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Abstract

Online model selection involves selecting a model from a set of candidate models Śon the
ĆyŠ to perform prediction on a stream of data. The choice of candidate models henceforth
has a crucial impact on the performance. Although employing a larger set of candidate
models naturally leads to more Ćexibility in model selection, this may be infeasible in cases
where prediction tasks are performed on edge devices with limited memory. Faced with this
challenge, the present paper proposes an online federated model selection framework where a
group of learners (clients) interacts with a server with sufficient memory such that the server
stores all candidate models. However, each client only chooses to store a subset of models
that can be Ąt into its memory and performs its own prediction task using one of the stored
models. Furthermore, employing the proposed algorithm, clients and the server collaborate
to Ąne-tune models to adapt them to a non-stationary environment. Theoretical analysis
proves that the proposed algorithm enjoys sub-linear regret with respect to the best model
in hindsight. Experiments on real datasets demonstrate the effectiveness of the proposed
algorithm.

1 Introduction

The performance of prediction tasks can be heavily inĆuenced by the choice of model. As a result, the
problem of model selection arises in various applications and studies, such as reinforcement learning (see, e.g.,
(Dai et al., 2020; Farahmand & Szepesvari, 2011; Lee et al., 2021)) where a learner selects a model from a set
of candidate models to be deployed for prediction. Furthermore, in practical scenarios, data often arrives
in a sequential manner, rendering the storage and processing of data in batches impractical. Consequently,
there is a need to conduct model selection in an online fashion. In this regard, the learner chooses one model
among a dictionary of models at each learning round, and after performing a prediction with the chosen
model, the learner incurs a loss. The best model in hindsight refers to the model with minimum cumulative
loss over all learning rounds while regret is deĄned as the difference between the loss of the chosen model and
the best model in hindsight. Performing model selection online, the goal is to minimize cumulative regret.
Depending on the available information about the loss, different online model selection algorithms have been
proposed in the literature (see, e.g.Ď (Foster et al., 2017; Muthukumar et al., 2019; Foster et al., 2019; Cella
et al., 2021; Pacchiano et al., 2020; Reza Karimi et al., 2021)) which are proven to achieve sub-linear regret.
The performance of existing online model selection algorithms depends on the performance of models in the
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dictionary. The choice of dictionary requires information about the performance of models on unseen data,
which may not be available a priori. In this case, a richer dictionary of models may improve the performance.
However, in practice, the learner may face storage limitations, making storing and operating with a large
dictionary infeasible. For example, consider the learner as an edge device performing an online prediction
task such as image or document classiĄcation using a set of pre-trained models. In this case, the learner may
be unable to store all models in the memory. Faced with this challenge, the present work aims at answering
the following critical question: How can learners perform online model selection with a large dictionary of
models that requires memory beyond their storage capacity?

To tackle this problem, the present paper proposes an online federated model selection and f ine-tuning
algorithm called OFMS-FT to enable a group of learners to perform online prediction employing a large
dictionary of models. To this end, the online model selection is performed in a federated manner in the sense
that the group of learners, also known as clients, interacts with a server to choose a model among all models
stored in the server. SpeciĄcally, a server with a signiĄcantly larger storage capacity than clients stores a
large number of models. At each round, each client chooses to receive and store a subset of models that can
be Ąt into its memory and performs its prediction using one of the stored models. Each client computes the
losses of received models and leverages these observed losses to select a model for prediction in future rounds.
Moreover, the distribution of data streams observed by clients may differ from the distribution of data that
models are pre-trained on. At each round, clients employ the proposed OFMS-FT to adapt models to their
data and send the updates to the server. Upon receiving updates from clients, the server updates models.

In addition to the storage capacity of clients, there are some other challenges that should be taken into account.
Communication efficiency is a critical issue in federated learning (see e.g.Ď (Konečný et al., 2017; Karimireddy
et al., 2020; Rothchild et al., 2020; Hamer et al., 2020)). The available bandwidth for client-to-server
communication is usually limited which restricts the amount of information that can be sent to the server.
To deal with limited communication bandwidth, using the proposed OFMS-FT, at each round the server
chooses a subset of clients to Ąne-tune their received models. Moreover, in some cases, the distribution of
data samples may be different across clients (Smith et al., 2017; Zhang et al., 2021a; Li et al., 2021b). Thus,
different clients can have different models as the best model in hindsight. Through regret analysis, it is
proven that by employing OFMS-FT, each client enjoys sub-linear regret with respect to its best model in
hindsight. This shows that OFMS-FT effectively deals with heterogeneous data distributions among clients.
In addition, the regret analysis of the present paper proves that the server achieves sub-linear regret with
respect to the best model in hindsight. Furthermore, regret analysis shows that increase in communication
bandwidth and memory of clients improves the regret bounds. This indicates efficient usage of resources
by OFMS-FT. Experiments on regression and image classiĄcation datasets showcase the effectiveness of
OFMS-FT compared with state-of-the-art alternatives.

2 Problem Statement

Consider a set of N clients interacting with a server to perform sequential prediction. There are a set of
K models f1(·; ·), . . . , fK(·; ·) stored at the server. The set of models f1(·; ·), . . . , fK(·; ·) is called dictionary
of models. Due to clientsŠ limited memory, clients are not able to store all models f1(·; ·), . . . , fK(·; ·) and a
server with larger storage capacity stores models. Let [K] denote the set ¶1, . . . , K♢. At each learning round
t, client i receives a data sample xi,t and makes a prediction for xi,t. SpeciĄcally, at learning round t, client i
picks a model among the dictionary of models f1(·; ·), . . . , fK(·; ·) and makes prediction fIi,t

(xi,t; θIi,t,t) where
Ii,t denote the index of the chosen model by client i at learning round t and θk,t represents the parameter of
model k at learning round t. After making prediction, client i, ∀i ∈ [N ] incurs loss L(fIi,t

(xi,t; θIi,t,t), yi,t)
and observes label yi,t associated with xi,t. This continues until the time horizon T . The loss function L(·, ·)
is the same across all clients and depends on the task performed by clients. For example, if clients perform
regression tasks, the loss function L(·, ·) can be the mean square error function while if clients perform
classiĄcation tasks the loss function L(·, ·) can be chosen to be cross-entropy loss function. Furthermore,
the present paper studies the adversarial setting where the label yi,t for any i and t is determined by the
environment through a process unknown to clients. This means that the distribution of the data stream
¶(xi,t, yi,t)♢T

t=1 observed by client i can be non-stationary (i.e., it can change over learning rounds) while client
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i, ∀i ∈ [N ] does not know the distribution from which (xi,t, yi,t), ∀t is sampled. Moreover, data distribution
can be different across clients.

The performance of clients can be measured through the notion of regret which is the difference between the
clientŠs incurred loss and that of the best model in hindsight. Therefore, the regret of the i-th client can be
formalized as

Ri,T =

T
∑

t=1

Et[L(fIi,t
(xi,t; θIi,t,t), yi,t)] − min

k∈[K]

T
∑

t=1

L(fk(xi,t; θk,t), yi,t), (1)

where Et[·] denote the conditional expectation given observed losses in prior learning rounds. The objective
for each client is to minimize their regret by choosing a model from a dictionary in each learning round. This
can be accomplished if clients can identify a subset of models that perform well with the data they have
observed. Assessing the losses of multiple models, including the selected one, can help clients better evaluate
model performance. This can expedite the identiĄcation of models with superior performance, ultimately
reducing prediction loss. However, due to memory constraints, clients cannot compute the loss for all models.
To address this limitation, clients must select a subset of models that can Ąt within their memory and
calculate the loss for this chosen subset. This information aids in selecting a model for future learning rounds.
Furthermore, to enhance model performance, clients and the server collaborate on Ąne-tuning models. Let θ∗

k

be the optimal parameter for the k-th model which is deĄned as

θ∗
k = arg min

θ

N
∑

i=1

T
∑

t=1

L(fk(xi,t; θ), yi,t). (2)

In this context, the regret of the server in Ąne-tuning model k is deĄned as

Sk,T =
1

N

N
∑

i=1

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) − 1

N

N
∑

i=1

T
∑

t=1

L(fk(xi,t; θ∗
k), yi,t). (3)

The objective of the server is to orchestrate model Ąne-tuning to minimize its regrets. This paper introduces
an algorithmic framework designed to enable clients with limited memory to conduct online model selection
and Ąne-tuning. Regret analysis in Section 4 demonstrates that employing this algorithm leads to sub-linear
regret for clients and the server. Additionally, the analysis in Section 4 illustrates that increasing the memory
budget for clients results in a tighter upper bound on regret for the proposed algorithm.

