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Abstract

To achieve goals, people leverage cognitive control to adjust
how they process information. Here we show that frequent
adjustments in information processing strategies (e.g., response
threshold) within a single task give rise to reconfiguration
costs. In two experiments we induced different performance
goals in a Stroop task via explicit instruction or incentives, and
these goals either varied or were fixed across different blocks.
Across both experiments, we find smaller adjustments in
control intensity when people frequently adjust the amount of
control they exert, relative to blocks in which they don’t. We
show that these results can be accounted for with a model that
maximizes reward rate while minimizing reconfiguration costs
(proportional to the Euclidean distances between the previous
and current control signals). These findings suggest that
cognitive control adjustments are regularized to constrain
larger adjustments in control, which has important implications
for computational modeling and measurement of motivated
cognitive control.

Keywords: cognitive control; reconfiguration costs;
motivation; drift diffusion model
Introduction

In order to achieve their goals, people engage cognitive
control processes to adjust which information they pay
attention to, and how they process this information. Many
environments require rapid switches between different tasks,
and frequent changes in the type of information which is
being processed. Such situations incur switch-costs —
detriments in behavioral performance when people need to
focus on one aspect of their environment, after having been
focused on a different one (Alport et al., 1994; Monsell,
2003). A rich literature on task switching has focused on
people’s ability to rapidly change between task sets which
require them to process different aspects of their environment
(Kiesel et al., 2010). However, many situations don’t require
switching between tasks, but rather adjustments of
information processing strategies within a single task. For
example, when incentives in an environment change, people
have to adjust how much attention they pay to the task at
hand, or how cautious they are when making decisions on
how to act. Here we investigate the costs associated with such
adjustments in control intensity.

Computational models of cognitive control propose that
control intensity is determined through the maximization of
the value of cognitive control (Shenhav et al., 2013; Verguts
et al., 2015; Manohar et al., 2015; Alexander et al., 2018).

These models are supported by a wide range of studies
showing that people adjust their levels of attention and
caution based on their current goals, as reflected in changes
in drift rate and threshold within a Drift Diffusion model
(e.g., focus on speed vs. accuracy; Forstmann et al., 2008;
Ratcliff & Rouder, 1998). Crucially, people allocate more
attention when they expect higher performance-contingent
rewards (Padmala & Pessoa, 2011; Krebs et al., 2012), and
they adjust both drift rates and thresholds according to the
level of expected rewards and penalties (Leng et al., 2021).
This work suggests that people exert optimal levels of control
given the expected incentives in their environment. Recent
models of cognitive control propose that such value-based
adjustments in control come with a cost arising from the need
to adjust control signals (Lieder et al., 2018; Musslick et al.,
2015, 2019; Musslick & Cohen, 2021). However, direct
empirical tests of this proposal are lacking.

Here we consider different environments in which
people have to readjust their control settings (control
intensity measured as the magnitude of drift rates and
thresholds; Ratcliff & McKoon, 2008), while doing a single
cognitive control task. We show that in such environments
control intensity is not adjusted to the optimal level suggested
by a reward-rate optimal model (Bogacz et al., 2006; Leng et
al., 2021). Rather, there is an inertia in the control system
which regularizes larger adjustments in control intensity. In
other words, we show that cognitive control adjustments
depend not only on the optimal level of control given the
current environment, but also on the magnitude of control
adjustment needed to reach the value-optimal level from the
previous control level. This finding suggests that cognitive
control adjustments are regularized in a way that prevents
large adjustments in how people process information (Ritz et
al., 2022). Such control regularization has important
implications for computational models of cognitive control,
as well as for measurement of motivated cognitive control.

Reward rate model with reconfiguration costs

To simulate reward-optimal adjustments in cognitive control
we used a reward-rate model (Figure 1) which finds the
optimal levels of drift rate and threshold given the current
performance goals (Bogacz et al., 2006; Leng et al., 2021).
This model (Eq. 1) calculates the expected value of control
(EVC) by considering the weights on the current value of
giving a correct response (w;) and making an error (w,).



These weights are specified by the current performance goals
(e.g., valuing speed over accuracy) which generate different
experimental conditions (7). The weights scale the rate of
correct responses (1 — ER) and the error rate (ER) obtained
from the Drift Diffusion model (DDM; Bogacz et al., 2006)
for specific values of drift rate (v) and threshold (a). The
expected value of control includes two types of costs. The
opportunity cost (Kurzban et al., 2013; Otto & Daw, 2019)
which discounts the overall outcome and includes both the
decision time (DT) and non-decision time (NDT). The
second cost is the intensity cost (Musslick et al., 2015;
Shenhav et al., 2013) represents the quadratic cost on
cognitive control intensity, operationalized as the drift rate.
The expected value of control is scaled by the probability of
the occurrence of different conditions.

