical 
results (Figure 4B). The model predicts lower thresholds for 
high relative to low rewards, and predicts that this effect will 
be more pronounced in the fixed relative to the varying 
blocks (Figure 4C left). Further, the model predicts higher 
thresholds and drift rates for high relative to low penalty 
conditions, and, crucially, that this difference will be more 
pronounced in fixed relative to varying blocks (Figure 4C 
middle). This prediction is in line with the observed results.  

Discussion 

In Experiment 2 we sought to provide further evidence for the 
existence of reconfiguration costs within a single task by 
implicitly inducing different performance goals. We 
incentivized participants’ performance by offering high or 
low performance-based monetary reward and penalties. This 
manipulation led to lower thresholds when high relative to 
low rewards were on offer, and higher thresholds and drift 
rates when high relative to low penalties were expected. 
Crucially, we found that the changes in thresholds for both 
the reward and the penalty effect were reduced in blocks in 
which these incentives were varying (e.g., switching between 
high and low rewards in one block) compared to blocks in 
which the incentive was fixed (e.g., always high reward, but 
varying levels of penalties). This pattern of findings was well 
captured by a computational model that included different 
levels of rewards and penalties, but also, crucially, 
reconfiguration costs which regularized the movement in the 
drift-threshold space. These findings provide further support 
for the existence of reconfiguration costs arising from control 
intensity adjustments within a single task.  

General discussion 
People engage cognitive control to adjust which 

information they process, and how they process it, in order to 
accomplish their goals. While research on task switching has 
demonstrated the costs associated with changing which 
information is processed between different tasks, much less 
is known about the costs associated with adjusting control 
intensity within a single task. Here we demonstrate that 
adjustments in cognitive control intensity within a single task 
are associated with reconfiguration costs. These costs 
regularize the magnitude of cognitive control adjustments 
and bias against large fluctuations in control.  

Across two tasks, we induced explicit (Experiment 1) and 
implicit (Experiment 2) performance goals to create 
conditions in which different configurations of control 
signals (drift rates and thresholds) are optimal. Participants 
performed these conditions in blocks in which they either had 
to frequently switch between varying performance goals 
(high reconfiguration costs; e.g., focusing on speed after 
having just focused on accuracy), or had only one fixed 
performance goal (low reconfiguration costs; e.g., focus on 
speed on every interval in one block). In both experiments we 
show that adjustments in response thresholds were smaller in 

blocks with low relative to high reconfiguration costs. We 
used a reward-rate optimal model (Bogacz et al., 2006; Leng 
et al., 2021) to simulate performance of artificial agents in 
these two experiments. This model is able to capture most of 
the empirically observed patterns, but only if it includes 
reconfiguration costs (operationalized as the Euclidian 
distance on the difference between the drift rate and threshold 
levels across conditions in a block). This finding provides 
support for the computational models of control which 
include reconfiguration costs (Lieder et al., 2018; Manohar et 
al., 2015; Musslick et al., 2015, 2019), and extends them to 
include costs on threshold adjustments.   

 While our empirical findings and modeling results support 
the existence of reconfiguration costs within a single task, 
several important questions are left open. Our current 
experimental designs cannot fully rule out the possibility that 
participants are sometimes making the mistake of having the 
wrong performance goal for a given interval in the varying 
blocks (e.g., focusing on speed despite the cue telling them to 
focus on accuracy). One argument against this idea is that a 
computational model which would perform our tasks in this 
way would have difficulty capturing the asymmetric patterns 
of reconfiguration costs we observed for threshold relative to 
drift rate adjustments. However, further experimental work is 
needed in order to fully rule out this possibility.  

The observed asymmetries in reconfiguration costs are 
themselves notable. While our model was able to capture 
them by placing a higher reconfiguration cost on threshold 
than drift, an important question for future work is whether 
this asymmetry reflects a general property of these control 
signals or is specific to the drivers of adjustments in our 
current tasks. Given that prior modeling of the task in 
Experiment 2 (Leng et al., 2021) found an important role for 
intensity costs on drift rates (but not necessarily for 
thresholds), it would also be valuable to examine whether 
there is a more general trade-off between these two forms of 
costs. Future experiments could address this question by 
investigating reconfigurations costs in experiments that 
encourage larger changes in drift rates (e.g., by varying 
reward magnitude substantially while maintaining low 
penalties). Finally, here we have focused on the costs 
associated with adjusting the levels of attention and caution, 
and fixed the other DDM parameters, but future work should 
examine the possibility that adjustments in other parameters 
(e.g., diffusion noise) could also incur reconfiguration costs.  

Here we offer a way of measuring reconfiguration costs, 
which can be used to compare different models and 
implementations of reconfiguration costs. The existence of 
reconfiguration costs is critical for improved measurement of 
incentivized cognitive control. Classical paradigms which 
measure the effects of motivation on cognitive control 
(Botvinick & Braver, 2015; Parro et al., 2018; Yee & Braver, 
2018) commonly include varying incentives. 
Reconfiguration costs will arise in these situations, 
decreasing the experimenter’s sensitivity to these effects. We 
formalize the cause of this decrease, and offer a way to 
maximize measurement precision on the effects of interest. 
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