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ABSTRACT

Title of dissertation: A STUDY OF THE IMPACT OF
NUMERICAL DISSIPATION ON
MESO-SCALE SIMULATIONS OF
HURRICANE INTENSIFICATION
WITH OBSERVATIONAL HEATING

Md Badrul Hasan, Master of Science, 2022

Dissertation directed by: Dr. Meilin Yu
Department of Mechanical Engineering
Dr. Stephen Guimond
Joint Center for Earth Systems Technology

Numerous aspects of human existence, both material and immaterial, can be

disrupted by a hurricane. In this work, the computational fluid dynamics of hurri-

cane rapid intensification (RI) are studied by running idealized simulations with two

different codes: a community-based, finite-difference/split-explicit model (WRF)

and a spectral-element/semi-implicit model (NUMA). Rapid intensification is what

RI stands for, how a hurricane gets stronger quickly. The main goal of this study

is to find out how implicit numerical dissipation (IND) affects the energy of the

vortex’s response to heating, which describes the fundamental dynamics of the hur-

ricane RI process. The heating that is taken into account here is derived from data.

These observations include four-dimensional, fully nonlinear, latent heating/cooling

rates estimated using airborne Doppler radar readings acquired during RI in a hur-

ricane. The results show that WRF has more IND than NUMA, with a decrease



in several intensity parameters, such as (1) the time-integrated mean kinetic en-

ergy values that WRF predicts are 20% lower than those that NUMA predicts and

(2) the peak, localized wind speeds that WRF predicts are 12 meters per second

slower than those that NUMA predicts. To make a time series of intensity similar

to NUMA, the eddy diffusivity values in WRF need to be less than those in NUMA

by about 50%.

Kinetic energy budgets reveal that the pressure contribution is the primary

cause in the model variations, with WRF generating an average ∼ 23% lower vortex

energy input. The IND is associated with the low-order spatial discretization of the

pressure gradient in WRF. In addition, the mean contribution of the eddy trans-

port term to the vortex intensification is determined to be ∼ 20% positive. These

findings have significant implications for the academic and operational forecasting

communities that employ WRF and similar numerical methods.
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Chapter 1: Introduction

1.1 Background - Hurricane Formation

Tropical cyclones include hurricanes and tropical storms. Low-pressure sys-

tems form in the tropics or subtropics and have things like thunder and lightning

happen in these. In the Atlantic and northeastern Pacific Oceans, stronger storms

are called “hurricanes,” and in the northwestern Pacific Ocean, they are called “ty-

phoons.” “Tropical depressions” or “tropical storms” are the names for less powerful

tropical cyclones. The National Hurricane Center puts hurricanes into groups based

on how fast their winds are. A Category 1 hurricane is a storm with winds over 74

mph. “Major hurricanes” are storms with winds of more than 111 miles per hour

(Category 3 or higher). The wind speed is just one of many things that affect how

bad a hurricane is. Other things to consider are the storm’s track (where it hits

land), size, storm structure, amount of rain, length of time, and how vulnerable the

area is.

Recent storms, such as Hurricane Michael, which obliterated the Florida pan-

handle in 2018, and Hurricane Harvey, which flooded parts of Texas in 2017, demon-

strate the devastation these systems can cause even in the modern era. The record-

breaking hurricane season in the Atlantic Ocean in 2020 will also serve as an example.
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Figure 1.1: For a hurricane to form, there must be thunder,
warm water in the ocean, and light winds (A).
Once it’s formed, a hurricane is made up of big
rotating bands of rain and a center of clear skies
called the eye. The fast winds of the eyewall
surround the eye (B).[Source- COMET/UCAR]

Unfortunately, new research suggests that as the climate system continues to warm,

severe hurricanes will likely grow more regular, produce more flooding rainfall, and

stay longer even after landfall [1–3]. This is all due to the warming of the climate

system. As a result, hurricanes will likely place increasing stress on many sectors of
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society in various countries across the globe.

Figure 1.2: Before (top) and after (bottom) Hurricane Ivan
hit the coast in September 2004, these homes
were in Orange Beach, Alabama, which is on
a barrier island.[Source- USGS]

1.2 Motivations

Dynamical model predictions of a hurricane’s path, intensity, storm surge,

and rainfall can save lives and prevent billions of dollars in damage by allowing
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more time to be spent preparing for the disaster and evacuating vulnerable areas.

However, substantial forecast errors remain a problem in operational predictions

of hurricane intensity, remarkably rapid intensification (RI) [4, 5]. According to

DeMaria et al. [6], from 1991 and roughly 2015, neither one of the deterministic

models could accurately predict RI. While both dynamical and statistical models

have shown promise in RI forecasting since 2015, considerable under-prediction or

low bias in RI cases persists even now [7].

The vortex response to heating in convective clouds drives the rise in kinetic

energy in hurricane intensification and RI [8], and the source of moist enthalpy flow

originates from the thermodynamic disequilibrium between the ocean and the atmo-

spher [9]. The boundary layer is the most crucial region for energy dissipation, and it

does so primarily via surface friction and a hierarchy of turbulent eddies at different

scales. Recent studies, however, have revealed that the hurricane boundary layer

contains coherent turbulent structures that can “backscatter” radar signals “the

transmission of energy to bigger scales [10]. Energy dissipation can also happen im-

plicitly in numerical models as a result of the algorithms used to solve the fluid-flow

equations (what is known as “implicit numerical dissipation”) implicitly (without

filters) or explicitly (with filters). Low-order spatial and temporal discretizations of

the governing equations can lead to implicit numerical dissipation. In particular,

numerical dissipation error can be significantly reduced by using high-order (e.g.,

fifth) or centered schemes rather than lower-order (e.g., second) or upwind-biased

spatial discretizations of the advective components [11, 12].