3 Online Federated Model Selection

The present section introduces a disciplined way to enable clients to pick a model among a dictionary of
models beyond the storage capacity of clients while clients enjoy sub-linear regret with respect to the best
model in the dictionary. The proposed algorithm enables clients to collaborate with each other to Ąne-tune
models in order to adapt models to clientsŠ data.

3.1 Online Federated Model Selection

Let ck be the cost to store model k. For example, ck can be the amount of memory required to store the k-th
model. Let Bi denote the budget associated with the i-th client, which can be the memory available by the
i-th client to store models. At each learning round, each client i stores a subset of models that can be Ąt
into the memory of client i. The i-th client Ąne-tunes and computes the loss of the stored subset of models.
Computing the loss of multiple models at each learning round enables clients to obtain better evaluation
on the performance of models which can lead to identifying the best model faster. Moreover, Ąne-tuning
multiple models can result in adapting models to clientsŠ data faster. In Section 4, it is demonstrated that an
increase in the number of models that clients can evaluate and Ąne-tune leads to tighter regret bounds for
the proposed algorithm

At learning round t, the i-th client assigns weight zik,t to the k-th model, which indicates the credibility of
the k-th model with respect to the i-th client. Upon receiving a new data sample, the i-th client updates the
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weights ¶zik,t♢K
k=1 based on the observed losses. The update rule for weights ¶zik,t♢K

k=1 will be speciĄed later
in equation 8. Using ¶zik,t♢K

k=1, at learning round t, the i-th client selects one of the models according to the
probability mass function (PMF) pi,t as

pik,t =
zik,t

Zi,t

, ∀k ∈ [K], (4)

where Zi,t =
∑K

k=1 zik,t. Let Ii,t denote the index of the selected model by the i-th client at learning round
t. Then client i splits all models except for Ii,t-th model into clusters Di1,t, . . . ,DimiIi,t

,t such that the
cumulative cost of models in each cluster Dij,t does not exceed Bi − cIi,t

. Note that mij,t denote the number
of clusters constructed by client i at learning round t if Ii,t = j. As it will be clariĄed in Section 4, packing
models into minimum number of clusters helps clients to achieve tighter regret bound. Packing models into
the minimum number of clusters can be viewed as a bin packing problem (see e.g.Ď (Garey et al., 1972)) which
is NP-hard (Christensen et al., 2017). Several approximation methods have been proposed and analyzed in
the literature (Johnson, 1973; de la Vega & Lueker, 1981; Dósa, 2007; Hoberg & Rothvoss, 2017). In the
present work, models are packed into clusters using the Ąrst-Ąt-decreasing (FFD) bin packing algorithm (see
Algorithm 2 in Appendix A). It has been proved that FFD can pack models into at most 11

9 m∗ + 2
3 clusters

where m∗ is the minimum number of clusters (i.e., optimal solution for the clustering problem) (Dósa, 2007).

After packing models into clusters, the i-th client chooses one of the clusters Di1,t, . . . ,DimiIi,t,t,t uniformly at
random. Let Ji,t be the index of the cluster chosen by client i at learning round t. The i-th client downloads
and stores all models in the cluster DiJi,t,t along with the Ii,t-th model. Since the cumulative cost of models
in DiJi,t,t does not exceed Bi − cIi,t

, the cumulative cost of models in DiJi,t,t in addition to the Ii,t-th model
does not exceed the budget Bi. Let Si,t represents the subset of models stored by client i at learning round t.
Upon receiving a new datum at learning round t, the i-th client performs its prediction task using the Ii,t-th
model. Then, the i-th client incurs loss L(fIi,t

(xi,t; θIi,t,t), yi,t). After observing yi,t, the i-th client computes
the loss L(fk(xi,t; θk,t), yi,t), ∀k ∈ Si,t. After computing the losses, the i-th client obtains the importance
sampling loss estimate for the k-th model as

ℓik,t =
L(fk(xi,t; θk,t), yi,t)

qik,t

I(k ∈ Si,t), (5)

where I(·) denote the indicator function and qik,t is the probability that the i-th client stores the k-th model
at round t. In order to derive qik,t, note that the probability of storing model k at learning round t can be
conditioned on Ii,t and based on the total probability theorem, it can be obtained that

qik,t =
K
∑

j=1

Pr[Ii,t = j] Pr[k ∈ Si,t♣Ii,t = j] =
K
∑

j=1

pij,t Pr[k ∈ Si,t♣Ii,t = j], (6)

where Pr[A♣B] denote the probability of event A given that event B occurred. If client i chooses the k-th
model at learning round t (i.e., Ii,t = k), then client i stores model k meaning that Pr[k ∈ Si,t♣Ii,t = k] = 1.
Let mij,t denote the number of clusters when client i chooses Ii,t = j. Note that if Ii,t = j client i splits
all models except for model j into mij,t clusters. If client i chooses Ii,t = j such that j ≠ k, then client i
stores model k at learning round t if the chosen cluster contains model k. Since only one cluster among mij,t

clusters contains model k and client i chooses one cluster uniformly at random, it can be concluded that
Pr[k ∈ Si,t♣Ii,t = j, j ̸= k] = 1

mij,t
. Therefore, according to equation 6, the probability qik,t can be obtained as

qik,t = pik,t +
∑

∀j:j ̸=k

pij,t

mij,t

. (7)

At learning round t, client i updates the weights of models using the multiplicative update rule as

zik,t+1 = zik,t exp (−ηiℓik,t) , (8)

where ηi is the learning rate associated with the i-th client. According to equation 5 and equation 8, if client
i does not observe the loss of model k at learning round t, client i keeps the weight zik,t+1 the same as zik,t.
Conversely, when the loss is observed, a higher loss corresponds to a greater reduction in the weight zik,t.

4



Published in Transactions on Machine Learning Research (02/2024)

3.2 Online Model Fine-Tuning

This subsection presents a principled way to enable clients to collaborate with the server to Ąne-tune models.
If client i participates in Ąne-tuning at learning round t, client i locally updates all its stored models in Si,t

and sends updated modelsŠ parameters to the server. Sending updated parameters of a model to the server
occupies a portion of communication bandwidth. Therefore, the available communication bandwidth may not
be enough such that all clients can send their updates every learning round. In this case, at learning round t,
the server has to choose a subset of clients Gt such that the available bandwidth is sufficient for all clients in
Gt to send their updates to the server.

Let bk be the bandwidth required to send the updated parameters of the k-th model. If i ∈ Gt, then the
i-th client needs the bandwidth ei =

∑

k∈Si,t
bk to send updated parameters of its stored models. Let the

available communication bandwidth be denoted by E. Given ei, ∀i ∈ [N ], the server splits clients into α
groups N1, . . . ,Nα such that

∑

i∈Nj
ei ≤ E, ∀j ∈ [α]. This means that all clients in each group Nj , ∀j ∈ [α]

can send their updated model parameters to the server given the available bandwidth. At each learning
round t, the server draws one of the client groups N1, . . . ,Nα uniformly at random. Clients in the chosen
group send their updated modelsŠ parameters to the server. In other words, Gt := Nιt

where ιt represents the
index of the chosen client group at learning round t. Since the probability of choosing a client group is 1

α
, the

probability that a client is chosen by the server to send its updated models parameters is 1
α

as well. Therefore,
to maximize the probability that a client is chosen by the server to be in Gt, the server can split clients into a
minimum number of groups. To do this, bin-packing algorithms such as FFD (Dósa, 2007) can be employed.

