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Abstract

Online model selection involves selecting a model from a set of candidate models ‘on the
fly’ to perform prediction on a stream of data. The choice of candidate models henceforth
has a crucial impact on the performance. Although employing a larger set of candidate
models naturally leads to more flexibility in model selection, this may be infeasible in cases
where prediction tasks are performed on edge devices with limited memory. Faced with this
challenge, the present paper proposes an online federated model selection framework where a
group of learners (clients) interacts with a server with sufficient memory such that the server
stores all candidate models. However, each client only chooses to store a subset of models
that can be fit into its memory and performs its own prediction task using one of the stored
models. Furthermore, employing the proposed algorithm, clients and the server collaborate
to fine-tune models to adapt them to a non-stationary environment. Theoretical analysis
proves that the proposed algorithm enjoys sub-linear regret with respect to the best model
in hindsight. Experiments on real datasets demonstrate the effectiveness of the proposed
algorithm.

1 Introduction

The performance of prediction tasks can be heavily influenced by the choice of model. As a result, the
problem of model selection arises in various applications and studies, such as reinforcement learning (see, e.g.,
(Dai et al., 2020; Farahmand & Szepesvari, 2011; Lee et al., 2021)) where a learner selects a model from a set
of candidate models to be deployed for prediction. Furthermore, in practical scenarios, data often arrives
in a sequential manner, rendering the storage and processing of data in batches impractical. Consequently,
there is a need to conduct model selection in an online fashion. In this regard, the learner chooses one model
among a dictionary of models at each learning round, and after performing a prediction with the chosen
model, the learner incurs a loss. The best model in hindsight refers to the model with minimum cumulative
loss over all learning rounds while regret is defined as the difference between the loss of the chosen model and
the best model in hindsight. Performing model selection online, the goal is to minimize cumulative regret.
Depending on the available information about the loss, different online model selection algorithms have been
proposed in the literature (see, e.g.,, (Foster et al., 2017; Muthukumar et al., 2019; Foster et al., 2019; Cella
et al., 2021; Pacchiano et al., 2020; Reza Karimi et al., 2021)) which are proven to achieve sub-linear regret.
The performance of existing online model selection algorithms depends on the performance of models in the
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dictionary. The choice of dictionary requires information about the performance of models on unseen data,
which may not be available a priori. In this case, a richer dictionary of models may improve the performance.
However, in practice, the learner may face storage limitations, making storing and operating with a large
dictionary infeasible. For example, consider the learner as an edge device performing an online prediction
task such as image or document classification using a set of pre-trained models. In this case, the learner may
be unable to store all models in the memory. Faced with this challenge, the present work aims at answering
the following critical question: How can learners perform online model selection with a large dictionary of
models that requires memory beyond their storage capacity?

To tackle this problem, the present paper proposes an online federated model selection and fine-tuning
algorithm called OFMS-FT to enable a group of learners to perform online prediction employing a large
dictionary of models. To this end, the online model selection is performed in a federated manner in the sense
that the group of learners, also known as clients, interacts with a server to choose a model among all models
stored in the server. Specifically, a server with a significantly larger storage capacity than clients stores a
large number of models. At each round, each client chooses to receive and store a subset of models that can
be fit into its memory and performs its prediction using one of the stored models. Each client computes the
losses of received models and leverages these observed losses to select a model for prediction in future rounds.
Moreover, the distribution of data streams observed by clients may differ from the distribution of data that
models are pre-trained on. At each round, clients employ the proposed OFMS-FT to adapt models to their
data and send the updates to the server. Upon receiving updates from clients, the server updates models.

In addition to the storage capacity of clients, there are some other challenges that should be taken into account.
Communication efficiency is a critical issue in federated learning (see e.g.,, (Konecny et al., 2017; Karimireddy
et al., 2020; Rothchild et al., 2020; Hamer et al., 2020)). The available bandwidth for client-to-server
communication is usually limited which restricts the amount of information that can be sent to the server.
To deal with limited communication bandwidth, using the proposed OFMS-FT, at each round the server
chooses a subset of clients to fine-tune their received models. Moreover, in some cases, the distribution of
data samples may be different across clients (Smith et al., 2017; Zhang et al., 2021a; Li et al., 2021b). Thus,
different clients can have different models as the best model in hindsight. Through regret analysis, it is
proven that by employing OFMS-FT, each client enjoys sub-linear regret with respect to its best model in
hindsight. This shows that OFMS-FT effectively deals with heterogeneous data distributions among clients.
In addition, the regret analysis of the present paper proves that the server achieves sub-linear regret with
respect to the best model in hindsight. Furthermore, regret analysis shows that increase in communication
bandwidth and memory of clients improves the regret bounds. This indicates efficient usage of resources
by OFMS-FT. Experiments on regression and image classification datasets showcase the effectiveness of
OFMS-FT compared with state-of-the-art alternatives.

2 Problem Statement

Consider a set of N clients interacting with a server to perform sequential prediction. There are a set of
K models fi(-;),..., fx(+;-) stored at the server. The set of models f1(+;-),..., fx(-;-) is called dictionary
of models. Due to clients’ limited memory, clients are not able to store all models fi(+;+),..., fx(;-) and a
server with larger storage capacity stores models. Let [K] denote the set {1,..., K}. At each learning round
t, client 7 receives a data sample x; + and makes a prediction for x; ;. Specifically, at learning round ¢, client ¢
picks a model among the dictionary of models f1(+;-),..., fx(-;-) and makes prediction fr, , (x;; 61, ,+) where
I; + denote the index of the chosen model by client 7 at learning round ¢ and 6, ; represents the parameter of
model k at learning round ¢. After making prediction, client i, Vi € [N] incurs loss L(fr, , (€i,t; 01, ,.¢), Yi,t)
and observes label y; ; associated with @, ;. This continues until the time horizon T'. The loss function £(-, )
is the same across all clients and depends on the task performed by clients. For example, if clients perform
regression tasks, the loss function L(-,-) can be the mean square error function while if clients perform
classification tasks the loss function £(-,) can be chosen to be cross-entropy loss function. Furthermore,
the present paper studies the adversarial setting where the label y; ; for any ¢ and ¢ is determined by the
environment through a process unknown to clients. This means that the distribution of the data stream
{(i¢,yit)}1, observed by client i can be non-stationary (i.e., it can change over learning rounds) while client
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i, Vi € [N] does not know the distribution from which (@;+,y; ), V¢ is sampled. Moreover, data distribution
can be different across clients.

The performance of clients can be measured through the notion of regret which is the difference between the
client’s incurred loss and that of the best model in hindsight. Therefore, the regret of the ¢-th client can be
formalized as

T

Rir = ZEt (fri (@it 01, 04), Yit)] — klél[lllg] E(fk(fcz t30k,t), Yit), (1)

where E;[-] denote the conditional expectation given observed losses in prior learning rounds. The objective
for each client is to minimize their regret by choosing a model from a dictionary in each learning round. This
can be accomplished if clients can identify a subset of models that perform well with the data they have
observed. Assessing the losses of multiple models, including the selected one, can help clients better evaluate
model performance. This can expedite the identification of models with superior performance, ultimately
reducing prediction loss. However, due to memory constraints, clients cannot compute the loss for all models.
To address this limitation, clients must select a subset of models that can fit within their memory and
calculate the loss for this chosen subset. This information aids in selecting a model for future learning rounds.
Furthermore, to enhance model performance, clients and the server collaborate on fine-tuning models. Let 8}
be the optimal parameter for the k-th model which is defined as

argmlnzzﬁ (fr(i1;0),yit)- (2)

=1 t=1

In this context, the regret of the server in fine-tuning model k is defined as

Sk =~ Zzﬁfmt,em ), it) NZZﬁfkwmekm”) (3)

7,1t1 =1 t=1

The objective of the server is to orchestrate model fine-tuning to minimize its regrets. This paper introduces
an algorithmic framework designed to enable clients with limited memory to conduct online model selection
and fine-tuning. Regret analysis in Section 4 demonstrates that employing this algorithm leads to sub-linear
regret for clients and the server. Additionally, the analysis in Section 4 illustrates that increasing the memory
budget for clients results in a tighter upper bound on regret for the proposed algorithm.