Errors caused by excessive dissipation can quickly propagate through the sys-
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tem; hence it is preferable to have as little numerical dissipation as possible when

dealing with highly nonlinear computational fluid dynamics situations like hurri-

canes. To better understand the role of sub-grid scale models in describing turbulent

channel flow, Kravchenko et al., [13] looked into numerical errors in spectral and

finite difference codes. They showed that low-order (e.g., second) finite-difference

schemes substantially attenuate the energy spectrum at high wave numbers and that

the contribution of the sub-grid scale model is negligible. Results from large eddy

simulations and the efficiency of the sub-grid size model were improved by raising

the order of the finite-difference approximations. For shock/turbulence interaction

simulations, Larsson et al. [14] discovered that keeping numerical dissipation small

was crucial, especially for coarse resolution simulations when the fields are under-

resolved, and a sub-grid model is needed. In this study, we apply this setup to

mesoscale atmospheric modeling. The computational dissipation was significant

enough in the under-resolved simulations [14] to reduce or eliminate the smaller-

scale motions on the grid and from the sub-grid model. It has been demonstrated

that for large eddy simulations, implicit numerical dissipation can imitate the effects

of a sub-grid turbulence model [15]. So, only some numerical dissipation is good for

the outcome of a simulation. Further, in the high wave-number regions of the flow

field where the dissipation is active, the employment of some numerical dissipation

(in addition to fake viscosity) can assist control the impacts of numerical dispersion

errors.

In comparison to low-order (i.e., the order of accuracy equal to or smaller

than two) methods and other high-order methods, including finite volume/difference

5



schemes, continuous Galerkin (CG), and discontinuous Galerkin (DG) numerical

methods have several distinctive qualities. They are 1) highly scalable and effi-

cient on massively parallel supercomputers, such as those accelerated by Graphics

Processing Units (GPUs); 2) able to achieve arbitrary high-order discretization for

all spatial derivatives; and 3) possessing low dissipation and dispersion errors for

turbulent flows with highly disparate spatial and time scales [16, 17]. Because of

their superior numerical features, high-order CG and DG approaches are appealing

for studying hurricanes. High-order numerical techniques are superior to low-order

methods for solving flow problems with a low Reynolds number at The Interna-

tional Workshop on High-Order CFD Methods [18]. In contrast, high-order numeri-

cal systems can struggle with excessive grid-scale noise, aliasing, and stability when

simulating under-resolved problems that call for a sub-grid turbulence model and

problems with discontinuities [19–21]. When these occur, the simulation may fail,

or the simulated flow may be inaccurate. De-aliasing methods [20,22–25], localized

artificial viscosity [26, 27], and others have been developed to combat these issues.

Stabilizing flow simulations can be accomplished with the use of limiters [28–30].

For this research, we employ a hybrid method, wherein we apply artificial viscosity

based on results from a turbulent kinetic energy (TKE) sub-grid model for turbulent

diffusion (further information on this may be found in Section 2.1.3).

When simulating squall lines, Takemi et al. [31] used the Weather Research

and Forecasting (WRF) model. This finite difference-based code allows for high-

order discretization of the advective (or flux divergence) elements exclusively [12].

The scientists discovered many noisy, grid-scale convective cells using a typical TKE
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sub-grid model with a fifth-order, upwind-biased advection scheme. To avoid poten-

tially detrimental effects on physical modes from using an explicit numerical filter,

the authors of this study instead calibrated the TKE sub-grid model coefficient to

generate wavelength-dependent convective structures with suitable energy densities.

The significance of examining numerical dissipation was demonstrated by testing the

addition of an explicit numerical filter and discovering that it had a far higher im-

pact on the solutions than the sub-grid TKE model. A careful balance between

signal and noise must be maintained to ensure the high precision and stability of a

simulated flow.

Guimond et al. [32] revealed that implicit numerical dissipation could lead to

substantial changes in system intensity among models due to the vortex response

to simple, impulsive, asymmetric thermal anomalies. Compared to atmospheric

research codes like HIGRAD and NUMA (Nonhydrostatic Unified Model of the At-

mosphere), WRF had abnormally significant implicit numerical dissipation, which

muted the intensity response from asymmetric thermal anomalies. Less numerical

dissipation in HIGRAD and NUMA led to a more energetic reaction. The flux of

inertia-gravity wave energy explains most of the variance in the pressure term, ac-

cording to spectral kinetic energy budgets. In WRF, acoustic and inertia-gravity

waves are called fast modes. This led to the recommendation that WRF’s numeri-

cal dissipation was caused by its time integration scheme. Sensitivity experiments

with NUMA time integration systems demonstrated energy and pressure term role

variances.
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1.3 Outline of Thesis

This work looks at how a tropical storm-like vortex reacts to time-dependent,

3-D observational heating calculated from airborne Doppler radar measurements in

the RI of Hurricane Guillermo (1997). Chapter 2 presents a detailed description of

the numerical models and simulation setup. We provide the WRF and NUMA mod-

els, vortex initialization and heating procedures, and eddy viscosity and diffusivity

configuration.

Comparison of the wind field features, e.g., maximum and azimuthal mean

wind speed and kinetic energy, from WRF and NUMA, is discussed in Chapter 3.

This chapter also presents kinetic energy budget analyses to explain the wind field

disparity between WRF and NUMA. Similar features for more extended period

simulations are studied in section 3.3.

Important implications of this work in the hurricane research and operational

fields are given in Chapter 4. Future work is discussed in this Chapter 4.2.
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Chapter 2: Methodology

2.1 Description and Setup of Numerical Models

Guimond et al. [32] provides a complete introduction to the governing equa-

tions and numerical methods employed in the WRF-ARW (after this WRF) and

NUMA models. In Table 2.1, we provide a quick reference of the numerical meth-

ods, boundary conditions, and sub-grid size diffusion parameters utilized in each

model for completeness.

