A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer
Neural Networks

Behrad Moniri*! Donghwan Lee *?

Abstract

Feature learning is thought to be one of the fun-
damental reasons for the success of deep neural
networks. It is rigorously known that in two-layer
fully-connected neural networks under certain
conditions, one step of gradient descent on the
first layer can lead to feature learning; character-
ized by the appearance of a separated rank-one
component—spike—in the spectrum of the fea-
ture matrix. However, with a constant gradient
descent step size, this spike only carries infor-
mation from the linear component of the target
function and therefore learning non-linear compo-
nents is impossible. We show that with a learning
rate that grows with the sample size, such training
in fact introduces multiple rank-one components,
each corresponding to a specific polynomial fea-
ture. We further prove that the limiting large-
dimensional and large sample training and test
errors of the updated neural networks are fully
characterized by these spikes. By precisely ana-
lyzing the improvement in the training and test
errors, we demonstrate that these non-linear fea-
tures can enhance learning.

1. Introduction

Learning non-linear features—or representations—from
data is thought to be one of the fundamental reasons for the
success of deep neural networks (e.g., Bengio et al., 2013;
Donahue et al., 2016; Yang & Hu, 2021; Shi et al., 2022;
Radhakrishnan et al., 2022, etc.). This has been observed
in a wide range of domains, including computer vision and
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natural language processing. At the same time, the current
theoretical understanding of feature learning is incomplete.
In particular, among many theoretical approaches to study
neural networks, much work has focused on two-layer fully-
connected neural networks with a randomly generated, un-
trained first layer weights and a trained second layer—or
random features models (Rahimi & Recht, 2007). Despite
their simplicity, random features models can capture vari-
ous empirical properties of deep neural networks, and have
been used to study generalization, overparametrization and
“double descent”, adversarial robustness, transfer learning,
estimation of out-of-distribution performance, and uncer-
tainty quantification (see e.g., Mei & Montanari (2022);
Hassani & Javanmard (2022); Tripuraneni et al. (2021);
Lee et al. (2023); Bombari & Mondelli (2023); Clarté et al.
(2023); Lin & Dobriban (2021); Adlam et al. (2022), etc.).

Nevertheless, feature learning is absent in random features
models, because the first layer weights are assumed to be
randomly generated, and then fixed. Although these models
can represent non-linear functions of the data, in the com-
monly studied setting where the sample size, dimension, and
hidden layer size are proportional, under certain reasonable
conditions they can only learn the linear component of the
true model—or, teacher function—and other components of
the teacher function effectively behave as Gaussian noise.
Thus, in this setting, learning in a random features model
is equivalent to learning in a noisy linear model with Gaus-
sian features and Gaussian noise. This property is known
as the Gaussian equivalence property (see e.g., Goldt et al.
(2022); Adlam et al. (2022); Adlam & Pennington (2020a);
Mei & Montanari (2022); Montanari & Saeed (2022); Hu
& Lu (2023)). While other models such as the neural tan-
gent kernel (Jacot et al., 2018; Du et al., 2019) can be more
expressive, they also lack feature learning.

To bridge the gap between random features models and fea-
ture learning, several recent approaches have shown prov-
able feature learning for neural networks under certain con-
ditions; see Section 1.1 for details. In particular, the recent
pioneering work of Ba et al. (2022) analyzed two-layer neu-
ral networks, trained with one gradient step on the first layer.
They showed that when the step size is small, after one
gradient step, the resulting two-layer neural network can
learn linear features. However, it still behaves as a noisy
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Figure 1. Spectrum of the updated feature matrix for different regimes of the gradient step size 7. Spikes corresponding to monomial
features are added to the spectrum of the initial matrix. The number of spikes depends on the range of «.. See Theorems 3.2 and 3.3 for

details.

linear model and does not capture non-linear components
of a teacher function. Moreover, they showed that for a
sufficiently large step size, under certain conditions, the
one-step updated random features model can outperform
linear and kernel predictors. However, the effects of a large
gradient step size on the features is unknown. Moreover,
what happens in the intermediate step size regime also re-
mains unexplored. In this paper, we focus on the following
key questions in this area:

What nonlinear features are learned by a two-
layer neural network after one gradient update?
How are these features reflected in the singular
values and vectors of the feature matrix, and how
does this depend on the scaling of the step size?
What is the improvement in the training and test
errors due to the nonlinear features learned?

Main Contributions. Toward answering the above ques-
tions, we make the following contributions:

* We study feature learning in two-layer neural networks.
Specifically, we follow the training procedure intro-
duced in Damian et al. (2022); Ba et al. (2022) where
one step of gradient descent with step size 7 is applied
to the first layer weights, and the second layer weights
are found by solving ridge regression on the updated
features. We consider a step size n < n®, a € (0, 3)
that grows with the sample size n and examine how
the learned features change with « (Section 2.1).

* In Section 3, we present a spectral analysis of the up-
dated feature matrix. We first show that the spectrum
of the feature matrix undergoes phase transitions de-
pending on the range of . In particular, we find that if
a € (52, #;2) for some ¢ € {1,2,...}, then ¢ sep-
arated singular values—spikes—will be added to the
spectrum of the initial feature matrix (Theorem 3.2).

Figure 1 illustrates this finding.

* Building on perturbation theory for singular vectors,
we argue that the left singular vectors (principal compo-
nents) associated with the ¢ spikes are asymptotically
aligned with polynomial features of different degrees
(Theorem 3.3). In other words, the updated feature ma-
trix will contain information about the degree-¢ poly-
nomial component of the target function.

» The Gaussian equivalence property (Hu & Lu, 2023;
Mei & Montanari, 2022), an essential tool to analyze
random features models, fails after a gradient update
with a large step size 1. To overcome this difficulty,
we establish equivalence theorems (Theorem 4.1 and
4.2) stating that the trained features F can be replaced
by sum of the untrained features Fy and ¢ spikes with-
out changing the training and test errors. Then, by
applying the Gaussian equivalence to the untrained
component F, we provide a precise characterization
of the training and test errors in the high-dimensional
proportional regime (Theorem 4.3 and 4.5).

* From the derived results, we show that in the simple
case where ¢ = 1, the neural network does not learn
non-linear functions. However, in the / = 2 regime,
the neural network in fact learns quadratic components
of the target function.

1.1. Related Works

Theory of shallow neural networks. Random features
models (Rahimi & Recht, 2007) have been used to study var-
ious aspects of deep learning, such as generalization (Mei &
Montanari, 2022; Adlam et al., 2022; Lin & Dobriban, 2021;
Mel & Pennington, 2021), adversarial robustness (Hassani
& Javanmard, 2022; Bombari et al., 2023), transfer learn-
ing (Tripuraneni et al., 2021), out-of-distribution perfor-
mance estimation (Lee et al., 2023), uncertainty quantifi-
cation (Clarté et al., 2023), stability, and privacy (Bombari
& Mondelli, 2023). This line of work builds upon nonlin-
ear random matrix theory (see e.g., Pennington & Worah
(2017); Louart et al. (2018); Fan & Wang (2020); Benigni
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& Péché (2021), etc.) studying the spectrum of the feature
matrix of two-layer neural networks at initialization.

Two-layer neural networks have been studied extensively
in the mean-field regime (see e.g., Chizat & Bach (2018);
Mei et al. (2018; 2019); Sirignano & Spiliopoulos (2020);
Rotskoff & Vanden-Eijnden (2022), etc.), and the neural
tangent kernel (NTK) regime (see e.g., Jacot et al. (2018);
Lee et al. (2019); Huang & Yau (2020), etc.). However,
these results often require the neural net to have an extremely
large width. In particular, in the NTK regime, this large
width will result in features not evolving over the course
of training and the model behaves similar to classic kernel
methods. Ghorbani et al. (2021) show that for NTKs and
other kernel methods, with a sample size linear in size of
the input, non-linear functions cannot be learned. See also
Misiakiewicz (2022); Xiao et al. (2022); Lu & Yau (2022).
Perturbative corrections to the large-width regime to capture
feature learning have also been studied in the literature (see
e.g., Yaida (2020); Hanin & Nica (2019); Seroussi et al.
(2023); Naveh & Ringel (2021), etc.). See Section A for
more discussion on related work in deep learning theory.

Feature learning. The problem of feature learning has
been gaining a lot of attention recently. Damian et al. (2022)
study the problem of learning polynomials with only a few
relevant directions and show a sample complexity improve-
ment over kernel methods. Collins et al. (2023) extend these
results and analyze multi-task feature learning in two-layer
ReLU networks. Wang et al. (2022) empirically show that
if learning rate is sufficiently large, an outlier in the spec-
trum of the weight and feature matrix emerges with the
corresponding singular vector aligned to the structure of the
training data. Nichani et al. (2023); Wang et al. (2023) pro-
vide theoretical evidence that three-layer neural networks
have provably richer feature learning capabilities than their
two-layer counterparts.

Recently, Ba et al. (2022) show that in two-layer neural net-
works, when the dimension, sample size and hidden layer
size are proportional, one gradient step with a constant step
size on the first layer weights can lead to feature learning.
However, non-linear components of a single-index target
function are still not learned. They further show that with
a sufficiently large step size, when the teacher function has
a non-zero first Hermite coefficient, and under certain con-
ditions, the updated neural networks can outperform linear
and kernel methods. However, the precise effects of large
gradient step sizes on learning nonlinear features, and their
precise effects on the loss remain unexplored. Dandi et al.
(2023) show that with a sample size proportional to the input
dimension d, it is only possible to learn a single direction of
multi-index teacher function using gradient updates on the
first layer of a two-layer neural network. They also show
that for single index models with information exponent (the

index of the first non-zero Hermite coefficient) x, there are
hard directions whose learning requires a sample size of
order ©(d"). See also Ben Arous et al. (2021).

High-dimensional asymptotics. We use tools developed
in work on high-dimensional asymptotics, which dates back
at least to the 1960s (Raudys, 1967; Deev, 1970; Raudys,
1972). Recently, these tools have been used in a wide range
of areas such as wireless communications (e.g., Tulino
& Verdd (2004); Couillet & Debbah (2011), etc.), high-
dimensional statistics (e.g., Raudys & Young (2004); Ser-
dobolskii (2007); Paul & Aue (2014); Yao et al. (2015);
Dobriban & Wager (2018), etc.), and machine learning (e.g.,
Gyorgyi & Tishby (1990); Opper (1995); Opper & Kinzel
(1996); Couillet & Liao (2022); Engel & Van den Broeck
(2001), etc.). In particular, the spectrum of so-called infor-
mation plus noise random matrices that arise in Gaussian
equivalence results has been studied in Dozier & Silverstein
(2007); Péché (2019) and its spikes in Capitaine (2014).

2. Preliminaries

Notation. We let N = {1,2,...} be the set of positive
integers. For a positive integer d > 1, we denote [d] =
{1,...,d}. We use O(:) and o(-) for the standard big-O
and little-o notation. For a matrix A and a non-negative
integer k, A% = Ao Ao...oA is the matrix of the
k-th powers of the elements of A. For positive sequences
(An)n>1, (Bn)n>1, we write A, = ©(B,,) or A,, < B,, or
A, = B, if there is C,C’ > 0 such that CB,, > A, >
C'B,, for all n. We use Op(+), op(-), and Op(-) for the same
notions holding in probability. The symbol — p denotes
convergence in probability.

2.1. Problem Setting

In this paper, we study a supervised learning problem with
training data (x;, y;) € R x R, fori € [2n], where d is the
feature dimension and n > 2 is the sample size. We assume
that the data is generated according to

x; FN(0,1,), and y; = fi(@;) + &5, (1)

in which f, is the ground truth or teacher function, and
iid. . .. .

g; "~ N(0, ¢2) is additive noise.

We fit a model to the data in order to predict outcomes for
unlabeled examples at test time; using a two-layer neural
network. We let the width of the internal layer be N € N.
For a weight matrix Wy € RV >4, an activation function
o : R — R applied element-wise, and the weights ann €
RY of a linear layer, we define the two-layer neural network
as fWNN7(lNN (m) = a’l—\IrNO— (WNN:C) .

Following Damian et al. (2022); Ba et al. (2022), for the
convenience of the theoretical analysis, we split the training
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data into two parts: X = [x1,..., @, € R y
(Y1, syn)’ € R™ and X = [Tpi1,...,Ton]"
RnXd7g_ (yn+17"'7y2n) e R™.

m 1l

We train the two layer neural network as follows.

First,
we initialize axy with @ = (a1,...,an)’ where
iid

a; ~ N(0,1/N) and initialize Wyy with Wy =
[wo1, ... ,wO,N}T € RV g ; "X Unif (S9-1) where
S9=1 is the unit sphere in R? and Unif (S9~1) is the uniform
measure over it. Although we choose this initialization for
a simpler analysis, many arguments can be shown to hold
if we switch from the uniform distribution over the sphere
to a Gaussian; for example, see Section O.5. Fixing any at
initialization a, we perform one step of gradient descent on
‘W with respect to the squared loss computed on (X, y).
Recalling that o denotes element-wise multiplication, the
negative gradient can be written as

0

G=—-——2
OWnNN

1 2
— ||y — o(XW4:
om Hy o NN)C"HQ S—

[(ay" —aa"0(WoX ")) oo’ (WX )] X,

3=

and the one-step update is W = [wy, ... ,wN]T =W, +

1 G for a learning rate or step size 7).

After the update on Wy, we perform ridge regression
on a using (X, 7). Let F = o(XW ') € R"*N be the
feature matrix after the one-step update. For a regularization
parameter A > 0, we set

a = a(F) = argmin — IIy Fall; + Allal3
acRN

= (F'F+Anly) Py 2
Then, for a test datapoint with features x, we predict the
outcome § = fw.a(x) =a' o (We).

2.2. Conditions

Our theoretical analysis applies under the following condi-
tions:

Condition 2.1 (Asymptotic setting). We assume that the
sample size n, dimension d, and width of hidden layer N
all tend to infinity with

d/n—¢>0, and d/N — ¢ >0.

We further consider the following model for the teacher
function, leading to a single-index model.

Condition 2.2. We let f, : R? — Rbe f,(z) = o, (x ' B,)
for all z, where 3, € R? is an unknown parameter with
B« ~ N(0,31;) and o, : R — R is a ©(1)-Lipschitz
teacher activation function.

This condition is in line with prior work (see e.g., Ba et al.
(2022); Hu & Lu (2023); Goldt et al. (2022), etc.). Recently,
Dandi et al. (2023) showed that under Condition 2.1, two-
layer neural networks trained with one gradient descent step
can only learn a single-index approximation of a multi-index
model. This shows that when studying a single-step update,
2.2 is not restrictive.

We let Hy, k > 1 be the (probabilist’s) Hermite polynomials
on R defined by

dk
2 /2) T exp(—a?/2),

for any x € R. These polynomials form an orthogonal
basis in the Hilbert space L? of measurable functions f :
R — R such that Ik f2 exp( 2?/2)dz < oo with inner
product (f, g) = [ f(z)g(x) exp(—2?/2)dx. The first few
Hermite polynomlals are HO( ) = 1,H;(z) = z, and
Hy(z) = 2% — 1.

Condition 2.3. The activation function o : R — R has the
following Hermite expansion in L?:

Hy(x) = (=1)" exp(

= ZCka(Z), ck = %EZNN(OJ)[U(Z)HI@(Z)]'

The coefficients satisfy ¢c1 # 0 and c2k! < Ck=3—v for
some C,w > 0 and for all k > 1. Moreover, the first three
derivatives of o exist almost surely, and are bounded.

Note that in this paper, unlike Hu & Lu (2023), we do not
require the activation function to be odd. The reason is that
here, unlike Hu & Lu (2023), we do not analyze the problem
for a general loss function and use a proof technique special-
ized for squared loss. We remark that the above condition
requires ¢o = 0, i.e., that Eo(Z) = 0 for Z ~ N(0, 1). This
condition is in line with prior work in the area (e.g., Adlam &
Pennington (2020a); Ba et al. (2022), etc.), and could be re-
moved at the expense of more complicated formulas and the-
oretical analysis. The smoothness assumption on o is also
in line with prior work in the area (see e.g., Hu & Lu (2023);
Ba et al. (2022), etc.). Note that the above condition is sat-
isfied by many popular activation functions (after shifting)
such as the ReLU o(x ) = max{z,0} — \/%, hyperbolic

and sigmoid o(z) = L

e’ — 1 1
Tfe = 2

tangent o (z) = W,

for all x.

We also make similar assumptions on the teacher activation:

Condition 2.4. The teacher activation o, : R — R has the

following Hermite expansion in L?:

z) = Z Ce e Hi (2)
k=1

with Z ~ N(0,1). Also, we define ¢, = (3> -, k!cik)%.

LB slo(2)Hi(2)),

y Cxk = L
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3. Analysis of the Feature Matrix

The first step in analyzing the spectrum of the feature matrix
F is to study the negative gradient G. It is shown in Ba et al.
(2022, Proposition 2) that in operator norm, the matrix G
can be approximated by the rank-one matrix c;a3" with
high probability, where the Hermite coefficient c; of the
activation o is defined in Condition 2.3, and 8 = %XTy €
R<, Moreover, under Conditions 2.1-2.4, Ba et al. (2022)
show that 3 can be understood as a noisy estimate of 3,
namely

18/ 8] |cxal
—p .
1811812 7 2 i+ 02)

3

See also Lemma K.1. In particular, if the sample size used
for the gradient update is very large; i.e., ¢ — 0, 3 will
converge to being completely aligned to 3,.

Building on this result, we can prove the following rank-one
approximation lemma. Note that the updated feature matrix
can be written as F = o(X(W( + 7G) ") and terms of
the form (XG )%, k e N, will appear in polynomial and
Taylor expansions of F' around Fy. In the following lemma,
we show that for any fixed power k, these terms can be
approximated by rank one terms.

Lemma 3.1 (Rank-one approximation). If Conditions 2.1-
2.4 hold, then there exists C' > 0 such that for ¢y from
Condition 2.3, for any fixed k € N,

I(XGT) — cH(XB)™ (@) lop < CFn~F log? n
with probability 1 — o(1).

Next, we will show that after the gradient step, the spectrum
of the feature matrix F' will consist of a bulk of singular
values that stick close together—given by the spectrum of
the initial feature matrix Fy = o(XW ] )—and ¢ separated
spikes', where ¢ is an integer that depends on the step size
used in the gradient update. Specifically, when the step
size is < n® With% < a< #;Qforsomeé €N,
the feature matrix F' can be approximated in operator norm
by the untrained features Fy = o(XW ) plus ¢ rank-one
terms, where the left singular vectors of the rank-one terms
are aligned with the non-linear features X — (X3)°F, for
k € [¢]. See Figure 2.

Theorem 3.2 (Spectrum of feature matrix). Letn < n® with
% <a< ﬁfor some ¢ € N. If Conditions 2.1-2.4

hold, then for ¢, from Condition 2.3 and Foy = o(XW, ),
F=F,+A,

14

F,.=Fy+ Z lecknk(xﬁ)Ok(aOk)T’ “
k=1

with

!'Using terminology from random matrix theory (Bai & Silver-
stein, 2010; Yao et al., 2015).

where || Allop = o(y/n) with probability 1 — o(1).