EVC(V,A,W,NDT) =
N Wi X(1—ER(‘Ui,ai))—W2iXER(‘Ui,ai) 2
i=1Pi [ DT (v;,a;)+NDT vi ]

(Eq.1)

The model then finds the optimal set of drift rates (V) and
thresholds (A) which maximize the expected value of control
for a given set of weights (W), as specified by the different
condition, and a non-decision time.
V,A = argmaxy 4[EVC|W,NDT] (Eq.2)

However, this model predicts no differences in drift rates and
thresholds between the environment in which people have to
switch between different conditions and the environment
which doesn’t require switches. Crucially, here we extended
the previous model by including a reconfiguration cost
associated with readjusting drift rate and threshold levels
across different experimental conditions (e.g., speed and
accuracy; cf. Lieder et al., 2018; Musslick et al., 2018). We
implemented this cost (Eq. 3) of moving between different
conditions as the exponentiated Euclidian distance between
the drift rate and threshold configurations in the two different
conditions i and j. We opted for the exponentiated Euclidian
distance following previous computational implementations
of the EVC model (Musslick et al., 2015), but we confirmed
that the qualitative pattern of results produced by the model

No reconfiguration costs
Reward-optimal drift-threshold configurations when
conditions x and y are performed separately

High reconfiguration costs
Reward-optimal drift-threshold configurations when
conditions x and y are performed within the same block

Threshold (a)
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Max EVC (v,,a,) for
condition y (wy,,w;,)
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condition y (w;,,w5,)
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Figure 1. Configurations of drift rate and threshold
which maximize the expected value of control in blocks
with and without reconfiguration costs.

remains the same when using different distance metrics (e.g.,
Euclidian and Manhattan distance). This model reduces to the
model in Equation 1 if the weight on the reconfiguration cost
(RC) is set to 0. Otherwise, the model includes a certain level
of reconfiguration cost. We included the weights on drift rate
and threshold adjustments so that the model could capture the
situation in which people weigh the reconfiguration cost on
each dimension differently. We included C,, and C, to capture
potential bias between drift rate and threshold change in the
cost of reconfiguration.

EVC(V,A,W,NDT,RC) =
N ) I:Wli X(l—ER(Ui,ai))—WziXER(Vi,ai) _ vz] _
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The optimal values of drift and threshold are then calculated
by maximizing the expected value of control (Eq. 2).

Experiment 1

Methods

Participants. We recruited 48 participants on Prolific, and
excluded 4 of them due to failed attention checks, yielding
the final sample of 44 participants (31 female; median
age=30). The research protocol was approved by Brown
University’s Institutional Review Board.

Design. Participants performed a Stroop task in which they
identified the ink color of the color word by pressing one of
the 4 corresponding keys, while ignoring the word content.
Participants performed the interval version of the Stroop task
(Figure 2A) in which they completed as many trials as they
wished during a fixed time period (8-12s). This task has been
shown to produce reliable adjustments in both drift rates and
thresholds in response to incentives, and participant’s
performance is well captured by a reward-rate model (Leng
et al, 2021). Prior to each interval, participants were
presented with a cue (1.5 s; Figure 2C) instructing them to
perform the task either as quickly or as accurately as possible
(cf. Forstmann et al., 2008; Ratcliff & Rouder, 1998).
Participants received feedback (1.5 s) on how many correct
responses they gave. Crucially, there were two types of
blocks (Figure 2B) which vyielded different levels of
reconfiguration costs. In Fixed blocks, participants
performed only one condition on every interval (e.g., focus
on speed). In Varying blocks, participants performed
multiple conditions within the block (e.g., focus on speed,
followed by focus on accuracy). We predicted that Fixed
blocks will not incur reconfiguration costs, while Varying
blocks will. Participants performed 4 blocks, each of which
included 20 intervals. For half of the blocks, the instructed
condition was fixed over the entire block, meaning that in
these blocks participants always received a cue telling them
to focus on the same dimension of performance (e.g., speed).