DeĄne the importance sampling loss gradient estimate ∇ℓ̂ik,t associated with client i and model k as

∇ℓ̂ik,t =
α

qik,t

∇L(fk(xi,t; θk,t), yi,t)I(i ∈ Gt, k ∈ Si,t). (9)

Recall that I(·) denote the indicator function. The i-th client updates the modelsŠ parameters as

θik,t+1 = θk,t − ηf ∇ℓ̂ik,t, ∀k ∈ Si,t, (10)

where ηf is the Ąne-tuning learning rate. According to equation 9 and equation 10, if the i-th client is not
chosen for Ąne-tuning (i.e., i /∈ Gt), then θik,t+1 = θk,t. Thus, if i ∈ Gt, the i-th client sends locally updated
models parameters ¶θik,t+1♢∀k∈Si,t

to the server. Let Vk,t denote the index set of clients such that i ∈ Vk,t if
the server receives the update of the k-th model θik,t+1 from the i-th client. Upon aggregating information
from clients, the server updates model parameters ¶θk,t♢K

k=1 as:

θk,t+1 = θk,t − 1

N

∑

i∈Vk,t

(θk,t − θik,t+1) = θk,t − ηf

N

N
∑

i=1

∇ℓ̂ik,t. (11)

The proposed Online Federated Model Selection and Fine-Tuning (OFMS-FT) algorithm is summarized in
Algorithm 1. Steps 5 to 10 in Algorithm 1 outline how client i selects a subset of models during each learning
round t. Subsequently, each client i, ∀i ∈ [N ], transmits its required bandwidth ei (acquired in step 10) to
the server. Upon receiving ei, ∀i ∈ [N ], the server, following steps 12 to 14, determines a subset of clients
Gt eligible to send their updates. Each client i then utilizes its selected model for prediction (step 16) and
computes the loss of its stored model subset, updating the weights zik,t

K
k=1 (step 17). If client i is included in

the serverŠs selected subset Gt, it transmits its local updates to the server, as depicted in step 19. Finally, in
step 22, the server updates the model parameters for use in the subsequent learning round.

4 Regret Analysis

The present section analyzes the performance of OFMS-FT in terms of cumulative regret. To analyze the
performance of OFMS-FT, it is supposed that the following assumptions hold:
(a1) For any (x, y) and θ, the loss is bounded as 0 ≤ L(fk(x; θ), y) ≤ 1.
(a2) The budget satisĄes Bi ≥ ck + cj , ∀k, j ∈ [K], ∀i ∈ [N ].
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Algorithm 1 OFMS-FT: Online Federated Model Selection and Fine-Tuning

1: Input: Models fk(·; θk,0), costs ck, bk and budgets Bi, E, ∀i, ∀k.
2: Initialize: zik,1 = 1, ∀k, ∀i.
3: for t = 1, . . . , T do
4: for all i ∈ [N ], the ith client do
5: Chooses a model using PMF pi,t in equation 4. Ii,t denote the index of the chosen model.
6: Splits all models except for Ii,t-th model into clusters Di1,t, . . . ,Dimi,t,t such that

∑

k∈Dij,t

ck ≤ Bi − cIi,t
, ∀j : 1 ≤ j ≤ mi,t.

7: Chooses one cluster among ¶Dij,t♢mi,t

j=1 uniformly at random where Ji,t is the chosen cluster index.
8: Constructs the set of model indices Si,t = ¶Ii,t♢ ∪ ¶k♣∀k ∈ DiJi,t,t♢.
9: Downloads all models whose indices are in Si,t from the server.

10: Sends the bandwidth cost ei =
∑

k∈Si,t
bk to the server.

11: end for
12: The server splits clients into α groups N1, . . . ,Nα such that

∑

i∈Nj
ei ≤ E, ∀j ∈ [α].

13: The server draws one of the groups ¶Nj♢α
j=1 uniformly at random.

14: The server Ąnds Gt := Nιt
with ιt as the chosen client group index.

15: for all i ∈ [N ], the ith client do
16: Makes prediction fIi,t

(xi,t; θIi,t,t) and computes L(fk(xi,t; θk,t), yi,t), ∀k ∈ Si,t.
17: Updates zik,t, ∀k ∈ Si,t according to equation 8.
18: if i ∈ Gt then
19: Sends θik,t+1, ∀k ∈ Si,t obtained by equation 10 to the server.
20: end if
21: end for
22: The server updates models parameters as in equation 11.
23: end for

(a3) The loss function L(fk(x; θ), y) is convex with respect to θ, ∀k ∈ [K].
(a4) The gradient of the loss function is bounded as ∥∇L(fk(x; θ), y)∥ ≤ G, ∀θ, ∀k ∈ [K]. Also, θ belongs
to a bounded set such that ∥θ∥2 ≤ R.

Let m∗
ij be the minimum number of clusters if client i splits all models except for model j such that the

cumulative cost of each cluster does not exceed Bi − cj . DeĄne µi = maxj m∗
ij , which can be interpreted as

the upper bound for the minimum number of clusters that can be constructed by client i at each learning
round. It can be concluded that µi < K and increase in budget Bi leads to decrease in µi. The following
theorem obtains the upper bound for the regret of clients and the server in terms of µi.

Theorem 1. Assume that clients utilize the Ąrst Ąt decreasing algorithm in order to split models into clusters
Di1,t, . . . ,Dimi,t,t. Under (a1) and (a2), the expected cumulative regret of the i-th client using OFMS-FT is
bounded by

Ri,T ≤ ln K

ηi

+ ηiµiT, (12)

which holds for all i ∈ [N ]. Under (a1)Ű(a4), the cumulative regret of the server in Ąne-tuning model k using
OFMS-FT is bounded by

Sk,T ≤ R

2ηf

+
1

N

N
∑

i=1

µiαηf G2T . (13)

Proof. see Appendix B.
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If the i-th client sets ηi = O
(√

ln K
µiT

)

, then the i-th client achieves sub-linear regret of

Ri,T ≤ O
(

√

(ln K)µiT
)

. (14)

If the server sets the Ąne-tuning learning rate as ηf = 1
√

αT
N

∑

N

i=1
µi

, then the server achieves regret of

Sk,T ≤ O





√

√

√

√

αT

N

N
∑

i=1

µi



 . (15)

The regret bounds in equation 14 and equation 15 show that a decrease in µi leads to tighter regret bound.
If the i-th client has a larger budget Bi, the upper bound for the minimum number of model clusters µi

decreases since client i can split models into clusters with larger budgets. As an example, consider the
special case that all models have the same cost ck = c, ∀k ∈ [K] while Bi = δic where δi ≥ 2 is an integer.
In this case, according to step 6 in Algorithm 1, the upper bound for the minimum number of clusters is

µi = (K−1)c

(δi−1)c
= K−1

δi−1 . Therefore, as the budget of a client increases, the client can achieve tighter regret bound.

In addition, larger communication bandwidth enables the server to partition clients into smaller number of
groups α. Thus, according to equation 15, larger communication bandwidth leads to tighter regret bound for
the server.

Challenges of Obtaining Regret in equation 15. Limited memory of clients brings challenges for
obtaining the sub-linear regret in equation 15 since clients cannot calculate the gradient loss of all models
every learning round. To overcome this challenge, the present paper proposes update rules equation 9 and
equation 10 along with the novel model subset selection presented in steps 5, 6 and 7 of Algorithm 1. In what
follows the effectiveness of the proposed update rules and model subset selection is explained. Employing
vanilla online gradient descent update rule θik,t+1 = θk,t − ∇L(fk(xi,t; θk,t), yi,t) locally by clients, can result

in regret of O(
√

T ) if client i knows ∇L(fk(xi,t; θk,t), yi,t), ∀k ∈ [K] at every learning round (see e.g., (Hazan,
2022)). This is not possible since client i has limited memory and is not able to calculate the gradient
loss of all models every learning round. To overcome this challenge, the present paper proposes the local
update rules in equation 9 and equation 10 which use the gradient loss estimate ∇ℓ̂ik,t instead of true loss

gradient. Using equation 37 of Appendix B, it can be concluded that ∇ℓ̂ik,t is an unbiased estimator of

∇L(fk(xi,t; θk,t), yi,t) meaning that Et[∇ℓ̂ik,t] = ∇L(fk(xi,t; θk,t), yi,t). According to equation 9, obtaining

∇ℓ̂ik,t does not require storing model k and calculating ∇L(fk(xi,t; θk,t), yi,t) every learning round. Hence,

∇ℓ̂ik,t can be obtained every learning round given the limited memory of client i. However, according to
equation 36, equation 38 and equation 39 of Appendix B, employing update rule of equation 10 the regret

of the server grows with Et[∥∇ℓ̂ik,t∥2] which is upper bounded as Et[∥∇ℓ̂ik,t∥2] ≤ αG2

qik,t
(see equation 37b in

Appendix B). Therefore, the regret of the server grows with 1
qik,t

where qik,t is the probability that client

i stores model k and Ąne-tunes it at learning round t. Using model subset selection method presented in
steps 5, 6 and 7 of Algorithm 1, the probability qik,t is obtained as in equation 7. In equation 29 of Appendix
B, it is proven that if clients employ FFD algorithm to cluster models in step 6, then it is guaranteed that
qik,t ≥ 1

2µi
. This lead to guaranteeing the regret upper bound in equation 15.