To understand (X/3)°*(a°*)T, notice that for a datapoint
with features &;, the activation of each neuron is propor-
tional to the polynomial feature (&, 3)*, with coefficients
given by a°” for the neurons. The spectrum of the initial
feature matrix Fy is fully characterized in Pennington &
Worah (2017); Benigni & Péché (2021; 2022); Louart et al.
(2018); Fan & Wang (2020), and its operator norm is known
to be ©p(y/n). Moreover, it follows from the proof that the
operator norm of each of the terms ¥ c,n* (X3)°% (a*)7,
k € [f] is with high probability of order larger than /n.
Thus, Theorem 3.2 identifies the spikes in the spectrum of
the feature matrix.

Proof Idea. We approximate the feature matrix F =
o(X(Wq 4 nG)T) by a polynomial using its Hermite ex-
pansion. Next, we use the binomial expansion and apply
Lemma 3.1 to approximate (XG T )°F by ¥ (X8)°% (a®%) T,
for all k. Then, spike terms with & > ¢ 4 1 are negligible

. . . 1 k-1
since we can show that their norm is Op(n**t2="3") =

op(v/n).

The special case where a = 0 is discussed in Ba et al. (2022,
Section 3), which focuses on the spectrum of the updated
weight matrix W = W +7nG. However, here we study the
updated feature matrix F = o(X(W; 4+ nG) ") because
that is more directly related to the learning problem—as we
will discuss in the consequences for the training and test
errors below.

In the following theorem, we argue that the subspace
spanned by the non-linear features {O’(Xwi)}ie[]v] can
be approximated by the subspace spanned by the mono-
mials {(X,@)"k}kem. For two ¢-dimensional subspaces
Uy, Us C R™, with orthonormal bases Uy, Uy € R™*¢ re-
call the principal angle distance between U], U> defined by
d(U1,Us) = ming ||U; — U2Q||op, where the minimum is
over ¢ x { orthogonal matrices (Stewart & Sun, 1990). This
definition is invariant to the choice of Uy, Us.

Theorem 3.3. Let F; be the {-dimensional subspace of
R™ spanned by top-{ left singular vectors (principal com-
ponents) of ¥. Under the conditions of Theorem 3.2, we
have

d(Fy, span{(XB)°*}1ciq) —p 0.

This result shows that after one step of gradient descent with
step size n < n® with Z;—; <a< ﬁ, the subspace of
the top-¢ left singular vectors carries information from the
polynomials {(X3)°% }refe- Also, recall that by equation 3,
the vector 3 is aligned with 3,. Hence, it is shown that F,
carries information from the first ¢ polynomial components
of the teacher function.
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Figure 2. Histogram of the scaled singular values (divided by 1/n) of the feature matrix F = U(XWT) after the update with step size
n =n’2 (¢ = 2). In this regime, two isolated spikes appear in the spectrum as stated in Theorem 3.2. The top two left singular vectors
w; and us are aligned with X3 and (X3)°?, respectively. See Section 5 for the simulation details.

Proof Idea. We use Wedin’s theorem (Wedin, 1972) to
characterize the distance between the left singular vector
space of Y4, cepn®(X3)°%(a°%)T and that of F. Here,
we consider the matrix Fy + A as the perturbation term.

4. Learning Higher-Degree Polynomials

In the previous section, we studied the feature matrix F' and

showed that when n < n® with % <a< %;2, it can

be approximated by Fg = o(XW_ ) plus £ rank-one or
spike terms. We also saw that the left singular vectors of
the spike terms are aligned with the non-linear functions
X — (X3)°F. Intuitively, this result suggests that after the
gradient update, the trained weights are becoming aligned
with the teacher model and we should expect the ridge
regression estimator on the learned features to achieve better
performance. In particular, when o > 0, we expect the ridge
regression estimator to capture the non-linear part of the
teacher function. This is impossible for n = O(1) (Baet al.,
2022) or n = 0 (Hu & Lu, 2023; Mei & Montanari, 2022).

In this section, we aim to make this intuition rigorous and
show that the spikes in the feature matrix lead to a decrease
in the error achieved by the estimator. Moreover, for large
enough step sizes, the model can learn non-linear compo-
nents of the teacher function. For this, we first need to prove
equivalence theorems showing that instead of the true fea-
ture matrix F, the approximations from Theorem 3.2 can
be used to compute error terms (i.e., the effect of A on the
error is negligible).

4.1. Equivalence Theorems

The Gaussian equivalence property (Goldt et al. (2022); Hu
& Lu (2023); Montanari & Saeed (2022), etc.) implies that
the training and test errors of a random features model are
asymptotically the same as that of a noisy linear model.
In other words, the limiting behavior of these quantities is
unchanged if we replace the untrained feature matrix Foy =

o(XW ) with Fg = ¢; XW{ + ¢51Z, where Z € RN
is an independent random matrix with i.i.d. N(0, 1) entries.

This property has been used extensively in work on random
features models (see e.g., Adlam & Pennington (2020b;a);
Tripuraneni et al. (2021); Mel & Pennington (2021), etc.)
as it provides a powerful tool to analyze non-linear random
matrices. However, the Gaussian equivalence property fails
when the weight matrix W is updated with a large gradient
descent step (Ba et al., 2022), posing a significant challenge
to the analysis.

In this section, we first prove that we can replace the trained
features F with their approximation F, from Theorem 3.2
in terms of F( and spikes, without changing the limiting
training and test errors. Then, in the next sections we will
see that the training and test errors can be derived by ap-
plying the Gaussian equivalence property to the untrained
features F only.

Given a regularization parameter A > 0, recalling the ridge
estimator a(F') from equation 2, we define the training loss

Lo 5
Lu(F) = —[|§ — Fa(F)|3 + A|a(F)||3.

In the next theorem, we show that when n < n® with
52_71 <a< #;.2,. the training loss L (F') can be approxi-
mated with negligible error by L(Fy). In other words, the
approximation of the feature matrix from Theorem 3.2 can

be used to derive the asymptotics of the training loss.

Theorem 4.1 (Training loss equivalence). Let 1 < n® with
52_—; < a < Q/ﬁ for some £ € N and recall ¥y from
equation 4. If Conditions 2.1-2.4 hold, then for any fixed
A > 0, with probability 1 — o(1) we have

Ly(F) — Ly(Fy) = o(1).

Similar equivalence results can also be proved for the test
error, i.e., the average test loss. For any a € RY, we
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define the test error of a as Le(a) = Ef ,(y — £ a)?,
in which the expectation is taken over (x,y) where f =
o(Wx) with  ~ N(0,I) and y = fi(x) + ¢ withe ~
N(0, o2). The next theorem shows that one can also use the
approximation of the feature matrix from Theorem 3.2 to
derive the asymptotics of the test error.

Theorem 4.2 (Test error equivalence). Let n =< n® with
é;—; <a< ﬁfor some £ € N, and F be defined as in
equation 4. If Conditions 2.1-2.4 hold, then for any A > 0,
if Lie(a(F)) —»p Lr and L(a(Fy)) —p LF,, we have

Ly = Lp,.

Proof Idea. To prove Theorem 4.2, we show first show
that the norm of the trained second layer weight a, is Op(1).
Then, we use Theorem 3.2 to conclude the proof. To prove
Theorem 4.2, we will use a free-energy trick (Abbasi et al.,
2019; Hu & Lu, 2023; Hassani & Javanmard, 2022). We
first extend Theorem 4.1 and show that for any A, { > 0, the
minima over a of

_ 1. -
Re(a,F) = —lly - Fa|3 + Mla|3 + ¢Lic(a),

for F = F and F = F, are close. Then, we use this to
argue that the limiting test errors are also close.

With Theorem 4.1 and 4.2 in hand, for n < n®, we can
use the approximation F,—with the appropriate {—of the
feature matrix F to analyze the training and test error.

4.2. Analysis of Training and Test Errors

In this section, we quantify the discrepancy between the
training loss of the ridge estimator trained on the new—
learned—feature matrix F' and the same ridge estimator
trained on the untrained feature matrix Fy. We will do this
for the step size n < n® with 52 < a < 3% for various

e N

Our results depend on the limits of traces of the matrices
(FoFJ 4+ AnL,) ! and X7 (FoF] + Anl,) 'X. These
limits have been determined in Adlam et al. (2022); Adlam
& Pennington (2020a), see also Pennington & Worah (2017);
Péché (2019), and depend on the values m1,mo > 0, which
are the unique solutions of the following system of coupled
equations, for A > 0:

¢ (m1 —mz) (2 ymy + cima) + ¥(my,ms) = 0,

g ( Tmima + ¢ (mag — m1)) + ¥(my,mg) =0, (5)

where W(my,ms) = ctmyms (Mpmy/¢ — 1) and c51 =
(322, kle?)1/2. Here, my is the limiting Stieltjes transform
of the matrix %FOFS— and my is an auxiliary transform. For

instance, we leverage that under Condition 2.1, we have

lim  tr(XT(FoF] + AnL,)"'X)/d = ¢¥ma/¢ > 0,

d,n,N—o0

lim tr((FoFg + AnL,)™") = ¢my /¢ > 0.

d,n,N—oco

See Lemma K.4 and its proof for more details. For in-
stance, as argued in Pennington & Worah (2017); Adlam
et al. (2022), these can be reduced to a quartic equation
for m and are convenient to solve numerically. However,
the existence of these limits does not imply our results;
on the contrary, the proofs of our results require extensive

additional calculations and several novel ideas.

Theorem 4.3. If Conditions 2.1-2.4 are satisfied, and we
have c1,--- ,cp # 0, as well as 1 < n® with 52}1 <a<
#;2, then for the learned feature map ¥ and the untrained

feature map F, we have

‘Ctr(FO) - Ctr(F) —p AZ Z Ou
where Ay can be found in Section L.

The expression for Ay is complex and given in Section L due
to space limitations. For a better understanding of Theorem
4.3, we consider two specific cases, / = 1 and ¢ = 2.

Corollary 4.4. Under the assumptions of Theorem 4.3, for
¢ =1, we have Liy(Fo) — L4, (F) —p Ay with

Ay = 7/»‘61,177@ >0 )
I )
For 0 = 2, we have L,(Fo) — Lt (F) = p Ag with
4 )\ 4 2
Agim Ay 4 —oCa™ )

3¢[p(c2 4 02) + 3,2

The above result shows that after one gradient step with
sufficiently large step size, the model can fit nonlinear com-
ponents of the teacher function. This is impossible with a
small step size. For example, when ¢ = 1, the improvement
in the loss is increasing in the strength of the linear com-
ponent c, 1, keeping the signal strength c, fixed. This is

not the case for the strength of the non-linear component
2 2 _ .2

C*,>1 =C — c*,l'

When we further increase the step size to the £ = 2 regime,
the loss of the trained model will drop by an additional posi-
tive value, depending on the strength c, o of the quadratic
signal, which shows that the quadratic component of the
target function is being fit. Also, note thatif ¢, ; = 0;i.e.,
if the information exponent (the index of the first non-zero
Hermite coefficient) of o, is greater than one, the gradient
step does not change the limiting loss. In this case, ac-
cording to equation 3, the alignment between the learned
direction 3 and the true direction 3, will converge to zero.
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It is known that learning single-index functions with infor-
mation exponent greater than one requires a sample size of
order larger than d (Dandi et al., 2023).

The limiting value of the test error can be analyzed similarly.

Theorem 4.5. Let Conditions 2.1-2.4 and the assumptions
of Theorem 4.2 hold. If c; # 0, then for { = 1, we have
Lic(a(Fg)) — Lio(a(F)) —p Ay with

4
C*’lrl

Ay = >
P e(@ o)) T

0, ®

where I'1 does not depend on the target function.

If further co # 0, then for £ = 2, we have Li.(a(Fy)) —
Lie(a(F)) —p Ao with

4 2
C*,lc*,QFQ

Ao = A
S e B

=0, ©))

where I's does not depend on the target function. The com-
plete expressions for I'y and T’y can be found in equation 64
and equation 87, respectively.

Similar to the training loss result, when ¢/ = 1, the im-
provement in the test error is increasing in c, i; keeping
the signal strength c, fixed. Moreover, the improvement in
the test error for / = 2 depends on the strength c, » of the
quadratic signal, showing that the nonlinear component is
being learned.

Proof Idea. Using Theorem 4.1 and 4.2, in the expression
for the training and test error, we replace the trained fea-
tures matrix F with its approximation ', from Theorem 3.2.
Then, by applying the Woodbury formula, we express the
training and test errors in terms of Ry = (FoFj +AnL,) ™!
and the non-linear spikes from Theorem 3.2. Using the
Gaussian equivalence property (Appendix J) for the un-
trained features F, we show that the interaction between
the first £ Hermite components of ¢y and the spike terms
will result in non-vanishing terms corresponding to learning
different components of the target function. Finally, we com-
pute the limiting value of these terms in terms of mq, mo
and their derivatives using tools from random matrix theory.

4.3. Staircase Property

Recently, Abbe et al. (2021; 2022) show that when learning
Boolean functions, under certain conditions on the teacher
function, a two-layer trained by SGD in the mean-field
regime will learn the target function incrementally; i.e.,
Fourier coefficients of higher order are sequentially learned
over time. Berthier et al. (2023) study the problem of learn-
ing a single-index function using a wide two-layer neural
network trained using gradient flow, and show that in a spe-
cific training setting where the stepsizes for the first layer
are much smaller than those of the second layer, the de-
crease rate of training error is non-monotone; there are long

plateaus where there is barely any progress, and there are
intervals of rapid decrease.

In the one-step updated two layer neural network, we ob-
serve a similar phenomenon. Theorems 4.5 and Theo-
rem L.1 show that given ¢ € N, the errors of the trained
model is asymptotically constant for all = cn® with

-1 ¢ .
57 < a < 355 and ¢ € R. There are sharp jumps at

tﬁé edges between regimes of a, whose size is precisely
characterized above. This shows that a non-monotone rate
of decrease in training and test error can also be seen after
one step of gradient descent, as a function of step size. For

an illustration of this phenomenon, see Figure 3 (Right).
S. Numerical Simulations

To support and illustrate our theoretical results, we present
some numerical simulations. We use the shifted ReLU
activation o(z) = max(z,0) — 1/v/27, n = 1000, N =
500, d = 300, and the regularization parameter A = 0.01.

Singular Value Spectrum of F. We let the the teacher
function be f,(xz) = Hi (8] =) + Ho(B, x), set the noise
variance 02 = (.5, and the step size to n = n%?%, so
¢ = 2. We plot the histogram of singular values of the
updated feature matrix F. In Figure 2, we see two spikes
corresponding to X3, (X/3)°2 as suggested by Theorem
3.2 and 3.3. Since f, has a linear component H; and a
quadratic component Hs, these spikes will lead to feature
learning. In Appendix P, we demonstrate a similar finding
for a real-world dataset.

Quadratic Feature Learning. To support the findings of
Corollary 4.4 and Theorem 4.5 for ¢ = 2, we consider the
following two settings:

Setting1:y = H (B x) +¢, ~N(0,1),

Setting 2 : y = H, (3] x) + \%Hz(ﬁfw)

Note that ¢, ; and ¢, + a? are same in these two settings.
This ensures that the improvement due to learning the linear
component is the same. We plot the training and test errors
of the two-layer neural networks trained with the procedure
described in Section 2.1 as functions of log(n)/log(n). In
Figure 3 (Left), we see that the errors decrease in the range
log(n)/log(n) € (0, 1) as the model learns the linear com-
ponent H1(B/] x). In the range log(n)/log(n) € (1, 3),
the model starts to learn the quadratic feature. However
since the quadratic feature is not present in Setting 1, the
errors under the two settings diverge. Although the proofs
reveal that the convergence rates of the training/test errors
after one step can be slow, these results are consistent with
Corollary 4.4 and Theorem 4.5. See Appendix P for experi-
ments on other target functions.
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Figure 3. (Left, Middle) Training and test errors after one gradient as functions of log(n)/log(n). (Right) A toy plot illustrating the

theoretical training/test error curve as a function of log(n)/ log(n).

6. Conclusion

We have studied feature learning in two-layer neural net-
works under one-step gradient descent with step size
n =< n*a € (0,4). We showed that if o € ((¢ —
1)/(2¢),¢/(2¢+2)), the gradient update will add ¢ separated
singular values to the initial feature matrix spectrum corre-
sponding to different nonlinear features. We then proved
equivalence theorems and used them to derive a precise
characterization of the training and test errors in the high-
dimensional proportional limit. Using this, we showed that
in certain examples, non-linear components of the teacher
function are learned.

Future Work. In this paper, we only study the problem
when 7 < n® with a € (¢ —1)/(2¢),¢/(2¢ + 2)). The
boundary case where 7 =< n(!~1/(29 is an interesting prob-
lem and is left as future work.

Also, following prior work in the area (see e.g., Damian et al.
(2022); Ba et al. (2022); Dandi et al. (2023); Nichani et al.
(2023); Wang et al. (2023), etc.), we use sample splitting
in our two-step training procedure. Although this setting
is natural for the analysis of pretrained models, it does not
cover the case where feature learning and ridge regression
use the same data. We leave this setting as a future direction.

In this paper, we focused on the case where o < 1/2. The
behaviour of the feature matrix can be significantly different
when o« = 1/2. When o < 1/2, as proved in this paper,
the spectrum of the feature matrix will consist of a finite
number of spikes added to the spectrum of the untrained
feature matrix. However, when «« = 1/2, the behaviour can
deviate from the spectrum of the untrained model in other
ways. Note that according to Theorem 3.2, the number of
spikes in the spectrum of F will increase as we increase o
from 0 to 1/2 and will diverge as we approach 1/2. The
limiting empirical singular-value distribution of the feature
matrix and the training and test errors of the network when
a = 1/2 is an open problem and we leave it as future work.

Impact Statement

The focus of this paper is on theoretical aspects of deep
learning. We expect the results to be illuminating for the
deep learning theory community. We do not anticipate any
negative societal impact.
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A. Additional Related Work

Goel & Klivans (2019) provide a polynomial time algorithm that learns neural networks with two non-linear layers. Our
setting is different because we do not apply a non-linear activation after the second layer. Chen et al. (2022) show that
learning two-hidden-layer neural networks from noise-free Gaussian data requires superpolynomially many statistical
queries. Zhenmei et al. (2022) show that neural networks trained by gradient descent can succeed on problems where the
labels are determined by a set of class-relevant patterns and if these patterns are removed, no polynomial algorithm in the
Statistical Query model can learn even weakly.

B. Additional Notation and Terminology

In the appendix, we use the following additional notations. We let Ng = {0, 1,2, ...} be the set of non-negative integers.
For aset X and z1, 2 € X, d;, 2, is the Kronecker delta, which equals unity if ; = x2, and is zero otherwise. We use
0() for the standard big-O notation up to logarithmic factors in n. For a positive integer k, k!! is the product of all the
positive integers up to n with the same parity as n. For two random quantities X, Y, X L Y denotes that X is independent
of Y. By orderwise analysis, we mean bounding a term by the triangle inequality and the inequality || Ab||2 < || A|op||]]2
for a conformable matrix-vector pair A, b, to reduce it to operator norms of matrices and Euclidean norms of vectors, and
then use simple bounds for those quantities. Constants such as C, ¢/, etc., can change from line to line unless specified
otherwise. For two random quantities A, B, A =4 B denotes that A and B have the same distribution. Limits of random
variables are understood in probability. For two matrices A, B with equal shape, we write A o B to denote their entry-wise
(Hadamard) product.

