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Abstract

Feature learning is thought to be one of the fun-

damental reasons for the success of deep neural

networks. It is rigorously known that in two-layer

fully-connected neural networks under certain

conditions, one step of gradient descent on the

first layer can lead to feature learning; character-

ized by the appearance of a separated rank-one

component—spike—in the spectrum of the fea-

ture matrix. However, with a constant gradient

descent step size, this spike only carries infor-

mation from the linear component of the target

function and therefore learning non-linear compo-

nents is impossible. We show that with a learning

rate that grows with the sample size, such training

in fact introduces multiple rank-one components,

each corresponding to a specific polynomial fea-

ture. We further prove that the limiting large-

dimensional and large sample training and test

errors of the updated neural networks are fully

characterized by these spikes. By precisely ana-

lyzing the improvement in the training and test

errors, we demonstrate that these non-linear fea-

tures can enhance learning.

1. Introduction

Learning non-linear features—or representations—from

data is thought to be one of the fundamental reasons for the

success of deep neural networks (e.g., Bengio et al., 2013;

Donahue et al., 2016; Yang & Hu, 2021; Shi et al., 2022;

Radhakrishnan et al., 2022, etc.). This has been observed

in a wide range of domains, including computer vision and
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natural language processing. At the same time, the current

theoretical understanding of feature learning is incomplete.

In particular, among many theoretical approaches to study

neural networks, much work has focused on two-layer fully-

connected neural networks with a randomly generated, un-

trained first layer weights and a trained second layer—or

random features models (Rahimi & Recht, 2007). Despite

their simplicity, random features models can capture vari-

ous empirical properties of deep neural networks, and have

been used to study generalization, overparametrization and

“double descent”, adversarial robustness, transfer learning,

estimation of out-of-distribution performance, and uncer-

tainty quantification (see e.g., Mei & Montanari (2022);

Hassani & Javanmard (2022); Tripuraneni et al. (2021);

Lee et al. (2023); Bombari & Mondelli (2023); Clarté et al.

(2023); Lin & Dobriban (2021); Adlam et al. (2022), etc.).

Nevertheless, feature learning is absent in random features

models, because the first layer weights are assumed to be

randomly generated, and then fixed. Although these models

can represent non-linear functions of the data, in the com-

monly studied setting where the sample size, dimension, and

hidden layer size are proportional, under certain reasonable

conditions they can only learn the linear component of the

true model—or, teacher function—and other components of

the teacher function effectively behave as Gaussian noise.

Thus, in this setting, learning in a random features model

is equivalent to learning in a noisy linear model with Gaus-

sian features and Gaussian noise. This property is known

as the Gaussian equivalence property (see e.g., Goldt et al.

(2022); Adlam et al. (2022); Adlam & Pennington (2020a);

Mei & Montanari (2022); Montanari & Saeed (2022); Hu

& Lu (2023)). While other models such as the neural tan-

gent kernel (Jacot et al., 2018; Du et al., 2019) can be more

expressive, they also lack feature learning.

To bridge the gap between random features models and fea-

ture learning, several recent approaches have shown prov-

able feature learning for neural networks under certain con-

ditions; see Section 1.1 for details. In particular, the recent

pioneering work of Ba et al. (2022) analyzed two-layer neu-

ral networks, trained with one gradient step on the first layer.

They showed that when the step size is small, after one

gradient step, the resulting two-layer neural network can

learn linear features. However, it still behaves as a noisy
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Figure 1. Spectrum of the updated feature matrix for different regimes of the gradient step size η. Spikes corresponding to monomial

features are added to the spectrum of the initial matrix. The number of spikes depends on the range of α. See Theorems 3.2 and 3.3 for

details.

linear model and does not capture non-linear components

of a teacher function. Moreover, they showed that for a

sufficiently large step size, under certain conditions, the

one-step updated random features model can outperform

linear and kernel predictors. However, the effects of a large

gradient step size on the features is unknown. Moreover,

what happens in the intermediate step size regime also re-

mains unexplored. In this paper, we focus on the following

key questions in this area:

What nonlinear features are learned by a two-

layer neural network after one gradient update?

How are these features reflected in the singular

values and vectors of the feature matrix, and how

does this depend on the scaling of the step size?

What is the improvement in the training and test

errors due to the nonlinear features learned?

Main Contributions. Toward answering the above ques-

tions, we make the following contributions:

• We study feature learning in two-layer neural networks.

Specifically, we follow the training procedure intro-

duced in Damian et al. (2022); Ba et al. (2022) where

one step of gradient descent with step size ¸ is applied

to the first layer weights, and the second layer weights

are found by solving ridge regression on the updated

features. We consider a step size ¸ ≍ n³, ³ ∈ (0, 12 )
that grows with the sample size n and examine how

the learned features change with ³ (Section 2.1).