3 Online Federated Model Selection

The present section introduces a disciplined way to enable clients to pick a model among a dictionary of
models beyond the storage capacity of clients while clients enjoy sub-linear regret with respect to the best
model in the dictionary. The proposed algorithm enables clients to collaborate with each other to fine-tune
models in order to adapt models to clients’ data.

3.1 Online Federated Model Selection

Let ¢ be the cost to store model k. For example, ¢ can be the amount of memory required to store the k-th
model. Let B; denote the budget associated with the i-th client, which can be the memory available by the
i-th client to store models. At each learning round, each client i stores a subset of models that can be fit
into the memory of client ¢. The i-th client fine-tunes and computes the loss of the stored subset of models.
Computing the loss of multiple models at each learning round enables clients to obtain better evaluation
on the performance of models which can lead to identifying the best model faster. Moreover, fine-tuning
multiple models can result in adapting models to clients’ data faster. In Section 4, it is demonstrated that an
increase in the number of models that clients can evaluate and fine-tune leads to tighter regret bounds for
the proposed algorithm

At learning round ¢, the i-th client assigns weight z;;; to the k-th model, which indicates the credibility of
the k-th model with respect to the i-th client. Upon receiving a new data sample, the i-th client updates the
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weights {zix¢}&_, based on the observed losses. The update rule for weights {z;;:}r_, will be specified later
in equation 8. Using {zik,t}é(:l, at learning round ¢, the i-th client selects one of the models according to the
probability mass function (PMF) p; ; as

Zik,t

ikt = ——, vk € | K], 4
P = Z k€ K] )

where Z; ;+ = 25:1 Zik,t. Let I; ; denote the index of the selected model by the i-th client at learning round
t. Then client 7 splits all models except for I; ;-th model into clusters D;; 4,. .. ,ID)im“th such that the
cumulative cost of models in each cluster D;; s does not exceed B; — ¢y, ,. Note that m;; denote the number
of clusters constructed by client ¢ at learning round ¢ if I, ; = j. As it will be clarified in Section 4, packing
models into minimum number of clusters helps clients to achieve tighter regret bound. Packing models into
the minimum number of clusters can be viewed as a bin packing problem (see e.g.,, (Garey et al., 1972)) which
is NP-hard (Christensen et al., 2017). Several approximation methods have been proposed and analyzed in
the literature (Johnson, 1973; de la Vega & Lueker, 1981; Désa, 2007; Hoberg & Rothvoss, 2017). In the
present work, models are packed into clusters using the first-fit-decreasing (FFD) bin packing algorithm (see
Algorithm 2 in Appendix A). It has been proved that FFD can pack models into at most tlm* + % clusters

9
where m* is the minimum number of clusters (i.e., optimal solution for the clustering problem) (Ddsa, 2007).

After packing models into clusters, the i-th client chooses one of the clusters D1 ¢, ..., Dim, .y uniformly at
random. Let J;; be the index of the cluster chosen by client ¢ at learning round ¢. The ¢-th client downloads
and stores all models in the cluster D;, , ; along with the I; ;~th model. Since the cumulative cost of models
in Dy, , ¢ does not exceed B; — ¢y, ,, the cumulative cost of models in Dy, ..+ in addition to the I; ;-th model
does not exceed the budget B;. Let S;; represents the subset of models stored by client ¢ at learning round ¢.
Upon receiving a new datum at learning round ¢, the i-th client performs its prediction task using the I; ;-th
model. Then, the i-th client incurs loss £(f1, ,(€i:: 01, ,.t),Yi,.). After observing y; ;, the i-th client computes
the loss L(fi(it;0k.4),Yir), Yk € Si ;. After computing the losses, the i-th client obtains the importance
sampling loss estimate for the k-th model as

E(fk (ilfz‘,t; 0k,t)7 yi,t)l-
Qik,t

lige = (k €Siy), (5)
where Z(-) denote the indicator function and ¢, is the probability that the i-th client stores the k-th model
at round ¢. In order to derive g;; ¢, note that the probability of storing model k at learning round ¢ can be
conditioned on I; ; and based on the total probability theorem, it can be obtained that

K K
Giky = Y _Pr(Liy = j]Prlk € Siy|Liy = j] =Y pija Prlk € Siul Ly = j, (6)
j=1 j=1

where Pr[A|B] denote the probability of event A given that event B occurred. If client ¢ chooses the k-th
model at learning round ¢ (i.e., I;; = k), then client ¢ stores model k meaning that Pr[k € S; 4|I;, = k] = 1.
Let m;;+ denote the number of clusters when client ¢ chooses I; ; = j. Note that if I; ; = j client 4 splits
all models except for model j into m;;, clusters. If client ¢ chooses I;; = j such that j # k, then client ¢
stores model k at learning round ¢ if the chosen cluster contains model k. Since only one cluster among m;; ;
clusters contains model k and client i chooses one cluster uniformly at random, it can be concluded that

Prlk € Sii|liy=j,j #k| = mil,-,t' Therefore, according to equation 6, the probability g;; . can be obtained as
Pijt

Qik,t = Pik,t + E — . (7)
— . Mijt
Vj:j#k ?

At learning round ¢, client i updates the weights of models using the multiplicative update rule as

Zikt+1 = Zik,t €XP (—Nilikt) 5 (8)

where 7); is the learning rate associated with the i-th client. According to equation 5 and equation 8, if client
i does not observe the loss of model k at learning round ¢, client 7 keeps the weight z; ;11 the same as z;j ;.
Conversely, when the loss is observed, a higher loss corresponds to a greater reduction in the weight z;p ;.
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3.2 Online Model Fine-Tuning

This subsection presents a principled way to enable clients to collaborate with the server to fine-tune models.
If client 4 participates in fine-tuning at learning round ¢, client ¢ locally updates all its stored models in S; ;
and sends updated models’ parameters to the server. Sending updated parameters of a model to the server
occupies a portion of communication bandwidth. Therefore, the available communication bandwidth may not
be enough such that all clients can send their updates every learning round. In this case, at learning round ¢,
the server has to choose a subset of clients G; such that the available bandwidth is sufficient for all clients in
Gy to send their updates to the server.

Let by be the bandwidth required to send the updated parameters of the k-th model. If i € Gy, then the
i-th client needs the bandwidth e; = Zkesm br. to send updated parameters of its stored models. Let the
available communication bandwidth be denoted by E. Given e;, Vi € [N], the server splits clients into «
groups Ny, ..., N, such that ZieNj e; < E,Vj € [a]. This means that all clients in each group N;, Vj € [o]
can send their updated model parameters to the server given the available bandwidth. At each learning
round ¢, the server draws one of the client groups Ny, ..., N, uniformly at random. Clients in the chosen
group send their updated models’ parameters to the server. In other words, G; := N,, where ¢; represents the
index of the chosen client group at learning round ¢. Since the probability of choosing a client group is é, the
probability that a client is chosen by the server to send its updated models parameters is é as well. Therefore,
to maximize the probability that a client is chosen by the server to be in G, the server can split clients into a
minimum number of groups. To do this, bin-packing algorithms such as FFD (Désa, 2007) can be employed.