5 Related Works and Discussions

This Section discusses differences, innovations, and improvements provided by the proposed OFMS-FT
compared to related works in the literature.

Online Model Selection. Online model selection algorithms by Foster et al. (2017); Muthukumar et al.
(2019); Foster et al. (2019); Cella et al. (2021); Pacchiano et al. (2020); Reza Karimi et al. (2021) have studied
either full-information or bandit settings. Full-information refers to cases where the loss of all models can be
observed at every round while in bandit setting only the loss of the chosen model can be observed. Regret
bounds obtained by full-information based online model selection algorithms cannot be guaranteed if the
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learner (i.e., a client) cannot store all models. Moreover, it is useful to mention that the present paper studies
the adversarial setting where the losses observed by clients at each round are speciĄed by the environment
and may not follow any time-invariant distribution. It is well-known that in the adversarial bandit setting
the learner achieves regret upper bound of O(

√
KT ) (see e.g., (Pacchiano et al., 2020)). The proposed

OFMS-FT utilizes the available memory of clients to evaluate a subset of models every round (see step 16
in Algorithm 1) which helps client i to achieve regret of O(

√
µiT ) as presented in equation 14. If client i is

able to store more than one model, then µi < K (see below equation 3 and the discussion below Theorem 1)
which shows that OFMS-FT utilizes the available memory of clients to improve their regret bound compared
to bandit setting. Moreover, aforementioned online model selection works have not studied online Ąne-tuning
of models. A model selection algorithm proposed by Pacchiano et al. (2022) assumes that each model (called
base learner) comes with a candidate regret bound and utilizes this information for model selection. By
contrast, the present paper assumes that there is no available prior information about the performance of
models. Moreover, Muthukumar & Krishnamurthy (2022) has studied the problem of model selection in
linear contextual bandits where the reward (can be interpreted as negative loss in our work) is the linear
function of the context (can be interpreted as xi,t in our work). However, the present paper does not make
this assumption in both theoretical analysis and experiments. Furthermore, online model selection when
models are kernels has been studied in the literature (see e.g., (Yang et al., 2012; Zhang et al., 2021b; Li
& Liao, 2022; Ghari & Shen, 2023a)) where the speciĄc characteristics of kernel functions are exploited to
perform model selection to alleviate computational complexity of kernel learning.

Online Learning with Partial Observations. Another line of research related to the focus of the present
paper is online learning with expert advice where a learner interacts with a set of experts such that at each
learning round the learner makes decision based on advice received from the experts (Cesa-Bianchi & Lugosi,
2006). The learner may observe the loss associated with a subset of experts after decision making, which can
be modeled using a graph called feedback graph (Mannor & Shamir, 2011; Amin et al., 2015; Cohen et al.,
2016; Alon et al., 2015; Cortes et al., 2020; Ghari & Shen, 2023b). In online federated model selection, each
model can be viewed as an expert. Employing the proposed OFMS-FT, in addition to performing online model
selection, clients and the server collaborate to Ąne-tune the models (experts). However, the aforementioned
online learning algorithms do not study the case where the learner can inĆuence experts. Performing online
model selection and Ąne-tuning jointly in a federated fashion brings challenges for guarantying sub-linear
regret that cannot be overcame using the existing online learning algorithms. SpeciĄcally, due to limited
client-to-server communication bandwidth and limited memory of clients, all clients are not able to Ąne-tune
all models every learning round. The proposed OFMS-FT introduces a novel model subset selection in steps
5, 6 and 7 of Algorithm 1 and a novel update rule in equation 9 and equation 10 to Ąne-tune models locally
by clients in such a way that given limited memory of clients and limited communication bandwidth, the
server achieves sub-linear regret of equation 15.

Online Federated Learning. The problem of online federated model selection and Ąne-tuning is related
to online federated learning (Chen et al., 2020; Mitra et al., 2021; Damaskinos et al., 2022). Chen et al.
(2020) has studied learning a global model when clients receive new data samples while they participate
in federated learning. Online decision-making by clients has not been studied by Chen et al. (2020) and
hence the regret bound for clients cannot be guaranteed. An online federated learning algorithm has been
proposed by Damaskinos et al. (2022) to cope with the staleness in federated learning. However, it lacks
theoretical analysis when clients need to perform online decision-making. An online mirror descent-based
federated learning algorithm called Fed-OMD has been proposed in Mitra et al. (2021). Fed-OMD obtains
sub-linear regret when clients perform their online learning task while collaborating with the server to learn a
single model. However, Fed-OMD cannot guarantee sub-linear regret when it comes to performing online
model selection if clients are unable to store all models in the dictionary. Furthermore, Hong & Chae (2022);
Gogineni et al. (2022); Ghari & Shen (2022) have studied the problem of online federated learning where
each client learns a kernel-based model employing speciĄc characteristics of kernel functions.

Personalized Model Selection and Fine-Tuning. In addition to online model selection, online learning
and online federated learning discussed in Section 5, personalized federated learning can be related to the
focus of this paper. Employing the proposed OFMS-FT, model selection and Ąne-tuning is personalized
for clients. According to step 5 in Algorithm 1, each client chooses a model locally using the personalized
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PMF pi,t in equation 4 to make a prediction at round t. This helps each client i, ∀i ∈ [N ] to achieve the
sub-linear regret in equation 14. Furthermore, the choice of models to be Ąne-tuned locally by each client is
personalized according to step 19 in Algorithm 1. Particularly, qik,t in equation 7 is the probability that the
client i Ąne-tunes the model k at round t. The probability qik,t is determined by client i and it can be inferred
that the probability to participate in Ąne-tuning a model is determined by client i based on its preferences
given the limited memory budget. It is useful to add that personalized federated learning is well-studied
topic related to the focus of the present paper. In personalized federated learning framework, aggregating
information from clients the server assists clients to learn their own personalized model. Several personalized
federated learning approaches have been proposed in the literature for example inspired by model-agnostic
meta-learning (Finn et al., 2017; Fallah et al., 2020; Acar et al., 2021), adding a regularization term to the
objective function (Hanzely et al., 2020; Dinh et al., 2020; Li et al., 2021a; Liu et al., 2022), among others (see
e.g., (Deng et al., 2020; Collins et al., 2021; Marfoq et al., 2021; Shamsian et al., 2021)). However, none of the
aforementioned works have studied online decision making, online federated model selection and Ąne-tuning
when clients have limited memory and employing them, sub-linear regrets cannot be guaranteed for clients
and the server.

Client Selection. Client selection in federated learning has been extensively explored in the literature (Chen
et al., 2018; Huang et al., 2021; Balakrishnan et al., 2022; Németh et al., 2022; Fu et al., 2023). However,
none of the aforementioned works have speciĄcally studied client selection for online federated learning, where
clients utilize the trained model from federated learning for online predictions. In the proposed OFMS-FT,
the server selects clients for their participation in model Ąne-tuning uniformly at random. This choice aims
to avoid differentiating among clients and Ąne-tune models in the favor of any clients. Nevertheless, an
intriguing direction for future research is to investigate how alternative client selection strategies, beyond
uniform selection, could enhance client regret in the context of online federated learning.