• In Section 3, we present a spectral analysis of the up-

dated feature matrix. We first show that the spectrum

of the feature matrix undergoes phase transitions de-

pending on the range of ³. In particular, we find that if

³ ∈ ( ℓ−1
2ℓ ,

ℓ
2ℓ+2 ) for some ℓ ∈ {1, 2, . . .}, then ℓ sep-

arated singular values—spikes—will be added to the

spectrum of the initial feature matrix (Theorem 3.2).

Figure 1 illustrates this finding.

• Building on perturbation theory for singular vectors,

we argue that the left singular vectors (principal compo-

nents) associated with the ℓ spikes are asymptotically

aligned with polynomial features of different degrees

(Theorem 3.3). In other words, the updated feature ma-

trix will contain information about the degree-ℓ poly-

nomial component of the target function.

• The Gaussian equivalence property (Hu & Lu, 2023;

Mei & Montanari, 2022), an essential tool to analyze

random features models, fails after a gradient update

with a large step size ¸. To overcome this difficulty,

we establish equivalence theorems (Theorem 4.1 and

4.2) stating that the trained features F can be replaced

by sum of the untrained features F0 and ℓ spikes with-

out changing the training and test errors. Then, by

applying the Gaussian equivalence to the untrained

component F0, we provide a precise characterization

of the training and test errors in the high-dimensional

proportional regime (Theorem 4.3 and 4.5).

• From the derived results, we show that in the simple

case where ℓ = 1, the neural network does not learn

non-linear functions. However, in the ℓ = 2 regime,

the neural network in fact learns quadratic components

of the target function.

1.1. Related Works

Theory of shallow neural networks. Random features

models (Rahimi & Recht, 2007) have been used to study var-

ious aspects of deep learning, such as generalization (Mei &

Montanari, 2022; Adlam et al., 2022; Lin & Dobriban, 2021;

Mel & Pennington, 2021), adversarial robustness (Hassani

& Javanmard, 2022; Bombari et al., 2023), transfer learn-

ing (Tripuraneni et al., 2021), out-of-distribution perfor-

mance estimation (Lee et al., 2023), uncertainty quantifi-

cation (Clarté et al., 2023), stability, and privacy (Bombari

& Mondelli, 2023). This line of work builds upon nonlin-

ear random matrix theory (see e.g., Pennington & Worah

(2017); Louart et al. (2018); Fan & Wang (2020); Benigni
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& Péché (2021), etc.) studying the spectrum of the feature

matrix of two-layer neural networks at initialization.

Two-layer neural networks have been studied extensively

in the mean-field regime (see e.g., Chizat & Bach (2018);

Mei et al. (2018; 2019); Sirignano & Spiliopoulos (2020);

Rotskoff & Vanden-Eijnden (2022), etc.), and the neural

tangent kernel (NTK) regime (see e.g., Jacot et al. (2018);

Lee et al. (2019); Huang & Yau (2020), etc.). However,

these results often require the neural net to have an extremely

large width. In particular, in the NTK regime, this large

width will result in features not evolving over the course

of training and the model behaves similar to classic kernel

methods. Ghorbani et al. (2021) show that for NTKs and

other kernel methods, with a sample size linear in size of

the input, non-linear functions cannot be learned. See also

Misiakiewicz (2022); Xiao et al. (2022); Lu & Yau (2022).

Perturbative corrections to the large-width regime to capture

feature learning have also been studied in the literature (see

e.g., Yaida (2020); Hanin & Nica (2019); Seroussi et al.

(2023); Naveh & Ringel (2021), etc.). See Section A for

more discussion on related work in deep learning theory.

Feature learning. The problem of feature learning has

been gaining a lot of attention recently. Damian et al. (2022)

study the problem of learning polynomials with only a few

relevant directions and show a sample complexity improve-

ment over kernel methods. Collins et al. (2023) extend these

results and analyze multi-task feature learning in two-layer

ReLU networks. Wang et al. (2022) empirically show that

if learning rate is sufficiently large, an outlier in the spec-

trum of the weight and feature matrix emerges with the

corresponding singular vector aligned to the structure of the

training data. Nichani et al. (2023); Wang et al. (2023) pro-

vide theoretical evidence that three-layer neural networks

have provably richer feature learning capabilities than their

two-layer counterparts.

Recently, Ba et al. (2022) show that in two-layer neural net-

works, when the dimension, sample size and hidden layer

size are proportional, one gradient step with a constant step

size on the first layer weights can lead to feature learning.