The other half of the blocks were Varying, meaning that the
performance goals changes within a block. Before each
block, participants were informed whether this will be a
Fixed or a Varying block, these blocks were intermixed, and
their order was counterbalanced across participants.
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Figure 2. Experimental design. A. One interval. Each
interval in the experiment consisted of a fixed time interval
during which participants could complete as many Stroop
trials as they wished. B. Block types. Fixed blocks refer to
blocks in which a given condition remained constant
throughout the block, whereas Varying blocks refer to blocks
in which that condition (instruction in Experiment 1,
incentive level in Experient 2) varied across the block. C.
Experimental conditions in Experiment 1. Participants
were presented with cues instructing them to perform the
task as fast or as accurately as they can. D. Experimental
conditions in Experiment 2. Participants were presented
with cues which indicated that they could earn high or low
rewards for correct responses, and that they could receive
high or low penalties for errors.

Statistical analyses and Drift Diffusion modeling. To
predict reaction times and accuracies on each trial we fitted
hierarchical linear mixed models (Ime4 package in R; Bates
et al., 2015) and included congruency, interval length,
interval and block type and their interaction as predictors. All
of the main effects and the intercept were also included as
random effects. Reaction times were log-transformed for
these analyses. We then fitted a hierarchical Bayesian drift
diffusion model (HDDM; Wiecki et al., 2013) to the reaction
time and accuracy data. The fitted model includes the effect
of congruency on drift rate, as well as the effects of
instruction type (speed vs. accuracy), block type (Varying vs.
Fixed), and the interaction between instruction and block type
on drift rate. We also included the same effects on the
threshold, but without the effect of congruency. Finally, we
included the effect of instruction type on non-decision time.
We ran S MCMC simulations (chains; 10000 iterations; 8000
warmup) to estimate the model. We confirmed chain
convergence by examining trace plots and the ratio of

variances between and within chains (Gelman-Rubin
statistic), and posterior predictive checks. We summarized
the obtained posterior distributions by reporting their means,
95% credible intervals, and the probability that the parameter
of interest is higher than 0 (e.g., ps<o = 0.01).

Computational model. In order to simulate the environment
in Experiment 1 we used the model presented in Equation 3.
In this experiment, participants were instructed to focus either
on speed or on accuracy. We relied on the empirical DDM
fits in order to simulate the performance in the similar range
as the empirically observed values. We employed an inverse
reward-rate optimization procedure (Leng et al., 2021) to set
the baseline values for the value of giving a correct response
(wy) and the value of committing an error (w,). The inverse
reward-rate optimization was based on the empirically
obtained group-level estimates of the non-decision time, and
the drift rate and threshold levels in the speed and accuracy
conditions. This inverse optimization procedure yielded the
weights for each of the 2 incentive conditions. With these
weights we simulated the blocks in which the condition of
each interval is fixed as speed or accuracy (RC= 0.05) and
the blocks in which the condition varies between speed and
accuracy randomly (RC= 0.4). We fixed the relative weight
of drift rate adjustment in reconfiguration cost (C,) as 1 and
varied the weight for threshold adjustment to generate
predictions matched with empirical results. The model
matches with the empirical finding with €, = 10. We then
used a gradient descent algorithm to find the configuration of
drift rates and thresholds which maximize the expected value
of control. The drift rate and threshold configurations
obtained in this way were then compared to the empirical
findings.

Results

Reaction times and accuracy. As shown in Figure 3A,
participants were faster (b=0.13; 95% CI [0.09, 0.18];
p<0.001) and less accurate (b=6.88; 95% CI [4.13, 11.45];
p<0.001) when instructed to focus on speed relative to when
instructed to focus on accuracy. Crucially, when instructed to
focus on speed, they were more accurate in the Varying
compared to Fixed blocks (b=1.33; 95% CI [1.12, 1.59];
p<0.001). When instructed to focus on accuracy there was a
non-significant trend toward being more accurate in the Fixed
relative to the Varying blocks (b=0.85; 95% CI [0.70, 1.03];
p=0.104). Further, in the speed condition participants were
faster to respond in Fixed than in Varying blocks (56=0.02;
95% CI [0.70, 1.03]; p=0.104), and there were no significant
differences in the accuracy condition (»=0.00; 95% CI [-0.01,
0.01]; p=0.888). These results indicate that the performance
in the speed condition was more similar to the performance
in the accuracy condition when participants had to switch
between these strategies within one block relative to when
they had only one instruction per block.