We denote X3 = 0, X3 = 0, X3, = 0,, and X3, = 0,. We also define Ry = (FoFJ + Anl,) ! and Ry =
(FJFO + )\TLIN)71

C. Basic Lemmas

Lemma C.1 (Orthogonality of Hermite polynomials). Let (Z1, Z3) be jointly Gaussian with E[Z] = E[Z3] = 0, E[Z}] =
E[Z3] = 1, and E[Z1 Z3] = p. Then for any k1, ko € Ny,

E[Hy, (Z1)Hgy(Z2)] = k1'p* 0k, 1p -
In particular, if for some positive integer d, Z ~ N(0,14), and if a,b € S~1, then
E[Hy, (a"Z)Hy, (b Z)] = k1!(a b)* 6y, 1,
Proof. See O’Donnell (2014, Chapter 11.2). O

Lemma C.2 (Taylor expansion of Hermite polynomials). For any k € Ng and z,y € R,
EoeN
Hy(oty) =Y (J.):/cﬂHk_,-(y).
j=0

Proof Note that £ Hy(z) = kHy_1(z) (Abramowitz & Stegun, 1968, Equation 22.8.8) and thus %Hk(m) =
(k ]) 1 Hy—j(z). By Taylor expanding Hy,(z + y) at y, we find

k

i k
) I
o )= 3 Gy s et) = 3 () s
j=0

Jj=0

The following Lemma, proved in Section O.1, provides several bounds used in the proofs.

Lemma C.3. Under Conditions 2.1-2.4, there exists C' > 0 such that the following holds with probability 1 — o(1).

14
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(a) Mg := maxi<i<y |a;| < Cn~z log? 7,
(b) Mg :=maxi<;<p (&, 8)] < Clog% m
(¢c) M, := supysy [[(WoWg )°F[lop < C,
(d) [ Xlop < Cy/m.

D. Proof of equation 3
Proof. By Lemma K.1 with v = 3, and D = I;, we have

BlB —=p callBully = cons 1813 =B"8—=p o(ci +02) + 18] Bs = 1 + 0 +02).
By the continuous mapping theorem, we conclude

818 lewl
B8 "k ot + o)

E. Proof of Lemma 3.1

Proof. For k = 1, we have by Ba et al. (2022, Proposition 2)—substituting our c¢; for their x; and using that 3 = %XTy;
as well as noting that by the discussion below (Ba et al., 2022, Proposition 2), |G||,, = Op(1)—and by Lemma C.3 (d),
that with probability 1 — o(1),

IXG" —e1XBa’|op = O(n*% log® n). (10)

For k > 2, expanding (XG )% = (XGT — ¢;XBa’ + ¢;XBa")° using the binomial formula, we have

k
(XGT)* — A& H@M)T = (’;) (XGT — e, XBaT) o (c:XBa’ )7

1

J

|

(@) i diag(XB)F I (XGT - e, XBaT)* diag(a)* .
J

j=1

Recalling Mg, Mg from Lemma C.3, and using that
IXGT = eiXBa) 7 [lop < [XGT = i XBa [},
(see e.g., Bai & Silverstein (2010, Corollary A.21)), we have
| diag(X8)" 7 (XG T — e;XBa’)* diag(a)* o
< diag(Xﬁ)k_j||op||(XGT - ClXﬂaT)OjHOpH diag(a)k_jHop
< (MaMp)* |IXGT — a1 XBa [,
Hence, by the triangle inequality,

k
IXGT)™ — AEBH (@) Ty < 3 ( j) (A M M)t KGT — ;X BaT |,

j=1
By Lemma C.3 (a), (b) and equation 10, there exists C' > 0 such that for any k£ € N,

k k
Z (k> (1 Mg Mg)F 7| XGT — clf(,@aTHgP < (C/2)* Z <k) (n_% logn)k_j(n_% log?n)? < Chn=2 log®* n
J J

=1

with probability 1 — o(1). O

j=1
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F. Proof of Theorem 3.2
Proof. We consider any fixed Wy such that the event Q = {sup~, [|[(WoW )°*|lop < C} from Lemma C.3 (c) holds.
By Lemma C.1, each row of H; (XWS— ) has second moment matrix

B, [Hj (Wox)H;(Woz) '] = jIWW( )%,

whose operator norm is O(j!) on 2. Thus by Vershynin (2012, Theorem 5.48) and Markov’s inequality, for any j € [L], for
t > (Cnj")/2, and with M = Emax?_, |H;(Wo;)||%, § = C\/M logmin(n, N),

P(|Hj(XWq )llop > t) < P(||H;(XWq )H;(XWg )" /n— j{WoWq ) lop > /1 — Cj)

_ EH;XW)H;(XW§) T /n— i (WoW§)|lop _ dmax((C4)'/2,0)

- t2/n — Cj! - t2/n — Cy!

Next, we observe that since Hj is a j-th degree polynomial and the normal absolute moments increase with j, M
Emax?_, |H;(Woz;)||? < C;Emax?_, || (Wo;)°/||?. Now, note that for any vectors 1, 2, we have ||z o 2|
[|[21]|?[|2|* by simply expanding the norms. Thus, on the event €2, one can verify that for all z, [[(Wox)®||* < Cj|x||*
for some C > 0. Also, we have that A; = [|&;]|* /N for i € [n] are sub-Weibull random variables with tail parameter
1/(2j), (see e.g., Vladimirova et al. (2020); Zhang & Chen (2021)). Thus, by the maximal inequality for sub-Weibull
random variables (Kuchibhotla & Chakrabortty, 2022, Proposition A.6 and Remark A.1), it follows that for all ;7 > 1, there
is Cj > 0 such that Emaxj"; A; < C;(logn)®. Hence, M < C/N(logn)*.

IA I

Thus, choosing t = C’+v/nj!(logn)? for sufficiently large C’ leads to

|H;(XW)lop = O (/g (10g )’ ) (an

with probability 1 — o(1).
Define, for all 2 € R, 07(2) = Sp_, e Hy(2), where L = max{/, ;722" ). Each row of (¢ — o1,)(XW, ) has

? 4(0+1) loglogn
second moment matrix

Ezno.1p (0 — on)(Woz) (o — or)(Woz) '] = Z Elei(WoW, )°F,
k=L+1

whose operator norm is O(L~ 3 ~¢) by Lemma C.3 (c) and Condition 2.3. Therefore,

(o = L)XW )lop = O(v/nlognL™2~%) = o(/n) (12)

with probability 1 — o(1). Since n = o(y/n), the rows of have W norm of Op(1). Thus, we can repeat the same argument
to show that with probability 1 — o(1), we have

(o = o) (XW ) lop = O(v/nlognL™27%) = o(y/n). (13)

Let F(O) := o (XW ) and F(()L) = o, (XW{ ). We can write

L
FE =B+ e (H(XWT) — Hy(XW()).
k=1

By Lemma C.2, using W = Wy + 17 G so that XWT = XWOT + nXGT, and using that Hy(z) = 1 forall z € R,

k—1

. . . k\ . . - )
Hy(XW ") — Hy(XW]) =n*(XGT)°k + (j)nJij(XWOT) 0 (XGT)%.

j=1
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Therefore,

14 L
FO = F + 3 cfon* (X8)™ (@) + Y e [(XGT)*F - cf(XB)™ (™)

k=1 k=1
Ay
L L k-1 k

+ Y deantXB) @) T+ 0> Ck< ,>nij_j(Xwg )o [(XGT)OJ' — d(XB)% (a7 )T}

k=0+1 k=1 5=1 J

Ay A
L k=1 B\ ~ ~ , ,

30 3 cen (Nt RWE) o [(%8)% (0]

k=1 j=1

Ay

We will show that each of || A1 ||op, [|Az]op; | As|lops [|Adllop is 0(y/n) With probability 1 — o(1).
By Lemma 3.1,

L
1A1lop <> exC*n*n=% log™ n = O(n/v/n) = o(V/n)

k=1
with probability 1 — o(1).

By Lemma C.3 (a) and (b), using that o < £

20+2°
L ~ L ~
18cllp < 3 ket llXB)Hlollatlle < S chewn*nMEMS = O(n(n/v)™*") = o(v/n)
k=0+1 k=0+1

with probability 1 — o(1).
By Bai & Silverstein (2010, Corollary A.21), equation 11, and Lemma 3.1,

L k-1

Ak — i1 ; ~
8allp < 3 e () V=P 108 = Ofr) = ol

k=1 j=1

Finally, since
1Hi—j(XW{ ) o (XB)* (@) [lop < (MaMg)?+/(k — j)in? log" I n
<O/ (k- j)!n*%+% log® n,

we also have
L k-1

k . , ~
[Allop <> enC? <j) VE= )i n™ 8 3 ogh n = O(n) = o(v/n).
k=1j=1
This proves that with probability 1 — o(1), we have F(X) = FéL) + Zi:l ket (XB)°k (@) + A, with | Allp = o(1).
This, alongside equation 12 and equation 13, concludes the proof. O

G. Proof of Theorem 3.3

By Theorem 3.2, letting E = Fy + A, we have ||[E|lo, = Op(y/n). Note that 3t _, cfexn®(X3)°%(a°%)T has rank £
almost surely and its left singular vector space is span{(X/3)°*} ke[¢)- Also, the subspace spanned by the top-£ left singular

vectors of F is F;. By Wedin’s theorem (Wedin, 1972), (Chen et al., 2021, Theorem 2.9), and as o > ZQ_—;, we have

< E 0] £=1_ .
d(Fe, span{(XB)°* }req) = Os < , ;,U;l” : ) = Op(n'= ~°%) = 0p(1).
2=z —[|Elop
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H. Proof of Theorem 4.1
Proof. By the definition of a(F'), we have

1. . . . 1 . .
wa{ 215 - Fa(®)3 Ala()3} < 1~ Fa(e)l + Ala(e)l3

< i~ F 0l + Moll3 = 313 = Os(1).
Thus,
[a(F)[2 = Op(1), |9 —Fa(F)|2 = Op(Vn). (14)
A similar argument gives
|a(Fe)l2 = Op(1), [l —Fra(Fe)ll2 = Op(v/n). (15)

Also, by the triangle inequality, and using equation 15 and Theorem 3.2, which states ||F¢ — F ||, = op(y/n), we have
lg —Fa(F)ll2 < [y — Fea(Fe)|2 + [|(Fe — F)a(F,)]l

< 1§ — Fea(Fe)l2 + [Fe — Fllopla(Fe)ll2 = Op(vn). (16)
Similarly, we can prove that
19 — Fea(F)|l2 = Op(vn). (17)
For a = a(F) ora = a(Fy),
(I3~ Fal} ~ 1§~ Fralf) = — ((F, ~ F)a,§ ~ Fa+§ - Fra)
< LR~ Fllgllall> (15— Falls + |5 ~ Fealls) = oz(1)

by equation 14, equation 15, equation 16, equation 17, and Theorem 3.2. Therefore, using the definition of a(Fy),

1, ) ) 1, ) )
|5 = Fea(Fo) 5+ MaFo)|3 < ~|lg - Fea(F)|* + Aa(®)]3

Lo )
= ~llg = Fa(®)|3 + Ala(F)][3 + op(1)

and using the definition of a(F),

1, . . . 1 . ;
~g —Fa(®)[3 + Aa(®)[l3 < —[|lg — Fa(Fo)[|* + A|a(Fo)|3
1, . . ;
= ~l1g = Fea(Fo)|3 + M|a(F)|3 + op(1).
These together prove the theorem. O

1. Proof of Theorem 4.2

First, we will prove a general lemma regarding the equivalence of an augmented training loss. We will later use this result to
prove the equivalence of the test error.

Lemma I.1. Let n < n® with E;—l} <a< ﬁ for some ¢ € N and ¥y be defined as in equation 4. For the test error Ly
from Section 4.1, define

Re(a.F) = = - Fal3 + Aal} + CLic(a)
Then, for any A > 0, ¢ > 0, we have
mainRC(a, F,) — mainRC(a, F)| = o(1), (18)
with probability 1 — o(1).

18
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Proof of Lemma I.1. Letting a.(F) = argmin, R¢(a, F), we can write

e { 215~ Fac()3 Nlac (F)13.CLiolac(P) | < 115 - Fac(F)E + lac(F)[B + CLiolac(F)

< 5~ F 03 + O] + CLec(0) = Ox(1)
Thus,
Lie(ac(F)) = Op(1), [lac(F)[l2=0r(1), [g—Fac(F)l2 = Op(vn). (19)
A similar argument gives
Lie(ac(Fe)) = Op(1), [ac(Fo)ll2 = Op(1), ||g — Frac(Fo)[2 = Op(v/n). (20)
Also by the triangle inequality, equation 20 and Theorem 3.2, which states |Fy — F||op, = op(y/n),

|9 — Fac(Fo)ll2 < [|g — Feac(Fo)ll2 + [[(Fe — F)ac(Fo)ll2

< g — Feac(Fo)llz + [IFe — Fllopllac(Fe)|l2 = Op(v/n). 21
Similarly, we can show that
19 — Frac(F)ll2 = Op(v/n). (22)
Fora = a¢(F) ora = a(F),
Lons 2 s oy _ 1 . .
L (g~ Pall3 - 19 - Fral}) = 2 (¥, ~ Fla.g —Fa+ 5 - Fa)
1

< —[[Fr = Fllopllallz (Il — Falla + |y — Frall2) = op(1)

3

by equation 19, equation 20, equation 21, equation 22, and Theorem 3.2. Therefore, using the definition of a.(F,),

5~ Feag (ROl + Mac(Fo)B + CLrelac(F)
< 111§~ Fra(B)|? + Aac (B3 + CLeclg(F)
= L5~ Pac(F)[3 + Mac (P + CLue(ac(F)) + on(1),
and using the definition of a¢(F),
5 — Pac(F)3 + Nac (P + CLuelag (F))
< 11§~ Fac(B)|? + ac(Fo)3 + CLeelac(F)
= 11§~ Feac (B3 + Mac(Fo) [ + CLuelag(Fo)) +os 1),
Putting these together, we have
| mainRC(a, Fy) — mainRC(a, F)| = op(1), (23)

which concludes the proof. O

Now, we use this lemma to prove the equivalence of the test error.
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Proof of Theorem 4.2. We will argue by contradiction. Assume that Lg # Ly, and let £ = %(EF + Lr,). Now, consider
the following two optimization problems:

1 1
L£i= min —|g—Fal?+ \|a|? Lo—= min  —|li — Fral? - Mlall.
1 Lte(al)gﬁ n“y I3+ Allallz, 2 £te(al)§£ nHy calls + Aall;

Without loss of generality, assume that Lr < Lg,. The solution of the first optimization problem will still converge to
L, (F) because Ly < L. However, the solution of the second optimization problem will converge to a value greater than
L (Fy), because Lg, > L and the objective is A-strongly convex. Note that by Theorem 4.1, we asymptotically have
Liy(Fy) = L, (F). Thus £, and L2 converge to different quantities as n — oo. However, using the minimax theorem and
since the objectives are A-strongly convex, we can write

1
£1 = max —CL + min [ng—Fanz T Aal? +<£te<a>} ,
¢>0 a n
. 1, .
£3 = max —CL + min [nny ~Fall} + Mal? +<cte<a>] .

According to Lemma 1.1, the two minima above converge to the same value for any fixed (. Note that, as functions of ¢,
both maxima are concave as they are minima of linear functions of . Hence, by using the concave version of Abbasi et al.
(2019, Lemma 1), we have that £; and £ converge to the same value, which is a contradiction. O

J. Gaussian Equivalence Property

Gaussian equivalence results for non-linear random matrices were introduced in El Karoui (2010); Cheng & Singer (2013);
Fan & Montanari (2019). They have been repeatedly used in recent studies of random feature models (Mei & Montanari,
2022; Montanari et al., 2019; Adlam & Pennington, 2020a;b; Tripuraneni et al., 2021; Goldt et al., 2022; Mel & Pennington,
2021; d’Ascoli et al., 2021; Loureiro et al., 2021; Lee et al., 2023; Hassani & Javanmard, 2022; Hu & Lu, 2023; Montanari
& Saeed, 2022). Also, there has been progress on proving the Gaussian equivalence property for a multi-layer network with
only the final layer trained (Bosch et al., 2023; Cui et al., 2023).

In more distantly related work in random matrix theory literature, the phenomenon that eigenvalue statistics in the bulk
spectrum of a random matrix do not depend on the specific law of the matrix entries is referred to as “bulk universality”
(Wigner, 1955; Gaudin, 1961; Mehta, 2004; Dyson, 1962; Erdos et al., 2010; 2012; El Karoui, 2010; Tao & Vu, 2011).

Erdos (2019) shows that local spectral laws of correlated random Hermitian matrices can be fully determined by their first
and second moments, through the matrix Dyson equation. Also, Banna et al. (2015; 2020) show that spectral distributions of
correlated symmetric random matrices can be characterized by Gaussian matrices with matching correlation structures.

In our case, we apply the Gaussian equivalence property to the following quantities for p, ¢ € No and 81, B2 € {3, B, }:
H,(XB1) "RoH,(X32).

J.1. Proof Sketch of Gaussian Equivalence Property
In this section, we describe the proof idea of the Gaussian equivalence property. We use the Lindeberg exchange method
(Lindeberg, 1922) in which we replace each column g; = o(Xwy ;) of F with its Gaussian equivalent g; = ¢;Xwo ; +

C>1%i, Z; P N(0,1,,). Hereafter, we condition on all random variables except W. Then, H,(X3;) and H,(X3s)
become deterministic vectors with O(1) entries. We write v = H,(X31), w = Hy(X/32), and for all i € [N], M; =

i—1 ~ T N T
Zj:l g;€; +Zj=i+1 gi€; -

Let Fo = [§1---gn] € R™*N be the Gaussian equivalent of F and let Ry = (FoFJ + AnI,)~!. By the triangle
inequality,

N
v ERow — v "ERqw| < > [v ' E(M;M] + gig] + ML) 'w — v TE(MM + §ig + Anl,) "'w|.  (24)

i=1
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Defining S; = (MZMZT + )\nIn)’l, we have by the Sherman-Morrison formula that

- S:9:97S; . _ Sigig;' S
MM, +gig] +AnL,) " =8; — —=F =" and (M;M] +g;g; + AnL,) ' =8; - —T L=
(MM +gig; w) " 1+g/Sig (MM, + 9.9 ! 144, S:gi

Thus,
TS.6.67S, TS.9:9."S;

v EMM] + gig] + ML) lw — o TE(MM] +§ig] + Mnl,) "l = RO S99 500 g8 B9t S0

1+g,S;9; 1+g/S:g;

Let ¥, = Eg;g,’ and 5 = Eg,g,” . By the Hanson-Wright concentration inequality, g;' Sig; = tr(S;24) + Op(1//n)
and g;' S;g; = t1(S;Xg) + Op(1//n). Hence,

v'8S,g9:9, S;w B tr(SivaSiZQ)

= Ows(n—3
1+ g/ Sig; L+ tr(S;Xy) T Op(n ),
TQ.50.07S. . TQ. 2. )
v Szgjgi wa _ tr(S;wv ' S;35) —l—Op(n_%).