However, non-linear components of a single-index target

function are still not learned. They further show that with

a sufficiently large step size, when the teacher function has

a non-zero first Hermite coefficient, and under certain con-

ditions, the updated neural networks can outperform linear

and kernel methods. However, the precise effects of large

gradient step sizes on learning nonlinear features, and their

precise effects on the loss remain unexplored. Dandi et al.

(2023) show that with a sample size proportional to the input

dimension d, it is only possible to learn a single direction of

multi-index teacher function using gradient updates on the

first layer of a two-layer neural network. They also show

that for single index models with information exponent (the

index of the first non-zero Hermite coefficient) », there are

hard directions whose learning requires a sample size of

order Θ(d»). See also Ben Arous et al. (2021).

High-dimensional asymptotics. We use tools developed

in work on high-dimensional asymptotics, which dates back

at least to the 1960s (Raudys, 1967; Deev, 1970; Raudys,

1972). Recently, these tools have been used in a wide range

of areas such as wireless communications (e.g., Tulino

& Verdú (2004); Couillet & Debbah (2011), etc.), high-

dimensional statistics (e.g., Raudys & Young (2004); Ser-

dobolskii (2007); Paul & Aue (2014); Yao et al. (2015);

Dobriban & Wager (2018), etc.), and machine learning (e.g.,

Györgyi & Tishby (1990); Opper (1995); Opper & Kinzel

(1996); Couillet & Liao (2022); Engel & Van den Broeck

(2001), etc.). In particular, the spectrum of so-called infor-

mation plus noise random matrices that arise in Gaussian

equivalence results has been studied in Dozier & Silverstein

(2007); Péché (2019) and its spikes in Capitaine (2014).

2. Preliminaries

Notation. We let N = {1, 2, . . .} be the set of positive

integers. For a positive integer d g 1, we denote [d] =
{1, . . . , d}. We use O(·) and o(·) for the standard big-O

and little-o notation. For a matrix A and a non-negative

integer k, A◦k = A ◦ A ◦ . . . ◦ A is the matrix of the

k-th powers of the elements of A. For positive sequences

(An)ng1, (Bn)ng1, we write An = Θ(Bn) or An ≍ Bn or

An ≡ Bn if there is C,C ′ > 0 such that CBn g An g
C ′Bn for all n. We useOP(·), oP(·), and ΘP(·) for the same

notions holding in probability. The symbol →P denotes

convergence in probability.

2.1. Problem Setting

In this paper, we study a supervised learning problem with

training data (xi, yi) ∈ R
d×R, for i ∈ [2n], where d is the

feature dimension and n g 2 is the sample size. We assume

that the data is generated according to

xi
i.i.d.∼ N(0, Id), and yi = f⋆(xi) + εi, (1)

in which f⋆ is the ground truth or teacher function, and

εi
i.i.d.∼ N(0, Ã2

ε) is additive noise.

We fit a model to the data in order to predict outcomes for

unlabeled examples at test time; using a two-layer neural

network. We let the width of the internal layer be N ∈ N.

For a weight matrix WNN ∈ R
N×d, an activation function

Ã : R → R applied element-wise, and the weights aNN ∈
R
N of a linear layer, we define the two-layer neural network

as fWNN,aNN
(x) = a¦

NNÃ (WNNx) .

Following Damian et al. (2022); Ba et al. (2022), for the

convenience of the theoretical analysis, we split the training
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data into two parts: X = [x1, . . . ,xn]
¦ ∈ R

n×d,y =
(y1, . . . , yn)

¦ ∈ R
n and X̃ = [xn+1, . . . ,x2n]

¦ ∈
R
n×d, ỹ = (yn+1, . . . , y2n)

¦ ∈ R
n.

We train the two layer neural network as follows. First,

we initialize aNN with a = (a1, . . . , aN )¦ where

ai
i.i.d.∼ N (0, 1/N) and initialize WNN with W0 =

[
w0,1, . . . ,w0,N

]¦ ∈ R
N×d, w0,i

i.i.d.∼ Unif(Sd−1) where

S
d−1 is the unit sphere in R

d and Unif(Sd−1) is the uniform

measure over it. Although we choose this initialization for

a simpler analysis, many arguments can be shown to hold

if we switch from the uniform distribution over the sphere

to a Gaussian; for example, see Section O.5. Fixing aNN at

initialization a, we perform one step of gradient descent on

WNN with respect to the squared loss computed on (X,y).
Recalling that ◦ denotes element-wise multiplication, the

negative gradient can be written as

G := − ∂

∂WNN

[
1

2n

∥
∥y − Ã(XW¦

NN)a
∥
∥
2

2

]

WNN=W0

=
1

n

[
(ay¦ − aa¦Ã(W0X

¦)) ◦ Ã′(W0X
¦)
]
X,

and the one-step update is W =
[
w1, . . . ,wN

]¦
= W0 +

¸G for a learning rate or step size ¸.