2.1.1 The WRF Model

The non-hydrostatic, compressible Euler equations are solved conservatively

in the WRF model using the η mass vertical coordinate [12,33]. In post-processing,

all variables are interpolated to conventional height levels for comparisons with

NUMA. The variations between η levels and height are negligible in these idealized

simulations. Using a Laplacian operator for explicit diffusion and η as the vertical

coordinate, the simplified model equations for a dry environment can be written as

follows:
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∂mu

∂t
+∇ · (muu) = −m

ρ

∂p̂

∂x
+ fmv +∇ · (mµ∇u) (2.1)

∂mv

∂t
+∇ · (muv) = −m

ρ

∂p̂

∂y
− fmu+∇ · (mµ∇v) (2.2)

∂mw

∂t
+∇ · (muw) = g

(

∂p̂

∂η
− m̂

)

+∇ · (mµ∇w) (2.3)

∂mθ

∂t
+∇ · (muθ) = S +∇ ·

(

mκ∇θ̂
)

(2.4)

∂m

∂t
+∇ · (mu) = 0. (2.5)

u, v, and w are the three-dimensional velocities, m = m(x, y) is the column

mass per unit area, θ is the potential temperature, ρ is the dry air density, p̂ is

the perturbation pressure, f is the Coriolis parameter, g is gravity, µ is the eddy

viscosity, κ is the thermal diffusivity and S is the heating rate source term. Variables

with hats indicate hydrostatically balanced perturbations.

WRF uses a combination of finite-difference/finite-volume spatial discretiza-

tion. A spatially staggered Arakawa C grid is used in horizontal and vertical direc-

tions, with velocities on cell faces and scalars at cell centers. Fifth-order, upwind-

biased horizontal discretization and third-order vertical discretization are employed

for nonlinear advective terms. We used these parameters but also evaluated even-

ordered, less diffusive schemes (sixth-order and fourth-order in the horizontal and

vertical dimensions, respectively). The discrepancies between even-ordered and odd-

ordered schemes were minor (maximum values of +/- 0.5 m/s in the eyewall). The

WRF model uses a split-explicit time integration approach to calculate acoustic and

10



gravitational wave modes with a small time step and advection with a larger time

step [12,34,35]. Vertical modes are implicitly solved during the short period. Back-

ward Euler is used to solving for the implicit solution. Third-order Runge-Kutta

is used to integrate small- and large-time step equations. During Runge-Kutta

time integration, small-time step findings correct large-time step computations.

citeSkamarock-2008 for WRF information. To obtain minimally dissipative WRF

solutions, we switched off explicit sixth-order numerical filtering, vertical velocity

damping, divergence damping, and external mode damping. The above equations

apply artificial viscosity at the model top and through Laplacian operators.

2.1.2 The NUMA Model

Different versions of the Euler equations can be implemented in the NUMA

model [36,37]. To be compatible with Guimond et al. [32], however, we employ the

non-conservative version, in which potential temperature is the thermodynamic vari-

able [38,39]. Since the error resulting from the non-conservative set is substantially

lower than the temporal error, it is not envisaged that the choice of a conservative or

non-conservative equation set will make a significant difference. In NUMA, height

z is employed as the vertical mass coordinate instead of the more familiar η. These

are the governing equations:

∂u

∂t
+ u · ∇u = −1

ρ

∂p̂

∂x
+ fv +∇ · (µ∇u) (2.6)

∂v

∂t
+ u · ∇v = −1

ρ

∂p̂

∂y
− fu+∇ · (µ∇v) (2.7)

11



∂w

∂t
+ u · ∇w = −1

ρ

∂p̂

∂z
− ρ̂

ρ
g +∇ · (µ∇w) (2.8)

∂θ

∂t
+ u · ∇θ = S +∇ ·

(

κ∇θ̂
)

(2.9)

∂ρ

∂t
+∇ · (ρu) = 0 (2.10)

The CG spectral element method (CG-SEM) is used to make Eqs. (2.6)-(2.10)

spatially discrete [36, 39, 40]. State variables are represented by polynomial expan-

sions using Lagrange basis functions of a given order, and the physical domain is

partitioned into a collection of non-overlapping hexahedral elements. In discrete

form, the continuous spatial derivatives are made by taking the derivatives of the

polynomials that are close to the solutions. The state variables in each element are

close to each other and placed at Legendre-Gauss-Lobatto points that are not all

the same distance apart. In this study, we use fifth-order polynomial basis functions

in all three dimensions of space. This gives us fifth-order accuracy for all spatial

derivatives and is the same as what Guimond et al. [32] showed. Note that the stencil

for all polynomial orders in NUMA is symmetric about the centroid of the element.

This means that fifth-order polynomials do not have upwind-biased diffusion. The

three-dimensional semi-implicit method and a second-order leapfrog scheme (LF2)

with backward Euler off-centering are used to integrate time. With a coefficient of

0.2, a first-order Robert-Asselin time filter stabilizes the LF2 scheme. This gets rid

of the computational mode. Our control simulations are part of the above descrip-

tion of NUMA. There are a few other ways to integrate time in NUMA, and we

will show where sensitivity tests have been done. For more information about the

12



NUMA model, interested readers can look at this works [36, 39].

2.1.3 Details of Simulation Setup

We take a model hierarchy approach to study hurricane intensification. We

first employ idealistic simulations utilizing various numerical techniques to establish

a foundation of understanding and then add physics layers to advance this under-

standing into the whole regime. The CG spectral element method (CG-SEM) is

used to determine whether there are variations in the model solutions to the nu-

merical schemes that make up the dynamic core. Careful investigation has been

done to ensure that WRF and NUMA are configured in a virtually identical man-

ner. In addition, as will be shown in the following section, we have imposed several

idealizations in physics to isolate the vortex’s reaction to heating, which is the fun-

damental dynamics governing the intensification of hurricanes. As a result, it is not

our intention to provide a detailed account of a particular incident.

The computational domain is 800 km horizontally and 20 km in length verti-

cally. WRF uses 2 km horizontal grid spacing to match radar measurements used as

forcing and to be consistent with Guimond et al. [32]. The initial model level is 167

m with 333 m vertical spacing up to the model top (60 levels). The NUMA grid has

80 elements in each horizontal direction and 12 elements in each vertical direction,

along with fifth-order polynomials in all dimensions, to match WRF’s horizontal

and vertical grid spacing. These settings give NUMA element-averaged grid spacing

of 2 km horizontally and 333 m vertically. The time step in each model is 2 seconds.
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Each model uses periodic boundary conditions in both horizontal directions. The

computing domain has a gravity wave absorption zone (sine-squared function), with

the WRF zone covering the top 4 km with a small coefficient (0.00833) and the

NUMA zone covering the top 1 km with a big coefficient (1.0). Stability difficulties

cause absorbing zone discrepancies. However, sensitivity tests demonstrate the re-

sults are not sensitive to these options. Each model applies the free-slip boundary

condition at the bottom of the computational domain to deactivate surface fluxes

and prevent a frictional boundary layer. These idealizations focus on the vortex

dynamic response to forced heating. Four-dimensional latent heating/cooling rates

from aerial Doppler radar observations compel the simulations without moisture.