Define the importance sampling loss gradient estimate Véik,t associated with client 7 and model k as

Vgik,t = Vﬁ(fk(il?z t; 0k t) Yit)L(1 € Gy k € Si). 9)

qik,t

Recall that Z(-) denote the indicator function. The i-th client updates the models’ parameters as
Oikt41 = Okt — 1y Vi, VE € Sy, (10)

where 7y is the fine-tuning learning rate. According to equation 9 and equation 10, if the i-th client is not
chosen for fine-tuning (i.e., i ¢ G;), then 0, ;41 = Ok . Thus, if ¢ € G4, the i-th client sends locally updated
models parameters {HikytJrl}vkeSiyt to the server. Let V ; denote the index set of clients such that i € Vy , if
the server receives the update of the k-th model 8,5, ;1 from the i-th client. Upon aggregating information
from clients, the server updates model parameters {0} 5 | as:

9kt+1—9kt—* > Okt — Oigig1) = t—*zvﬂkt (11)

zEVk t

The proposed Online Federated Model Selection and Fine-Tuning (OFMS-FT) algorithm is summarized in
Algorithm 1. Steps 5 to 10 in Algorithm 1 outline how client 7 selects a subset of models during each learning
round ¢. Subsequently, each client i, Vi € [IV], transmits its required bandwidth e; (acquired in step 10) to
the server. Upon receiving e;, Vi € [N], the server, following steps 12 to 14, determines a subset of clients
G eligible to send their updates. Each client 7 then utilizes its selected model for prediction (step 16) and
computes the loss of its stored model subset, updating the weights zik’t,}f:l (step 17). If client ¢ is included in
the server’s selected subset Gy, it transmits its local updates to the server, as depicted in step 19. Finally, in
step 22, the server updates the model parameters for use in the subsequent learning round.

4 Regret Analysis

The present section analyzes the performance of OFMS-FT in terms of cumulative regret. To analyze the
performance of OFMS-FT, it is supposed that the following assumptions hold:

(al) For any (x,y) and 0, the loss is bounded as 0 < L(fx(x;8),y) < 1.

(a2) The budget satisfies B; > ¢ + ¢;, Vk,j € [K], Vi € [N].
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Algorithm 1 OFMS-FT: Online Federated Model Selection and Fine-Tuning
1: Input: Models fi(+;0k,0), costs ck, by, and budgets B;, E, Vi, Vk.
2: Initialize: z;, 1 =1, VEk, Vi.
3: fort=1,...,T do
4: for all i € [N], the ith client do

5: Chooses a model using PMF p; ; in equation 4. I; ; denote the index of the chosen model.
6: Splits all models except for I; +-th model into clusters D;; ¢, ..., Dipm, , + such that
> e <Bi—en, Vii1<j<miy.
keD;; ¢
7: Chooses one cluster among {Dijyt};n:"’f uniformly at random where J; ; is the chosen cluster index.
8: Constructs the set of model indices S; ¢y = {I;;} U {k|Vk € Dy, , ¢}
9: Downloads all models whose indices are in S; ; from the server.
10: Sends the bandwidth cost e; = Zkesm by, to the server.
11: end for
12: The server splits clients into a groups Ny, ..., N, such that ZieNj e; < E,Vj € [a].
13: The server draws one of the groups {N; }5-":1 uniformly at random.
14: The server finds G; := N,, with ¢; as the chosen client group index.
15: for all ¢ € [N], the ith client do
16: Makes prediction fr, ,(2i,; 071, ,,.) and computes L(fx (i Ok,t), Yit), Yk € S
17: Updates zk¢, Yk € S; 4 according to equation 8.
18: if i € G; then
19: Sends 01, ++1, Vk € S;+ obtained by equation 10 to the server.
20: end if
21: end for
22: The server updates models parameters as in equation 11.
23: end for

(a3) The loss function L£(fi(x;0),y) is convex with respect to 8, Vk € [K].
(a4) The gradient of the loss function is bounded as ||VL(fr(x;80),y)| < G, V0, Vk € [K]. Also, 8 belongs
to a bounded set such that ||0]]* < R.

Let mj; be the minimum number of clusters if client ¢ splits all models except for model j such that the
cumulative cost of each cluster does not exceed B; — ¢;. Define p; = max; m;;, which can be interpreted as
the upper bound for the minimum number of clusters that can be constructed by client ¢ at each learning
round. It can be concluded that p; < K and increase in budget B; leads to decrease in ;. The following
theorem obtains the upper bound for the regret of clients and the server in terms of u;.

Theorem 1. Assume that clients utilize the first fit decreasing algorithm in order to split models into clusters
Dirty -+ s Dim, . t- Under (al) and (a2), the expected cumulative regret of the i-th client using OFMS-FT is
bounded by

Riz < In K

+ nipiT (12)

K2

which holds for all i € [N]. Under (al)-(a4), the cumulative regret of the server in fine-tuning model k using
OFMS-FT is bounded by

R 1Y
Spr < —+ — Hian G?T. 13
oy TN g / (13)

Proof. see Appendix B. O
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If the i-th client sets n; = O ( 1;1—]:,{) , then the i-th client achieves sub-linear regret of

Rir <O ( (In K)MT) . (14)

If the server sets the fine-tuning learning rate as 7y = ——L ____ then the server achieves regret of
N

(15)

The regret bounds in equation 14 and equation 15 show that a decrease in p; leads to tighter regret bound.
If the ¢-th client has a larger budget B;, the upper bound for the minimum number of model clusters p;
decreases since client i can split models into clusters with larger budgets. As an example, consider the
special case that all models have the same cost ¢, = ¢, Vk € [K| while B; = d;c where §; > 2 is an integer.
In this case, according to step 6 in Algorithm 1, the upper bound for the minimum number of clusters is
Wi = E?:Bz = % Therefore, as the budget of a client increases, the client can achieve tighter regret bound.
In addition, larger communication bandwidth enables the server to partition clients into smaller number of
groups «. Thus, according to equation 15, larger communication bandwidth leads to tighter regret bound for
the server.

Challenges of Obtaining Regret in equation 15. Limited memory of clients brings challenges for
obtaining the sub-linear regret in equation 15 since clients cannot calculate the gradient loss of all models
every learning round. To overcome this challenge, the present paper proposes update rules equation 9 and
equation 10 along with the novel model subset selection presented in steps 5, 6 and 7 of Algorithm 1. In what
follows the effectiveness of the proposed update rules and model subset selection is explained. Employing
vanilla online gradient descent update rule 0, 1+1 = Ok — VL(fi(@i1; Ok,1), yie) locally by clients, can result
in regret of O(V/T) if client i knows VL(fx(2i.¢;0k.¢), yit), Yk € [K] at every learning round (see e.g., (Hazan,
2022)). This is not possible since client 4 has limited memory and is not able to calculate the gradient
loss of all models every learning round. To overcome this challenge, the present paper proposes the local
update rules in equation 9 and equation 10 which use the gradient loss estimate V@ik,t instead of true loss
gradient. Using equation 37 of Appendix B, it can be concluded that Vlﬁikyt is an unbiased estimator of
VL(fr(xi; Ok,t), yi,r) meaning that Et[w@k,t] = VL(fu(®i;Ok,), i) According to equation 9, obtaining
Vlﬁikyt does not require storing model k and calculating VL(fx(xi+; Ok t), vit) every learning round. Hence,
Vfik’t can be obtained every learning round given the limited memory of client i. However, according to
equation 36, equation 38 and equation 39 of Appendix B, employing update rule of equation 10 the regret
of the server grows with E,[[|V/Z; /2] which is upper bounded as E,[|| V. ||2] < aG? (see equation 37b in

— Qik,t
Appendix B). Therefore, the regret of the server grows with qi—it where g;1; is the probability that client
i stores model k£ and fine-tunes it at learning round ¢. Using model subset selection method presented in
steps b, 6 and 7 of Algorithm 1, the probability g;x ; is obtained as in equation 7. In equation 29 of Appendix
B, it is proven that if clients employ FFD algorithm to cluster models in step 6, then it is guaranteed that
Gik,t > i This lead to guaranteeing the regret upper bound in equation 15.

5 Related Works and Discussions

This Section discusses differences, innovations, and improvements provided by the proposed OFMS-FT
compared to related works in the literature.