After the update on WNN, we perform ridge regression

on a using (X̃, ỹ). Let F = Ã(X̃W¦) ∈ R
n×N be the

feature matrix after the one-step update. For a regularization

parameter ¼ > 0, we set

â = â(F) = argmin
a∈RN

1

n
∥ỹ − Fa∥22 + ¼∥a∥22

=
(
F¦F+ ¼nIN

)−1
F¦ỹ. (2)

Then, for a test datapoint with features x, we predict the

outcome ŷ = fW,â(x) = â¦Ã (Wx).

2.2. Conditions

Our theoretical analysis applies under the following condi-

tions:

Condition 2.1 (Asymptotic setting). We assume that the

sample size n, dimension d, and width of hidden layer N
all tend to infinity with

d/n→ ϕ > 0, and d/N → È > 0.

We further consider the following model for the teacher

function, leading to a single-index model.

Condition 2.2. We let f⋆ : R
d → R be f⋆(x) = Ã⋆(x

¦β⋆)
for all x, where β⋆ ∈ R

d is an unknown parameter with

β⋆ ∼ N(0, 1dId) and Ã⋆ : R → R is a Θ(1)-Lipschitz

teacher activation function.

This condition is in line with prior work (see e.g., Ba et al.

(2022); Hu & Lu (2023); Goldt et al. (2022), etc.). Recently,

Dandi et al. (2023) showed that under Condition 2.1, two-

layer neural networks trained with one gradient descent step

can only learn a single-index approximation of a multi-index

model. This shows that when studying a single-step update,

2.2 is not restrictive.

We letHk, k g 1 be the (probabilist’s) Hermite polynomials

on R defined by

Hk(x) = (−1)k exp(x2/2)
dk

dxk
exp(−x2/2),

for any x ∈ R. These polynomials form an orthogonal

basis in the Hilbert space L2 of measurable functions f :
R → R such that

∫
f2(x) exp(−x2/2)dx <∞ with inner

product ïf, gð =
∫
f(x)g(x) exp(−x2/2)dx. The first few

Hermite polynomials are H0(x) = 1, H1(x) = x, and

H2(x) = x2 − 1.

Condition 2.3. The activation function Ã : R → R has the

following Hermite expansion in L2:

Ã(z) =

∞∑

k=1

ckHk(z), ck =
1

k!
EZ∼N(0,1)[Ã(Z)Hk(Z)].

The coefficients satisfy c1 ̸= 0 and c2kk! f Ck−
3

2
−É for

some C, É > 0 and for all k g 1. Moreover, the first three

derivatives of Ã exist almost surely, and are bounded.

Note that in this paper, unlike Hu & Lu (2023), we do not

require the activation function to be odd. The reason is that

here, unlike Hu & Lu (2023), we do not analyze the problem

for a general loss function and use a proof technique special-

ized for squared loss. We remark that the above condition

requires c0 = 0, i.e., that EÃ(Z) = 0 for Z ∼ N(0, 1). This

condition is in line with prior work in the area (e.g., Adlam &

Pennington (2020a); Ba et al. (2022), etc.), and could be re-

moved at the expense of more complicated formulas and the-

oretical analysis. The smoothness assumption on Ã is also

in line with prior work in the area (see e.g., Hu & Lu (2023);

Ba et al. (2022), etc.). Note that the above condition is sat-

isfied by many popular activation functions (after shifting)

such as the ReLU Ã(x) = max{x, 0} − 1√
2Ã

, hyperbolic

tangent Ã(x) = ex−e−x

ex+e−x , and sigmoid Ã(x) = 1
1+e−x − 1

2 ,

for all x.

We also make similar assumptions on the teacher activation:

Condition 2.4. The teacher activation Ã⋆ : R → R has the

following Hermite expansion in L2:

Ã⋆(z) =

∞∑

k=1

c⋆,kHk(z), c⋆,k =
1

k!
EZ [Ã⋆(Z)Hk(Z)],

with Z ∼ N(0, 1). Also, we define c⋆ = (
∑∞
k=1 k!c

2
⋆,k)

1

2 .
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3. Analysis of the Feature Matrix

The first step in analyzing the spectrum of the feature matrix

F is to study the negative gradient G. It is shown in Ba et al.