Post-processing interpolates WRF and NUMA fields to a consistent, collocated

grid at the above horizontal/vertical grid spacings. When processing the WRF re-

sults afterward, linear interpolation is used. Using the spectral element approach,

the NUMA outputs are high-order interpolated using Lagrange polynomials. To

facilitate interpolation, any hexahedral element in the physical space (x, y, z) can

be translated into a standard space (α, β, γ) ∈ [−1, 1]× [−1, 1]× [−1, 1]. This means

that there are N + 1 Legendre-Gauss-Lobatto points for any Nth-order standard

hexahedral element, one in each of the α, β, and γ directions. The Lagrange polyno-

mial basis LIJK(α, β, γ), I, J,K = 1, . . . , N+1, can be built with the tensor product

as
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isymmetric tangential winds from the tropical storm-like vortex stated in Eq. (10)

of Guimond et al. [32], which is comparable to the research presented in Nolan et

al. [41]. Fig. 2.1 shows this initial vortex’s radius–height tangential velocity field. On

top of this vortex, WRF and NUMA add four-dimensional latent heating/cooling

rates derived from aerial Doppler radar observations in rapidly strengthening Hurri-

cane Guillermo (1997). Grid spacings of 2 km horizontally and 0.5 km vertically are

used to calculate these heating fields, which are then projected outward from the sys-

tem’s core to a radius of ∼ 60 km. Each heating picture is 34 minutes long, covering

∼ 5.7 h. The highest heating occurs at 25 to 30 km, which is well inside the original

vortex’s radius of maximum wind (RMW) (∼ 50 km). This heating and vortex

design depict the rapid intensification process driven by convective bursts [42–45].

An exhaustive uncertainty analysis by Guimond et al. [46] indicated that the latent

heat retrievals were generally correct, especially for convective bursts, with ran-

domly distributed uncertainties in the heating magnitudes of ∼ 16% for updrafts

higher than 5 m/s. In addition, Guimond et al. [47] used the heating retrievals in

realistic forecasts of Guillermo and discovered a high degree of consistency between

the predicted and observed wind fields.

The first heating field is injected into the model from the initial conditions

over 30 minutes using a hyperbolic tangent function. The following heating fields

are linearly interpolated over a 34-minute window to the next observation time. Our

simulations stop after 6 hours of steady heating after the final observation time. A

temporal evolution function is employed to regulate the forcing in the models, and

Fig. 2.2 displays the three-dimensional structure of the heating for three fields. Three
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Table 2.1: Numerical methods, boundary conditions and sub-grid scale diffusion
used in WRF and NUMA simulations.

Description WRF NUMA
Time Integration Split-explicit with 3rd

order Runge-Kutta
Semi-implicit with
2nd order leapfrog

Spatial Discretization Finite difference on C
grid

Spectral element

Explicit Filters None 1st order temporal
Boundary Conditions Periodic in x & y co-

ordinates, gravity wave
sponge on top and free-
slip on bottom

Same as WRF

Sub-grid Scale Diffusion Height-dependent eddy
diffusion for momentum
and scalars based on
TKE

Same as WRF

Physics None Same as WRF

tion with the 3D TKE scheme to get an idea of how the vortex and heating affected

the viscosity and diffusivity of the eddy. In this scheme, the sources and sinks of

TKE after a parcel depend on its shear, buoyancy, and energy loss. Skamarock et

al. [48] has information about how this plan was implemented in WRF, including

how the dissipation parameters were set. TKE will be produced by the observed

heat forcing from both the buoyancy and shear components. Still, we only look at

the results of the eddy viscosities and diffusivities, which can be found using the

following formulas:

Kh,v = Cklh,v
√
e (2.13)

Where e is the TKE, Ck is a constant of 0.15, and l is a length scale of about

2000 m in the horizontal direction and 375 m in the vertical direction. Figure 2.3
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curves in Fig. 2.4 take into account this offset. In the final step of the comparison

simulations, the height-dependent eddy viscosity values are input into WRF and

NUMA for momentum and scalar diffusion. The purpose of this straightforward

explicit diffusion model is not only to stabilize each numerical model but also to

depict, at least to some extent, the actual sub-grid size turbulent diffusion that

results from the TKE scheme.

Table 2.2: Coefficients for the horizontal and vertical viscosity polynomial fits.

Coefficients ã b̃ c̃ d̃ ẽ f̃
Horizontal -0.012760 0.6946 -11.57 53.28 255.90 1003.90

Vertical -0.004572 0.2150 -3.29 15.05 43.16 357.65
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Chapter 3: Comparison of WRF & NUMA Simulations

3.1 Time Series and Structure of Windspeed

Here, we examine the differences between the WRF and NUMA control sim-

ulations concerning the structure of windspeed perturbations and the time series of

horizontal wind speed and kinetic energy. In this context, “perturbation” refers to

the difference between the overall wind speed at a given moment and the wind speed

that existed under the beginning condition. This difference can be used to deter-

mine the wind structures that were created due to observational heating. Fig. 3.1

illustrates the control WRF and NUMA simulations’ maximum windspeed output

per 30 minutes. Maximum winds increased by 45 m/s in 6 h, an actual RI rate.

The more powerful (and weaker) starting vortex produces a solid inward flow of

angular momentum and increased winds, which accounts for the high rate. When

comparing the RMW of the initial vortex utilized in this study (∼ 50 km) to that

used in Guimond et al. [47] (∼ 30 km), it is clear that the latter is more appropriate

given the more considerable amount of heating observed in the present investigation.

The realistic beginning vortex lowered the minimum pressure by 12–15 hPa in 6 h,

which was closer to observations than the present vortex. This thesis analyzes the

idealized vortex response to heating pulses obtained from observations in a RI sys-
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control case, with peak differences of about 1 m/s. However, there are very few, if

any, changes in the highest azimuthal mean windspeed metric between the WRF 1

km and 0.5 km simulations. These results show that increasing horizontal resolution

by at least a factor of two reduces WRF’s implicit numerical dissipation and creates

a stronger vortex that is more like NUMA.