Drift diffusion model. When they were instructed to focus
on accuracy, relative to when they were instructed to focus
on speed (Figure 3B — left), participants had higher drift rates
(b=0.68, 95% Crl [0.43, 0.94]; pr<0<0.01), thresholds
(6=0.39; 95% CrI [0.23, 0.55]; p»<0<0.01), and non-decision
times (b=0.04, 95% Crl [0.02, 0.07]; pr<0<0.001). Crucially,
this difference between accuracy and speed in thresholds was
smaller in blocks that included both conditions compared to
blocks with only one condition (6=0.07; 95% Crl [0.01,
0.137]; pp<0<0.01). We found no such block differences in drift
rates (b=0.05, 95% Crl [-0.11, 0.20]; pp<=0.27).

Model simulation results. Results of the model simulations
(Figure 3C) show that the model was able to capture the main
pattern of the empirically observed effects (Figure 3B). The
model replicated the larger adjustment of thresholds in the
Fixed relative to the Varying blocks, and only a small
adjustment of drift rates.
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Figure 3: Experiment 1 results and model simulations.
A. Reaction times and accuracies. Regression estimates
of the reaction times (left) and accuracies (right) for the
speed and accuracy conditions in blocks in which
participants either have one performance goal (Fixed) or
are switching between two performance goals (Varying).
Error bars represent 95% confidence intervals and **:
p<0.001. B. Drift diffusion modeling results. Drift rate
and threshold differences between the accuracy and the
speed condition in Fixed and Varying blocks. Error bars
represent 95% credible intervals and **: the ratio of
posterior simples on two sides of 0 is <0.001. C. Model
predictions. Model simulations for the difference in drift
rates and thresholds between the accuracy and speed
conditions in Fixed and Varying blocks.

Discussion

The results of Experiment 1 show that inducing the
performance goals of focusing on either speed or accuracy in
a classical cognitive control task produces changes in both
response thresholds and drift rates. While the focus on

accuracy relative to speed increased both the thresholds and
drift rates, this difference was reduced for thresholds when
the participants had to switch between the two performance
goals within a block compared to the blocks in which they
only had one performance goal. This pattern of results can be
successfully simulated with a computational model that
assumes that there is a reconfiguration cost operationalized
as the distance in the drift-threshold space between the two
conditions. These empirical findings and model simulations
provide evidence for the existence of reconfiguration costs in
situations in which participants are switching between
explicitly induced performance goals within a single task. In
Experiment 2 we sought to provide further evidence for the
existence of reconfiguration costs in the absence of explicitly
induced performance goals. Rather, we implicitly induced
performance goals by differentially incentivizing
performance with high or low monetary incentives.

Experiment 2

Methods

Participants. We recruited 80 participants who were paid to
perform the task on Prolific. The final sample included 69
participants (34 female; median age=21; 11 excluded due to
failed attention checks). The research protocol was approved
by Brown University’s Institutional Review Board.

Design. Participants performed the same Stroop task as in
Experiment 1 (Figure 2A), completing as many trials as they
wished within a fixed time interval (6-9s in this experiment).
Crucially, rather than explicitly inducing performance goals
(via cued instructions as in Experiment 1), we differentially
incentivized performance goals by offering rewards (earning
100 points vs. 1 point) for correct responses, and penalties
(losing 100 points vs. 1 point) for errors (cf. Leng et al.,
2021). Prior to each interval, participants saw a cue (1 s)
informing them about the reward and penalty levels within
the interval (Figure 2D). After each interval they received
feedback (1 s) about how many rewards and penalties they
earned. Within a block, one incentive type always varied
(e.g., high vs. low reward), while the other was fixed (e.g.,
low penalty). This meant that in some blocks the reward
manipulation induced reconfiguration costs, while the
penalty manipulation did not, and vice versa (Figure 2B).
Participants performed 4 blocks, out of which 2 were with
varying rewards, and 2 with varying penalties. Each block
consisted of 15 intervals, and at block onset participants were
informed which incentive will be fixed and at which level
(e.g., low penalty), and which incentive will be varying (e.g.,
switching between high and low rewards). The block order
was randomized across participants.

Statistical analyses and Drift Diffusion modeling. We used
the same procedure as in Experiment 1 to analyze the reaction
time and accuracy data, and fit the Drift Diffusion model. The
fitted model included the effect of congruency on drift rate,
as well as the effects of the reward and penalty levels, the



effect of reward vs. penalty being fixed, and the interaction
between the last two predictors. We allowed threshold to vary
according to the all of the same predictors except congruency.