Online Model Selection. Online model selection algorithms by Foster et al. (2017); Muthukumar et al.
(2019); Foster et al. (2019); Cella et al. (2021); Pacchiano et al. (2020); Reza Karimi et al. (2021) have studied
either full-information or bandit settings. Full-information refers to cases where the loss of all models can be
observed at every round while in bandit setting only the loss of the chosen model can be observed. Regret
bounds obtained by full-information based online model selection algorithms cannot be guaranteed if the
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learner (i.e., a client) cannot store all models. Moreover, it is useful to mention that the present paper studies
the adversarial setting where the losses observed by clients at each round are specified by the environment
and may not follow any time-invariant distribution. It is well-known that in the adversarial bandit setting
the learner achieves regret upper bound of O(VKT) (see e.g., (Pacchiano et al., 2020)). The proposed
OFMS-FT utilizes the available memory of clients to evaluate a subset of models every round (see step 16
in Algorithm 1) which helps client ¢ to achieve regret of O(+/u;T') as presented in equation 14. If client ¢ is
able to store more than one model, then p; < K (see below equation 3 and the discussion below Theorem 1)
which shows that OFMS-FT utilizes the available memory of clients to improve their regret bound compared
to bandit setting. Moreover, aforementioned online model selection works have not studied online fine-tuning
of models. A model selection algorithm proposed by Pacchiano et al. (2022) assumes that each model (called
base learner) comes with a candidate regret bound and utilizes this information for model selection. By
contrast, the present paper assumes that there is no available prior information about the performance of
models. Moreover, Muthukumar & Krishnamurthy (2022) has studied the problem of model selection in
linear contextual bandits where the reward (can be interpreted as negative loss in our work) is the linear
function of the context (can be interpreted as @;; in our work). However, the present paper does not make
this assumption in both theoretical analysis and experiments. Furthermore, online model selection when
models are kernels has been studied in the literature (see e.g., (Yang et al., 2012; Zhang et al., 2021b; Li
& Liao, 2022; Ghari & Shen, 2023a)) where the specific characteristics of kernel functions are exploited to
perform model selection to alleviate computational complexity of kernel learning.

Online Learning with Partial Observations. Another line of research related to the focus of the present
paper is online learning with expert advice where a learner interacts with a set of experts such that at each
learning round the learner makes decision based on advice received from the experts (Cesa-Bianchi & Lugosi,
2006). The learner may observe the loss associated with a subset of experts after decision making, which can
be modeled using a graph called feedback graph (Mannor & Shamir, 2011; Amin et al., 2015; Cohen et al.,
2016; Alon et al., 2015; Cortes et al., 2020; Ghari & Shen, 2023b). In online federated model selection, each
model can be viewed as an expert. Employing the proposed OFMS-FT, in addition to performing online model
selection, clients and the server collaborate to fine-tune the models (experts). However, the aforementioned
online learning algorithms do not study the case where the learner can influence experts. Performing online
model selection and fine-tuning jointly in a federated fashion brings challenges for guarantying sub-linear
regret that cannot be overcame using the existing online learning algorithms. Specifically, due to limited
client-to-server communication bandwidth and limited memory of clients, all clients are not able to fine-tune
all models every learning round. The proposed OFMS-FT introduces a novel model subset selection in steps
5, 6 and 7 of Algorithm 1 and a novel update rule in equation 9 and equation 10 to fine-tune models locally
by clients in such a way that given limited memory of clients and limited communication bandwidth, the
server achieves sub-linear regret of equation 15.

Online Federated Learning. The problem of online federated model selection and fine-tuning is related
to online federated learning (Chen et al., 2020; Mitra et al., 2021; Damaskinos et al., 2022). Chen et al.
(2020) has studied learning a global model when clients receive new data samples while they participate
in federated learning. Online decision-making by clients has not been studied by Chen et al. (2020) and
hence the regret bound for clients cannot be guaranteed. An online federated learning algorithm has been
proposed by Damaskinos et al. (2022) to cope with the staleness in federated learning. However, it lacks
theoretical analysis when clients need to perform online decision-making. An online mirror descent-based
federated learning algorithm called Fed-OMD has been proposed in Mitra et al. (2021). Fed-OMD obtains
sub-linear regret when clients perform their online learning task while collaborating with the server to learn a
single model. However, Fed-OMD cannot guarantee sub-linear regret when it comes to performing online
model selection if clients are unable to store all models in the dictionary. Furthermore, Hong & Chae (2022);
Gogineni et al. (2022); Ghari & Shen (2022) have studied the problem of online federated learning where
each client learns a kernel-based model employing specific characteristics of kernel functions.

Personalized Model Selection and Fine-Tuning. In addition to online model selection, online learning
and online federated learning discussed in Section 5, personalized federated learning can be related to the
focus of this paper. Employing the proposed OFMS-FT, model selection and fine-tuning is personalized
for clients. According to step 5 in Algorithm 1, each client chooses a model locally using the personalized
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PMF p;; in equation 4 to make a prediction at round ¢. This helps each client i, Vi € [N] to achieve the
sub-linear regret in equation 14. Furthermore, the choice of models to be fine-tuned locally by each client is
personalized according to step 19 in Algorithm 1. Particularly, g;;+ in equation 7 is the probability that the
client 4 fine-tunes the model %k at round ¢. The probability g; . is determined by client ¢ and it can be inferred
that the probability to participate in fine-tuning a model is determined by client ¢ based on its preferences
given the limited memory budget. It is useful to add that personalized federated learning is well-studied
topic related to the focus of the present paper. In personalized federated learning framework, aggregating
information from clients the server assists clients to learn their own personalized model. Several personalized
federated learning approaches have been proposed in the literature for example inspired by model-agnostic
meta-learning (Finn et al., 2017; Fallah et al., 2020; Acar et al., 2021), adding a regularization term to the
objective function (Hanzely et al., 2020; Dinh et al., 2020; Li et al., 2021a; Liu et al., 2022), among others (see
e.g., (Deng et al., 2020; Collins et al., 2021; Marfoq et al., 2021; Shamsian et al., 2021)). However, none of the
aforementioned works have studied online decision making, online federated model selection and fine-tuning
when clients have limited memory and employing them, sub-linear regrets cannot be guaranteed for clients
and the server.

Client Selection. Client selection in federated learning has been extensively explored in the literature (Chen
et al., 2018; Huang et al., 2021; Balakrishnan et al., 2022; Németh et al., 2022; Fu et al., 2023). However,
none of the aforementioned works have specifically studied client selection for online federated learning, where
clients utilize the trained model from federated learning for online predictions. In the proposed OFMS-FT,
the server selects clients for their participation in model fine-tuning uniformly at random. This choice aims
to avoid differentiating among clients and fine-tune models in the favor of any clients. Nevertheless, an
intriguing direction for future research is to investigate how alternative client selection strategies, beyond
uniform selection, could enhance client regret in the context of online federated learning.

6 Experiments

We tested the performance of the proposed OFMS-FT for online model selection through a set of experiments.
The performance of OFMS-FT is compared with the following baselines: MAB (Auer et al., 2003), Non-Fed-
OMS, RMS-FT, B-Fed-OMFT, FedOMD (Mitra et al., 2021) and PerFedAvg (Fallah et al., 2020). MAB
refers to the case where the server chooses a model using Exp3 algorithm (Auer et al., 2003) and transmits the
chosen model to all clients. Then, each client sends the loss of the received model to the server. Non-Fed-OMS
refers to non-federated online model selection where each client stores a fixed subset of models that can be
fit into its memory. At each learning round, each client chooses one model from the stored subset of models
using Exp3 algorithm. RMS-FT denote a baseline where at each learning round each client chooses a subset of
models uniformly at random to fine-tune them. The prediction task is then carried out by selecting one of the
chosen models uniformly at random. Furthermore, B-Fed-OMFT stands for Budgeted Federated Online Model
Fine-Tuning. In this approach, the server maintains a set of models that can be fit into the memory of all
clients. Clients collaborate with the server to fine-tune all models in each learning round. In the B-Fed-OMFT
framework, each client employs the Exp3 algorithm to choose one model to perform the prediction task.
Using Fed-OMD (Mitra et al., 2021), given a pre-trained model, clients and the server fine-tune the model.
PerFedAvg refers to the case where given a pre-trained model, clients and the server fine-tune the model
using Personalized FedAvg (Fallah et al., 2020). The performance of the proposed OFMS-FT and baselines
are tested on online image classification and online regression tasks. Image classification tasks are performed
over CIFAR-10 (Krizhevsky, 2009) and MNIST (Lecun et al., 1998) datasets. Online regression tasks are
performed on Air (Zhang et al., 2017) and WEC (Neshat et al., 2018) datasets. For both image classification
datasets, the server stores 20 pre-trained convolutional neural networks (CNNs). Based on the number of
parameters required to store models, for CIFAR-10 the normalized costs of storing CNNs are either 0.89
or 1, and for MNIST the normalized costs are either 0.66 or 1. The experiments were conducted with a
single meta-replication, utilizing a consistent random seed for both the proposed OFMS-FT and all baseline
methods. Moreover, for both regression datasets, the server stores 20 pre-trained fully-connected feedforward
neural networks. Since all neural networks have the same size, the normalized costs of all of them are 1. More
details about models and datasets can be found in Appendix C.
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Table 1: Average and standard deviation of clients’ accuracy over CIFAR-10 and MNIST datasets. MSE

(x1073) and its standard deviation (x1073) across clients over Air and WEC datasets.