6 Experiments

We tested the performance of the proposed OFMS-FT for online model selection through a set of experiments.
The performance of OFMS-FT is compared with the following baselines: MAB (Auer et al., 2003), Non-Fed-
OMS, RMS-FT, B-Fed-OMFT, FedOMD (Mitra et al., 2021) and PerFedAvg (Fallah et al., 2020). MAB
refers to the case where the server chooses a model using Exp3 algorithm (Auer et al., 2003) and transmits the
chosen model to all clients. Then, each client sends the loss of the received model to the server. Non-Fed-OMS
refers to non-federated online model selection where each client stores a Ąxed subset of models that can be
Ąt into its memory. At each learning round, each client chooses one model from the stored subset of models
using Exp3 algorithm. RMS-FT denote a baseline where at each learning round each client chooses a subset of
models uniformly at random to Ąne-tune them. The prediction task is then carried out by selecting one of the
chosen models uniformly at random. Furthermore, B-Fed-OMFT stands for Budgeted Federated Online Model
Fine-Tuning. In this approach, the server maintains a set of models that can be Ąt into the memory of all
clients. Clients collaborate with the server to Ąne-tune all models in each learning round. In the B-Fed-OMFT
framework, each client employs the Exp3 algorithm to choose one model to perform the prediction task.
Using Fed-OMD (Mitra et al., 2021), given a pre-trained model, clients and the server Ąne-tune the model.
PerFedAvg refers to the case where given a pre-trained model, clients and the server Ąne-tune the model
using Personalized FedAvg (Fallah et al., 2020). The performance of the proposed OFMS-FT and baselines
are tested on online image classiĄcation and online regression tasks. Image classiĄcation tasks are performed
over CIFAR-10 (Krizhevsky, 2009) and MNIST (Lecun et al., 1998) datasets. Online regression tasks are
performed on Air (Zhang et al., 2017) and WEC (Neshat et al., 2018) datasets. For both image classiĄcation
datasets, the server stores 20 pre-trained convolutional neural networks (CNNs). Based on the number of
parameters required to store models, for CIFAR-10 the normalized costs of storing CNNs are either 0.89
or 1, and for MNIST the normalized costs are either 0.66 or 1. The experiments were conducted with a
single meta-replication, utilizing a consistent random seed for both the proposed OFMS-FT and all baseline
methods. Moreover, for both regression datasets, the server stores 20 pre-trained fully-connected feedforward
neural networks. Since all neural networks have the same size, the normalized costs of all of them are 1. More
details about models and datasets can be found in Appendix C.
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compared with other baselines. Therefore, the results conĄrm that OFMS-FT can cope with heterogeneous
data of clients in more Ćexible and henceforth more effective fashion.

Furthermore, Table 1 presents the mean square error (MSE) of online regression and its standard de-
viation across clients for Air and WEC datasets. SpeciĄcally, MSE of client i is deĄned as MSEi =
1
T

∑T
t=1 (ŷi,t − yi,t)

2. In both the Air and WEC datasets, individual data samples are associated with one of
four geographical areas. The distribution of data samples across clients is non-i.i.d, with 50 clients observing
data samples from one speciĄc site, while the remaining 50 clients observe data samples from another
geographical site. At each round, only half of clients are able to send their updated models to the server.
All other settings are the same as online image classiĄcation setting. Results for online regression tasks
are consistent with the conclusions obtained from the results of online image classiĄcation task. Moreover,
Figure 1 illustrates the average regret of clients using the proposed OFMS-FT through learning rounds
for different values of memory budget Bi. Figure 1 depicts the regret of OFMS-FT through learning on
MNIST and WEC datasets. As can be seen, the increase in Bi leads to obtaining lower regret by clients.

Table 2: MSE (×10−3) and its standard de-
viation (×10−3) of OFMS-FT across clients
over WEC dataset under varying budgets
among clients.

Bi = 3 Bi = 5 MSE

60% 40% 7.96 ± 1.49
50% 50% 7.85 ± 1.66
40% 60% 7.32 ± 1.54

Therefore, the results in Figure 1 are in agreement with the
regret analysis in Section 4. Table 2 illustrates the sensitivity
of the MSE and its standard deviation, as achieved by the
proposed OFMS-FT, to the budget Bi (∀i ∈ [N ]) over the
WEC dataset. In this conĄguration, the budget varies across
clients, with a subset having Bi = 3 and the remainder Bi = 5.
The improvement in MSE becomes evident as the number of
clients with a budget of B = 5 increases. This observation
indicates that an increase in budget enhances the performance
of OFMS-FT, aligning with the theoretical Ąndings presented
in Section 4.

7 Conclusion

Performing online model selection with a large number of models can improve the performance of online
model selection especially when there is not prior information about models. The present paper developed a
federated learning approach (OFMS-FT) for online model selection when clients cannot store all models due
to limitations in their memory. To adapt models to clientsŠ data, employing OFMS-FT clients can collaborate
to Ąne-tune models. It was proved that both clients and the server achieve sub-linear regret with respect to
the best model in hindsight. Experiments on regression and image classiĄcation datasets were carried out
to showcase that the proposed OFMS-FT achieved better performance in comparison with non-federated
online model selection approach and other state-of-the-art federated learning algorithms which employ a
single model rather than a dictionary of models.
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A First Fit Decreasing Algorithm

In this paper, Ąrst Ąt decreasing algorithm is employed to split models into clusters. To begin with, order
models by decreasing cost. Let s(1), . . . , s(K − 1) denote the indices of all models except for the Ii,t-th model
ordered in ascending manner according to modelsŠ costs such that if i ≤ j, then cs(i) ≤ cs(j). At the k-th
step of clustering, client i checks whether the s(k)-th model can be Ąt into any currently existing clusters
according to budget Bi − cIi,t

. The s(k)-th model is put into the Ąrst cluster that it can be Ąt into. Otherwise,
if it cannot be Ąt into any opened cluster, then it is assigned to a new cluster indexed by mi,t + 1. This
continues until all models except for the Ii,t-th model are corresponded to a cluster. Algorithm 2 summarizes
the clustering procedure performed by the i-th client.

Algorithm 2 Cluster Generation by Client i at Learning Round t

1: Input: Chosen model index Ii,t, costs ck, ∀k ∈ [K] and budget Bi.
2: Initialize: mi,t = 1.
3: Order all models except for the Ii,t-th model by decreasing cost to obtain s(1), . . . , s(K − 1).
4: for k = 1, . . . , K − 1 do
5: Set j = 1 and d = 0
6: while d = 0 and j ≤ mi,t do
7: if

∑

m∈Dij,t
cm + cs(k) ≤ Bi − cIi,t

then
8: Set d = 1 and j = j + 1
9: end if

10: end while
11: if j = mi,t + 1 and d = 0 then
12: Assign the s(k)-th model to a new cluster Di(mi,t+1),t.
13: Update mi,t = mi,t + 1.
14: end if
15: end for
16: Output: ¶Di1,t, . . . ,Dimi,t,t♢

B Proof of Theorem 1

In order to prove Theorem 1, the following Lemma is used as the step-stone.

Lemma 2. Under (a1) and (a2), the regret of the i-th client with respect to any model k is bounded from
above as

T
∑

t=1

Et[L(fIi,t
(xi,t; θIi,t,t), yi,t)] −

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) ≤ ln K

ηi

+ ηiµiT. (16)

Proof. Recall that Zi,t =
∑K

k=1 zik,t. Therefore, we can write

Zi,t+1

Zi,t

=
K
∑

k=1

zik,t+1

Zi,t

=
K
∑

k=1

zik,t

Zi,t

exp (−ηiℓik,t). (17)

According to equation 4,
zik,t

Zi,t
= pik,t and as a result equation 17 can be rewritten as

Zi,t+1

Zi,t

=

K
∑

k=1

pik,t exp (−ηiℓik,t). (18)

Combining the inequality e−x ≤ 1 − x + 1
2 x2, ∀x ≥ 0 with equation 17 we can conclude that

Zi,t+1

Zi,t

≤
K
∑

k=1

pik,t

(

1 − ηiℓik,t +
1

2
(ηiℓik,t)

2

)

. (19)
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Employing the inequality 1 + x ≤ ex and taking logarithm from both sides of equation 19, we arrive at

ln
Zi,t+1

Zi,t

≤
K
∑

k=1

pik,t

(

−ηiℓik,t +
1

2
(ηiℓik,t)

2

)

. (20)

Summing equation 20 over learning rounds leads to

ln
Zi,T +1

Zi,1
≤

T
∑

t=1

K
∑

k=1

pik,t

(

−ηiℓik,t +
1

2
(ηiℓik,t)

2

)

. (21)

In addition, ln
Zi,T +1

Zi,1
can be bounded from below as

ln
Zi,T +1

Zi,1
≥ ln

zik,T +1

Zi,1
= −ηi

T
∑

t=1

ℓik,t − ln K, (22)

which holds for any k ∈ [K]. Combining equation 21 with equation 22, we get

T
∑

t=1

K
∑

k=1

pik,tℓik,t −
T
∑

t=1

ℓik,t ≤ ln K

ηi

+
ηi

2

T
∑

t=1

K
∑

k=1

pik,tℓ
2
ik,t. (23)

Considering equation 5 and equation 7, given the observed losses in prior rounds the expected value of ℓik,t

can be obtained as

Et[ℓik,t] =
L(fk(xi,t; θk,t), yi,t)

qik,t

pik,t +
∑

∀j:j ̸=k

L(fk(xi,t; θk,t), yi,t)

qik,t

pij,t

mij,t

=
L(fk(xi,t; θk,t), yi,t)

qik,t



pik,t +
∑

∀j:j ̸=k

pij,t

mij,t



 = L(fk(xi,t; θk,t), yi,t). (24)