(2022, Proposition 2) that in operator norm, the matrix G

can be approximated by the rank-one matrix c1aβ
¦ with

high probability, where the Hermite coefficient c1 of the

activation Ã is defined in Condition 2.3, and β = 1
nX

¦y ∈
R
d. Moreover, under Conditions 2.1-2.4, Ba et al. (2022)

show that β can be understood as a noisy estimate of β⋆,

namely

|β¦
⋆ β|

∥β⋆∥2∥β∥2
→P

|c⋆,1|
√

c2⋆,1 + ϕ(c2⋆ + Ã2
ε)
. (3)

See also Lemma K.1. In particular, if the sample size used

for the gradient update is very large; i.e., ϕ → 0, β will

converge to being completely aligned to β⋆.

Building on this result, we can prove the following rank-one

approximation lemma. Note that the updated feature matrix

can be written as F = Ã(X̃(W0 + ¸G)¦) and terms of

the form (X̃G¦)◦k, k ∈ N, will appear in polynomial and

Taylor expansions of F around F0. In the following lemma,

we show that for any fixed power k, these terms can be

approximated by rank one terms.

Lemma 3.1 (Rank-one approximation). If Conditions 2.1-

2.4 hold, then there exists C > 0 such that for c1 from

Condition 2.3, for any fixed k ∈ N,

∥(X̃G¦)◦k − ck1(X̃β)◦k(a◦k)¦∥op f Ckn−
k
2 log2k n

with probability 1− o(1).

Next, we will show that after the gradient step, the spectrum

of the feature matrix F will consist of a bulk of singular

values that stick close together—given by the spectrum of

the initial feature matrix F0 = Ã(X̃W¦
0 )—and ℓ separated

spikes1, where ℓ is an integer that depends on the step size

used in the gradient update. Specifically, when the step

size is ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 for some ℓ ∈ N,

the feature matrix F can be approximated in operator norm

by the untrained features F0 = Ã(X̃W¦
0 ) plus ℓ rank-one

terms, where the left singular vectors of the rank-one terms

are aligned with the non-linear features X̃ 7→ (X̃β)◦k, for

k ∈ [ℓ]. See Figure 2.

Theorem 3.2 (Spectrum of feature matrix). Let ¸ ≍ n³ with
ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 for some ℓ ∈ N. If Conditions 2.1-2.4

hold, then for ck from Condition 2.3 and F0 = Ã(X̃W¦
0 ),

F = Fℓ +∆, with

Fℓ := F0 +
ℓ∑

k=1

ck1ck¸
k(X̃β)◦k(a◦k)¦, (4)

1Using terminology from random matrix theory (Bai & Silver-
stein, 2010; Yao et al., 2015).

where ∥∆∥op = o(
√
n) with probability 1− o(1).

To understand (X̃β)◦k(a◦k)¦, notice that for a datapoint

with features x̃i, the activation of each neuron is propor-

tional to the polynomial feature (x̃¦
i β)

k, with coefficients

given by a◦k for the neurons. The spectrum of the initial

feature matrix F0 is fully characterized in Pennington &

Worah (2017); Benigni & Péché (2021; 2022); Louart et al.

(2018); Fan & Wang (2020), and its operator norm is known

to be ΘP(
√
n). Moreover, it follows from the proof that the

operator norm of each of the terms ck1ck¸
k(X̃β)◦k(a◦k)¦,

k ∈ [ℓ] is with high probability of order larger than
√
n.

Thus, Theorem 3.2 identifies the spikes in the spectrum of

the feature matrix.

Proof Idea. We approximate the feature matrix F =
Ã(X̃(W0 + ¸G)¦) by a polynomial using its Hermite ex-

pansion. Next, we use the binomial expansion and apply

Lemma 3.1 to approximate (X̃G¦)◦k by ck1(X̃β)◦k(a◦k)¦,

for all k. Then, spike terms with k g ℓ + 1 are negligible

since we can show that their norm is OP(n
k³+ 1

2
− k−1

2 ) =
oP(

√
n).

The special case where ³ = 0 is discussed in Ba et al. (2022,

Section 3), which focuses on the spectrum of the updated

weight matrix W = W0+¸G. However, here we study the

updated feature matrix F = Ã(X̃(W0 + ¸G)¦) because

that is more directly related to the learning problem—as we

will discuss in the consequences for the training and test

errors below.

In the following theorem, we argue that the subspace

spanned by the non-linear features {Ã(X̃wi)}i∈[N ] can

be approximated by the subspace spanned by the mono-

mials {(X̃β)◦k}k∈[ℓ]. For two ℓ-dimensional subspaces

U1,U2 ¦ R
n, with orthonormal bases U1,U2 ∈ R

n×ℓ, re-

call the principal angle distance between U1,U2 defined by

d(U1,U2) = minQ ∥U1 −U2Q∥op, where the minimum is

over ℓ× ℓ orthogonal matrices (Stewart & Sun, 1990). This

definition is invariant to the choice of U1,U2.