Algorithms || CIFAR-10 | MNIST | Air | WEC
MAB 61.14% +10.12% | 84.37% +5.18% | 8.97 +£6.82 | 36.96 + 8.52
Non-Fed-OMS || 65.76% + 12.24% | 85.06% % 7.30% | 8.82 +6.70 | 64.84 & 40.30
RMS-FT 57.86% +9.75% | 88.33% +4.25% | 7.87+£5.22 | 18.89 +4.02
B-Fed-OMFT || 67.83% + 12.28% | 89.46% +4.71% | 8.09 £5.55 | 31.94 + 7.97
Fed-OMD 64.34% £ 9.89% | 88.69% +5.16% | 11.37 £ 7.16 | 30.89 £ 10.06
PerFedAvg 55.65% £+ 11.94% | 89.71% +4.93% | 11.29 &+ 7.08 | 30.09 £+ 10.17
OFMS-FT 76.77% + 4.46% | 92.05% +2.69% | 7.46 £ 5.10 | 7.09 + 1.67
125 [T e ot g el e o S
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Figure 1: Average regret of clients using OFMS-FT with the change in budget B;.

There are 50 clients performing image classification task, and 100 clients performing online regression task.
Note that clients are performing the learning task in an online fashion such that at each learning round each
client observes one data sample and predicts its label in real time. The learning rates 7; for all methods are
set to be 10/\/T where T' = 200. Furthermore, the fine-tuning learning rate is set to n; = 10_3/\/T. Since
the required bandwidth to send a model is proportional to the model size, the normalized bandwidth by
associated with the k-th model are considered to be the same as the normalized cost c.

Table 1 demonstrates the average and standard deviation of clients’ accuracy over CIFAR-10 and MNIST
when the test set is distributed in non-i.i.d manner among clients. For CIFAR-10, each client receives 155
testing data samples from one class and 5 samples from each of the other nine classes. In the case of MNIST,
each client receives at least 133 samples from one class and at least 5 samples from the other classes. The
200 testing data samples are randomly shuffled and are sequentially presented to each client over T' = 200
learning rounds. The accuracy of the client 7 is defined as Accuracy, % Zthl Z(9i+ = yi) where §; ¢ denote
the class label predicted by the algorithm. The memory budget is B; = 5, Vi € [N]. Each client is able to
store up to 50 images. In order to fine-tune models, clients employ the last 50 observed images. Moreover,
Fed-OMD and PerFedAvg fine-tune one of the 20 pre-trained models such that both fine-tune the same
pre-trained model. As can be observed from Table 1, the proposed OFMS-FT achieves higher accuracy
than Non-Fed-OMS and B-Fed-OMFT. This corroborates that having access to larger number of models
helps learners to achieve better learning performance, especially in cases where the learners are faced with
heterogeneous data, and performance of models are unknown in priori. Moreover, from Table 1 it can be
seen that OFMS-FT achieves higher accuracy than MAB which admits the effectiveness of observing losses
of multiple models at each learning round. Higher accuracy of OFMS-FT compared with Fed-OMD and
PerFedAvg indicates the benefit of fine-tuning multiple models rather than one. The superior performance of
OFMS-FT in comparison to RMS-FT highlights the efficacy of employing model selection through the PMF
defined in equation equation 4, as opposed to choosing models uniformly at random. In addition, as can
be seen from Table 1, the standard deviation of clients’ accuracy associated with OFMS-FT is considerably
lower than other baselines. This shows that using OFMS-FT, accuracy across clients shows less variations
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compared with other baselines. Therefore, the results confirm that OFMS-FT can cope with heterogeneous
data of clients in more flexible and henceforth more effective fashion.

Furthermore, Table 1 presents the mean square error (MSE) of online regression and its standard de-
viation across clients for Air and WEC datasets. Specifically, MSE of client i is defined as MSE; =
% Zthl (9.t — vi.e)?. In both the Air and WEC datasets, individual data samples are associated with one of
four geographical areas. The distribution of data samples across clients is non-i.i.d, with 50 clients observing
data samples from one specific site, while the remaining 50 clients observe data samples from another
geographical site. At each round, only half of clients are able to send their updated models to the server.
All other settings are the same as online image classification setting. Results for online regression tasks
are consistent with the conclusions obtained from the results of online image classification task. Moreover,
Figure 1 illustrates the average regret of clients using the proposed OFMS-FT through learning rounds
for different values of memory budget B;. Figure 1 depicts the regret of OFMS-FT through learning on
MNIST and WEC datasets. As can be seen, the increase in B; leads to obtaining lower regret by clients.
Therefore, th.e .results.in Figure 1 are in agreement wit'h' t'he Table 2 MSE (x10~3) and its standard de-
regret analysis in Section 4. Table 2 illustrates the sensitivity . . -3) of OFMS-FT . client
of the MSE and its standard deviation, as achieved by the viation (x107%) o ACToss Chents
proposed OFMS-FT, to the budget B; (Vi € [N]) over the over WEC dataset under varying budgets
WEC dataset. In this configuration, the budget varies across among clients,
clients, with a subset having B; = 3 and the remainder B; = 5. B, =3 ‘ B, =5 ‘ MSE
The improvement in MSE becomes evident as the number of

clients with a budget of B = 5 increases. This observation 60% 40% 7.96 £ 1.49
o . . 50% 50% 7.85 + 1.66
indicates that an increase in budget enhances the performance

of OFMS-FT, aligning with the theoretical findings presented 40% 60% 732+1.54
in Section 4.

7 Conclusion

Performing online model selection with a large number of models can improve the performance of online
model selection especially when there is not prior information about models. The present paper developed a
federated learning approach (OFMS-FT) for online model selection when clients cannot store all models due
to limitations in their memory. To adapt models to clients’ data, employing OFMS-FT clients can collaborate
to fine-tune models. It was proved that both clients and the server achieve sub-linear regret with respect to
the best model in hindsight. Experiments on regression and image classification datasets were carried out
to showcase that the proposed OFMS-FT achieved better performance in comparison with non-federated
online model selection approach and other state-of-the-art federated learning algorithms which employ a
single model rather than a dictionary of models.
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A First Fit Decreasing Algorithm

In this paper, first fit decreasing algorithm is employed to split models into clusters. To begin with, order
models by decreasing cost. Let s(1),...,s(K —1) denote the indices of all models except for the I; ;-th model
ordered in ascending manner according to models’ costs such that if i < j, then cy;) < cy(;). At the k-th
step of clustering, client 7 checks whether the s(k)-th model can be fit into any currently existing clusters
according to budget B; —cr, ,. The s(k)-th model is put into the first cluster that it can be fit into. Otherwise,
if it cannot be fit into any opened cluster, then it is assigned to a new cluster indexed by m; + 1. This
continues until all models except for the I; ;-th model are corresponded to a cluster. Algorithm 2 summarizes
the clustering procedure performed by the i-th client.