Section 3.2 will detail why WRF produces a lower intensity response than

NUMA. We now see that while the differences between WRF and NUMA for the

mean quantities given in Figs. 3.2 and 3.3 are relatively small, there is much greater

variability on smaller spatial and temporal scales. Further grid modifications, par-

ticularly in the vertical (not investigated), may result in considerable increases in

intensity. The idealized character of the setup and the relatively limited time dura-

tion of these simulations (determined by the available observations) will also restrict

the range of possible outcomes.

The fluctuations and variations in horizontal wind speed (m/s) for 4 h for

WRF and NUMA are shown in Fig. 3.5. The WRF results are displayed in panels

(a) and (b) at 0.19 km and 4.83 km altitudes, while the NUMA results are shown

in panels (c) and (d) at the exact altitudes. Differences between NUMA and WRF

are displayed at equivalent heights in panels (e) and (f). As shown in Fig. 3.5,

the vortex has reached its maximum intensity between the hours of 5 and 6 hours,

with perturbation windspeeds of around 60 meters per second being recorded on the

northern and northeastern sides of the storm. The RMW of the vortex is between

15 and 20 kilometers at these time intervals, with NUMA on the lower side of that

interval and WRF on the higher side of that interval. The RMW of the first vortex
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3.2 Budget Analyses

The last section demonstrated substantial distinctions between the two numer-

ical models, with NUMA providing a more pronounced intensity response. Given

that every model was set up in the same way, with the same initial circumstances

and heat forcing, how is this even possible? The answer to this question lies in

the structure of the numerical methods that form the models’ respective dynami-

cal cores. In this section, we study how the intensity differences are created and

emphasize areas of the numerical scheme driving this impact.

In cylindrical coordinates, the horizontal kinetic energy of the azimuthal mean

vortex (r,θ,z) is expressed as

K̄ =
1

2
(ū2 + v̄2) (3.1)

Here u represents the radial windspeed, v represents the tangential wind speed,

and the overbar represents an azimuthal mean quantity. These variables and those

that follow are functions of the radius (r) and height (z) after an azimuthal average

has been performed. The transport equation for azimuthal mean kinetic energy

can be found by multiplying the radial and tangential equations of motion by their

corresponding velocities, summing the two equations, and then applying Reynolds

decomposition in the azimuthal direction. The over bar and prime notations below

show the azimuthal mean and eddy variables. Beginning with the radial and tangen-

tial equations of motion on an f -plane and considering the anelastic approximation
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ρ = ρ̄(z):

Du

Dt
− v2

r
− fov = −1

ρ̄

∂p̂

∂r
+Dr

(3.2)

Dv

Dt
+

uv

r
+ fou = − 1

ρ̄r

∂p̂

∂θ
+Dθ

(3.3)

The total derivative in cylindrical coordinates is:

D

Dt
=

∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z

Breaking Eqs. (3.2) and (3.3) into mean and turbulent parts, azimuthally

averaging and transforming the resulting equations into flux form:

∂ū

∂t
+

1

r

∂ūūr

∂r
+

1

r

∂u′u′r

∂r
+

1

ρ̄

∂ūw̄ρ̄

∂z
+

1

ρ̄

∂u′w′ρ̄

∂z
− v̄v̄

r
− v′v′

r
− fov̄ = −1

ρ̄

∂ ¯̂p

∂r
+Dr

(3.4)

∂v̄

∂t
+

1

r

∂ūv̄r

∂r
+

1

r

∂u′v′r

∂r
+

1

ρ̄

∂v̄w̄ρ̄

∂z
+

1

ρ̄

∂v′w′ρ̄

∂z
+

ūv̄

r
+

u′v′

r
+ foū = Dθ

(3.5)

Using the definition of kinetic energy, we multiply ū with Eq. (3.4) and v̄

with Eq. (3.5) and recognizing the relation ū∂ū
∂t

= ∂
∂t
(u

2

2
) for the radial equation, for

example, we find:
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∂

∂t
(
ū2

2
) +

1

r

∂( ū
2

2
ūr)

∂r
+

ū

r

∂u′u′r

∂r
+

1
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∂( ū
2

2
w̄ρ̄)

∂z
+

ū

ρ̄

∂u′w′ρ̄
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− ūv̄v̄

r
− ūv′v′

r
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+ ūDr

(3.6)

∂

∂t
(
v̄2

2
) +

1

r

∂( v̄
2

2
ūr)

∂r
+

v̄

r

∂u′v′r

∂r
+

1

ρ̄

∂( v̄
2

2
w̄ρ̄)
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v̄

ρ̄

∂v′w′ρ̄

∂z
+

ūv̄v̄

r
+

v̄u′v′

r

+foūv̄ = v̄Dθ

(3.7)

By adding Eq. (3.6) and Eq. (3.7) and again recognizing the definition of

kinetic energy, we arrive at Eq. (3.9), which is the transport equation for azimuthal

mean kinetic energy,

(3.8)

∂K̄

∂t
= −1

r

∂

∂r
(ūK̄r)− 1

ρ̄

∂

∂z
(w̄K̄ρ̄)− ū

r

∂

∂r
(u′u′r)− ū

ρ̄

∂

∂z
(u′w′ρ̄)

− v̄

ρ̄

∂

∂z
(v′w′ρ̄)− v̄

r

∂

∂r
(u′v′r) +

ūv′v′

r
− v̄u′v′

r
− ū

ρ̄

∂ ¯̂p

∂r
+ ūD̄r + v̄D̄θ

∂K̄

∂t
= M + E + P +D (3.9)

where,

M = −
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1
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(ūK̄r) +

1

ρ̄

∂
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(w̄K̄ρ̄)
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ū
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ū
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∂

∂z
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v̄

ρ̄

∂
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,

P = − ū

ρ̄

(

∂ ¯̂p

∂r

)

, and D =
(

ūD̄r + v̄D̄θ

)

.