Plugging into equation 24,

tr(S;wv'S;2,) B tr(S;wv 'S, ;)
14+tr(S;3g) 1+tr(S;Xy)

lvTERgw — v ERgw| < Z + Op(n*%)

Mz

<|tr (SiwvTS;(Eg — X35))|  [tr(S;wvS;35) tr(S;(Xg — 3))|

1+ (S, (11 tr(S:%,))(1 + t2(S:%5)) ) +Op(n ™).

Now, we have
[ tr(Siwv TS (Bg — 2g))| < [[Sivlla[Siwll2]Zg — Zgllop = Op([Zg — Zgllop/n),
| tr(S;wv 'S, 5)| < [[Siv]2]|Siw|2 ]| glep = Op(1/n),
[t2(Si(2g — Zg))| < ISillrl1Zg — Zgllr < VallSillFlZg — Zgllop = Op([Zg — Zgllop),

where the first and second inequalities follow from the definition of the operator norm, and the last one follows from the
Cauchy-Schwarz inequality.

¥g — Yjllop —p 0. Therefore,

v ERow — v "ERqw| < Op(|[ g — Zgl|,,) + Oc(n™2) —p 0.

K. Proofs of Results from Section 4.2

Here, we will prove the results in Section 4.2. First, we will provide several lemmas, which will be used in our proofs. The
first lemma allows us to approximate linear and quadratic forms of 3 in terms of 3,; the quadratic form result is from Ba
et al. (2022). Its proof is in Section O.2.

Lemma K.1. Foranyd € N, let v € R% and D € R4*? be vectors and matrices, fixed or independent of X, By, €1, . -
and satisfy ||v||2, || D||op < C almost surely, uniformly for some constant C' > 0. Under Condition 2.1, we have

'78717

ViB—cav B —0, |BTDB- (c +o2)trD - 2,8/ DB, —

in probability as d — oc.

We will use the expression derived for the training loss in the following lemma; see Section O.3 for the proof.
Lemma K.2. The training loss L, (F) can be written as Li,(F) = A\g" (FFT + Anl,) 'y
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The following lemma will be used in proving concentration of certain quadratic forms appearing in the proofs; see Section
0.4 for the proof.

Lemma K.3. Let g : R — R be a polynomial, D € R"*" be a matrix with |D||op = Op(1/n), and Z € R™ be a vector of
i.i.d. Gaussian random variables with bounded variance independent of D. We have

9(Z)"D g(Z) —E[g(Z) "D ¢(Z)]| = 0,
in which g is applied elementwise.

The limiting values of two key quadratic forms appearing in the proof are derived in the following lemma, whose proof is
deferred to Section O.5.

Lemma K.4. Let m1 and ms be the solutions to the system of fixed point equations from equation 5. Then, the following
holds:

(a) BTXTRoXB = (e + 02)ma + 52 yma + 0p(1) = Op(1).

_ 2
(b) @' F{ReFoa — [a]3 = —A\izmi + % — 1+ 0p(1) = O3(1).

In particular, 1(c2 + o2)ma + %Cilmg # 0 and AL my + % —1#0.

The following lemmas will be used in the computations. We defer the proofs of these lemmas to Sections 0.6, 0.7, O.8, and
0.9 respectively.

Lemma K.5. For any p,q € No, p # q and any vector w € R", with ||lulls = 1 independent of Ry, we have
H,(Xu) "RoH,(Xu) = op(1).

Lemma K.6. Forany p € N, we have

(a) VNH,(XB,)RoFoa®? = op(1),

(b) \/NHP(X,B)R()F()G,O2 = O]p(l).

Lemma K.7. Fors € {1,2}, p € N, and p # s, we have H,(X3,) Ro(XB)°* = op(1). Further,

lim  Hy(XB.) Ro(XB)% = 22, Y™,
oA 2(XB.) Ro(XPB) 2¢; 4 5
Lemma K.8. We have
. o M2 TS /G a0 3Yym
lim  (X8)°2TRo(XB)° = V™ (42 4 02) + 2 ]2,
n,N,d— o0 ¢

Now, we will first provide a proof of Theorem 4.3 in the case of £ = 1 and ¢ = 2 for a better insight into the proof techniques.
We will then prove the general form in Section L.

K.1. Proof for ¢ = 1

Proof. In the ¢ = 1 regime, due to Theorem 4.1, we can replace F by F; (defined in equation 4) to compute the training
loss. Hence, from now on we let F = F;. We can write FF T = FyFJ + UKUT where U = [Fpa | X3 ] and

_ [ 0 An }
An cn?llal3]

Based on Lemma K.2, the training loss depends on R = (FFT + \nl,)~ ! Using the Woodbury formula, this matrix can
be written in terms of R = (FoF] + AnL,)~! as

R =Ry - R)UK ' +U'RyU)'U'R,. (25)
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Defining T = (K~ + U'RoU)~! € R?*2 and substituting R = Ry — RoUTU " Ry in the formula for training loss in
Lemma K.2, we find

Li:(Fo) — L:(F) = A\ RyUTU " Ryg. (26)

Using equation 26 and U = [Foa | X3 |, the loss difference can be written as
Lix(Fo) — Lix(F) = | T (9 RoFoa)® + (T2 + To1)§ ' RoXB - a Fg Rog + Toa(§ ' RoXB)*|,  (27)

in which Tj; are the elements of the matrix T. Using

BTXTR, X3 f%, —a FJRyXp

_0%77 - B"XTRoFoa a'FJRoFoa — |al?
T =

(28)
-~ _ _ . 27
(5TXTROXﬁ) (aTFJ RoFoa — ||al3) - (% + aTFOTROXB)

we will compute the limit of each term appearing in equation 27 separately:
Term 1. The first term can be written as

A BTXTRoXB) (¥ RoFoa)?

51 = AT11(§ RoFoa)® = R _ _ o \2°
(ﬁTXTR0X5> (aTF{RoFoa — |al2) - (% n aTFJROXﬁ)

Based on Lemma K.4, we know that 3T X" RoX3 and a"F RoFoa — ||al|3 are Op(1). Also, it can easily be seen that
IFg RoX B2 < [[FolloplRo lopl X1z = Op(1).

Hence,

2
(62177 + aTFOTROXB) = op(1) (29)
1

because a 1L FJ RoX 3. Also, using that RoFoF] = (FoFJ + Anl,) 'FoF] =1 — AnRy,
(9" RoFoa)? = §' RoFoEqlaa’ |F Rog + op(1)

1 _+= _ 1 += . A _vre=o_
= NyTRoFoFJRoy +op(l) = —§ ' Rog — =9 'R + op(1) = op(1),

N N

where in the last inequality, we used that § 'Rog < 5 (913 = Op(1) and § 'REy < (55219l = op(1). Putting

everything together, it follows that §; = op(1) in probability.

Term 2 and Term 3. The second and third terms can be written as

82 = 03 = AT129  RoXBa' Fg Rog
)\( L aTFgROXﬁ) (5T RoXBa F] Rog)

—2n
cin

“ -~ _ _ 2"
(ﬁTXTROXﬁ> (aTFJRoFoa — |all3) — (% + aTFOTROX,6>

Recall from the above argument that the denominator is ©p(1) and that . + a'Fg RoX3 = op(1). Also,
_ - _ - "1
¥ ' RoXBa FiRoy < 552 19131XBl2]lall2 | Follop = Or(1). Therefore, we find 5, = 85 = op(1).
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Term 4. This term can be written as
1 = ATz (g RoXB)?
_ A (a"FjRoFoa — |lafl3) (3 RoXB)* (T TReXp)?
- - o~ _ _ o~ \2 TYTR.X
BTX RoXB (aTF{RoFoa — [lal}) - (4, +a FjRoXa) A X RoXP

1

+ OIF"(l)v

since _z + a'FJRoX3 = op(1) and a' F RoFoa — ||al|2 = Op(1) # 0 by Lemma K.4. By equation 1 and Condition
1 ~
2.4, we can write y = Z;Ozl c*,pHp(Xﬁ*) + €, where € € R" is additive Gaussian noise. Note that
9 RoXp = .18 X RoXB + 02(1)
by Lemma K.7 and since |[RoX/3||2 = Op(1/y/n) and e 1. RoX.
Further by Lemma K.1,

1B XTRoXB =2 | B] X TRoXB, + 0p(1) —p 03,1%”127 (30)

where the final limit follows from the proof of Lemma K.4. By summing up the fours terms computed above and using
Lemma K.4, we find

w)\c‘*l’lmg

ErFO —ﬁrF —)pAlz > 0, (31)
o) = £ur() AL T ol + )
which concludes the proof for ¢ = 1. O
K.2. Proof for / = 2
In the ¢/ = 2 regime, based on Theorem 4.1, we can replace F with Fy (defined in equation 4) to compute the
training loss. Hence, from now on we let F = Fy. We can write FF' = FoF] + UKU' where U =
[Foa | Foa®?VN | X3 | (X3)°? ] and

0 0 cn 0

0 0 0 ctean? /NN

K =
gm0 dn?llall}  clean(a,a?)

0 de’/VN cle(a®,a)  cicdn*(a®, a?)

Recalling R = (FFT + Anl,)~! and Ry = (FoF(] + AnI,)™!, we still have equation 25. Defining T = (K~! +
U'RyU)~! € R***, we have the following analogue to equation 26:

Li:(Fo) — L:(F) = A\g ' RyUTU "Ryy. (32)

Denoting in what follows Q = FJ RFy, the inverse T~ can be written as follows:

[ a"Qa—|al3 N%aT(Q —T)a°? aTFJROé + % aTFJROéOQ
N:aT(Q-T)a?  Na®*'Qa*?—Nlla?|3 N2a?"FjRof N2a*2TFjReH*?+ =
ic2
) ) ) . ) . (33)
0" RoFoa + - N20TRoFoa°? 0RO 0TR,0°2
éoZTROFoa N%0~02TR0FOGO2 + 2N7 éo2TR0é éo2TR0é02

L cican?
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K.2.1. ANALYSIS OF TERMS INT ' AND T

In the following section, we will first analyze the elements of T~ !:
(1,1): The term @ " Qa — ||a||? has already been analyzed in Lemma K.4 and is Op(1).
(1,2) and (2,1): Recalling Q = F] RoF¢ and Ry = (F] Fy + Anly) ™}, we can write

[T 12 =[T Y21 =+vNa'Qa** - VN{a,a*?)
= -V Na Rpa®? = —\nvNa' Ro (a°2 —1/N1y+ 1/N1N) .

Introducing @ = v Na ~ N(0,1y), and as Hy(z) = 2> — 1 for all z, we find

The second term converges to zero as n — oo because a ~ N(0, %I ~ ) is independent of R, and || ﬁRo 1 NH2 = Op(1).
Moreover, the first term also converges to zero; indeed,

aTRta) - (T g () (T (aT M)

Lemma K.3 can be used with D = R to prove the concentration of both term around their expectation. Note that the
expectation of @ ' RgHz(a) is zero because of the orthogonality property of Hermite polynomials and the independence of
a and Ry. Putting everything together, we conclude that [T~1]; o = [T7!]51 = op(1).
(1,3) and (3,1): Recalling that 0= X,@, it follows from equation 29 that this term is op(1).
(1,4) and (4,1): To bound a FJ R0°2, note that

HF(-]FROOOQHOP < ”FOHOPHROHOPHHOQHQ = Op(1).

Hence, because a ~ N(0, & I) is independent of FJ R(0°2, we have

T4 = [T 11 =a FJ R0 = op(1).

(2,2): This term is Op(1), because a ~ N(0, +Ix), so
[T 22 = Na®*" Qa®® — N|a®?||3 = ~ANna®?" (Fj Fo + Anly) 'a®?
< ANn a3 - [[(Fg Fo + AnIn) ™ lop = Op(1).

(2,3) and (3,2): To bound v Na°?" F] R#, note that

o D W o e 1
IVNa*®TF§ RoX|l2 < [[VNa*?|l2]|[Follop | Rollop | Xllop < C'- VN - . VN = Os(1).
Also, by Lemma K.1, we have
[T_1]2’3 = [T_l]g)g = \/NGOQTFJR()X,B = c*yl\/NaOQTF(—JrROXﬂ* + 0]13(1),

which converges to zero, because 3, ~ N(0, 3I,) and is independent of vV Na°?"F R X, which has bounded norm in
probability.
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(2,4) and (4,2): First note that in the regime where ¢ = 2, we have g — 0. Hence, we can write

[T 24 = VN(XB)°2TRoFa®? + op(1) = VN Hy(X8) "RoFa? + VN1 RoFoa? + op(1).  (34)

By Lemma K.6, the first term converges in probability to zero. Moreover, a ~ N(0, %I ~) is independent of RoF, and
1, RoFoll2 = Op(1). Thus, we have that VN1 RoFy (a°? — 1/N1y) —p 0. Hence, we find

[T_1]274 = \/N]_IR()FQ]_N/N + O]p(l).

Based on the Gaussian equivalence from Appendix J, we can replace Fg with Fy = ¢; XWOT +cs1Z, where Z € R"*?is an
independent random matrix with N(0, 1) entries, without changing the limit. Now, the linearized F is left-orthogonally in-
variant, hence F( has the same distribution as OF, where O is uniformly distributed over the Haar measure of d-dimensional
orthogonal matrices, independently of all other randomness. Hence, N ~'/21 RoFoly =4 N~'/21T OR(Fy1y. Now,
0'1, =4 v/nz/||z||2, where z ~ N(0,1,,). Moreover ||z||2 = +/n(1 + op(1)), hence replacing O 1,, with 2" intro-
duces negligible error. Hence, [T~ ']y 4 =4 N™Y/22TRoFoly + op(1). Now, 2" RoFoly ~ N(0, [RoFolx]3), and
HR()F()].NHQ = O]p(].), thus [T71]2’4 —p 0.

(3,3): We have |02 = Op(v/N) and ||Ro||op = Op(1/n). Thus, [T~1]33 = Op(1).

(3,4) and (4,3):  First, note that defining 8 = ﬁh

B
(T30 = [T']a3 = 6 Ro6° = 18]} ((XB) "Ro(XB)?)
= 1813 (XB) RoHx(XB)) + |8]3 (6 Rolx)

Now, by Lemma K.1, we have 8" Roly = ¢,10] Roly + op(1). Now, note that | XRolx|2 = Op(1) and B, ~
N(0, éId) is independent of XR1, which implies that the second term converges to zero. By using Lemma K.5 for
u = (3, the first term also converges to zero. Putting these together, we have [T Y354 = [T a3 =o0p(1).

,and as Hy(x) = 22 — 1 for all =, we can write

(4,4):  We have [|0°2||3 = Op(V/N) and || Ro|lop = Op(1/n). Thus, [T~ 144 = Op(1).

Now, putting everything together, the matrix T~! can be written as

_[T_l]l’l 0 0 0 ]
0 [T_l]g)g 0 0
T71 - + A17
0 0 [T_l}g 3 0
.0 0 0 [T71]4,4

= 0 0 0 7
1
0 1753 0 0
T = + Ao, (35)
1

0 0 T s 0
1

L 0 0 0 [T 14,4 ]

where the all elements of A, are op(1).
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K.2.2. COMPUTING THE TRAINING LOSS

Having computed the limit of the matrix T~ and T, we are now ready to put everything together and compute the limiting
train loss. One can write the outcome vector § as ¥ = 0.(X3,) + €, where € € R" is the noise term. Thus, using
equation 32, we find

Li:(Fo) — L (F) = Ao, (X8,) "RoUTU 'Ryo,(X3,)
+ 200, (XB,) '"/RYUTU "Rye + Ae "RyUTU " Rye. (36)

We will first argue the second and third term will go to zero in probability. To do this, we note that ||'T{|o, = Op(1) and also
[UTRy|2 < ||UHop||RoHop = Op(1/y/n). We have &€ ~ N(0,52I,,) and it is independent of R, U, T, X, and B,. Also
note that ||o, (X8,) " RoU]|2 = Op(1). Thus, the second and third term in equation 36 go to zero and we have

Lir(Fo) — Li(F) = Mo, (X8,) "ROUTU 'R0, (X3,) + op(1).
If we expand a*(X[)’*) in the Hermite basis as U*(X,@*) = Z;il c*7pHp(é*), we can write

Liy(Fo) — Loo(F) = A Z CopCrgHp(0,) TROUTU R H,(6,) + op(1).
P,q=1

We define A, , = H,(0,) TRyUTUT RoH,(0,) = V% + 659 + 689 + 67 in which, with T} ; being the (i, j)-th
elements of the matrix T,

87 =Ty 1H,(0,) "Ro(Foa)(Foa)  RoH,(0.)
+T12H,(0,) "Ro(Foa)(VNFoa) "R H,(6,)
+T1,3Hp(~

+ T4 Hy(

(Foa)
6,) "Ro(Foa)0 'RoH,(6,)
6,) 'Ro(Foa)6°* " RoH,(6,), (37)
05" = Ty 1 Hy(6,) "Ro(VNFoa®)(Foa) " RoH,(6,)
+ To2Hy (6, )TRO(\FFoaoz)(\ﬁFoa ) "RoH,(6.)
+ To3H,(0,) "Ro(VNFoa?)0 " RoH,(6.)
+ T4 Hy(0,) "Ro(VNFa?)0° TR H,(6,), (38)

057 = Ty 1 Hpy(6,) "Ro8(Foa) "RoH,(6,)
+T3 2H( ) Roé(\/ﬁFoaO2)TR0Hq(é*)

«)
BBOQTR H,(6,), (39)
and
50 =T, 1 Hy(6,) Ro8°(Foa) RoH,(6,)
+ T4,2Hp(é*)TR0é°2(\/NFoa°2)TROHq(0})
+ Tu3H,(0,) ' Ro6°20 "RoH,(6,)
+ Ty s Hy(0,) " Ro0°260°2 T RoH,(8,). (40)

We will now look at each 677 for i € {1,2,3,4}.
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Term 67?:  To prove that the term in equation 37 are asymptotically negligible, note that a ~ N(0, %I ~ ) is independent
of H,(0,)RoF, and we have || H,(6,)RoFo||2 = Op(1). Thus, H,(6,)RoFoa = op(1) and all other terms multiplying
this are Op(1). This implies that for any p, ¢ € N, we have 677 = op(1).

Term 65?:  All four terms in equation 38 converge to zero. To prove this, we will use the Lemma K.6. In equation 38, all

terms multiplied by VN H,(6,)RoF¢a°? are Op(1). Thus, 65'? = op(1) for any p,q € N.

Term 05°%:  The first term in equation 39 converges to zero in probability due to an argument similar to the arguments
used for 67%; and the same holds for the second term in equation 39, by arguing similarly as for 057, We have shown that
T34 = op(1), and by a norm argument, we can see that H,(6,) " R0 and 6°2" Ry H,(0,) are Op(1). Hence,

05 = Ty 3(Hy(04) "Ro0) (6" RoHqy(6s)) + 0p(1).