Algorithm 2 Cluster Generation by Client ¢ at Learning Round ¢
1: Input: Chosen model index I;;, costs ci, Vk € [K] and budget B;.
2: Initialize: m;; = 1.
3: Order all models except for the I; ;-th model by decreasing cost to obtain s(1),...,s(K —1).
4: for k=1,..., K —1do

5: Set j=1landd=0

6: while d =0 and j <m;, do

7 if ZmE]D) Cm + csky < Bi — g, then
8: Setd—land]—]+1

9: end if

10: end while

11: if j=m;++1and d =0 then

12: Assign the s(k)-th model to a new cluster D;(y, ,41).¢-
13: Update Mi e = Myt + 1.

14: end if

15: end for

16: Output: {Di1¢,...,Dip, i}

B Proof of Theorem 1

In order to prove Theorem 1, the following Lemma is used as the step-stone.

Lemma 2. Under (al) and (a2), the regret of the i-th client with respect to any model k is bounded from
above as

T T
In K
S EL(fr, (04301, ,0) vit)] = D LUr(@i g Ona), yie) < —— + migi T (16)
t=1 t=1 7
Proof. Recall that Z;; = Zszl Zik,t- Therefore, we can write
K K
Zi,t+1 _ Z Zik,t+1 _ Z Zik,t exp (_77[' ) (17)
Zit = it = it ikt

According to equation 4, ZZL: = pik,+ and as a result equation 17 can be rewritten as

7 K
e = Zpik,t exp (—nilik,t)- (18)
k=1

Ziy

Combining the inequality e™* <1 —xz + lx2,V9: > 0 with equation 17 we can conclude that

Z; 1
f+1 < szk ¢ < — Nilig,t + 2(77i£11k,t)2>~ (19)
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Employing the inequality 1 4+ z < e* and taking logarithm from both sides of equation 19, we arrive at

zt—‘rl < me t ( Nilik,e + Q(Hifik,t)z)- (20)

Summing equation 20 over learning rounds leads to

T
l T+1 Zzpzk t ( 771 ik,t + 2(ni€ik,t)2)- (21)

In addition, In Zi T“ can be bounded from below as

T

Z;i T+1 Zik, T+1
In — > In — = —n liy —In K, 22
Zix Zix n tz:; Jt ( )

which holds for any & € [K]. Combining equation 21 with equation 22, we get

T K T WK g
Z Zpik,t&k,t = Z ligg < —— + 51 Z pik,tglzk’y (23)

t=1 k=1 t=1 i t=1 k=1

Considering equation 5 and equation 7, given the observed losses in prior rounds the expected value of ¢;;, +
can be obtained as

Ey[to] = L(fr(xi50k,), yzf) Pint + Z L(fr(xi;Ok,1), Yirt) Dije

Qik,t ik ikt Mijt
L(fr(x;4;0k4), p
_ EUn(@it ), Yir) PDik,t + E FOLN = L(fu(@i g Ot)s Yirt)- (24)
ikt Ytk ™mMijt

Moreover, based on the assumption that 0 < L(fi(%s¢;0k,t),yit) < 1, given the observed losses in prior
rounds, the expected value of E?kyt can be bounded from above as

L2(fr(@iz; Ont), yi i
]Et[g?k,t}: (fk( t2 k,t) yt Pk + Z Dijt

qik,t Vj:j#k Mgt
2 . )
_ L2(fre(®ie;0k,t), Yit) < 1 . (25)
ikt qik,t

Taking the expectation from both sides of equation 23, we obtain

T T mK T K
Z 7p1kt£fk mzt,akt yzt t_zlﬁfk xztyekt) Yit) < m EZ; (26)
In addition, it can be written that
T K
ZEf (fr. (@501, ,.0), Yit)] ZZPUHE Fi(®i;0k.4), Yir) (27)
t=1 k=1
Therefore, from equation 26 we arrive at
T n K L T K
ZEt (1o (@ie: 01, 0.), yi0)] ;L J(@iri Ou0) yia) < = 52_:; (28)
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According to Algorithm 1, at each learning round, client 7 splits all models except for the chosen model into
clusters. Let v;; be the minimum number of clusters when client ¢ chooses I; ; = j and splits all models except
for model j into clusters. If client ¢ employs FFD algorithm to split models, the number of clusters m;; ;
when client ¢ chooses I; ;, = j satisfies m;;, < l/m (Dosa 2007). Let p; be defined as p; = max; v;;.
Therefore, it can be concluded that m; <1 3 ul + < 2;% Thus, it can be written that

1 —pikt 1
; > i _ > — 29
Qik,t = Pik,t + 211% = 2,“41 ( )

Combining equation 28 with equation 29 yields

T

In K

E Et fllt Z; neln, yzt E £ fk sz ¢ O t) yi,t) < + nspi T (30)
t=1

i

which proves the lemma. O

In what follows the server regret upper bound in fine-tuning model k is obtained. Let ?ik,t denote the
fine-tuning importance sampling loss estimate at learning round ¢ associated with the i-th client and the k-th
model, defined as

A « .
lint = o L(fr(xit;O0n,t),vi4)L(0 € G,k €S;4). (31)
ikt

According to equation 11, for any fixed 8 and k € [K], it can be written that

N 2
10k.e+1 =012 = |61 — 6 — 2L > Vi
2 Nt o i
— 2 f T _ nf 7.
= ||y — 6> — ~ ; V it (Ops — 0 N ; Vit (32)
Moreover, due to the convexity of the loss function L(-, ), for any learning round ¢, we find that
VL fr(@it; 0k.0),9i0) (0 — Oht) < L(fu(Ti 13 0),yin) — L(fi(@it; On), i) (33)
Multiplying both sides of equation 33 by %, we get
V7 likt(0 = Ora) < = L(fe(@i4:0),41.0)T(0 € Gk € i) = i (34)
ikt
Summing equation 34 over clients, we obtain
N N, N
> like =Y o LUk 0), i) T(0 € Goyk € 8i0) < > VT ik i(0ks — 0). (35)
i=1 i=1 1Rt i=1
Combining equation 32 with equation 35 leads to
N N,
Zfik,t - Z L(fe(i;0),vi0)L(1 € Gy, k € Siy)
i=1 im1 dikit
N 2
ﬂ(“ekt*mﬁf 10k,141 — 01%) it (36)
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Moreover, the expected value of !Z-k,t and ||V£Z-k7t||2 with respect to Z(i € G4, k € S; +) can be obtained as

- Dik, Dij,
Et[lik,t] = L(fr(i,t;0,t), Yit) X %4‘ .,

ik,t Vigk QaMyj ¢
= L(fr(®ie;Ok.t), yit) (37a)
2
A % ik, i3,
Eell V%] = 5 IVL(fuis; O, i) IIP x | P24 3 Pt
qik,t o Vjij#£k QMg ¢
aG?

o
IVL(fr(@ie; On0), yin)||* <
ikt ikt

(37b)

where the last inequality in equation 37b can be concluded from the assumption (a3) where
IVL(f(24i450k.1),yi)]| < G. In addition, using arithmetic mean geometric mean (AM-GM) inequality
we find

2 N
< NZ [V ig.e||?- (38)

i=1

ikt

Therefore, using equation 37 and equation 38, taking the expectation from both sides of equation 36, it can
be written that

N N

D L(ful@in: Okt) yin) — O L(frlTie:0),yis)

=1 =1

N nyG? Y
< (||6rc — 0|2 — [|Onssn — O) + LN 2 39
<y (185e =01 = 1185001 —61%) + 75 qu (39)

Summing equation 39 over learning rounds yields

M=
WE
M~

> D L(fulwii 000, 9i) =

1t=1 3

G?
7165 =01 ~ 161 01P) + = ZZ

t=1 =1

ﬁ(fk(ﬂ?i,t;@)ayi,t)

1t

Il
_

.
I

. 40
ikt ( )

Plugging in @ = 6; in equation 40 and considering the facts that 0y 1 = 0 and ||y 71 — 6]|* > 0, we arrive at

N T N T
SN LUfr@ias Oka) yin) — D > LUfel(@in: 0F), yie)
=1 t=1 =1 t=1
N . G?
o |01+ LAl ZZ (41)
=1 i—1 qzkt