M denotes the mean kinetic energy transport terms, E denotes the eddy trans-
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most. The heating profile is highest near middle levels; therefore, mean vertical

transport outweighs horizontal transport. Thus, the lower levels of the vortex have

a considerable positive flux of kinetic energy, resulting in a net energy sink. The

mean transfer term is about 4.5 times smaller than the pressure gradient in WRF

and NUMA. After 3.5 h, the eddy transport term contributes positively to mean

kinetic energy. After adding all budget factors, eddy transport increases the vortex’s

mean KE by 15–40% over 6 h. Eddy transport (E in Eq. (3.9)) adds 18% to mean

kinetic energy when integrating budget terms over time. We find that the mean

kinetic energy in our analysis domain has a positive trend toward these latter times

when the vertical divergence of the vertical tangential momentum flux reaches its

most significant values. The dashed black line indicates zero tendencies in Fig 3.7.

The total explicit diffusion term values are similar before 1 h. However, after

that time, the values from NUMA begin to gradually increase relative to WRF,

which results in significant differences later during the simulation (NUMA is larger

than WRF by 36% when averaged from 2 to 6 h). The reason for this is that

even though the values of the eddy viscosity are constant, the velocity gradients in

NUMA are more prominent than those in WRF (as was discussed in part before

this one), which results in a greater magnitude in the Laplacian operator. This

is not an accurate representation of how each code’s implicit numerical dissipation

compares. A straightforward diagnostic calculation that considers this influence

is presented in the following paragraphs. The total explicit diffusion term values

are similar before 1 h. However, after that time, the values from NUMA begin

to gradually increase relative to WRF, which results in significant differences later
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output time at 6 h, which is why Fig. 3.3 does not reflect this weakening. Except

for a massive spike at 4.5 h, the intensification rate is 0.03–0.05 m2/s3 throughout

the simulation. NUMA has a more significant mean (azimuthal mean and averaged

over r = 10 − 50 km and z = 0.19 − 1.5 km) kinetic energy than WRF by ∼ 8%.

This discrepancy needs to account for NUMA’s increased explicit diffusion, which

makes it challenging to identify implicit numerical dissipation. To remedy this, we

recalculated the integrated mean kinetic energy without the explicit diffusion term

(D) and found that NUMA is 18% higher than WRF. Despite the efforts to fit curves

to the TKE output, we see the explicit diffusion term as a stabilizer of the numerical

schemes and, to some degree, as part of the sub-grid physics (turbulence), which

is unsophisticated in this context. Sub-grid physics will be investigated further

in future research. Of course, there is no secure way to disentangle the effects of

implicit numerical dissipation without explicit diffusion via offline integration. Due

to the coupled, nonlinear evolution of the fields, differences in the explicit diffusion

influence other variables in the mean kinetic energy during simulations. Since this is

hard to regulate, we will not be touching on it more. Despite the efforts to fit curves

to the TKE output, we see the explicit diffusion term as a stabilizer of the numerical

schemes and, to some degree, as part of the sub-grid physics (turbulence), which

is unsophisticated in this context. Sub-grid physics will be investigated further

in future research. Of course, there is no secure way to disentangle the effects of

implicit numerical dissipation without explicit diffusion via offline integration. Due

to the coupled, nonlinear evolution of the fields, differences in the explicit diffusion

influence other variables in the mean kinetic energy during simulations. Since this
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is hard to regulate, we will not be touching on it more.

Figure 3.7 shows significant model discrepancies in the pressure gradient’s

contribution to the mean kinetic energy, making it necessary to investigate the

entire structure of this term in search of potential regional signals. In cylindrical

coordinates, the components of the horizontal pressure gradient contribution to

kinetic energy are given as

−u

ρ

∂p̂

∂r
and

−v

ρr

∂p̂

∂θ

Here u and v denote the radial and tangential wind speeds. The horizontal cross

sections of these terms are shown in Figs. 3.9 and 3.10, averaged over low-levels

(0.19 − 1.5 km), at 4 h and 5 h into the simulations, respectively. Furthermore,

select height-averaged (over the entire column) heating contributions to the models

preceding these periods are presented in Figs. 3.9 and 3.10.

The heating inputs at 3.33 h and 4 h are shown in Figs. 3.9a, 3.9b. The model

results favor the 4 h heating, although the heating from earlier times remains. WRF

and NUMA’s radial pressure term indicates an azimuthal wavenumber-2 structure

in the eyewall area, coupled to the input heating structure most closely at 4 h.

Localized zones of substantial positive and negative heating rates (note the feature

to the west of the storm center in Fig. 3.9b) are connected with the positive/negative

couplet in the radial pressure term in a similar region. The heating input and radial

pressure term are misaligned due to the vortex drift to the South-East. NUMA has

higher radial pressure terms than WRF, especially in localized positive zones. This
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is why the azimuthal average of these fields (Fig. 3.7) reveals NUMA with substan-

tially bigger values than WRF. This result implies that significant, localized heat-

ing zones associated with convective bursts are causing a simultaneous, heightened

pressure gradient response in NUMA that drives vortex intensification differences.

Diffusion from the low-order spatial discretization of this term reduces the localized

pressure gradient values in WRF.

BothWRF (Fig. 3.9d) and NUMA (Fig. 3.9f) display a distinct azimuthal wave

structure with an average wavelength of sim 20 km and close to the wavenumber-

5 form over this period. These waves are not examined in depth, although it is

highly likely that they are convectively forced vortex Rossby waves, according to

Montgomery et al. [49]. This is most easily observed to the south of the vortex center,

where the Rossby waves from the projected vortex in NUMA have a bigger amplitude

than those predicted by WRF. It is essential to note that minuscule oscillations in

the azimuthal component of the pressure term can be observed in both the WRF

and NUMA fields. These oscillations are most likely grid-scale noise in the models,

although further investigation is required to prove this idea. It is more plausible

that gravity waves cause these oscillations. The fields in Fig. 3.10 hours PGF are

identical to those in Fig. 3.9, but they are shown 5 h into the simulations. There is

a correlation between the heating snapshots at this time (Figs. 3.10a and 3.10b) and

the results seen at 4 h, including localized positive anomalies in the radial pressure

term with higher magnitude in NUMA than in WRF (Fig. 3.9c). The azimuthal

pressure term also shows vortex Rossby waves with greater amplitude features north

and east of the vortex center. At 5 h, the majority of the heating is on the east side
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- WRF) in Fig. 3.13. WRF wind speed has limited azimuthal fluctuation and a

reasonably consistent structure when fields are generated. At this time, the NUMA

fields have high azimuthal instability due to momentum mixing between the eye

and eyewall caused by heating-induced meso-vortices. As shown in Fig. 3.12, the

difference plot strongly indicates momentum mixing because NUMA has greater

windspeed values in the eye and lower values in the eyewall, resulting in a weaker

maximum azimuthal mean windspeed.