Moreover, based on the assumption that 0 ≤ L(fk(xi,t; θk,t), yi,t) ≤ 1, given the observed losses in prior
rounds, the expected value of ℓ2

ik,t can be bounded from above as

Et[ℓ
2
ik,t] =

L2(fk(xi,t; θk,t), yi,t)

q2
ik,t



pik,t +
∑

∀j:j ̸=k

pij,t

mij,t





=
L2(fk(xi,t; θk,t), yi,t)

qik,t

≤ 1

qik,t

. (25)

Taking the expectation from both sides of equation 23, we obtain

T
∑

t=1

K
∑

k=1

pik,tL(fk(xi,t; θk,t), yi,t) −
T
∑

t=1

L(fk(xi,t; θk,t), yi,t) ≤ ln K

ηi

+
ηi

2

T
∑

t=1

K
∑

k=1

pik,t

qik,t

. (26)

In addition, it can be written that

T
∑

t=1

Et[L(fIi,t
(xi,t; θIi,t,t), yi,t)] =

T
∑

t=1

K
∑

k=1

pik,tL(fk(xi,t; θk,t), yi,t). (27)

Therefore, from equation 26 we arrive at

T
∑

t=1

Et[L(fIi,t
(xi,t; θIi,t,t), yi,t)] −

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) ≤ ln K

ηi

+
ηi

2

T
∑

t=1

K
∑

k=1

pik,t

qik,t

. (28)
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According to Algorithm 1, at each learning round, client i splits all models except for the chosen model into
clusters. Let νij be the minimum number of clusters when client i chooses Ii,t = j and splits all models except
for model j into clusters. If client i employs FFD algorithm to split models, the number of clusters mij,t

when client i chooses Ii,t = j satisĄes mij,t ≤ 11
9 νij + 2

3 (Dósa, 2007). Let µi be deĄned as µi = maxj νij .
Therefore, it can be concluded that mij,t ≤ 11

9 µi + 2
3 ≤ 2µi. Thus, it can be written that

qik,t ≥ pik,t +
1 − pik,t

2µi

≥ 1

2µi

(29)

Combining equation 28 with equation 29 yields

T
∑

t=1

Et[L(fIi,t
(xi,t; θIi,t,t), yi,t)] −

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) ≤ ln K

ηi

+ ηiµiT. (30)

which proves the lemma.

In what follows the server regret upper bound in Ąne-tuning model k is obtained. Let ℓ̂ik,t denote the
Ąne-tuning importance sampling loss estimate at learning round t associated with the i-th client and the k-th
model, deĄned as

ℓ̂ik,t =
α

qik,t

L(fk(xi,t; θk,t), yi,t)I(i ∈ Gt, k ∈ Si,t). (31)

According to equation 11, for any Ąxed θ and k ∈ [K], it can be written that

∥θk,t+1 − θ∥2 =

∥

∥

∥

∥

∥

θk,t − θ − ηf

N

N
∑

i=1

∇ℓ̂ik,t

∥

∥

∥

∥

∥

2

= ∥θk,t − θ∥2 − 2ηf

N

N
∑

i=1

∇⊤ℓ̂ik,t(θk,t − θ) +

∥

∥

∥

∥

∥

ηf

N

N
∑

i=1

∇ℓ̂ik,t

∥

∥

∥

∥

∥

2

. (32)

Moreover, due to the convexity of the loss function L(·, ·), for any learning round t, we Ąnd that

∇⊤L(fk(xi,t; θk,t), yi,t)(θ − θk,t) ≤ L(fk(xi,t; θ), yi,t) − L(fk(xi,t; θk,t), yi,t) (33)

Multiplying both sides of equation 33 by
αI(i∈Gt,k∈Si,t)

qik,t
, we get

∇⊤ℓ̂ik,t(θ − θk,t) ≤ α

qik,t

L(fk(xi,t; θ), yi,t)I(i ∈ Gt, k ∈ Si,t) − ℓ̂ik,t. (34)

Summing equation 34 over clients, we obtain

N
∑

i=1

ℓ̂ik,t −
N
∑

i=1

α

qik,t

L(fk(xi,t; θ), yi,t)I(i ∈ Gt, k ∈ Si,t) ≤
N
∑

i=1

∇⊤ℓ̂ik,t(θk,t − θ). (35)

Combining equation 32 with equation 35 leads to

N
∑

i=1

ℓ̂ik,t −
N
∑

i=1

α

qik,t

L(fk(xi,t; θ), yi,t)I(i ∈ Gt, k ∈ Si,t)

≤ N

2ηf

(∥θk,t − θ∥2 − ∥θk,t+1 − θ∥2) +
ηf

2N

∥

∥

∥

∥

∥

N
∑

i=1

∇ℓ̂ik,t

∥

∥

∥

∥

∥

2

. (36)
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Moreover, the expected value of ℓ̂ik,t and ∥∇ℓ̂ik,t∥2 with respect to I(i ∈ Gt, k ∈ Si,t) can be obtained as

Et[ℓ̂ik,t] =
α

qik,t

L(fk(xi,t; θk,t), yi,t) ×





pik,t

α
+
∑

∀j:j ̸=k

pij,t

αmij,t





= L(fk(xi,t; θk,t), yi,t) (37a)

Et[∥∇ℓ̂ik,t∥2] =
α2

q2
ik,t

∥∇L(fk(xi,t; θk,t), yi,t)∥2 ×





pik,t

α
+
∑

∀j:j ̸=k

pij,t

αmij,t





=
α

qik,t

∥∇L(fk(xi,t; θk,t), yi,t)∥2 ≤ αG2

qik,t

(37b)

where the last inequality in equation 37b can be concluded from the assumption (a3) where
∥∇L(f(xi,t; θk,t), yi,t)∥ ≤ G. In addition, using arithmetic mean geometric mean (AM-GM) inequality
we Ąnd

∥

∥

∥

∥

∥

N
∑

i=1

∇ℓ̂ik,t

∥

∥

∥

∥

∥

2

≤ N

N
∑

i=1

∥∇ℓ̂ik,t∥2. (38)

Therefore, using equation 37 and equation 38, taking the expectation from both sides of equation 36, it can
be written that

N
∑

i=1

L(fk(xi,t; θk,t), yi,t) −
N
∑

i=1

L(fk(xi,t; θ), yi,t)

≤ N

2ηf

(∥θk,t − θ∥2 − ∥θk,t+1 − θ∥2) +
ηf G2

2

N
∑

i=1

α

qik,t

. (39)

Summing equation 39 over learning rounds yields

N
∑

i=1

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) −
N
∑

i=1

T
∑

t=1

L(fk(xi,t; θ), yi,t)

≤ N

2ηf

(∥θk,1 − θ∥2 − ∥θk,T +1 − θ∥2) +
ηf G2

2

T
∑

t=1

N
∑

i=1

α

qik,t

. (40)

Plugging in θ = θ∗
k in equation 40 and considering the facts that θk,1 = 0 and ∥θk,T +1 − θ∥2 ≥ 0, we arrive at

N
∑

i=1

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) −
N
∑

i=1

T
∑

t=1

L(fk(xi,t; θ∗
k), yi,t)

≤ N

2ηf

∥θ∗
k∥2 +

ηf G2

2

T
∑

t=1

N
∑

i=1

α

qik,t

(41)

According to equation 29, it can be concluded that 1
qik,t

≤ 2µi. Therefore, considering assumption (a4), we
get

N
∑

i=1

T
∑

t=1

L(fk(xi,t; θk,t), yi,t) −
N
∑

i=1

T
∑

t=1

L(fk(xi,t; θ∗
k), yi,t) ≤ NR

2ηf

+

N
∑

i=1

µiαηf G2T (42)

which proves equation 13 and completes the proof of Theorem 1.
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C Supplementary Experimental Results and Details