Theorem 3.3. Let Fℓ be the ℓ-dimensional subspace of

R
n spanned by top-ℓ left singular vectors (principal com-

ponents) of F. Under the conditions of Theorem 3.2, we

have

d(Fℓ, span{(X̃β)◦k}k∈[ℓ]) →P 0.

This result shows that after one step of gradient descent with

step size ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 , the subspace of

the top-ℓ left singular vectors carries information from the

polynomials {(X̃β)◦k}k∈[ℓ]. Also, recall that by equation 3,

the vector β is aligned with β⋆. Hence, it is shown that Fℓ
carries information from the first ℓ polynomial components

of the teacher function.
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Figure 2. Histogram of the scaled singular values (divided by
√

n) of the feature matrix F = Ã(X̃W
¦) after the update with step size

¸ = n0.29 (ℓ = 2). In this regime, two isolated spikes appear in the spectrum as stated in Theorem 3.2. The top two left singular vectors

u1 and u2 are aligned with X̃β and (X̃β)◦2, respectively. See Section 5 for the simulation details.

Proof Idea. We use Wedin’s theorem (Wedin, 1972) to

characterize the distance between the left singular vector

space of
∑ℓ
k=1 c

k
1ck¸

k(X̃β)◦k(a◦k)¦ and that of F. Here,

we consider the matrix F0 +∆ as the perturbation term.

4. Learning Higher-Degree Polynomials

In the previous section, we studied the feature matrix F and

showed that when ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 , it can

be approximated by F0 = Ã(X̃W¦
0 ) plus ℓ rank-one or

spike terms. We also saw that the left singular vectors of

the spike terms are aligned with the non-linear functions

X̃ 7→ (X̃β)◦k. Intuitively, this result suggests that after the

gradient update, the trained weights are becoming aligned

with the teacher model and we should expect the ridge

regression estimator on the learned features to achieve better

performance. In particular, when ³ > 0, we expect the ridge

regression estimator to capture the non-linear part of the

teacher function. This is impossible for ¸ = O(1) (Ba et al.,

2022) or ¸ = 0 (Hu & Lu, 2023; Mei & Montanari, 2022).

In this section, we aim to make this intuition rigorous and

show that the spikes in the feature matrix lead to a decrease

in the error achieved by the estimator. Moreover, for large

enough step sizes, the model can learn non-linear compo-

nents of the teacher function. For this, we first need to prove

equivalence theorems showing that instead of the true fea-

ture matrix F, the approximations from Theorem 3.2 can

be used to compute error terms (i.e., the effect of ∆ on the

error is negligible).

4.1. Equivalence Theorems

The Gaussian equivalence property (Goldt et al. (2022); Hu

& Lu (2023); Montanari & Saeed (2022), etc.) implies that

the training and test errors of a random features model are

asymptotically the same as that of a noisy linear model.

In other words, the limiting behavior of these quantities is

unchanged if we replace the untrained feature matrix F0 =

Ã(X̃W¦
0 ) with F0 = c1X̃W¦

0 + c>1Z, where Z ∈ R
n×N

is an independent random matrix with i.i.d. N(0, 1) entries.

This property has been used extensively in work on random

features models (see e.g., Adlam & Pennington (2020b;a);

Tripuraneni et al. (2021); Mel & Pennington (2021), etc.)

as it provides a powerful tool to analyze non-linear random

matrices. However, the Gaussian equivalence property fails

when the weight matrix W is updated with a large gradient

descent step (Ba et al., 2022), posing a significant challenge

to the analysis.

In this section, we first prove that we can replace the trained

features F with their approximation Fℓ from Theorem 3.2

in terms of F0 and spikes, without changing the limiting

training and test errors. Then, in the next sections we will

see that the training and test errors can be derived by ap-

plying the Gaussian equivalence property to the untrained

features F0 only.

Given a regularization parameter ¼ > 0, recalling the ridge

estimator â(F) from equation 2, we define the training loss

Ltr(F) =
1

n
∥ỹ − Fâ(F)∥22 + ¼∥â(F)∥22.

In the next theorem, we show that when ¸ ≍ n³ with
ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 , the training loss Ltr(F) can be approxi-

mated with negligible error by Ltr(Fℓ). In other words, the

approximation of the feature matrix from Theorem 3.2 can

be used to derive the asymptotics of the training loss.