According to equation 29, it can be concluded that q% < 2u;. Therefore, considering assumption (a4), we
get )

N T N T

Zzﬁ(fk(ali,t;ek t)s Yit) ZZE Jr(®i;0%),vit) < ]\;Ij + Zulansz (42)

i=1 t=1 i=1 t=1

which proves equation 13 and completes the proof of Theorem 1.
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C Supplementary Experimental Results and Details

The performance of both the proposed OFMS-FT method and other baseline approaches is evaluated through
online image classification and online regression tasks. The image classification experiments involve the
utilization of the CIFAR-10 and MNIST datasets. CIFAR-10 and MNIST are well-known computer vision
datasets, comprising a total of 60,000 and 70,000 color images, respectively, distributed across 10 distinct
classes. Each dataset includes 10,000 test samples, with the remaining samples designated for training.
To facilitate model selection, as outlined in Section 6, we train a set of 20 models using the training data
from CIFAR-10 and MNIST. These models encompass two distinct architectural designs, resulting in ten
models trained under each architecture. For each class label within these datasets, two models with differing
architectures are trained. These models exhibit a bias towards the specific class label they are trained on,
utilizing a portion of the training dataset that contains a greater number of samples from that class compared
to the other classes. For the CIFAR-10 dataset, ten CNNs are trained using the VGG architecture (Simonyan
& Zisserman, 2015) with 2 blocks, while the remaining ten are trained using VGG architecture with 3 blocks.
The training data for each model is non-i.i.d. sampled from the 50,000 training samples. Precisely, each
CNN is trained on 9,500 training data samples, consisting of 5,000 samples from one class and 500 samples
drawn from the training set of each of the other nine classes. Similarly, for the MNIST dataset, ten CNNs
are trained using VGG with one block, and the other ten are trained using VGG with 2 blocks. To train each
model, 6,900 data samples are drawn from the training set, with 6,000 samples belonging to one class and
100 samples from each of the other nine classes. Additionally, the testing data samples for CIFAR-10 and
MNIST are distributed among clients in a non-i.i.d. manner. For CIFAR-10, each client receives 155 testing
data samples from one class and 5 samples from each of the other nine classes. In the case of MNIST, each
client receives at least 133 samples from one class and at least 5 samples from the other classes. The 200
testing data samples are randomly shuffled and are sequentially presented to each client over T' = 200 learning
rounds. Moreover, for online regression task, the performance of algorithms are tested on the following
datasets (Kelly et al., 2023):

e Air: FEach data sample has 14 features including information related to air quality such as concentra-
tion of some chemicals in the air. Data samples are collected from different geographical sites. The
goal is to predict the concentration of CO in the air (Zhang et al., 2017).

e WEC: Each data sample has 48 features of wave energy converters. Data samples are collected from
4 different geographical sites. The goal is to predict total power output (Neshat et al., 2018).

For each regression dataset, 20 fully-connected feedforward neural networks are trained. All neural networks
have 5 hidden layers each with 100 hidden neurons. ReL U activation function is employed for all hidden
neurons in all networks. In order to train models for Air dataset, 10 neural networks are trained on 30,000
samples from the site Dongsi with different initialization while other 10 neural networks are trained on 30, 000
samples of Dingling site with different initialization. In the experiments, data samples of Air dataset are
distributed non-i.i.d among clients such that 50 clients observe data samples from Aotizhongxin site while
other 50 clients observe data samples from Changping site. To train models for WEC dataset, 10 neural
networks are trained on 70,000 samples from the site in Sydney with different initialization. The remaining
10 neural networks are trained on 70,000 samples from the site in Tasmania with different initialization. Data
samples of WEC dataset are distributed non-i.i.d among clients such that 50 clients observe data samples
from Adelaide site while other 50 clients observe data samples from Perth site. In the experiments, using
Fed-OMD and PerFedAvg, each client performs one epoch of stochastic gradient descent (SGD) with learning
rate of 0.001 on its batch of data to fine-tune the model. In order to perform fine-tuning, clients start to
update models after 50 learning rounds so that clients can store 50 samples in batch. All experiments were
carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz processor with a 64-bit Windows
operating system.

Table 3 shows the average accuracy of clients along with its standard deviation on CIFAR-10 and MNIST
datasets with the change in the memory budget when clients employ OFMS-FT. Moreover, Table 4 demon-
strates the average MSE and its standard deviation across clients for different memory budgets on Air and
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Table 3: Average and standard deviation of clients’ accuracy using OFMS-FT over CIFAR-10 and MNIST
with the change in budget.

Budget | CIFAR-10 | MNIST

Bi=2,¥i € [N] | 70.01% +6.96% | 89.87% =+ 3.33%
Bi =5,Yi € [N] | 76.77% + 4.46% | 92.05% + 2.69%
B; =10,Vi € [N] | 79.90% + 4.23% | 92.93% + 2.58%

Table 4: Average and standard deviation of clients’ MSE (x1073) using OFMS-FT over Air and WEC with
the change in budget.

Budget | Air | WEC

B;=2Vie[N] | 7.51+4.82 | 8.27+1.56
B;=5Yie[N] | 7.46+5.10 | 7.09+1.67
B; =10,Vi € [N] | 7.38+4.86 | 6.99 + 1.63

WEC datasets when clients use OFMS-FT. Results in Tables 3 and 4 confirm that if clients have larger
memory, the accuracy of OFMS-FT improves.

We report the run times of algorithms in Table 5. Run time refers to average total run time of clients to
perform their prediction task on the entire data samples that they observe up until time horizon T'. In
Table 5, OFMS-FT, B; = 5, and OFMS-FT, B; = 2 refer to the proposed algorithm with budgets B; = 5
and B; = 2, respectively. Table 5 shows that other algorithms run faster than OFMS-FT while OFMS-FT
outperforms others in terms of accuracy (see Table 1). OFMS-FT runs slower since OFMS-FT evaluates and
fine-tunes multiple models at each round. Comparing the run times of OFMS-FT, B; = 5 with OFMS-FT,
B; = 2 shows that the time complexity of OFMS-FT can be controlled by budget. In time-sensitive scenarios,
the budget can be chosen such that OFMS-FT can fulfill required computations before the start of the next
round.

D Supplementary Discussions and Analysis

This section presents extended discussions on performance analysis of OFMS-FT.

D.1 Supplementary Analysis

In sections 3 and 4, it is assumed that at each learning round ¢, each client observes one data sample and
communicate with the server every learning round. This subsection analyzes the regret of OFMS-FT when
clients communicate with the server every n > 1 learning rounds. Every round that clients communicate
with the server called communication round. Therefore, the number of communication rounds U is L%J
Let the communication w occurs at learning round 7,. Without loss of generality, we can assume that
Tu = n(u—1) + 1. In this case, at communication round u, client ¢ draws the model index I; ,, using the PMF
specified in equation 4. Then client ¢ splits all models except for model I; ,, into clusters D1 o, ..., Dim, , u
such that the cumulative cost of models in each cluster does not exceed B; — cy, . Then client ¢ draws one of
the clusters uniformly at random. Let J; , denote the index of the selected cluster. Client 7 downloads all
models in J; ,-th cluster in addition to model I; ,,. Upon receiving models, client ¢ computes the importance
loss estimate as

Tu4+1—1
L(fr(®it; Oku) v,
= 3 AL M g 5, (43)
t=Ty ’

21



Published in Transactions on Machine Learning Research (02/2024)

Table 5: Average run time (s) of clients on CIFAR-10, MNIST, Air and WEC datasets.