The performance of both the proposed OFMS-FT method and other baseline approaches is evaluated through
online image classiĄcation and online regression tasks. The image classiĄcation experiments involve the
utilization of the CIFAR-10 and MNIST datasets. CIFAR-10 and MNIST are well-known computer vision
datasets, comprising a total of 60, 000 and 70, 000 color images, respectively, distributed across 10 distinct
classes. Each dataset includes 10, 000 test samples, with the remaining samples designated for training.
To facilitate model selection, as outlined in Section 6, we train a set of 20 models using the training data
from CIFAR-10 and MNIST. These models encompass two distinct architectural designs, resulting in ten
models trained under each architecture. For each class label within these datasets, two models with differing
architectures are trained. These models exhibit a bias towards the speciĄc class label they are trained on,
utilizing a portion of the training dataset that contains a greater number of samples from that class compared
to the other classes. For the CIFAR-10 dataset, ten CNNs are trained using the VGG architecture (Simonyan
& Zisserman, 2015) with 2 blocks, while the remaining ten are trained using VGG architecture with 3 blocks.
The training data for each model is non-i.i.d. sampled from the 50, 000 training samples. Precisely, each
CNN is trained on 9, 500 training data samples, consisting of 5, 000 samples from one class and 500 samples
drawn from the training set of each of the other nine classes. Similarly, for the MNIST dataset, ten CNNs
are trained using VGG with one block, and the other ten are trained using VGG with 2 blocks. To train each
model, 6, 900 data samples are drawn from the training set, with 6, 000 samples belonging to one class and
100 samples from each of the other nine classes. Additionally, the testing data samples for CIFAR-10 and
MNIST are distributed among clients in a non-i.i.d. manner. For CIFAR-10, each client receives 155 testing
data samples from one class and 5 samples from each of the other nine classes. In the case of MNIST, each
client receives at least 133 samples from one class and at least 5 samples from the other classes. The 200
testing data samples are randomly shuffled and are sequentially presented to each client over T = 200 learning
rounds. Moreover, for online regression task, the performance of algorithms are tested on the following
datasets (Kelly et al., 2023):

• Air: Each data sample has 14 features including information related to air quality such as concentra-
tion of some chemicals in the air. Data samples are collected from different geographical sites. The
goal is to predict the concentration of CO in the air (Zhang et al., 2017).

• WEC: Each data sample has 48 features of wave energy converters. Data samples are collected from
4 different geographical sites. The goal is to predict total power output (Neshat et al., 2018).

For each regression dataset, 20 fully-connected feedforward neural networks are trained. All neural networks
have 5 hidden layers each with 100 hidden neurons. ReLU activation function is employed for all hidden
neurons in all networks. In order to train models for Air dataset, 10 neural networks are trained on 30, 000
samples from the site Dongsi with different initialization while other 10 neural networks are trained on 30, 000
samples of Dingling site with different initialization. In the experiments, data samples of Air dataset are
distributed non-i.i.d among clients such that 50 clients observe data samples from Aotizhongxin site while
other 50 clients observe data samples from Changping site. To train models for WEC dataset, 10 neural
networks are trained on 70, 000 samples from the site in Sydney with different initialization. The remaining
10 neural networks are trained on 70, 000 samples from the site in Tasmania with different initialization. Data
samples of WEC dataset are distributed non-i.i.d among clients such that 50 clients observe data samples
from Adelaide site while other 50 clients observe data samples from Perth site. In the experiments, using
Fed-OMD and PerFedAvg, each client performs one epoch of stochastic gradient descent (SGD) with learning
rate of 0.001 on its batch of data to Ąne-tune the model. In order to perform Ąne-tuning, clients start to
update models after 50 learning rounds so that clients can store 50 samples in batch. All experiments were
carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz processor with a 64-bit Windows
operating system.

Table 3 shows the average accuracy of clients along with its standard deviation on CIFAR-10 and MNIST
datasets with the change in the memory budget when clients employ OFMS-FT. Moreover, Table 4 demon-
strates the average MSE and its standard deviation across clients for different memory budgets on Air and
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Table 3: Average and standard deviation of clientsŠ accuracy using OFMS-FT over CIFAR-10 and MNIST
with the change in budget.

Budget CIFAR-10 MNIST

Bi = 2, ∀i ∈ [N ] 70.01% ± 6.96% 89.87% ± 3.33%
Bi = 5, ∀i ∈ [N ] 76.77% ± 4.46% 92.05% ± 2.69%
Bi = 10, ∀i ∈ [N ] 79.90% ± 4.23% 92.93% ± 2.58%

Table 4: Average and standard deviation of clientsŠ MSE (×10−3) using OFMS-FT over Air and WEC with
the change in budget.

Budget Air WEC

Bi = 2, ∀i ∈ [N ] 7.51 ± 4.82 8.27 ± 1.56
Bi = 5, ∀i ∈ [N ] 7.46 ± 5.10 7.09 ± 1.67
Bi = 10, ∀i ∈ [N ] 7.38 ± 4.86 6.99 ± 1.63

WEC datasets when clients use OFMS-FT. Results in Tables 3 and 4 conĄrm that if clients have larger
memory, the accuracy of OFMS-FT improves.

We report the run times of algorithms in Table 5. Run time refers to average total run time of clients to
perform their prediction task on the entire data samples that they observe up until time horizon T . In
Table 5, OFMS-FT, Bi = 5, and OFMS-FT, Bi = 2 refer to the proposed algorithm with budgets Bi = 5
and Bi = 2, respectively. Table 5 shows that other algorithms run faster than OFMS-FT while OFMS-FT
outperforms others in terms of accuracy (see Table 1). OFMS-FT runs slower since OFMS-FT evaluates and
Ąne-tunes multiple models at each round. Comparing the run times of OFMS-FT, Bi = 5 with OFMS-FT,
Bi = 2 shows that the time complexity of OFMS-FT can be controlled by budget. In time-sensitive scenarios,
the budget can be chosen such that OFMS-FT can fulĄll required computations before the start of the next
round.

D Supplementary Discussions and Analysis

This section presents extended discussions on performance analysis of OFMS-FT.

D.1 Supplementary Analysis

In sections 3 and 4, it is assumed that at each learning round t, each client observes one data sample and
communicate with the server every learning round. This subsection analyzes the regret of OFMS-FT when
clients communicate with the server every n ≥ 1 learning rounds. Every round that clients communicate
with the server called communication round. Therefore, the number of communication rounds U is ⌊ T

n
⌋.

Let the communication u occurs at learning round τu. Without loss of generality, we can assume that
τu = n(u − 1) + 1. In this case, at communication round u, client i draws the model index Ii,u using the PMF
speciĄed in equation 4. Then client i splits all models except for model Ii,u into clusters Di1,u, . . . ,Dimi,u,u

such that the cumulative cost of models in each cluster does not exceed Bi − cIi,u
. Then client i draws one of

the clusters uniformly at random. Let Ji,u denote the index of the selected cluster. Client i downloads all
models in Ji,u-th cluster in addition to model Ii,u. Upon receiving models, client i computes the importance
loss estimate as

ℓik,u =

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t)

qik,u

I(k ∈ Si,u) (43)
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Table 5: Average run time (s) of clients on CIFAR-10, MNIST, Air and WEC datasets.

Algorithms CIFAR-10 MNIST Air WEC

MAB 9.43 9.34 8.89 9.51
Non-Fed-OMS 57.38 62.09 57.56 52.70
Fed-OMD 32.80 23.24 15.86 15.64
PerFedAvg 47.61 32.21 19.29 22.03
OFMS-FT, Bi = 5, ∀i 145.91 99.49 55.59 55.69
OFMS-FT, Bi = 2, ∀i 64.42 43.06 27.78 28.82

where θk,u denote the parameter of model k between communications rounds u and u + 1 and Si,u is a subset
of models stored by client i between communications rounds u and u + 1. Also, qik,u can be obtained as

qik,u = pik,τu
+
∑

∀j:j ̸=k

pij,τu

mij,u

(44)

where mij,u denote the number of model clusters at communication round u if Ii,u = j. Moreover, importance
sampling gradient estimate is calculated as follows by client i

∇ℓ̂ik,u =

τu+1−1
∑

t=τu

α

qik,u

∇L(fk(xi,t; θk,u), yi,t)I(i ∈ Du, k ∈ Si,u) (45)

where Du represents a subset of clients chosen by the server at communication round u to Ąne-tune models.
The rest of procedures and deĄnitions are the same as Algorithm 1 and Section 3. Moreover, when clients
communicate with the server every n learning rounds, the i-th client regret Ri,T and the server regret Sk,T

associated with model k are deĄned as

Ri,T =
U
∑

u=1

Eu



τu+1−1
∑

t=τu

L(fIi,u
(xi,t; θk,u), yi,t)

]

− min
k∈[K]

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t) (46a)

Sk,T =
1

N

N
∑

i=1

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t) − 1

N

N
∑

i=1

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θ∗
k), yi,t) (46b)

where Eu[·] denote the expected value given observed losses up until communication round u. The following
Theorem obtains the regret upper bound for OFMS-FT when clients communicate with the server every n
learning rounds.