Theorem 4.1 (Training loss equivalence). Let ¸ ≍ n³ with
ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 for some ℓ ∈ N and recall Fℓ from

equation 4. If Conditions 2.1-2.4 hold, then for any fixed

¼ > 0, with probability 1− o(1) we have

Ltr(F)− Ltr(Fℓ) = o(1).

Similar equivalence results can also be proved for the test

error, i.e., the average test loss. For any a ∈ R
N , we
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define the test error of a as Lte(a) = Ef ,y(y − f¦a)2,

in which the expectation is taken over (x, y) where f =
Ã(Wx) with x ∼ N(0, Id) and y = f⋆(x) + ε with ε ∼
N(0, Ã2

ε). The next theorem shows that one can also use the

approximation of the feature matrix from Theorem 3.2 to

derive the asymptotics of the test error.

Theorem 4.2 (Test error equivalence). Let ¸ ≍ n³ with
ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 for some ℓ ∈ N, and Fℓ be defined as in

equation 4. If Conditions 2.1-2.4 hold, then for any ¼ > 0,

if Lte(â(F)) →P LF and Lte(â(Fℓ)) →P LFℓ
, we have

LF = LFℓ
.

Proof Idea. To prove Theorem 4.2, we show first show

that the norm of the trained second layer weight â, is OP(1).
Then, we use Theorem 3.2 to conclude the proof. To prove

Theorem 4.2, we will use a free-energy trick (Abbasi et al.,

2019; Hu & Lu, 2023; Hassani & Javanmard, 2022). We

first extend Theorem 4.1 and show that for any ¼, · > 0, the

minima over a of

R·(a, F̄) =
1

n
∥ỹ − F̄a∥22 + ¼∥a∥22 + ·Lte(a),

for F̄ = F and F̄ = Fℓ are close. Then, we use this to

argue that the limiting test errors are also close.

With Theorem 4.1 and 4.2 in hand, for ¸ ≍ n³, we can

use the approximation Fℓ—with the appropriate ℓ—of the

feature matrix F to analyze the training and test error.

4.2. Analysis of Training and Test Errors

In this section, we quantify the discrepancy between the

training loss of the ridge estimator trained on the new—

learned—feature matrix F and the same ridge estimator

trained on the untrained feature matrix F0. We will do this

for the step size ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 for various

ℓ ∈ N.

Our results depend on the limits of traces of the matrices

(F0F
¦
0 + ¼nIn)

−1 and X̃¦(F0F
¦
0 + ¼nIn)

−1X̃. These

limits have been determined in Adlam et al. (2022); Adlam

& Pennington (2020a), see also Pennington & Worah (2017);

Péché (2019), and depend on the values m1,m2 > 0, which

are the unique solutions of the following system of coupled

equations, for ¼ > 0:

ϕ (m1 −m2)
(
c2>1m1 + c21m2

)
+Ψ(m1,m2) = 0,

ϕ

È

(
c21m1m2 + ϕ (m2 −m1)

)
+Ψ(m1,m2) = 0, (5)

where Ψ(m1,m2) = c21m1m2 (¼Èm1/ϕ− 1) and c>1 =
(
∑∞
k=2 k!c

2
k)

1/2. Here,m1 is the limiting Stieltjes transform

of the matrix 1
nF0F

¦
0 and m2 is an auxiliary transform. For

instance, we leverage that under Condition 2.1, we have

lim
d,n,N→∞

tr(X̃¦(F0F
¦
0 + ¼nIn)

−1X̃)/d = Èm2/ϕ > 0,

lim
d,n,N→∞

tr((F0F
¦
0 + ¼nIn)

−1) = Èm1/ϕ > 0.

See Lemma K.4 and its proof for more details. For in-

stance, as argued in Pennington & Worah (2017); Adlam

et al. (2022), these can be reduced to a quartic equation

for m1 and are convenient to solve numerically. However,

the existence of these limits does not imply our results;

on the contrary, the proofs of our results require extensive

additional calculations and several novel ideas.

Theorem 4.3. If Conditions 2.1-2.4 are satisfied, and we

have c1, · · · , cℓ ̸= 0, as well as ¸ ≍ n³ with ℓ−1
2ℓ < ³ <

ℓ
2ℓ+2 , then for the learned feature map F and the untrained

feature map F0, we have

Ltr(F0)− Ltr(F) →P ∆ℓ g 0,

where ∆ℓ can be found in Section L.

The expression for ∆ℓ is complex and given in Section L due

to space limitations. For a better understanding of Theorem

4.3, we consider two specific cases, ℓ = 1 and ℓ = 2.