Term 64?:  The first two terms in equation 40 converge to zero by the same reasoning used for 67’¢ and 05'%, respectively.
The third term can also be shown to converge to zero by recalling that T 5 = op(1). Hence, we can write

Oy =Ty (Hp(é*)TROéO2) (éOQTR()Hq(é*)) +op(1).

Putting everything together, we find

Lix(Fo) — Lie(F) = M35 Y ¢ peuq(Hp(6,) "Ro6) (0 RoH,(6,.))
p,q=1

o0
+ ATy4 Z CopCaq (Hp(0,) TR00°%) (6°2 R H,(6,)) + op(1).

p,q=1

Using Lemma K.7, we know that in the sums above, the terms corresponding to (p,¢) = (1,1) and (p, q) = (2, 2) are the
only non-negligible terms in the first and second sum respectively.

Hence, as Ts3 = 1/(0 TRo0) + op(1) and Ty 4 = 1/(8°2T R¢6°2) + 0p(1), from Lemmas K.1, K.4, K.7 and K.8, we can
write,
Lr(F) — Lo (Fo) = ATy 562 1 (0] Ro8)” + ATy uc? 5 (Ha(6,) TRO°%)” + 0p(1)
VG (OTReO)™ |\, (Ha(6.) TRo6”)’
= A= C = — =
TR0 *,2 0°2TR0°2
’l/})\Cilmg 4'@[))\63’163127)11

T O, t o E D) | B 0D +

proving the theorem for ¢ = 2.

+ O]p(l)

L. Asymptotics of the Training Loss for General /

We define the values &; ; for all ¢, j € {0,1,...} such that for any p € Nand z € R, we have a? = >"7_ &, ;H;(x).

Theorem L.1. Let ¢ € N. If Conditions 2.1-2.4 hold, while we also have ¢y, - - - ,cg # 0, and 1 < n® with Z;—; <a< ﬁ,

then for the learned feature map F and the untrained feature map o, we have L, (Fo) — Li,(F) —p Ay > 0, where

¢ ¢ ¢ o
Ap= A Z Z Cro,pCo,qTpTq Z Z Qi (o(c2+02) + cf,l)(zﬂ)/2 &ip,q +op(1),

p=1g=1 i=1 j=1
in which S is an invertible matrix with

min(i,j)
_ 1+7)/2 L.
[0 = (21 + (e +02) g mobin&iatmi S K&l Vi€l
k=0, k#1
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and forp € N,

P
plYymy Cy,1
_ ¢ (\/¢(cz+a§>+ci,1> r#l

T, =
p Pmo Cx,1

¢ JeEtonte, p=1

Proof of Theorem L.1. In the regime where 1 < n® with EQ_—; <a< #9_2, according to the equivalence theorem 4.1, we

can replace F with Fy when computing the limiting training loss. To compute the limiting training loss difference according
to lemma K.2, we study the matrix R = (FFT + AnI,)~!. Due to equation 4, we can write

4
FF' =FF] + chfckr]kéOk(FoaOk)T

k=1

4 ~ 4 4 o o
+ Z CIkank(FOGOk)GOkT + Z Z Cll+jcicjnz+] (aoz)T(aog)eozeogT'
k=1 j=1i=1
Defining the matrix U as
U= FOCL|"'|N(271)/2FOU/OZ é "”|0~O[ ER“XZK,
£ columns £ columns

we can write

K
FF' = F,F; + UKU', in which K = {Olf{“ K} € R#x2¢

o, ~ . . L o . . o
where K, = diag (Cﬁ(l,", . N@?fﬁﬁ,) € R and K € R with [K]; ; = ¢} cic;n't7(a®?,a®), for all i, j € [¢).

Using the Woodbury formula, the matrix R can be written in terms of Rg = (FoFg + Mnl,) ' and T = (K~ ! +
UTR(U) ! € R?*% a5 R = Ry — RyUTU " Ry. Now

> -1 NO N
K—1:[ISI KO},where K, ' = diag v |
K ({7 cicen cicen

and [K]; j = —NG-D/2NU-1/2(q% @), forall i, j € [¢(]. We define M}, My, M, € R*** as the following blocks of
T

-1 _ M1 Mo
T _[MO el

Hence, we have
M), = N(i—l)/QN(j—l)/2aoiT(F[')FROFO —T)a%,
[M,)ij = NG-1/2g° TFTR,0% + 0p(1),
[Ma]; ; = 0°" TR0
We can expand the monomials in terms of the Hermite polynomials, for scalars &; 1, k € [i], as follows:

(NY2a)* = 3 & Hu(NYa),  and  (XB)” = 1815 S € Hi(XB/|182).

k=0 k=0

Using these, we will analyze each matrix M, My, M, separately.
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Analysis of M;. It is easily seen that the elements of this matrix are Op(1).

Analysis of M,. To analyze these terms, we need the following lemma, whose proof is deferred to Section O.10.

Lemma L.2. Foranyi,j € Ny, we have

~ e y PN m m min(4,j

(KB TR(XB) —p (2, + S +02) T |66, 072 4 ¥ Z e

¢ ¢ o
Defining the matrix M, € R*** with entries
. ) 2, 2y ()2 Ymy | vm S
[Ma)ij = (ci1 + (e +02)) &i1&50 ¢ ) D K &gin]
k=0, k#£1
for all 4, j € [], we have [M]; ; —p [Mz2]; ;. Note that we can write
M, = %BZMZTB + wg‘l ee’,

where we define b = (c? | + ¢(c? + 02))'/2, B = diag(b',- - ,b*) € R*, e = B[&1,0,- -+ ,&u0] T,

1I'mg 0 e 0
0 2'm1 0 51,1 51,@
M= | . o | eR* and Z=| @ .. 1| e R
0 0 ... £!7-nl Sen 0 Coe
Recalling that for all 7, j € {0,1,...}, & ; are such that such that for any p € Nand z € R, we have 2? = Y% _ &, ;H;(x),
it follows that the matrix Z is 1ower—tr1angular with unit diagonal; hence invertible. Thus, since B, M are d1agonal with
positive entries, the matrix BZMZ " B is positive definite. This implies that M is invertible. We will denote 2 = M ML

Analysis of M,. We analyze [M,]; ; by writing N~1/2a°% in the Hermite basis, finding
fz k 1/2 \TpTR.goj
Z (NY2a)TF R0 + 0p(1).

. 1/2q) . . .
The terms with & > 0 are all op(1) because % is anorm Op(1) vector with mean zero, independent from the vector

FJ Ro0°7 with norm Op(1). Thus, [M,]; ; = op(1). The term with k& = 0 can also be shown to be op(1) by using that the
linearized F is left-orthogonally invariant, via an argument identical to the one used to analyze equation 34.

Hence, putting these together, the matrix T can be written as

M;' o0
T:{Oeie N;:ﬂﬂpm.

Using lemma K.2, we can write the training loss difference as L, (Fy) — L. (F) = Ay ' RoUTU Ryy. Plugging in the
teacher function f,, we find

Etr(FO Etr Z )\C* Cx, q é )TRoUTUTﬁqu(é*)
p,q
+2) Z (c* ) ROUTUTROE) +2eTROUTU Rge.
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Note that the second term can be shown to be op(1) because € ~ N(0,02I,) and it is independent from
H,(0,)"RoUTURy, and ||H,(0,) "RoUTU Ry ||op = O]p(_l/\/ﬁ)_With a simple orderwise analysis. The third
can also be shown to be op(1) by noting that € is independent from RoU, ||RoU]|op = Op(1/+/n) and that the elements of
T are Op(1).

To analyze the first term, we define 6, , = H,(6,) T RoUTU ' RoH,(0,) for all non-negative integers p, g. To analyze
such terms, we first expand UTU T as

4 4 4 4
UTU" = > NO2TMY, (Foa)(Foa) T+ 0 M, 1;,;676% T
i=1 j=1 i—1 j—1

Thus, for any p, g € Ny, the terms 6, , can be written as

£ 4
Spg = NUIPTIMY, S H,(6,) "Ro(Foa®) (Foa®) "RoHy(6.)

By an argument identical to the argument for the terms in M,, the first sum goes to zero in probability. Denoting
B/118ll2 := B, we can expand (X3)°" = |85 >_1_o &i.xHe (XB/]|B]|2), To analyze 8, 4, we need the following result,
whose proof is deferred to Section O.11.

Lemma L.3. For any p,q € Ny, we have

p
plmy Cx,1 _
o . ¢ <\/¢(c2+a§)+ci,1> p=a71
HP(XIB*)TRO Hy(XB) —=p { ¥m2 Cx,1

¢ el ron e, p=aq=1

0 p#q.

We can now use Lemma L.3 and that [|3]|2 —p (¢(c2 + 02) + ¢2 1)1/2 to write

M~
MN

Op,q = [ ] ,J”BHH]&,pfj,q ( ) ROH (Xﬁ) X /3) ROHq(é*) + op(1)
i=1 j=1
S (i+35)/2
K]
= Z Z (@i (o(c2 +02) +¢24) P pEqrpra + 0p(1),
i=1 j=1
for p, ¢ € [¢], which concludes the proof. O

M. Infinite sample limit

In the infinite sample limit, where n. > N, d, we have ¢ — 0. In this extreme case, the expressions for m;, mo will further
simplify as my, ma — ¢/M\. Note that in this limit, we have L, (Fo) — 02 + ¢2 (see e. g Mei & Montanari (2022,

2
Section 6). Using Corollary 4.4, we see that for example when ¢ = 2, we have L(F) — o2 —|— 2 4 ¢2 ~o. In particular,
the term corresponding to the linear component of the teacher function in £(Fy) cancels out with the correspondlng term in
As.

N. Proof of Theorem 4.5

Let (te, Yto) follow the model from (1). Recall that the test error can be written as

Lic(a(F)) = Bz pie (Yte — dTJ(thE))Q = Eapo pee (yt2e) + cAl—rsz" - 2dTNf7 (41)
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where Xy = E,,, [U(Wa:te)o(Wa:te)T] and py = Eg,. 4. [Ute0(Wxe)]. First, we will show that in the definition of
3 s and pg, we can replace the test feature o (W) with the spiked approximation from Theorem 3.2

Y4

fo=0(Woxe) + Z e (BT xie) a", (42)
k=1

without changing the test error. To do this, consider an independent test set {Ze ;, yte ibite with nge test samples followmg
the data generation distribution in equation 1 and we define X = [Zie,1, ..., Tren] ' € R™X4 Let Fo = 0(X(eW ') €
R™*N pe the test feature matrix. We can write the test error as

. 1
Lic(a(F)) = lim — |y — Frea(F)|3.

Nte —> 00 ’I’L
Now, consider the spiked approximation of the test feature matrix Fy o € R™e-N where each row of Fc ¢ follows the

approximation in equation 42. Using Theorem 3.2, we have |Fe — Fie ¢|lop = 0p(y/7ite). Thus,

~ Fea(F)[l3 — ~ Frega(F)|3] <

<(Fte - Fte,f)d(F)a 2yte - Fte - Fte,£>‘

te

la(F)|l2 = 0,

C
- V Mte
where the last line is due to the fact that under the assumption of Theorem 4.2, we have ||ye — Fie@(F)||3 = Op(y/Tite),

and that ||a(F)||2 = Op(1) from the proof of Theorem 4.1. Thus in the test error, we can replace the test features with their
spiked approximation without changing the limiting test error. With this, we can write

¢
Y= 2(} +Eg,. Z epn® (i B)F (a® o(Wozee) " + U(Womte)aOkT)l

k=1
[ ¢ ¢
47, i+i T i+ ot 0T

+Ez,, cy "'z B8) P eici(a®a™ )
i=1j=1
T

0 k. k kT kT i+j itj i of T
=3 +Eg, ciCEn (a° v, +via’ ) +Eg,, g g c jn”]cichiﬂ-(ao’aoj )", (43)

Lk=1 i=1j=1

where 24 = Eg,, [0(Wozie)o(Wozie) '], vk = Ea,, [(®,8) 0 (Woie )], and Ry = Eq,, (2,8)" for all k € [€]. Also,

L

p5 = Bo e [0 (Wetee) | = iy + ) ciexmn*a®, (44)
k=1

where u% = ]Ewce.,yte [yteO'(Wo.’Bte) L and Tk = Ewte [yte(mtTelg)k} .

N.1. Proof for / = 1

Without loss of generality, assume that ¢c; = 1. First, note that
vy = Eg, [(2.8)0(Wozi)] = WoS,
Ny =Eq, (2,,8) =0, and Ry =Eq, (2:8)> =85 =p 1 + (e +02),
71 =E [pe(@B)] = 1B B —p 1,

where the convergence follows from equation 3 and the computations are in its proof.

Thus, using equation 43, we have

pny = u(} + cf,lna, Y= Ef +1n(a (WoB) " + WO,BaT) +n? (cf,l + p(c? + a?)) aa'.
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From Section K.1, we have R = Ry — RoUTU Ry, where T is defined in equation 28 and U = [ Fya | X3 ]. In
Section K.1 it was shown that
l BTXTRyXp —L—a"FjRoXp 1

_% - B"X"RoFoa a'FjRoFoa — |al3

T = (45)

o~ _ - 27
(ﬁTXTROXﬁ) (aTFJRoFoa — ||al3) - (% + aTFJROXﬁ)

where Tll,TQQ = @p(l), and Tgl,Tlg = O[p(l/?’])

Now, we are ready to study the terms Ey = Eg,_ .. (y2,), B2 = @' Xa, and E3 = —2a " puy that appear in the test error
in equation 41.

N.1.1. ANALYSIS OF Ej.

This term can be readily computed as
2
By = E(y,) = 02 + Eq,, (0.(8/ ee))” = 02 + ¢l (46)
N.1.2. ANALYSIS OF FEjs.
Recall thata = (FTF+ Anly) " 'FTg, Ry = (FJ Fo+Anl,)" Y, and R = (FF T + AnL,)~!. Using these, we can write

Ey=a"Sra=9 FF F+\ly) 'S:(FF+nly) 'Fy
=g (FF'" + L) 'FE;F(FF' +\nl,) 'y = 9 RFX;F Ry. (47)

We have y = f, + €, thus
Ey = f/RFE;F'Rf, +2¢ ' RFE;F 'Rf, + ¢ RFZ;F Re. (48)

We will now analyze the terms in equation 48. First note that e RFX;F'Rf, = op(1) using a simple order-wise
argument. To analyze the third term in equation 48, we write

_ ~ T _ _ U
F Re= (FO + n(Xﬂ)aT) Re=F]Re+n(8 X Re)a.
Using a simple order-wise analysis, we have 3T X TR e = Op(1/+/n). Thus, the third term can be written as

e ' RFE;F ' Re=¢ RFZ;FJRe+27(8"X"Re)e'RF Zra+7°(B' X "Re)’a’ya.

q1 q2 g3

The term ¢; can be computed as
¢ = e RF Z;F]Re =¢ RF, (2} +7(a(WoB)" + WoBa') +7*|B|3aa”) F{Re
=e RFoX4F Re + op(1) = e ' RoFoX4F) Ro e + op(1),

where in the last line we have used that R = Ry — RyUTU " Ry and an order-wise analysis for various terms. To analyze
q2, note that

e ' RFXsa =¢ RF, (X} +71(a(WoB)" + WoBa") +7*|Bl3aa’) a = op(1),
using a simple order-wise analysis, thus g2 = op(1). Similarly, for g5, we have

i3 =7’ (B"X"Re)’a’ (£f +1(a(WoB)" +WoBa') +17|Bl3aa’) a = op(1).
Hence, summing everything up

Ey =¢e ' RoFoS}F Roe + £/ RFS;F 'R, + op(1). (49)
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Next, we will study the term f] RFX fFTR f.. We can write

a=F'Rf, = (Fo + n(Xﬁ)aT)T (Ro — RyUTU'Ry) f.

= FJRof, “F] RoUTU Ro, +1 [(X8) Rof. - (XB) 'ReUTU Rofu]a.  (50)
———
P1 P2
P3

Thus, defining EY = p £p; fori, j € [3], we have Ey = Zf’ =1 Eéj . In the following sections, we will analyze each
term in this sum separately.

Preliminary Computations. Before starting the computation, we define K as
K:=8"X"Rof. — B"X"RoyUTU Ry f,. (51)

Recalling that 715 = T5; = O(1/n) and 3T X "RoFoa = O(1/,/n), the variable K can be simplified as follows:

U O - = 1
K =BTX Rof, - Ton(8 X RoXB)(3 X Rof.) + O () .
nn
Also, from the definition of the matrix T in equation 45, we have

1 1
= = — —+ = — —
BTXTRoXB (BTXTRoXpB)*(a’FjRoFoa — |all3)

1
T22 . ? +O[P>(1/T}2)

Hence, putting everything together, and using Lemma K.4, we can write
87X Rof.

1
K=- E— J 1 EN )
(IngTROXﬁ)(aTFS’ROFOai lal2) 7 +op(1/77) (52)

Next, we will study the limit of 77 5. For this, we can use equation 45 to write
-1
(BTXTRXB)(a F RoFoa — |a|3)

1
Ty = ot Op(1/1%). (53)

Analysis of F3'. Noting that n = o(n'/4) and a" F] Ro f. = Op(1/1/n), we can simplify this term as follows:
Ey' = fIRoFZsF) Rofe = £ RoFo (2% + 1 (a(WoB)" + WoBa') +n°||8]3aa") Fj Ro f.
= £ RoFoX}Fg Rof. + op(1). (54)

Analysis of £}? and E3'. By expanding ¥ and UTU, we have
E3' = E}? = —f RoF;Z;F] RO UTU 'Ry f,
=—f/RoFo (2} + 1 (a(WoB)" + WoBa") + n°||Bl3aa" ) F{ RyUTU 'Ry f.
_ 20 | g0 g2 | g
in which
BV = —fTRoFo=4F RoUTU Rof., E; ) = —(fRoFoa)(8T Wy F{ RoUTU Ry f.),
E3' = —n(fTRoFoWoB)(a FJ RGUTU Rof,), E5 ™ = —?(fTRoFoa)(a' Fj RyUTU Ry f,).
These terms can be simplified as follows. By expanding UTU T, we have
B = — fTRoFo=$F] RyUTU Ry f.
= —f:ROFOE(}FJRO [Tn(Foa)(Foa)T + T12(Foa)(XB) T + T (XB)(Foa) " + T2 (XB8)(XB) " | Ro £+

= —Th (f:ROFOE%FJROXﬁ) (ﬁTXTROf*) + op(1),
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where the last line uses that f,' RoFoa = op(1) and f*TROFOE(}FJROFOa = op(1). Next, noting that n(f,) RoFoa) =
op(1) and BTWJFJRoUTU Ry f, = Op(1), we can write

B = = (£ RoFya)(8"W( Fg RyUTU ' Rof.) = 0p(1).
Using a similar argument, we have

EZ® = _p(fTRoFoWoB)(a FRyUTU Rof.)
= —nT1i2(f] RoFoWoB)(aF] RoFoa)(f, RoXB) + op(1).