Theorem 3. Assume that client i, ∀i ∈ [N ] communicates with the server every n learning rounds. Under
(a1) and (a2), the expected cumulative regret of the i-th client using OFMS-FT is bounded by

Ri,T ≤ ln K

ηi

+ ηiµinT. (47)

which holds for all i ∈ [N ]. Under (a1)Ű(a4), the cumulative regret of the server in Ąne-tuning model k using
OFMS-FT is bounded by

Sk,T ≤ R

2ηf

+
1

N

N
∑

i=1

ηf αµiG
2nT (48)

Proof. see subSection D.2

If client i sets

ηi = O
(
√

ln K

µinT



, (49)
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then the i-th client achieves sub-linear regret of

Ri,T ≤ O
(

√

(ln K)µinT
)

, (50)

while the server achieves sub-linear regret of

Sk,T ≤ O





√

√

√

√

αnT

N

N
∑

i=1

µi



 (51)

by setting

ηf = O





1
√

αnT
N

∑N
i=1 µi



 . (52)

As can be inferred from theorem 3 and regret analysis presented in this subsection, the increase in n, degrades
the regret upper bound of both clients and the server. Increase in n causes that clients update their stored
models fewer times and this reduces the Ćexibility of model selection for clients. Also, increase in n leads to
Ąne-tuning models less often which can adversely affect the prediction accuracy of models.

D.2 Proof of Theorem 3

Substituting ℓik,t with ℓik,u in equation 17 and following the steps from equation 17 to equation 23, we get

U
∑

u=1

K
∑

k=1

pik,τu
ℓik,u −

U
∑

u=1

ℓik,u ≤ ln K

ηi

+
ηi

2

U
∑

u=1

K
∑

k=1

pik,τu
ℓ2

ik,u. (53)

Moreover, the expected value of ℓik,u and ℓ2
ik,u given observed losses till communication round u, can be

obtained as

Eu[ℓik,u] =

(

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t)

qik,u



×



pik,τu
+
∑

∀j:j ̸=k

pij,τu

mij,u





=

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t). (54)

Furthermore, using arithmetic-mean geometric-mean (AM-GM) inequality, ℓ2
ik,u can bounded from above as

ℓ2
ik,u ≤ n

(

τu+1−1
∑

t=τu

(L(fk(xi,t; θk,u), yi,t)

qik,u

I(k ∈ Si,u)

)2


. (55)

Moreover, based on the assumption that 0 ≤ L(fk(xi,t; θk,u), yi,t) ≤ 1, given the observed losses in prior
rounds, expected value of ℓ2

ik,u can be bounded from above as

Eu



(L(fk(xi,t; θk,u), yi,t)

qik,u

I(k ∈ Si,u)

)2
]

=
L2(fk(xi,t; θk,u), yi,t)

q2
ik,u

×



pik,τu
+
∑

∀j:j ̸=k

pij,τu

mij,u





=
L2(fk(xi,t; θk,u), yi,t)

qik,u

≤ 1

qik,u

. (56)

Combining equation 55 with equation 56, we arrive at

Eu[ℓ2
ik,u] ≤ n2

qik,u

. (57)
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Taking the expectation from both sides of equation 53 and considering the fact that ξi ≥ 0, it can be concluded
that

U
∑

u=1

τu+1
∑

t=τu

K
∑

k=1

pik,τu
L(fk(xi,t; θk,u), yi,t) −

U
∑

u=1

τu+1
∑

t=τu

L(fk(xi,t; θk,u), yi,t)

≤ ln K

ηi

+
ηin

2

2

U
∑

u=1

K
∑

k=1

pik,τu

qik,u

. (58)

Moreover, it can be written that

Eu



τu+1−1
∑

t=τu

L(fIi,u
(xi,t; θk,u), yi,t)

]

=

τu+1
∑

t=τu

K
∑

k=1

pik,τu
L(fk(xi,t; θk,u), yi,t). (59)

Considering the facts that equation 29 holds true for pik,τu
and qik,u, ∀k ∈ [K] and nU = T , we can conclude

that

U
∑

u=1

Eu



τu+1−1
∑

t=τu

L(fIi,u
(xi,t; θk,u), yi,t)

]

−
U
∑

u=1

τu+1
∑

t=τu

L(fk(xi,t; θk,u), yi,t)

≤ ln K

ηi

+ ηiµinT (60)

which obtains the regret of client i using OFMS-FT when the i-th client communicates with the server every
n learning rounds. Similar to ℓ̂ik,t, deĄne ℓ̂ik,u as

ℓ̂ik,u =

τu+1−1
∑

t=τu

α

qik,u

L(fk(xi,t; θk,u), yi,t)I(i ∈ Du, k ∈ Si,u) (61)

Moreover, substituting ℓ̂ik,t with ℓ̂ik,u in equation 32 and following the derivation steps from equation 32 to
equation 36, we obtain

N
∑

i=1

ℓ̂ik,u −
N
∑

i=1

τu+1−1
∑

t=τu

α

qik,u

L(fk(xi,t; θ), yi,t)I(i ∈ Du, k ∈ Si,u)

≤ N

2ηf

(∥θk,u − θ∥2 − ∥θk,u+1 − θ∥2) +
ηf

2N

∥

∥

∥

∥

∥

N
∑

i=1

∇ℓ̂ik,u

∥

∥

∥

∥

∥

2

. (62)

Expected value of ℓ̂ik,u and ∥∇ℓ̂ik,u∥2 can be obtained as

Eu[ℓ̂ik,u] =

τu+1−1
∑

t=τu

α

qik,u

L(fk(xi,t; θk,u), yi,t) ×





pik,τu

α
+
∑

∀j:j ̸=k

pij,τu

αmij,u





=

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t) (63a)

Eu[∥∇ℓ̂ik,u∥2] =
α2

q2
ik,u

∥

∥

∥

∥

∥

τu+1−1
∑

t=τu

∇L(fk(xi,t; θk,u), yi,t)

∥

∥

∥

∥

∥

2

×





pik,τu

α
+
∑

∀j:j ̸=k

pij,τu

αmij,u





=
α

qik,u

∥

∥

∥

∥

∥

τu+1−1
∑

t=τu

∇L(fk(xi,t; θk,u), yi,t)

∥

∥

∥

∥

∥

2

≤ αn

qik,u

τu+1−1
∑

t=τu

∥∇L(fk(xi,t; θk,u), yi,t)∥2 ≤ αn2G2

qik,u

(63b)
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where the last two inequalities in equation 63b obtained using AM-GM inequality and the assumption that
∥∇L(fk(xi,t; θk,u), yi,t)∥2 ≤ G2. Moreover, using AM-GM inequality and equation 63b, we can write that

Eu





∥

∥

∥

∥

∥

N
∑

i=1

∇ℓ̂ik,u

∥

∥

∥

∥

∥

2


 ≤ N

N
∑

i=1

Eu[∥∇ℓ̂ik,u∥2] ≤ N

N
∑

i=1

αn2G2

qik,u

. (64)

Taking the expectation from both sides of equation 62, we get

N
∑

i=1

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t) −
N
∑

i=1

τu+1−1
∑

t=τu

L(fk(xi,t; θ), yi,t)

≤ N

2ηf

(∥θk,u − θ∥2 − ∥θk,u+1 − θ∥2) +
ηf

2

N
∑

i=1

αn2G2

qik,u

. (65)

Following derivation steps from equation 39 to equation 41, using equation 65 we can obtain

N
∑

i=1

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t) −
N
∑

i=1

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θ∗
k), yi,t)

≤N∥θ∗
k∥2

2ηf

+
ηf

2

N
∑

i=1

U
∑

u=1

αn2G2

qik,u

. (66)

Considering the fact that qik,u ≥ 1
2µi

(see equation 29), using equation 66 we arrive at

N
∑

i=1

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θk,u), yi,t) −
N
∑

i=1

U
∑

u=1

τu+1−1
∑

t=τu

L(fk(xi,t; θ∗
k), yi,t)

≤N∥θ∗
k∥2

2ηf

+

N
∑

i=1

ηf αµiG
2nT (67)

which proves the theorem.
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