Computational model. In order to simulate the environment
in Experiment 2 we used the model presented in Equation 3.
In this experiment participants received high or low rewards
for correct responses (Wiyighrewara a0d Wiowrewara)> and
high or low penalties for errors (Wapignpenairy and
Warowpenaity)- We relied on the empirical group-level DDM
fits in order to simulate performance in the similar range as
the empirically observed values. We employed an inverse
reward-rate optimization procedure (Leng et al., 2021) to set
the baseline values for the weights on the correct responses
(wy) and errors (w,) based on the empirically obtained
estimate of non-decision time, and the drift rate and threshold
levels for each pair of reward and penalty values. This inverse
optimization procedure yielded the weights for each of the 4
incentive conditions. With these weights we simulated the
blocks in which reward levels varied (Reward-Varying; RC
= 0.4) and the blocks in which reward levels were fixed, but
penalty levels varied (Reward-Fixed; RC = 0.05). We did the
same for the Penalty-Varying vs. Penalty-Fixed. We then
found the values of drift rate and threshold which maximized
the expected value of control and compared them to the
empirically observed results.

Results

Reaction times and accuracy. Participants performed faster
(h=-0.03; 95% CI [-0.04, -0.03]; p<0.001; Figure 4A), but
less accurately on intervals with high relative to low rewards
(6=0.79; 95% CI [0.68, 0.91]; p<0.001). Conversely, they
were slower (6=0.02; 95% CI [0.02, 0.03]; p<0.001), but
more accurate (b=1.75; 95% CI [1.51, 2.04]; p<0.001) on
high relative to low penalty intervals. Importantly, we found
substantial performance differences between the Fixed and
the Varying blocks. The difference between high and low
reward intervals was larger in Reward-Varying relative to
Reward-Fixed blocks for both reaction times (b=-0.01; 95%
CI [-0.02, -0.01]; p<0.001) and accuracies (b=0.70; 95% CI
[0.55, 0.89]; p<0.05). The same was true for penalty effect
when comparing Penalty-Fixed and Penalty-Varying
intervals on both reaction times (b=-0.02; 95% CI [-0.03, -
0.01]; p<0.001) and accuracies (b=0.60; 95% CI [0.47, 0.77];
p<0.001). These results show that the difference in
performance between high and low incentive conditions was
larger in blocks in which the relevant incentive was fixed,
compared to blocks in which it was varying.

Drift diffusion model. Consistent with the previous findings
with this task (Leng et al., 2021), participants exhibited lower
thresholds for high relative to low reward (b=-0.12, 95% Crl
[-0.18, -0.05]; pr<0<0.001; Figure 4B), while maintaining a
similar drift rate (b=0.04, 95% Crl [-0.07, 0.16]; ps<0=0.23).
For high relative to low penalties, they exhibited higher

thresholds (b=0.15; 95% CrI [0.07, 0.24]; ps<0,0.001) and
higher drift rates (5=0.14, 95% Crl [0.02, 0.26]; pp<0<0.001).
Most importantly, the difference between the threshold for
high relative to low reward was smaller in Reward-Varying
relative to Reward-Fixed blocks (b=-0.06, 95% CrI [-0.11, -
0.01]; p»<0<0.001). Similarly, the difference in threshold
between high and low penalty levels was greater for Penalty-
Fixed than for Penalty-Varying blocks (b=0.10; 95% CirI
[0.05, 0.15]; ps<0<0.001). We did not find significant effects
of block type on drift rate adjustments.
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Figure 4: Experiment 2 results and model simulations.
A. Reaction times and accuracies. Regression estimates
of the reaction times and accuracies for the reward (up) and
the penalty (down) conditions for the blocks in which the
relevant incentive is either fixed (Fixed) or changing
(Varying). Error bars represent 95% confidence intervals
and **: p<0.001. B. Drift diffusion modeling results.
Drift rate and threshold estimates of the differences
between the high and low value of the relevant incentive in
blocks in which that incentive is either fixed or varying.
Error bars represent 95% credible intervals and **/*: the
ratio of posterior simples on two sides of 0 is <0.001/0.05.
C. Model predictions. Model simulations for the
difference in the drift rates and thresholds between the high
and low value of the relevant incentive when that incentive
is either fixed or varying.
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Model simulation results. Predictions from the model
simulations (Figure 4C) fully capture the observed empirical
results (Figure 4B). The model predicts lower thresholds for
high relative to low rewards, and predicts that this effect will
be more pronounced in the fixed relative to the varying
blocks (Figure 4C left). Further, the model predicts higher
thresholds and drift rates for high relative to low penalty
conditions, and, crucially, that this difference will be more
pronounced in fixed relative to varying blocks (Figure 4C
middle). This prediction is in line with the observed results.