Finally, again note that 7%(f] RoFoa)? = op(1). Thus,
By = —n’(f/ RoFoa)(a"Fg RoUTU 'Ry f.) = op(1).
Putting all together, we arrive at
Egl — E%Q = —T22 (f:RO:FOz%FJROX,B> (f;rROX/B>
—nTia2(f] RoFoWoB)(a Fg RoFoa)(f, RoXp) + op(1). (55)
Analysis of F22.  Once again, by expanding Xy and UTU ", we have
E?? = f/RyUTU 'RoF(Z;F] R\UTU Ry f,
= f'Ro {Tn(}-“oa)(Fofl)T + Tia(Foa)(XB) " + To1(XB)(Foa) " + TQQ(Xﬂ)(Xﬁ)T} RoFy
x [B% +1(a(WoB)" +WoBa') +n*|Bl3aa’]
% FJ Ro | T11(Foa) (Foa) " + T12(Foa) (XB) T + Tt (XB) (Foa) " + T2(XB)(XB) | Rof..
Note that £ RoFoa = Op(1/y/n) and n* = o(y/n). Hence,
E$ = (£ RoXB)? [To1(Foa) " + Toa(XB) ]
X R()FO [E% + n (a(Woﬁ)T + WoﬁaT) + 7]2Hﬁ||§aaT] F(—)rRO X |:T12(F0a) + TQQ(Xﬁ)} + O[p)(l)
= (f/RoXp)? [T222 (ﬂTXTRoFOE(}FoTR()Xﬂ) + 29T12Tos(a " F RoFoa) (BT W] FJ RoXp3)

+ I1813*Th(a F RoFoa)?| + oz (1), (56)

Analysis of £33 and E5'. Recalling the definition of K in equation 51, this term can be written as
Ey* = B3 =nK I RoFoSfa = nK f RoFo [2% +n (a(WoB)" + WoBa") +7°|B3aa’ | a
= K (£, RoFoWof3) + op(1), (57)

where the last line uses equation 52 and that ) ] RoFoa = op(1).

Analysis of £23 and E32. Again, recalling the definition of K in equation 51, we have
E3 = E3? = K f/RyUTU R(FoXsa
= —nK £ Ro | T11(Foa) (Foa) T+ Ti2(Foa) (XB) T + L1(XB)(Foa) + Ta2(XB)(XB) |
X [ROFOEL}G +1(B"Wg a)RoFoa + RoFgWo3) + 7?|8|3RoFoa)
_ pB0) 4 pBO) | p2e) | pB@)
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in which each term can be written as follows:
E20 — KTy (fTRoFoa) [aTFJ RoFo=%a +n(a" WoB)(a F] RoFoa)
+1n(a"Fg RoFoWop3) + 772||5||§(GTF0R0FOG)} = op(1),
where we have used that K = Op(1/9?), a" Wo8 = op(1), a'F§ RoFoWo3 = op(1), and 1 f,] Roa = op(1). Also,
Ey*® = 9K Ti5(f] RoFoa) [ﬁTXTROFOE(}a +n(a"WoB)(8"X RoFoa)
+ (B X TRFoWof3) + 772H,3||§(5TXTR0F00)} = op(1),

3(

with a very similar argument to that for ES b, Next,

By = KTy (fTReXB) a'FgRoFo=%a +n(a"WoB)(a"Fj RoFoa)
+n(a’Fg RogFoWof3) + 772||,5'H§(GTF0TROFOG)]
= =0’ KT |B8]3(£ RoXB)(a' Fj RoFoa) + op(1),
in which we have used the fact that T; = Op(1/7), and K = ©(1/7?). Finally, with a similar argument
EP® = KTy (£ ReXB) [ﬁTXTROFOE(}a +n(a"WoB)(B"X RoFoa)
+n(BTXTReFo W) + 772||ﬁ||3(5TXTR0Foa)}
=~ KTy (f, RoXB) (BT X "RoFoW,) + 0p(1).
Putting everything together, we have

Ezz3 = 7173KT21HBH%(fIROXﬁ)(aTFJROFOa) - WQKT22(f*TROXIB)(ﬁTXTﬁoFOWO/@) + op(1). (58)

Analysis of F33. This term can be analyzed by expanding X as follows:
EP =n’K%a’ (=% +1n (a(WoB)" + WoBa") +7*||Bl3aa"] a
=11’ K?a’ Bja + 27" K*(a"WoB) + i K2||BII3 = " K| B]13 + op (1), (59)
where we have used that K = Op(1/7?) and na’ W3 = op(1).

Putting Everything Together. Now, we can put together the results from previous sections to derive the limiting value of
E. First, we will explicitly derive the limit of each component. To do so, recall that using equation 3 and Lemma K.4, we
have

||BH% —P [(ZS(CE + US) + 03,1] ) f:ROXﬂ —P Cz,1wm2/¢
BTXTRoXB —p [¢(c?+02)+c2 ] ¢¥ma/¢, and a FJRoFoa —p ¥/¢ — Mp*my/¢°.

Also, using Lemma K.1, we have
FIRFoSGFIRoXB —p 2 M, and BTX ReFoS4F]RoXB —p [¢(c2 +02) + 21| M,
in which M := lim,, y.400 8, X RoFo E(}FJ R(X3,. This limit has been computed in Adlam & Pennington (2020a).

Using the diagram in the proof of Lemma K.4 that shows how the notations of Adlam & Pennington (2020a) match ours, we
find that E'35 in Adlam & Pennington (2020a, S148) equals our M. Thus, we find

M=1-"2_ (60)



A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks

where m), is the derivative of mo with respect to A. Also, again using K.1, we have
FRoFoWoB —p ¢2 M, and BTX RoFoWoB —p [p(c? +02) + 2 21 M,

in which M := limy, N d— o0 ﬁ* X7 RoFoW03,. This limit has been computed in Ba et al. (2022) Specifically, using Tg
in (C.16), and noting that their ®, translates to Fy/v N VN, their W, translates to WO , and their \ translates to 22 in our
notation, using Ba et al. (2022, Proposition 29) we find

M=1-—. (61)

Now, we can use equation 55, equation 56, equation 57, equation 58, and equation 59, respectively, to derive the following
expressions:

21 12 Ci,l - V/d — Mp*my /¢?
I i o 2, {_M M <w/¢ — Xp2my /2 — 1)] ’

2 _ ¢t oo (00— MPmy /¢ ) ( 0/ — MpPmy /¢ >2
B =sa@vora, MM <w/¢ xPmj?—1) T\ Gl —aEmjer —1) |

E13 _ E31 — _ Ciyl |: M :|
2 2 o2 +02)+c2 ) [U/o+M2/¢2—1]"

28 _ g i [_ 0/o =P/ M ]
2 P d(@ 402+, | (U)o —M2my/¢2 —1)2 T p/d— Mp2my /g% — 1

o = s [
2@+ o)+ (W) — MpPmy/e? —1)2 ]

Thus, summing these terms up, we conclude that

Ci,l (1-M)
d(c2+02)+cF )’

Ey — 3§ ' RoFS$F ) Rog —p (62)

wrapping up the derivation of the limiting value of E.

N.1.3. ANALYSIS OF Ej.

To analyze this term, first note that
Es=—2a"ps =29 RFuy = —2f RFu; — 2 ' FRu;.

With a simple order-wise analysis, the second term can be shown to be op(1). To analyze the first term, we will again use
the decomposition from equation 50. We can write —2f,] RFpy = Eél) + E§2) + Eég), in which E:g’) = -2p/ pys. We
will analyze these terms separately. For the first term, we have

E§” =—2p py = -2 f RoFo (c. s WoBs + 03,171 a) = —2c,1 £, RoFoWop3, + op(1),
where we have used that n f:RoFoa = op(1). Similarly, the second term can be written as
E§2) = —2p;uf =2fTRUTU R(F, (c* 1 W8, + cf 1 a)
=2f/Ro {TM(FOG)(FOG) + T12(Foa)(XB) " + T21(XB)(Foa) " + TQQ(X,B)(XB)T} RoFo (c.iWoBi + ¢Z 1na)
=2(f/RoXB) [T21(F0a) + Too(XB) T} oFo (e WoBs + ¢ 1na) + op(1)

=2(f/ RoXB) [03,177T21GTFJR0FOG + e 123 XTRoFoWoﬂ*} +op(1).
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Also, for the third term we can write
EY) = —2plps = —2Ka" (. WoB, + ¢ 11a) = —2¢2 10K + op(1).

Summing up, the limiting value for Ej3 is

4

_ C _
Es 4 2¢, 19 ' FoRoW N it oM —2]. 63
3+ 2¢19 FoRoWoBs+ —p HZ oD T, [ ] (63)

N.1.4. THE FINAL RESULT

Putting equations 46, 62, 63 together, we have

4
0*71

p(c +02) + 03,1

Lio(a(F)) — (03 + + 9 RFE4F] Rog — QC*JQTFOROWO@) —p (20 —1— M].

The test error of the untrained random features model can be written as
Lie(a(Fo)) = 02 + ¢ + 5 RoFEGF] Rog — 2¢,19 ' FoRoWof..

Hence, the improvement over the untrained random features model in terms of test error is equal to

4

~ R Cy, _
Ete(a(FO)) - Ete(a(F)) —p (15(03 n O'gl) n Cil [1 + M — QM] .

Hence, using equation 61 and equation 60, we find

4

Lic(a(Fo)) — Lie(a(F)) —p ! oms

O T 02) + 2 )i ON ©y

where 2711 < 0 using that tr(X T (FoF{ + Anl,)"'X)/d = 1¥my/¢. This concludes the proof for £ = 1.

N.2. Proof for / = 2

First, similar to the proof for £ = 1, we have

vy = wte[(mtel@) oc(Woze)| = 202(W0,6)02
N3 = B, (28)° = 0, and Ry = Eq, (2 8)" = 3(8]5 —p 3] 1 + &(c] + 02)],
Ty = [yte(afteﬁ) ] = 20*,2(/335)2 P 2@,10*,27

in which we have used Lemma C.1. Thus, using equation 43 and equation 44, we have

B¢ =% +1(a(WoB) + (WoB)a') + 2323 ((VNa*2)(WoB)*2T + (WoB)**(VNa™T))

3c3n’ o
+7?|8ll3aa’ + 2 II/J'H 5(VNa*?)(VNa*T), and
pny = u(} + 03,177(1 + 2020*710*,277 a’

Also, from Section K.2, we have R = Rg — RyUTU 'Ry, where the matrix T~! is defined in equation 33 and
U = [Foa | Fpa®?>V/N | X3 | (X3)°? ]. Using the analysis in Section K.2.1, we note that

a’ (FJRoFy —Da 0 %7 0 i
_ 1
0 Na**T(FJRoF, — I)a®? 0 oo
~ _ ~ 1
T = a5 0 (XB)"Ro(XB) +A,
|0 0 RA)TTR(XB)
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in which the elements of A are Op(1/4/n). Hence, the matrix T = [T} ;] has entries

T = aT(FJRj)FO “Ta 7712 (aT(F{RoFy — I)i)%(Xﬂ)TRO(Xﬂ)) +orlL/r),

fo =t = *% (a7 (FJ RoFy - I)jz)((Xﬁ)TRo(Xﬁ)) ot/

T2 = Na°2T(F] f‘ioFo “Ta? céff " (Na°2T (F] RoFo — I)aiz)Q((f{B)O?TRO(Xﬁ)O?) + o (N/),
for =t = _\/77N (Na*2T (F§ RoF - I)a1°2)((Xﬁ)°2TRo(XB)°2) ot/
N N R e AT i e T

Ty=— L N ! ~Hoe(N/7),

(XB)OQTRO(Xﬁ)o2 02774 (NaOQT(FJROFO _ I)GOQT)((Xﬁ)o2TRO(X6)o2)

and its other elements are Op(1/+/n).

Next, we will study the terms Fy = Eg,_ .. (y2), B2 = @' X¢a, and F3 = —2a " py that appear in the decomposition of
the test error in equation 41.

N.2.1. ANALYSIS OF F;

Similar to the ¢ = 1 case, we have

2
Ey =E(yi,) = 02 + Bq,, (0.(8] we))” =02 + 2. (65)

N.2.2. ANALYSIS OF Ej
Recall that using equation 48, we have
Ey = fIRFS;F RS, +2¢ RFS;F RS, + ¢ RFZ;F Re.

First, note that e "RFX ¢F "R f, = op(1) using a simple order-wise argument. Using an argument similar to the one for
¢ = 1, the third term can be written as e ' RFXF'Re = sTROFOE(}FOTRo e+ op(1).

Next, we will study the term f] RFX fFTR f.. We can write

FTRS. = (Fo+ n(XB)a” +ex’(X)?a™T) " (Ro ~ RyUTU Ry) f.

=F)Rof. —F RoUTU 'Ry f, + nKia + con’*Koa?, (66)
N—_—— N~ N——
P1 P2 P3 P4

in which K7 and K5 are defined as
K1 = |(XB) Rof. — (XB) RoUTU Rof.| and K» = [(XB) Rof. — (XB)? ReUTU Rof. .

Usign this notation, we have f, RFX;F'Rf, = >
will compute each term separately.

ijel] Eéj , where E;j =p/x fpjT. In the following sections, we

Preliminary Computations. First, we will analyze K; and K. Recall that

UTU = Ty (Foa)(Foa) " + Tis(Foa)(XB)T + NTys (Foa®) (Foa®?) ' + VNTy (Foa?) (X8)°%7
+ T3 (XB)(Foa) " + T53(XB)(XB) " + VNTi2(XB)** (Foa®") + T (XB)**(XB)* .
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Thus, we have
(X8) "RoUTU Rof. = Tus [(X8) "Ro(XB)| - |(XB) "Rof.| + 0z (1/v/n),
which gives
1 BTXTR{ f

BT TR, ey (xg R k) T o

Similarly, for K we have
(X8)** TRoUTU" Rof, = Tua [(X8)™*  Ro(X8)] - [(XB)** Ro .| + Ox(1/v/n),

which gives

Ky =— ﬁv i XD RS, —— +op(1/7%). (68)
et (Na*2T (FgRoFo — I)a*2T)((X3)°2TRo(XB)°?)
Analysis of E3'. For this term, by expanding X ¢, we can write
Ey' = fIReFoSsF| Rof. = £/ RoFoZ}F) Rof. + op(1). (69)
This holds because nf, RoFoa = op(1), and %fJROFO(\/ﬁaOQ) = op(1).
Analysis of £2% and E3'. We have E3! = F1? = — fT RoFoXF] RoyUTU " Ry f.. Using the expression for T, we

can write
TllaTFJROf* + T13(X/8)TRO~f*
_ T22\/Nao2TFTROf* +T24 X/@)OZTROf*
TU'Rof, = (3 ~( - ’ (70)
T31(1TF0TR0f* + T33(X/8)TROf*
T42\/N(IO2TF8—ROf* + T44(XB)O2TROf*

On the other hand, by expanding U and X ¢, we similarly have
(£ RoFoWoB)(a"Fg RoFoa)
(FTRoFo,F] RoU) — %( *TROFO(WOﬁ_>°2)((\/NGO_Q)TNFJROFO(\/NGOQ)) . 71
fIRoFoEGF RoX 0
FIRoFZ4F ] Ro(XB)°2
This gives

E3' = B3 = — Tuan(f.RoFoWoB)(a F§ RoFoa)((X8) "Ro f,)

. 26%772T24
VN
— Ts3(f.RoFo33F) RoX8)((XB) Rofy)

(£ RoFo(Wo)**)((VNa*)"Fg RoFo(VNa*))((X8)* R f.)

— T (£ RoFoZ4F ] Ro(XB3)%)((XB)°* TR f.) + op(1). (72)

Analysis of F3% and E5'. Recalling equation 67, by expanding X ¢ we have
Ey* = B3 = nK £/ RoFoZra = n” K1 (£ RoFoWoB3) + op(1), (73)
in which we have used that K1 = Op(1/7?).
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Analysis of E3* and F3'. Recalling equation 68, by expanding X ; we have
Byt = B3' = con’ Ko f ) RoF X pa®® = op(1), (74)
in which we have used that * K3 /N = Op(1).

Analysis of £22.  This term is equal to E2%2 = f RoUTU ' RoFoXsF] RyUTU ' Ry f,. Using equation 70, we can
write

FiRoUTU Ry f. = [Tuia FRof. + T13(XB8) 'Rof.] Fj RoFoa
+ [ToaVNa®®TF  Rof. + T2a(XB)* TRo ] Fg RoFo(VNa™)
+ [T51a"Fg Rof. + T33(X8) "Rof.] Fg Ro X
+ [TV Na*?TF] Rof. + Tua(XB)°? "Rof.] F Ro(X3)%%. (75)

Further, by expanding X ¢, we have
B2 = 21 4 p2O) 4 g26) 4 20 4 0p(1), (76)
in which

B3V = [T55(X8) "Ro f.)? (BTX ReFoE4F] RoXp)
+ [Tua(XB)** TRo £.)° (XB)? TReFoZF ) Ro(X3)%),

B3 = 2T3Tss - (XB) Rof.)*(aT F RoFoa)(8T W] FJ ReX ),

é 462 > Ve o >, o D o o D Y o
E2G) _ %T%TM((X[%) 2TRo £, )2 ((\/ﬁa TR RoFo(vVNa 2)) ((WOB) 2F] Ro(X3) 2),
B = ?T%18]3 (XB) Rof.)? (T F§ RoFoa)?
302 4 v o N 2 o D o 2
+ 22131815 (XB) ™ Rof.) ((VNa)TF] ReFo(vVNa?)) .
Analysis of F2° and E3%. We have E3® = E3? = —nKia'3;FJRoUTU Ryf,. Recall that the vector

FJ RoUTU Ry f, has been computed in equation 75. With this, we have
E3 =E¥ = — K\ T33(8" X "Ro f.) (BT Wy F] RoXp)
— K1 T15|8/13(a"F{ RoFoa)(BTX R f.) + op(1), 7

in which we used that n? K; = Op(1) and nTy3 = Op(1).

Analysis of E%‘i and E32.  This term can be written as Fay = Ego = —can’K2a°2" £ F RoUTU ' Ry f,. The vector
FJ RoUTU Ry f, has been computed in equation 75. By expanding X ¢, we have

EX - E2 - _26%774% ) ((Woﬂ)ozTFJRO(X,@)OQ) . ((X,@)OQTRo,f*)
3,6 4 ~ _
_ 3cdn ?3%4”5“2 ((VNa*?)TF{ RoFo(VNa2)) - (XB)2 Rof. ) + o (1).