Over time, the assumed heating perturbation produces an intense enough wave

number 4 and 5 circulations to allow mixing between the vortex’s eye and eyewall.

WRF does not have these mixing phenomena because the implicit numerical dissipa-

tion dampens out the circulation asymmetries in the pressure gradient discretization.

Therefore, in addition to significant quantitative disparities, there is also the possi-

bility that the simulations will reveal qualitative differences at times. The mixing

that NUMA produces provides a more truthful portrayal of the complexities of this

arrangement. Going back to Fig. 3.12, the differences between WRF and NUMA

are not as significant after 14 h. The mixing technique reduced the NUMA vor-

tex mean intensity. The maximum azimuthal mean windspeed statistic may not

necessarily indicate complete vortex intensity. Figure 3.13 illustrates the WRF and

NUMA windspeed perturbations and associated difference fields for 15 and 17 hours.

NUMA panels reveal greater windspeeds than WRF in the Northern and Western

eyewall at 15 h and 17 h, with a massive swath of 20 m/s differences at 15 h and

10 m/s at 17 h. Operational forecasters would be concerned about these huge vari-

ances (under-predicted intensity from WRF), but Fig. 3.12 does not show NUMA’s
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intense eyewall regions. Due to NUMA’s more compact wind field, it is also essential

to observe the moderate reductions in NUMA windspeed relative to WRF, radially

outward of the eyewall (−5 to −8 m/s) for both 15 h and 17 h.

We also ran simulations with WRF and NUMA that included noise in the be-

ginning conditions, in addition to the control 18-hour simulations shown in Fig. 3.12.

Random perturbations within the range of +/- 0.5 m/s were incorporated into each

model’s initial zonal and meridional wind fields. These perturbations were applied to

a ring centered on the RMW and below a height of 2 km. The purpose of these noise

simulations is to reflect uncertainty in the initial conditions, which will encourage

nonlinear interactions and the possibility of large-scale random error at later times

(also known as “chaos”). When looking at the maximum azimuthal mean wind

speed intensity metric, the WRF and NUMA noise simulations demonstrate that it

is very little to no difference between them at any given time. This suggests that the

implicit numerical diffusion signal is substantially more significant than the noise

for periods occurring before 13 hours. At the very least, this is the case before 13

hours. Given the significant asymmetric wind speed changes seen in Fig. 3.13, it is

necessary to do additional research to investigate the consequences after 13 hours.

A time history of the most significant azimuthal windspeed differences for the

18 h simulations is shown in fig. 3.14. For explanation, we determined the azimuthal

mean windspeed at each output time as a function of radius and height for each

model run (NUMA, WRF, NUMAnoise, and WRFnoise). We then subtracted the

same quantity for other combinations as indicated in Fig. 3.14. The most significant

value is then reported when the difference is calculated. A time series plot of the
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purple and blue lines, respectively. The magnitude of both curves is significantly

lower than the control simulation, represented by the green line. This is particularly

true for WRF in that period that extends beyond the 12-hour mark, which is crucial

when observational heating is implemented. These results show that the decrease

in total vortex intensity seen in WRF was caused by implicit numerical dissipation

(the “signal”) is less chaotic than what happens when you change the beginning

conditions with only a small amount of uncertainty. Also, because there is a lot of

numerical dispersion in WRF, the “noise” simulation results in NUMA are much

bigger than in WRF.
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Chapter 4: Conclusions

4.1 Summary

By analyzing idealized simulations of the vortex reaction to time-dependent,

3D latent heating estimates derived from aerial radar measurements acquired dur-

ing Hurricane Guillermo’s(1997) RI, we have investigated the computational fluid

dynamics of the RI process. Idealized heating perturbations were also examined,

including a summation of low-order azimuthal wave numbers (0,2,3,4,5). Two kinds

of the numerical model were considered: WRF, a community-based finite difference

and split-explicit model, and NUMA, a state-of-the-art spectral element and semi-

implicit model. To ensure that the differences can be pinned down to the numerical

schemes that make up the dynamic core, the models are meticulously prepared and

examined before use. The explicit diffusion parameters are parameterized based on

the results of an experiment with a 3D TKE sub-grid model.

Studies have employed straightforward thermal perturbations to the starting

conditions to depict the effects of convective heating in the past. Those studies have

revealed that the WRF model has substantial implicit numerical dissipation when

compared to leading research codes like NUMA [32]. Significant implicit numerical

dissipation in WRF, characterized by a decline in numerous intensity measures over
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a 6 h time, is also discovered in the present investigation. When the eddy diffusivity

values are identical, the maximum wind speeds in WRF are about 12% lower than

in NUMA. The time-integrated, mean kinetic energy values in WRF are close to

20% lower than in NUMA when differences in the Laplacian diffusion operator are

taken into account, and the peak, localized wind speed differences in WRF are 12

m/s lower than in NUMA. Reed et al. [52] observed that the spectral element core

generated the most intense storms in global hurricane simulations, implying that

this numerical approach was the least diffusive. But their results are complicated

because some dynamic cores use explicit diffusion mechanisms and coefficients that

seem different from the others. This makes it hard to trace the differences in the

solutions back to the numerical methods.