Algorithms H CIFAR-10 ‘ MNIST ‘ Air ‘ WEC
MAB 9.43 9.34 8.89 | 9.51
Non-Fed-OMS 57.38 62.09 | 57.56 | 52.70
Fed-OMD 32.80 23.24 | 15.86 | 15.64
PerFedAvg 47.61 32.21 |19.29 | 22.03
OFMS-FT, B; =5, Vi 145.91 99.49 | 55.59 | 55.69
OFMS-FT, B; =2, Vi 64.42 43.06 |27.78 | 28.82

where 0y, ,, denote the parameter of model & between communications rounds « and v+ 1 and S; ,, is a subset
of models stored by client ¢ between communications rounds » and u + 1. Also, gk, can be obtained as

Pij,r.
Qik,u = Pik,1, + Z ”‘ T (44)
ik |

where m;,,, denote the number of model clusters at communication round w if I; ,, = j. Moreover, importance
sampling gradient estimate is calculated as follows by client 4

Tut+1—1

Véik,u = Z

t=Ty

dr. V‘C(fk(mz ts gk u) yi,t)Z(i eD,, ke Si,u) (45)

where D, represents a subset of clients chosen by the server at communication round u to fine-tune models.
The rest of procedures and definitions are the same as Algorithm 1 and Section 3. Moreover, when clients
communicate with the server every n learning rounds, the i-th client regret R;  and the server regret Sy
associated with model k are defined as

U Tu+1—1 U Tut1—1

Rir =Y Bu| Y L1, (@i 0k0), i) | — klél[l% SO LUfe(@in; Oku), i) (46a)
u=1 t=7y u=1 t=7y
N U Tut1—1 N U Tut1—1

Ser =~ ZZ > L@ Oku), i) ZZ D L@ 67), i) (46b)
1=1 u=1 t=7, 1=1 u=1 t=7,

where E, [] denote the expected value given observed losses up until communication round u. The following
Theorem obtains the regret upper bound for OFMS-FT when clients communicate with the server every n
learning rounds.

Theorem 3. Assume that client i, Yi € [N] communicates with the server every n learning rounds. Under
(al) and (a2), the expected cumulative regret of the i-th client using OFMS-FT is bounded by

Rix < In K

i

+ T (47)

which holds for all i € [N]. Under (al)-(a4), the cumulative regret of the server in fine-tuning model k using
OFMS-FT is bounded by

R 1
Spr < —+ — nroy; G*nT 48
o TN g s (48)

Proof. see subSection D.2 O

If client 7 sets
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then the i-th client achieves sub-linear regret of
Rir <O ( (In K),umT) , (50)

while the server achieves sub-linear regret of

anT N
i=1
by setting
1
ng =0 (52)

/ N
% Zi:1 i

As can be inferred from theorem 3 and regret analysis presented in this subsection, the increase in n, degrades
the regret upper bound of both clients and the server. Increase in n causes that clients update their stored
models fewer times and this reduces the flexibility of model selection for clients. Also, increase in n leads to
fine-tuning models less often which can adversely affect the prediction accuracy of models.

D.2 Proof of Theorem 3

Substituting ¢; ; with £;;, ,, in equation 17 and following the steps from equation 17 to equation 23, we get

Zzpzk Tu zku Z’glku S % + = L Zzpzk Tu 1ku (53)

=1k=1 u=1 k=1

Moreover, the expected value of /;;, and 02 given observed losses till communication round u, can be

obtained as

ik,u

Tu+171
L €Z; ;0 w)y Yi 17, Ty
Eulfin] = ( 3 (fi(@i1; Ok ) Z‘/,t)) < pir+ 30 Pijira

t=Ty Qik,u Vigstk Miju
Tut+1—1
= Y L(fe(®ia; k), Yin)- (54)
t=7y

Furthermore, using arithmetic-mean geometric-mean (AM-GM) inequality, Efk,u can bounded from above as

Tut+1—1 . ) 2
g?km § n ( Z (ﬁ(fk(wi,hek,u)vyl,t)z(k c Si,u)) ) ) (55)

t=7u qik7u

Moreover, based on the assumption that 0 < L(fx(®;+;0k.4),¥it) < 1, given the observed losses in prior
rounds, expected value of ffkm can be bounded from above as

L2(fre(ie;0k0), Vi
_ (fk( it k,u) yz,t) | pirr, + Z Pij, 1.

L 5 Ok)s Vi 2
Eu < (fk(:cz,ta k, ) yl,t)z(k c Sz,u)) .
Qik,u qz’k,u Vj:j#k Migu
L? it5 Oku), Yi 1
— (fk‘(m 2ty Uk, ) y,t) S . (56)
Qik,u Qik,u
Combining equation 55 with equation 56, we arrive at

2

n

qm,u
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Taking the expectation from both sides of equation 53 and considering the fact that & > 0, it can be concluded
that

U Tut+1 K U Tu+1
ZZZPUQT“ fk(iBitaaku yzt Zzﬁfk wltaaku) ylt)
u=1t=7, k=1 u=1t=1,
In n? <&y,
i Z Z Dik, 1, . (58)
i et ey ik
Moreover, it can be written that
Tu+1—1 Tut1 K
Z E 7u(wzt70ku ylt ] Zzplkfu fk $1ta0ku) ylt) (59)
t=7y t=7y, k=1

Considering the facts that equation 29 holds true for p;x -, and g v, Vk € [K] and nU = T, we can conclude
that

U Tut+1—1 U Tut1
Z [ Z ‘C zu(mltvaku ylt‘| chfk: mztaeku) yzt)

u= t=T7y u=1t=m,

1 K

i

+ nipinT (60)

which obtains the regret of client ¢ using OFMS-FT when the i-th client communicates with the server every
n learning rounds. Similar to ¢;j ;, define £;;, ,, as

Tu+1—1

A~ (0% .
Uik =Y L@t 0), yi) (0 € D k € i) (61)

t=Ty

Moreover, substituting @ik,t with fik,u in equation 32 and following the derivation steps from equation 32 to
equation 36, we obtain

N Tut1—1
Z&ku Z Z fk wzta9)7yi,t)z-(iE]D)zukegi,u)
i=1 t=7y, ik u
N
ST(HBk,u - 0”2 - Hgk,u+1 0” zk u (62)
nyg
Expected value of &ku and ||V@ik,u|\2 can be obtained as
Tu+1—1 s s
~ k PR, Tu Tu
Eullitul = LUfr(i g Opu),yin) X | = 4 0 LT
t—1 Gik,u itk QMG q
u i3
Tu+1—1
= Z L(fr(@it;Ok,u)s Yirt) (63a)
t=T7y
o ||t i D P
~ ik, T i, Tu
B[ Vial®) = | S VL(fe(@ie Ok pia)|| x | Dz 4 ¥ Ridre
ik t=1, Vigek QM5
Tu+171 2
o
= Z VL(fe(@it; Ok,u)s Yirt)
dik,u t=1y,
Tut1—-1 22
an an*G
< o Z IVL(fi(@i 5 Oku), yi)||? < r (63b)
(AT — ik,u
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where the last two inequalities in equation 63b obtained using AM-GM inequality and the assumption that
\VL(fr(xit; Oku), vit)||* < G2 Moreover, using AM-GM inequality and equation 63b, we can write that

2

2G2
o <NZIE Vi, <NZO‘”
i=1 Qik,u
Taking the expectation from both sides of equation 62, we get

N Tutr1—1 N Tug1—1

Z Z ‘ka mzheku yzt Z Z ‘cfk Tt )yi,t)

=1 t=7y =1 t=7y

N 77f an?G?
<—(||Ok.u — O — ||Okus1 — O .

g (100~ O = 0rus1 — 01) Z .~

Following derivation steps from equation 39 to equation 41, using equation 65 we can obtain

U Tut1—1 U Tut1—1
ZZ Z Efk wztyeku yzt ZZ Z Efk wztaek) yzt)
1=1 u=1 t=7, 1=1 u=1 t=7,
* N U
SNHOkH ns D) P an?
2nf 2 i=1 u=1 Qik,u

Considering the fact that g ., > % (see equation 29), using equation 66 we arrive at

N U Tut1—1 N U Tuy1—1
ZZ Z [’fk: mltaeku yzt ZZ Z ‘ka wztagk) yzt)
i=1 u=1 t=m, i=1u=1 t=m1,
Nop? &
<!n]’j” + ; 0o G*nT

which proves the theorem.
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