Now, noting that K = Op(N/n*) from equation 68 and ||(Wo3)°?|2 = Op(1/v/N), we find that the first term is op(1)

and we have

 33nS Ky To4| B3
N3/2

24 _ 42
E2 _E2 -

((VNa*)TR§RoFo(VNa™)) - (XB)*TRof.) +0x(1).  (78)
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Analysis of E33. Similar to the £ = 1 case, this term can be written as

By’ = n’Kia' Zya = ' KT8] + 0s(1), (79)
noting that K7 = Op(1/n?).
Analysis of F3* and E33. By expanding X ¢, we readily arrive at

E§’4 = E§3 = 773K1K2020T2f002 = OIP’(l)- (80)

Analysis of E3*. This term can be written as F3* = c3n*K3a°?" £;a°2. By expanding X and noting that Ky =
Op(N/n*), we can write

3cAnS K2
Byt = % + op(1). (81)

Putting Everything Together. Now, we can use the results derived above to compute the limiting value of E5. Recall that
from Lemma K.7 and Lemma K.8 we have

ymy 3¢m1
¢’ ¢

Also using an argument similar to the argument in the proof of Lemma K.7 and Lemma K.8, we have

and (XB)?TRo(XB)? —p

[0(c + 02) + 3 4)%

Hy(XB.) 'RoFoZ3Fg Ro(XB)* =, 2¢7 | M, and  (XB)*?TRoFoS3F; Ro(X8)*? = 3M[6(c +02) + 2, )%,
in which M = lim,, ¥ d— o0 % tr [ROFOE[}FJRO} . This term has been computed in Adlam & Pennington (2020a). Using
the diagram in the proof of Lemma K.4 that shows how the notations of Adlam & Pennington (2020a) match ours, we find
that we can use (S142) with 0. = 0 in Adlam & Pennington (2020a), to find

=--1-1, (82)

where m/] is the derivative of m; with respect to .

For brevity, we will define A := lim,, n,4— o0 [(\/JV a*?")F| ROFO(\/NaOQ)] . With this, equations 72, 73, 74, 76, 77, 78,
79, 80, and 81 give

EF =FE3 —p

ot [M< /é— M /¢ ) B M] L Al M
o(c2 +02) 4¢3, /¢ — Mp>my /¢ — 1 3[p(c2 +02) + 2]
03,1 M
N+ o)+ 2, Pld— MPmy/¢? — 1’

E3? =FE3' —p — B3 =FE3' —p 0,

as well as
2 y () — M ma )P /¢ — MpPmy /e \°
B or sayoa e, MM (w/qs NP — 1> * (wm P R 1>
03,103,2 ~ 4A?
TET oD + P l“M/ STy el
E2 g3 e { M /o= XPma /P }
2T (@ o)+ U)o - MPmyfeR — 1 (0)d— MpPmy[¢? — 1)2 ]
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and also
ct 4A i 1
E24 — E42 N _ *,15%,2 _ , E33 N *, 1 |: ,
T T e(@ o) + 2P [3(A—1)? P e+ o)+ (/6 — AP f¢? — 1)2
ct 2 4
E34 — E43 N 0’ El44 — E44 N *, 1%, 2 |: _ :| ,
2T T (@ 02) + 22 [3(A - 1)

respectively. Putting these together, the component 5 can be written as
03,1(1—M) 403,103,2(1 - M)
Pl +o2)+ciy  3Blo(cd+o2)+ P

Ey — g ' RoFE$F Rog —p (83)

N.2.3. ANALYSIS OF Ej.
To analyze this component, first note that
E3=-2a"pus =29 RFuy = —2f RFpus — 2¢ ' RFpy.

Using a simple order-wise analysis, it can be shown that the second term is op(1). Now, recalling equation 66 we write
Ey=Y", E?(f), where Eéz) = —2p/ py. By expanding py and recalling that u$ = ¢, 1 Wo03, we have

ES) = —2£T RoFop} + op(1). (84)
Next, recall that the matrix FJ RoUTU T Ry £, is analyzed in equation 75. Using this, and by expanding g £, We get
EY) = 2(fTReXB) [T33(MOfTFoTRoX5) + 03,1T1377(GTFJROFOG)}

2 2
deacsy 1 i 2Toam

VN

Similarly, by expanding ¢, we arrive at

(VNa™) P RoFo(VNa™®)| ((X8)°2 Rof. ) + ox(1). (85)

40303’10*7217”{2
N
Similar to the computation for E5, we can derive the limiting values of the components in F5 as

ct _ 24 ctic? 8A
E(2)—> *,1 2N — . *,16%,2 c ’
ST g2 o) + 2, 1)o@ +o2)+c2 P \3(A-1)

3)

EY) = -2 P K + 0p(1), and ESY = - + op(1).

A—
ct 2 c; 1C 8
E(3) N *,1 ( _ > 7 E(4) N *,15%,2 ( _ > '
A ) N P e+ o)+ \3(A 1)
Putting these together, we have
cil (2]\_4 - 2) 80‘*{102}2

— . 86
Mo+, @ tod)+ P (80)

B +2f] RoFop} —p

N.2.4. THE FINAL RESULT

Putting equations 65, 83, and 86, we have
ci’l(l + M —2M) 40‘*1’103’2(1 + M)

fel@lfo) = Lul@®) 2o, Y aE t ot 1 2P

where Li.(a(Fo)) is the test error of the untrained random feature model. Further, using equation 60, equation 61, and
equation 82, we get

4 4 2
Cil Omeg 40*,10*,2 om

(d(c2+02)+c2)m} 0N 3[p(c2 +02) + 2 2m3 X

Lic(a(Fy)) — Lio(a(F)) —p — (87)

) ) .
Note that 5’/’\1, gjf < 0, concluding the proof.
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O. Proofs of Supplementary Lemmas

O.1. Proof of Lemma C.3

Recalling a; <" N(0,1/N) and (z;, 3)| 8 5 N(0, ||3]|3), claims (a) and (b) follow from standard Gaussian maximal

inequalities (van der Vaart & Wellner, 2013, Section 2.2) and from ||3]|3 = Op(1); the latter follows by writing 3 =
n 11X (0,(XB,) +¢), where ¢ = (¢1,...,¢,) " and using our distributional assumptions on X, ¢, as well as Condition
2.2.

By Vershynin (2012, Theorem 5.39) and Bai & Silverstein (2010, Corollary A.21), we have
[WoW{ |lops |(WoWg )°?[lop = Op(1). Also, by Vershynin (2018, Theorem 3.4.6) and Gaussian maximal in-

equalities van der Vaart & Wellner (2013, Section 2.2), we have maxj<;x<;<n{(Wo,i, Wo ;) = Op(n=2 log% n). For
k>3,

I(WoWg)*[lop < [(WoWq )™ —Tnllop +1 < [[(WoWg )** — Lyl +1
1
2

< Y (wouwo)™ | +1=o0p(1)+1.
1<iAj<N

Therefore,

i, < 0 {[WoW g | (WoWT ) o 50 [ (W W) | = O (1),

Claim (d) is standard, see e.g. Vershynin (2018, Theorem 4.4.5).

0.2. Proof of Lemma K.1

We can write

n

VT(ﬁ —C14) = nilvT(XT(U*(X,B*) +e))—ce1fBi = n! Z(VTZCiO'*(SCZTﬁ*) - c*JvTﬁ*) +nvTe.

i=1

Now n~1vTe ~ N(0,02|v||3)/n —p 0. Moreover, by Condition 2.4, we can write o, (x, 3) = cs0 + cx1®, By +
(P>10*)(w;-r B, ), where conditional on 3,, (P>10*)(:c;-'—ﬁ*) is orthogonal in L? to the constant function and to iBZT Bs.
Hence the first sum above equals

n n n
nle, ov’ Z @i +n e, v (Z xx, — I) Be+n! Z vz (Psi0,)(x] B).
i=1 i=1

i=1

For the first term, n = tc, v D00 @; ~ n"eao - N(0,n||v]|3) —p 0. The second term is ¢, ; times a sample mean of
i.i.d. random variables of the form v (z;z, — 1)3,, which have zero mean by the Gaussianity of z;, and for which all

moments are finite. Hence, by the weak law of large numbers, this term converges to zero in probability.

Similarly, the third term is a sample mean of i.i.d. random variables of the form v " z; (P>10y) (:c;r B3.), which have zero
mean by the Gaussianity of x; and Lemma C.1, and whose second moments are finite since o, is Lipschitz. Hence, by the
weak law of large numbers, this term also converges to zero in probability. This finishes the proof of the first claim.

Next, the second statement follows from Ba et al. (2022, Lemma 18). While that work has slightly different assumptions
on the teacher function f,, it is straightforward to check that their proof goes through unchanged under our assumptions.
Specifically, their proof requires that « — fi(x) = J*(ZBT,B*) is O(1)-Lipschitz, which holds in our case because o is
O(1)-Lipschitz, and || Bs|l2 = Op(1).
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0.3. Proof of Lemma K.2

By plugging in & into the training loss, we find

1 2 . 1.
Loo(F) =~y - Fa|3+ \al3 = *||y\|2 -= TFau + - a' (F'F+ Anly)a
1., . 1+ - 1. _ -
=—|gl3 - -9 Fa = *Hy”z - = TF(FTF + /\nIN) 'F'y
n n n n
1. . 1. -
= ﬁ||y||§ T TFFT(FFT + )‘nln)ily

1 1
— 5”17”3 - EQT(FFT + ML) (FFT + L) g+ g (FF" + Anl,) !

=Xy (FF" +nl,) 'y

which proves the lemma.

0.4. Proof of Lemma K.3

To prove the concentration of this term around its mean, we will use the generalized Hanson-Wright inequality (Sambale,
2023, Theorem 2.1) for a-subexponential random variables. Note that, by definition, if Z is a Gaussian random variable,
H,(Z) is 2/p-subexponential (see the definition in equation (1.1) of Sambale (2023) and for these variables the Orlicz norm
of order 2/p is bounded (see equation (1.3) of Sambale (2023)). Also note that ||D||g, < /n||D||op = Op(1/y/n). Thus,

using Sambale (2023, Theorem 2.1) and setting ¢ = IO\g}) we find

P (\QWD 9(2) ~ Elg(Z)"D ¢(2)]| = 1%‘) < 2exp (~Cmin {log(n), (v logn)'/7 } ).

where C' > 0 is some constant. This concludes the proof.

0.5. Proof of Lemma K.4

First, we show that switching from wy ; “E Unif (S?71) to iy ; vt N(0, 21,) will not change the limit of the terms
%Etr(XTROX) and Etr(Ry) which will appear later in the proof. First, we define W = [t 1, , o n] ",

1 1 - N N
D:diag( - N >;W0:dDW07F0:U(XWS—)7
[[wo,1]2 [[wo, N [|2

and ﬁo = (FoF] + Anl,)™?
Then,

tr [Ro - f{o} = ltr [(FOFJ L) — (FoF] + )\nIn)_l}

= ltr [(FOFJ + L) "L (FoF] — FoR] ) (FoF —&-)\nIn)_l}

e ) - c -
< tr(FoF| + AnL,) H[(FoF] + AnL,) ™ Hlop|[FoFo — FoFollop < gHFoFo — FoFol[op-

Now, using the Gaussian equivalence from Appendix J, we can replace F and Fy with Fy = 01XW0 4+ ¢~1Z and
Fy = c1XW0 + c>17Z, respectively, without changing the limit. With this, we have

F(JFOT — PA‘OF(—)F = C%X(WOWJ — WQWJ)XT + clc>1X(W0 — VAVQ)TZT + clc>1Z(W0 — Wo)XT
Now,

HWOW(—)F - VA"/.0‘7A‘/.(—)r||013 < ”IN - D”OPHWOW(—JFHOP(”DHOP + 1)-
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Note that [WoW( [lop = Op(1), [Dflop = Oe(1), and |[Iy — Dllop = o0p(1). Thus [[WoWg — WoW{ [lop =
op(1). Also, similarly, |[Wo — Wyllop = op(1). Hence, noting that [ X|lop and ||Z]|op are both Op(+/N), we have
LIFgF] — FoF{ [lop —p 0. This implies that | tr[Ro — Ro]| = op(1). Also,

1 fere =1 1 [evze = _ 2 XX T,
‘tr |:XTR0X1| — Etr [XTR()X:| ’ S |tI‘[R(] — R()H”% —

p p 0.

Finally, we can prove the required claims as follows:

(a) Since B, ~ N(0, 11), we have 3] X "RoX 8, = I Etr(XTR(X) + op(1), by the Hanson-Wright inequality. Note
that by the argument above, we can assume that W ; FEEN (0, %Id) without changing the limiting trace. Further, from

Adlam & Pennington (2020a, Proposition 1), see also Adlam et al. (2022), we have % ]Etr(XTROX) — %mg; see the
discussion at the end of this proof for the detailed explanation. Now, we arrive at the conclusion by applying Lemma
K.1.

(b) Since a ~ N(0, x-Iy), we have a"Fj RoFoa — |lal|} =  tr (Fg RoFo) — 1 + op(1) by the Hanson-Wright
inequality. Moreover,

FJRoFy = F]Fo(F] Fo+ Anly)™?

= (FgFo + Iy — AnIy)(FgFo + AnIy) ™' = Iy — M(Fg Fo + Anly) L.
Hence, ﬁ tr (FOTROFO) —1= —)‘Wn tr(FOTFO + /\nIN)’l. From the argument above, we can assume that W ; L
N(0, %Id) without changing the limiting trace. It follows from Adlam & Pennington (2020a, Proposition 1) that
EtrRo — %ml; again see the discussion at the end of this proof for the detailed explanation. Note that lim IE tr Ry is
the limiting Stieltjes transform of FoFJ . Hence, mm; = im E tr(F | Fo + AnIy)~! is the limiting companion Stieltjes
transform of my which is given by

my = %ml — (1 — ¢> l (88)
¢ v/ A

This concludes the proof.

For the reader’s convenience, we provide the following diagram that shows how the notations of Adlam & Pennington
(2020a) (left) match (<) ours (right):

ng < d, ny < N, m <& n, b, = P, 1),
xT e R™X70 & X c RnXd, FT € RmXn o Fo € Ran7 ow, =0,

1 1 _
—KOm/n) "t = —F F+ AL, &Ry =FF +nl,, (&c, ned+dl,
ny ny

1 N_ _ 1 N R
n=—ErK'!'em =—EtrRy, m=—EtrX'XK!<m,=—Etr XX R,.
m n mng nd

0.6. Proof of Lemma K.5

Define X = X — Xuu, which implies}( 1 Xwu due to the Gaussianity of X. Based on the Gaussian equivalence from
Appendix J, we can replace Fo with c; XW ] + c1Z, where Z € R"*? is an independent random matrix with N(0, 1)
entries, without changing the conclusion. Hence, from now on, we write Fo = ¢; XWOT + ¢>1Z. Further, we define

Fo=cXW] +co1Z. (89)

Thus, by the definition oif X, f‘o =Fy— chu(Wou)T. As a consequence, we also have FOFOT = Fof‘OT +VDVT,
where V = [FoWou Xu] € R"*? and

0 C1
D= .
[01 i |W ou||§}
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Noting that D is invertible, and using the Woodbury formula, with Ro = (FOFJ + AnL,)~ !, we find
Ro =Ry —RoV(D '+ VTR, V) 'VTR,. (90)
Now, we can write
H,(Xu) " RoH,(Xu) = Hy(Xu) RoH,(Xu) — Hy(Xu) " RoV(D™! + VIR V) 'V R H,(Xu).
Next, we can analyze each term in the above sum separately.

The first term on the right hand side converges to zero by using Lemma K.3 to prove the concentration of this term around
its mean and noting that the mean is zero using the orthogonality property of Hermite polynomials (Lemma C.1).

To analyze the second term, we first study the matrix K = (D1 + VTROV)_l, writing

UTWJFJR()F()WQU — ||W0’UJ||§ UTWJF(—)I—R()X’UJ — %

K'=D'+V'RyV)= 9T 0 0%
( + 0 ) UTXTR()F()W()U—% ’LLTXTR()X’UJ

It can readily verified that all elements in this matrix are Op(1) by checking the order of the operator and Euclidean norms.
Next, we analyze the terms in the expression

H,(Xu) "RoVKV R H,(Xu) = [K]; 1 H,(Xu) "Ro(FoWou)(FoWou) ' RoH,(Xu)
+ K12 Hy(Xu) "Ro(FoWou)(Xu) " Ro Hp(Xu)
+ [K]o1 Hy(Xu) "R (Xu) (FoWou) " Ro H,(Xu)
+ Koo Hy(Xu) "Ry (Xu) (Xu) "Ro H, (Xu).

Without loss of generality, we can assume that p # 1.

* First Term. Note that H,(Xwu)" and H,(Xu) are orthogonal in L? by the properties of the Her-
mite polynomials, and conditional on w, they are independent of RO(FOWOu)(FOWOU)TRO. Moreover,
[Ro(FoWou)(FoWou) "Rollop = Op(1/n). Thus, by using Lemma K.3, this term converges to zero.

+ Second Term. Similar to the argument above, we can show that (Xu) RoH,(Xu) converges to zero. Also, by
analyzing the operator norms, we have H,(Xu) R (FoWou) = O(1). This implies that the second term converges
to zero.

* Third Term. First, note that by a simple order-wise analysis, H,, (Xu) TRo(Xu) = Op(1). Now, we have H,(Xu) is
independent of (FoWou)T R and ||(FoWou) T Ro|2 = Op(1/4/n). The term (FoWou) T RoH,(Xu) converges
to zero in probability by noting that Hp(Xu) is mean zero for p # 0. For the p = 0 case, we can use an orthogonality
invariance argument identical to the one used to analyze equation 34.

* Fourth Term. This term also converges to zero because (XU)TROHP(Xu) converges to zero, as argued above.
Putting everything together, the proof is completed.

0.7. Proof of Lemma K.6
We will prove part (a) first. To do this, we will first handle the cases where p = 0 and p = 1.

For p = 0, we have \/N Ho(é*)]::ioFoa"2 = \/N . This is identical to the second term in equation 34 and it is shown to be
op(1)

For p = 1, we need to analyze v N Hy (0,)RoFoa®? = VNB] X TRoFa°?. Note that 8, ~ N(0, 11,) is independent of
VNXTR(Fya°? and

IVNXTRoFoa®|2 < VN[ X|lop - [ Rollop - [[Follop - [|a®®[|2 = Op(1).

47



A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks

Thus, we can conclude that v N H; (é*)RoFoa°2 — 0 in probability.

To analyze the case where p > 1, we first define X=X- é*ﬁj. By construction, we have X JI: é*. As in the proof
of Lemma K.5, Based on the Gaussian equivalence from Appendix J, we can replace Fo with ¢;XW{ + ¢~ Z in our
computations without changing the limiting result, where Z € R™*? is an independent random matrix with N(0, 1) entries.
Thus, from now on, we denote Fy = (:1)~(W0T + ¢>17Z. We define f‘o as in equation 89. Thus, Fo =Fy— clé*(Woﬁ*)T.
As a consequence, we can write FoF] = FoFJ + VDV, where V = [F;W 8, 6,] € R"*? and

0 c
D=1 qiws.i]
Using the Woodbury formula, we find that equation 90 still holds. Now, we can write
VNH,(0,) RoFya®? oD
= VNH,(0,) " RoFoa°® — VNH,(6,) ' RoV(D ' + VIR,V) 'V R(Fa°?
= VNH,(6,) "Ro(Fo + c10,(WoB8,) ")a®
—VNH,(0,) TR V(D' + VIRGV) 'V R (Fo + ¢10,(Wo3,) " )a°2.

Now, we can analyze each term in the above sum separately.