Discussion

In Experiment 2 we sought to provide further evidence for the
existence of reconfiguration costs within a single task by
implicitly inducing different performance goals. We
incentivized participants’ performance by offering high or
low performance-based monetary reward and penalties. This
manipulation led to lower thresholds when high relative to
low rewards were on offer, and higher thresholds and drift
rates when high relative to low penalties were expected.
Crucially, we found that the changes in thresholds for both
the reward and the penalty effect were reduced in blocks in
which these incentives were varying (e.g., switching between
high and low rewards in one block) compared to blocks in
which the incentive was fixed (e.g., always high reward, but
varying levels of penalties). This pattern of findings was well
captured by a computational model that included different
levels of rewards and penalties, but also, crucially,
reconfiguration costs which regularized the movement in the
drift-threshold space. These findings provide further support
for the existence of reconfiguration costs arising from control
intensity adjustments within a single task.

General discussion

People engage cognitive control to adjust which
information they process, and how they process it, in order to
accomplish their goals. While research on task switching has
demonstrated the costs associated with changing which
information is processed between different tasks, much less
is known about the costs associated with adjusting control
intensity within a single task. Here we demonstrate that
adjustments in cognitive control intensity within a single task
are associated with reconfiguration costs. These costs
regularize the magnitude of cognitive control adjustments
and bias against large fluctuations in control.

Across two tasks, we induced explicit (Experiment 1) and
implicit (Experiment 2) performance goals to create
conditions in which different configurations of control
signals (drift rates and thresholds) are optimal. Participants
performed these conditions in blocks in which they either had
to frequently switch between varying performance goals
(high reconfiguration costs; e.g., focusing on speed after
having just focused on accuracy), or had only one fixed
performance goal (low reconfiguration costs; e.g., focus on
speed on every interval in one block). In both experiments we
show that adjustments in response thresholds were smaller in

blocks with low relative to high reconfiguration costs. We
used a reward-rate optimal model (Bogacz et al., 2006; Leng
et al., 2021) to simulate performance of artificial agents in
these two experiments. This model is able to capture most of
the empirically observed patterns, but only if it includes
reconfiguration costs (operationalized as the Euclidian
distance on the difference between the drift rate and threshold
levels across conditions in a block). This finding provides
support for the computational models of control which
include reconfiguration costs (Lieder et al., 2018; Manohar et
al., 2015; Musslick et al., 2015, 2019), and extends them to
include costs on threshold adjustments.

While our empirical findings and modeling results support
the existence of reconfiguration costs within a single task,
several important questions are left open. Our current
experimental designs cannot fully rule out the possibility that
participants are sometimes making the mistake of having the
wrong performance goal for a given interval in the varying
blocks (e.g., focusing on speed despite the cue telling them to
focus on accuracy). One argument against this idea is that a
computational model which would perform our tasks in this
way would have difficulty capturing the asymmetric patterns
of reconfiguration costs we observed for threshold relative to
drift rate adjustments. However, further experimental work is
needed in order to fully rule out this possibility.

The observed asymmetries in reconfiguration costs are
themselves notable. While our model was able to capture
them by placing a higher reconfiguration cost on threshold
than drift, an important question for future work is whether
this asymmetry reflects a general property of these control
signals or is specific to the drivers of adjustments in our
current tasks. Given that prior modeling of the task in
Experiment 2 (Leng et al., 2021) found an important role for
intensity costs on drift rates (but not necessarily for
thresholds), it would also be valuable to examine whether
there is a more general trade-off between these two forms of
costs. Future experiments could address this question by
investigating reconfigurations costs in experiments that
encourage larger changes in drift rates (e.g., by varying
reward magnitude substantially while maintaining low
penalties). Finally, here we have focused on the costs
associated with adjusting the levels of attention and caution,
and fixed the other DDM parameters, but future work should
examine the possibility that adjustments in other parameters
(e.g., diffusion noise) could also incur reconfiguration costs.

Here we offer a way of measuring reconfiguration costs,
which can be used to compare different models and
implementations of reconfiguration costs. The existence of
reconfiguration costs is critical for improved measurement of
incentivized cognitive control. Classical paradigms which
measure the effects of motivation on cognitive control
(Botvinick & Braver, 2015; Parro et al., 2018; Yee & Braver,
2018) commonly include varying incentives.
Reconfiguration costs will arise in these situations,
decreasing the experimenter’s sensitivity to these effects. We
formalize the cause of this decrease, and offer a way to
maximize measurement precision on the effects of interest.
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