Extensive sensitivity analysis suggests that the explicit diffusion in WRF must

be significantly reduced, with eddy viscosity values set to 50% of those in NUMA, to

produce an intensity time series comparable to NUMA. This is necessary to acquire

the same results as NUMA. The NUMA wind speeds are higher than the WRF wind

speeds by roughly 5 meters per second when averaged across the eye-wall, with local

spots exceeding 10 meters per second. In addition, when considering the increased

values in the eye wall, the velocity gradients (as well as the Laplacian diffusion)

are more significant in NUMA than in WRF. This is because the low wind zone in

NUMA is slightly wider.

The more extended simulations incorporated both idealized and observed heat-

ing into the process. Even after 18 hours of simulation, WRF showed substantial

overall reductions in vortex intensity, with large parts of the low-level eye-wall mov-
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ing 10–20 m/s slower than NUMA for several hours. In the later rounds of the

simulations, the models indicated slight disparities in other intensity measures, such

as the highest azimuthal mean wind speed. This highlighted the necessity of accu-

rately characterizing the whole vortex wind field. In the middle of the simulation

that lasted for 18 hours, heating-induced meso-vortices in NUMA caused turbulent

mixing between the eye and eye-wall of the vortex. However, this did not take place

in WRF due to the effects of implicit numerical dissipation.

Comparisons were made between the models’ azimuthal mean kinetic energy

budgets to understand their discrepancies better. Throughout the 6-hour simulation,

the pressure gradient force contributed much more to kinetic energy in NUMA than

in WRF, ranging from an average of 23% to a high of 40%. When looking at the

horizontal components of the pressure term, it can be shown that NUMA causes

more extreme pressure gradient anomalies locally than WRF. The observed thermal

inputs associated with these localized areas can be utilized to reconstruct the history

of convective bursts, which often occur during the RI process. In addition, higher

amplitudes in NUMA are observed for azimuthal waves in the pressure gradient

term. This finding lends credence to the theory that these waves are born from

Rossby motions in vortices. Even though the axisymmetric transport of kinetic

energy, especially by vertical fluxes, is much larger than the asymmetric transport,

it was discovered that these eddy processes contribute 15–40% at 30-minute output

intervals over the 6-h period and 18% when integrating the terms over time. This

was revealed even though the asymmetric transport is substantially smaller.

Multiple temporal integration methodologies were tested in NUMA’s sensitiv-
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ity analyses to identify the specific numerical parameters responsible for the model

deviations. Switching from a first-order in-time approach to a second-order in-time

strategy had no discernible effect on the NUMA solutions used for the control run.

Instead, the outcomes were nearly comparable. In contrast to these findings, Gui-

mond et al. [32] research revealed that higher-order temporal integration strategies

resulted in even more robust solutions. Because the topic is so complicated, people

will likely have different ideas about it. Guimond et al. [32] looked at moderate

forcing in two dimensions in the previous study. This time, we looked at high forc-

ing in four dimensions to learn more about how a vortex forms in response to a

change. WRF’s significant numerical dissipation is regulated by a spatial discretiza-

tion mistake since it utilizes a second-order approximation to the pressure gradient

force, while NUMA uses a fifth-order approximation. In contrast, NUMA employs

a first-order approximation to the pressure gradient force.

The inevitable follow-up inquiry is, ”Which model solution is correct?” Be-

cause this study is about idealized simulations, a numerical convergence analysis is

the most appropriate tool for answering questions about this topic. WRF simula-

tions with a horizontal grid spacing of 1 and 0.5 kilometers indicated an increase

in vortex intensity (towards that of NUMA) along several metrics compared to the

control run with a horizontal grid spacing of 2 kilometers. These results show that

as more grid points are added to WRF, the mistakes associated with its implicit

numerical dissipation are either alleviated or moved to lower scales. This is due to

the incorporation of more grid points. However, WRF simulations at 0.5 kilometers

show that the vortex’s intensity has diminished (in comparison to NUMA). Com-
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pared to NUMA, which has fifth-order spatial precision, WRF has second-order

spatial accuracy due to pressure gradient discretization. This means that WRF

would need to raise resolution in the x, y, and z dimensions by a factor of two

(compared to the 2 km control) to approach the numerical inaccuracy in the 2 km

NUMA simulations. The one-dimensional advection equation was used to produce

these estimates. The convergence curves for the second-order and fifth-order nu-

merical techniques are supplied in Giraldo et al. [40]. Making more grid changes in

WRF, particularly in the vertical direction, may allow us to arrive at a more “right”

answer (which was not investigated).

This work [53] revisits the introductory discussion of the core problem of sig-

nificant low bias in RI circumstances in operational models. It suggests that implicit

numerical dissipation may be to blame for some of the issues. Excessive numeri-

cal dissipation is not a desirable component of a modeling system since it reduces

the simulations’ effective resolution and can diminish the effects of physics-based

sub-grid models and observations used to initialize the model in data assimilation

approaches. The chaotic predictability horizon is a constant concern in nonlinear

dynamical systems. Still, this uncertainty should represent a random mistake rather

than the bias now seen for RI cases.

4.2 Future Work

There is still much research to be done to gain a better grasp of the conse-

quences of computational physics of the RI process. This study’s simulations only
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considered dry dynamics, which means that the positive feedback loop that ordinar-

ily connects wind speed, surface enthalpy fluxes, microphysical heating, and pres-

sure anomalies was not included. As a result, there were no pressure abnormalities.

When wet dynamics and other physical processes are considered, we predict signif-

icant model divergence, with the possibility of further WRF intensity reductions.

This work provides the groundwork for a more in-depth investigation of the com-

putational fluid dynamics of the hurricane RI process; nonetheless, more research is

needed. Despite this, the work does a fantastic job of setting the stage.

The numerical dissipation can be controlled by employing a more refined SGS

model. As data-driven SGS models incorporating Machine Learning (ML) gain pop-

ularity, most SGS modeling efforts are limited to the large eddy simulations (LES).

Multiple academics have investigated the viability of using ML to develop SGS mod-

els for LES. [54,55]. Recent research has been mostly about improving SGS models

for LES at the micro-scale and making simulations more reliable. However, we

also need to pay special attention to energy transfer at the mesoscale. Data-driven

SGS models outperformed their physics-based counterparts when simulating energy

fluxes between scales. These data-driven models will accurately predict the inter-

scale energy transfer using optimal data from storm simulations and machine/deep

learning techniques.
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