Term 1. Note that by a simple orderwise analysis,

IVN RoF0a*?|lop < VN|[Rollop[Folloplla®?|lz = O(1/VN).
We have ||H,(6,)|]2 = Op(vV/N), E[H,(8,)] = 0, and H,(6,) has independent entries. Also H,(6,) I RoFoa°2. Thus,
\/NHp(é*)Tf{()ﬁ‘oaOQ —p 0.

We now need to analyze N H,(8,) Ro6,3] W] a°®. Note that H,(,) Ro8, = Op(1) by a simple order analysis
of the norms. We also have /N, ﬂ*TWOT a®? —p 0, because B, ~ N(0, éId) is independent of the norm bounded vector
VNW{ a2

Term 2. To analyze the second term, we first study the matrix K = (D! + VTf{OV)_lz

K1 — (D' + VTReV) = | % WO I RFoWoB. — [WopL|l3 8] WoFiRof. -
0 IB*TXTROFOWOﬁ* _ 1 ﬁ*TXTROH*

Cc1

By orderwise analysis, all elements in this matrix converge to deterministic Op(1) values in probability. We write the second
term in equation 91 as follows:

VNH,(6,)"RyVKV T RoF(a°?

= [K]1,1Hp(0:) "Ro(FoWoB3,) (FoWo3,) "RoFo(VNa®?)
+ [K]1,2H,(0.) TRo(FoWo3,)0, RoFo(VNa?)

+ K21 Hy(0,) "Ro(0,)(FoWoB,) "RoFo(VNa®?)

+ K22 H,y(0,) "Ro(6,)0] RoFo(VNa®?).

In the sum above, we will show that each term converges to zero.

« First term: By orderwise analysis, we have |Ro(FoWo8,)|lop = Op(1/v/N). Further, H,(6,) is independent of it
(only considering the randomness in X) with mean zero and || H,,(6,)||2 = Op(v/N). This implies that

Hp(é*)TRO(ﬁ‘OWOIB*) —p 0. 92)

We can use a simple order argument to show that v/ N (f‘()W()ﬁ*)Tf{()F()aOQ = Op(1). Thus, the first term converges
to zero.
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+ Second term: For this term, we use that H,(6,) T Ro(FoW8,) —p 0. We can also use an orderwise analysis to
prove that vVN(6,) T RoFga®? = Op(1). This proves that the second term also converges to zero.

« Third term: By a simple orderwise analysis, we have v N(FoWo3,)T RoFoa®® = Op(1). To show that the third
term converges to zero, it is enough to show that H,(0,) "R (0,) — p 0, which is true for p # 1 by using Lemma K.3
and the orthogonality property of Hermite polynomials (Lemma C.1).

« Fourth term: By a simple orderwise analysis, we have v/N. 0~*T RoFpa®? = Op(1). Again, to show that the fourth term
converges to zero, it is enough to show that H. p(O*)TRO(O*) —p 0, which is true for p # 1 as argued above.

Putting everything together, part (a) follows. The proof for part (b) is identical and omitted.

0.8. Proof of Lemma K.7

We will study the cases where s = 1 and s = 2 separately. For s = 1, we can use Lemma K.1 to show that Hp(é*)f{oé =

cx 1 Hy(0,) R0, + 0p(1). Also, by Lemma K.5, we have H,,(6,)Rq(6,) = o(1) in probability if p # 1, which proves the
lemma.

For the case s = 2, we define 3 = 3/|3|)> and write
H,(6.)Ro(0)7 = |1B]13 Hy(6.)Ro(XB)*? = 1B]13 Hy(6.)RoH2(XB) + 0p(1).

Now, we define B, = m and set X = X — X33T — X3, 3]. By construction, we have X I X3, 6,

Based on the Gaussian equivalence from Appendix J, we can again replace Fo with Fo = 01XW0 + ¢>12Z, where
Z € R"*4 is an independent random matrix with N(0, 1) entries. Again, we define Fy as in equation 89. Thus, Fy =
Fo — chﬂ(Woﬂ) — 1XB.(WoBL)T. As a consequence, we also have FoF] = FoF] + VDV, where V =
(X8 XB. FoWo8 FoWyB.] € RnX4 nd

A(WoB,WoB) G (WoB,WoB1) ¢ 0
A (WoB, WoBL) G(WoBL, WoBL) 0 o
- c1 0 0 0
0 c1 0 0
Using the Woodbury formula, we find that equation 90 still holds. We can write
H,(0.) "RoHa(XB) =H,(6.) "RoHa(X3) (93)

— H,(0,) "RoV(D™' + VIRo V) 'V R H>(XB3).
The first term converges to zero for any p # 2, analogously to the argument in Section K.2.1 for the term (1,2).

To prove that the second term will also converge to zero, we first observe that the elements of K = (D1 + VTPA{OV)_1
are all Op(1). The second term will involve quantities of the form [K]i}ij(H*)TRo'uivaROHg(X,@), where v;, for

i €4{1,2,3,4}, is the i-th column of the matrix V = [XB X3, FoWy3 IAT‘OWO,BJ_]. We can argue that all these
terms converge to zero, as follows:

* The terms where j = 1 converge to zero because (X,@)TROH Q(X,é) converges to zero analogously to the argument
in Section K.2.1 for the term (1,2). The same argument applies to the terms where j = 2, via the convergence of
(XB1) "RoHy(X/3) to zero.

e For j = 3,4, since Hy (X,@) is independent of R, [f‘OWOB Fowoﬁﬂ, and has zero-mean i.i.d. entries, it also
follows that these entries converge to zero in probability.

Finally we study H,(0,)" Ro6°2, by analyzing the terms in equation 93 for p = 2.
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For Hy(0,)T RoH,(X3), since Hy(6,), Ho(X3) are independent of Ry, it follows from Lemma K.3, as in the analysis
of term (1,2) in Section K.2, that H5(0,) " RoH2(X3) — ERy - EH5(0,) " H2(X3) —p 0. Now notice that F is left-
orthogonally invariant in distribution, and thus Rg =4 ORoO ", where O is uniformly distributed over the Haar measure
of n-dimensional orthogonal matrices, independently of all other randomness. Hence, ERy = E tr RyI,,/n. Moreover,
from the Woodbury formula in equation 25,

[trRo — trRo| < [tr RoV(D ™' + VIRoV) 'V Rg| < [tr(D ™' + VI ReV) 'V TV - |[Ro|2,.
From our previous analysis and as the entries of VT V are Op(n), it follows that the first term is Op(n); whereas HRO ng =

O(1/n?). Hence, [trRg — tr f{0| —p 0, and thus by the bounded convergence theorem |E tr Ry — Etr R0| —p 0.
Moreover, we have already argued in the proof of Lemma K.4 that E tr Ry — ¥my/¢.

Further, by Lemmas C.1 and K.1,

AT (KA — -T ST 3y _ TAV2 _ (8/8)* _ i
EHQ(B*) HQ(XIB) =n EHQ(wl ﬁ*)HQ(wl 16) - 271]}3(/6* ﬁ) =2nE ||6||2 - 2n¢(cz + o_g) + Cil + OP(l)'
This shows that 9
PYmy Cil

Hy(0,) " RoH»(XB) —p 2

¢ d(c2+o2)+ciy’

Next, we consider H(8,) TRoV with V = [X3 X8, FoWo3 FyW,3,]. For the first two entries of the vector
H(6,) TRV, an analysis very similar to the one above for H,(0, )T RoH,(X/3) shows that they converge to zero in
probability. For the last two entries, since Hg(é*) is independent of Ry [FOWOB FoW,3 1 ], and has zero-mean
i.i.d. entries, it also follows that these entries converge to zero in probability. Moreover, the limiting entries of (D~ +
VTROV) ~! have been shown to be bounded in our above analysis. Hence, the second term converges to zero in probability.

Now, note that 3 = B/||3||2. From Lemma K.1, ||8[|> —=p ¢(c? + 02) + c2 . Hence,

hmy CElHB”%

¢ d(c2+02)+ci,

20371wm1

d) )

Hy(8,) "RoHy(XB) = 2 +op(1) —p

which concludes the proof.

0.9. Proof of Lemma K.8

As in the proof of Lemma K.6, we define X=X- éﬁT. By construction, we have X 1 6. As in the proof of Lemma K.5,
based on the Gaussian equivalence from Appendix J, we can replace Fo with ¢; XW{] + ¢~1Z in our computations without
changing the limiting result, where Z € R™*¢ is an independent random matrix with N(0, 1) entries. Thus, from now on,
we denote Fy = chW(—)r + ¢>17Z. We define Fo as in equation 89; thus, f‘o =Fy—0 0~(W0,3)T. As a consequence, we
can write FoF] = FoFJ + VDV, where V = [FyW,38 6] € R"*2 and

0 c
D=1 awhes)
Using the Woodbury formula, we find that equation 90 still holds. Now, we can write
0°2TR(6°2 = 6°2TR,6°2 — 0°2TR, V(D! + VTR, V) 'V R(6°2. (94)
We can analyze each term in the above sum separately.

By Lemma K.3, 8°2T R(6°2 — E6°2T R(0°2 — p 0. Further, conditional on 3, E§°2T R;0°2 = 3||8||4E tr Ro; and as
in the proof of Lemma K.7, Etr Ro — E tr R, — 0. Moreover, we have already argued in the proof of Lemma K.4 that
E tr Ro — ¢m;/¢. In addition, from Lemma K.1, [|B]|> = p ¢(c} 4 02) + ¢ ;. Hence,

éOQTRoéOQ —p 3¢m1[¢(03 + U?) + 03,1]2/(25'
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To analyze the second term in equation 94, we first study 0°2TR0 FOWO B. By an argument similar to the ones above,
we can show that it concentrates around lTROFOWOB 1 FOROWO,B Since FO is left-orthogonally invariant,
1n FOROWO B =4 l,TL OFOROWO 3, where O is uniformly d1str1buted over the Haar measure of n-dimensional orthogonal
matrices, independently of all other~randomness. Then, it follows as in the analysis of term (1,2) from Section K.2 that
1IOFOROW06 —p 0; and hence 902TR0F0W0,6 —p 0.

Moreover, the limiting entries of (D=1 + VTROV)*1 can be shown to be bounded by a simple orderwise analysis. Hence,
the second term in equation 94 is op(1).

0.10. Proof of Lemma L.2
Denoting B = 3/||8]|2, we have

. . ~ o~ . — ~ o~ . . . Z J ~ o~ _ ~ o~
(XB)”TRo(XB)™ = 1Bl (XB)" TRo(XB)* = 1Bl Y D &ira&jina His (XB)  RoHi, (XB)

k1=0 ko=0
, 4min(i,j) o - o
=857 > &r&inHr(XB) RoH(XB) + 0p(1)
k=0

min(%,5)

=817 |&161(XB) " Ro(XB) + D &uniaHn(XB) RoHy(XP) | + op(1).

k=0, k#1

The third line follows from Lemma K.5. Now, we claim that for any p € {0,2,3,...}, we have
H,(XB/|18]2) "RoH,(XB/|Bll2) —p p! ¥mi/é. Using this claim, the facts that |B]3 —p c2; + ¢(c? + o2),
and tr(X T (FoF] + AnI,)~'X)/d —p 1ymsy/$, we can conclude

mm ’L

Z k! & ik

k=0, k#1

hma wml

(XB)° TRo(XB) —p (cIq+p(c?+ 0?))(i+j)/2 i1 "

Now, it remains to prove the claim that for any p € {0,2,3, ...}, we have

Hy(XB/(18l2) " RoHy(XB/[|Bl2) —p p! vm1 /6.

As in the proof of Lemma K.8, we define X =X-X33". By construction, we have X I X@3. As in the proof of Lemma
K.5, based on the Gaussian equivalence from Appendix J, we can replace Fo with c; XWJ + ¢>1Z in our computations
without changing the limiting result, where Z € R™*? is an independent random matrix with N(0, 1) entries. Thus, from
now on, we denote Fy = ¢;XW{ + ¢-1Z. We define F as in equation 89; thus, Fy = Fy — ; X3(WB3)T. As a
consequence, we can write FoF] = FoF] + VDV, where V = [FW,3 Xg] € R"*? and

0 C1 :|
D= =io -
Ll t|WoB|13
Using the Woodbury formula, we find that equation 90 still holds. Now, we can write
H,(XB) RoH,(XB) = Hy(XB) RoH,(XB) — H)(XB) RoV(D~L + VIRGV) 'V RoH,(X3).  (95)
We can analyze each term in the above sum separately.

By Lemma K.3, HP(XB)TROHP(XB) - EHP(X,@)TROHP(XB) —p 0. Further, conditional on 3, and using C.1, we
have

Hy(XB) RoH,(X8) = Etx [RoH,(XB)H,(XB)' | =p Etr [Ro] .
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and as in the proof of Lemma K.7, E tr Ro — Etr Ry — 0. Moreover, we have already argued in the proof of Lemma K.4
that E tr Rg — »my /¢. Hence, H, ()NCB)—r (Xﬁ) — p p! ¥ymy /¢. To analyze the second term in equation 95, we first
study H. (X[)’)TROFOWO 3. Conditional on ﬁ H, (Xﬁ) is a vector with independent mean-zero, bounded variance entries,
independent of the vector RoFoW3 that has norm O(1/+/n). Hence, we conclude that this term goes to zero. Next, note
that H,(X83) T Ro(X3) —p 0 using Lemma K.3 and Lemma C.1. Moreover, the limiting entries of (D! + VTR(V)~!
can be shown to be bounded by a simple orderwise analysis. Hence, the second term in equation 95 is op(1). This concludes
the proof.

0.11. Proof of Lemma L.3
We define 3, = %, and set X = X — X837 — X3,8]. By construction, we have X I X3, 80,

Based on the Gaussian equivalence from Appendix J, we can again replace Fo with Fo = 01XW0 + ¢>12Z, where
Z € R™*% s an 1ndependent random matrix with N(0, 1) entries. Again, we define Fo as in equation 89. Thus, Fo =
Fo — chﬁ(Woﬁ) — chﬁl(WoﬁL) As a consequence, we also have FoF|] = FOFT + VDV, where V =
(X8 XBL FoWo8 FWyB,] € R"“ nd

H(WoB, WoB) (WoB,WoBL) ¢ 0

| (WoB,WoBL) H(WeBL, WeBL) 0 o
c1 0 0 O

0 c1 0 0

Using the Woodbury formula, we find that equation 90 still holds. We can write

Hp(é*)TROHq(XB) :Hp(é*)TROHq(XB) - Hp(é*)TROV(D71 + VTROV)ilvTROHq(XB) (96)

p # q case: The first term converges to zero for any p # ¢, analogously to the argument in Section K.2.1 for the terms
(1,2) and (2,4). In particular, for p = 0, we can use orthogonal invariance as in the analysis of the term (2,4). To prove that
the second term will also converge to zero when p # ¢, we first observe that the elements of K = (D*1 + VT]:C{OV)’1
are all O(1). The second term will involve quantities of the form [K]; ; H,(8,) Rov,v TRo .(XB), where v;, for
i € {1,2,3,4}, is the i-th column of the matrix V = [X3 X3, FyW,3 FOWoﬁL] . We can argue that all these
terms converge to zero, as follows. Because p # ¢, without loss of generality, assume that ¢ # 1.

» The terms where 7 = 1 converge to zero because (XB)TROHQ(XB) converges to zero using the concentration
argument from Lemma K.3 and the orthogonality of Hermite polynomials from Lemma C.1. The same argument
applies to the terms where j = 2, via the convergence of (X3, ) RoH,(X03) to zero.

e For j = 3,4, and for ¢ > 0, since Hq(f(ﬁ) is independent of f{O[FOWOﬁ ﬁowom], and has zero-mean
i.i.d. entries, it also follows that these entries converge to zero in probability. For ¢ = 0, we can again use orthogonal
invariance as in the analysis of the term (2,4).

The case when p = ¢ # 1: Finally we study H. ( ) "RoH, (X3), by analyzing the terms in equation 93.

For H,(0,)TRoH,(X0), since H,(6,), H,(X3) are independent of Ry, it follows from Lemma K.3, as in the analysis
of term (1,2) in the Section K.2, that H, (é )TRoH, (X,B) ]ERO EH,(0,)" H,(XB) —p 0. Now notice that F
is left-orthogonally invariant in distribution, and thus RO =4 OROO , where O is uniformly distributed over the Haar
measure of n-dimensional orthogonal matrices, independently of all other randomness. Hence, ERy = E tr RoI,, /n. Also,

similar to the proof of Lemma K.7, we have | tr Rg — tr Rg| = op(1). Moreover, we have already argued in the proof of
Lemma K.4 that E tr Rg — 1ym; /¢. Further, by Lemmas C.1 and K.1,

P
bmy Cx1

)

H,(0,) RoH,(X3) —p p!
p( ) 0 p( ) pPp P \/¢(CE+03)+CE?1
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Next, we consider HQ(é*)TROV with V = [X,@ X3, FoWoB FoWy3 L]. For the first two entries of the vector
H,(6,) TRV, an analysis very similar to the one above for H,(6,)T RoH,(X3) shows that they converge to zero
in probability. For the last two entries, since H),(0,) is independent of Ry [FOWOB FoW3 1 ], and has zero-mean
i.i.d. entries, it also follows that these entries converge to zero in probability. Moreover, the limiting entries of (D~ +

VTROV) ~! have been shown to be bounded in our above analysis. Hence, the second term converges to zero in probability.

The case when p = ¢ = 1: In this case, we have

o TS /v Pma
(Xﬁ*)TRO(XB) _ (Xﬁ*) RO(XIB> _ 17 Jrolp(l)’
1512 Vo + o)+,

using Lemma K.1 and by arguments similar to the ones in the proof of Lemma K.4.

Putting everything together concludes the proof.

P. Additional Experiments

In this section, we show results of a few additional experiments.

Training Error Test Error

—e— Setting 1 X 121 | —e— Setting 1
—e— Setting 3 —o— Setting 3

-05 -04 -03 -02 -01 0 0.1 0.2 03 04 0.5 " 05 -04 -03 -02 -01 0 0.1 0.2 03 04 05

Figure 4. We repeat the experiments in Figure 3 (Left, Middle) with y = H, (3, ) + %H{; (B] ) as setting 3. Here we use the

Gl _z for all z, so that c3 # 0.

activation o(z) = S5

Spectrum of the Si Values
T

0 ﬂ 1 1 r—l\ \l—] |

0 200 400 600 800 1000 1200

Figure 5. We repeat the experiment in Figure 2 with the MNIST dataset. Although the MNIST dataset does not satisfy our theoretical
conditions (Gaussian input, single-index model, etc.), we empirically observe similar phenomena such as the emergence of spikes after a
one-step gradient update.
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2.8 24

I N
> )

N
S
Test Error

Training Error

05 04 03 02 01 0 01 02 03 04 05 " 05 04 03 -02 01 0 01 02 03 04 05
log(n) log(n)
log(n) log(n)

Figure 6. We plot the training and test errors of a two-layer neural network (/N = 1000) trained on the MNIST dataset with one step of
gradient descent of varying step size. To make the experiments compatible with our theoretical setup, the model is trained using the MSE
loss. We show that a large step size can be beneficial in this more realistic problem.
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