Corollary 4.4. Under the assumptions of Theorem 4.3, for

ℓ = 1, we have Ltr(F0)− Ltr(F) →P ∆1 with

∆1 :=
È¼c4⋆,1m2

ϕ[c2⋆,1 + ϕ(c2⋆ + Ã2
ε)]

g 0. (6)

For ℓ = 2, we have Ltr(F0)− Ltr(F) →P ∆2 with

∆2 := ∆1 +
4È¼c4⋆,1c

2
⋆,2m1

3ϕ[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2
g 0. (7)

The above result shows that after one gradient step with

sufficiently large step size, the model can fit nonlinear com-

ponents of the teacher function. This is impossible with a

small step size. For example, when ℓ = 1, the improvement

in the loss is increasing in the strength of the linear com-

ponent c⋆,1, keeping the signal strength c⋆ fixed. This is

not the case for the strength of the non-linear component

c2⋆,>1 = c2⋆ − c2⋆,1.

When we further increase the step size to the ℓ = 2 regime,

the loss of the trained model will drop by an additional posi-

tive value, depending on the strength c⋆,2 of the quadratic

signal, which shows that the quadratic component of the

target function is being fit. Also, note that if c⋆,1 = 0; i.e.,

if the information exponent (the index of the first non-zero

Hermite coefficient) of Ã⋆ is greater than one, the gradient

step does not change the limiting loss. In this case, ac-

cording to equation 3, the alignment between the learned

direction β and the true direction β⋆ will converge to zero.
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It is known that learning single-index functions with infor-

mation exponent greater than one requires a sample size of

order larger than d (Dandi et al., 2023).

The limiting value of the test error can be analyzed similarly.

Theorem 4.5. Let Conditions 2.1-2.4 and the assumptions

of Theorem 4.2 hold. If c1 ̸= 0, then for ℓ = 1, we have

Lte(â(F0))− Lte(â(F)) →P Λ1 with

Λ1 :=
c4⋆,1Γ1

[c2⋆,1 + ϕ(c2⋆ + Ã2
ε)]

g 0, (8)

where Γ1 does not depend on the target function.

If further c2 ̸= 0, then for ℓ = 2, we have Lte(â(F0)) −
Lte(â(F)) →P Λ2 with

Λ2 := Λ1 +
c4⋆,1c

2
⋆,2Γ2

[c2⋆,1 + ϕ(c2⋆ + Ã2
ε)]

2
g 0, (9)

where Γ2 does not depend on the target function. The com-

plete expressions for Γ1 and Γ2 can be found in equation 64

and equation 87, respectively.

Similar to the training loss result, when ℓ = 1, the im-

provement in the test error is increasing in c⋆,1; keeping

the signal strength c⋆ fixed. Moreover, the improvement in

the test error for ℓ = 2 depends on the strength c⋆,2 of the

quadratic signal, showing that the nonlinear component is

being learned.

Proof Idea. Using Theorem 4.1 and 4.2, in the expression

for the training and test error, we replace the trained fea-

tures matrix F with its approximation Fℓ from Theorem 3.2.

Then, by applying the Woodbury formula, we express the

training and test errors in terms of R̄0 = (F0F
¦
0 +¼nIn)

−1

and the non-linear spikes from Theorem 3.2. Using the

Gaussian equivalence property (Appendix J) for the un-

trained features F0, we show that the interaction between

the first ℓ Hermite components of ỹ and the spike terms

will result in non-vanishing terms corresponding to learning

different components of the target function. Finally, we com-

pute the limiting value of these terms in terms of m1,m2

and their derivatives using tools from random matrix theory.

4.3. Staircase Property

Recently, Abbe et al. (2021; 2022) show that when learning

Boolean functions, under certain conditions on the teacher

function, a two-layer trained by SGD in the mean-field

regime will learn the target function incrementally; i.e.,

Fourier coefficients of higher order are sequentially learned

over time. Berthier et al. (2023) study the problem of learn-

ing a single-index function using a wide two-layer neural

network trained using gradient flow, and show that in a spe-

cific training setting where the stepsizes for the first layer

are much smaller than those of the second layer, the de-

crease rate of training error is non-monotone; there are long

plateaus where there is barely any progress, and there are

intervals of rapid decrease.

In the one-step updated two layer neural network, we ob-

serve a similar phenomenon. Theorems 4.5 and Theo-

rem L.1 show that given ℓ ∈ N, the errors of the trained

model is asymptotically constant for all ¸ = cn³ with
ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 and c ∈ R. There are sharp jumps at

the edges between regimes of ³, whose size is precisely

characterized above. This shows that a non-monotone rate

of decrease in training and test error can also be seen after

one step of gradient descent, as a function of step size. For

an illustration of this phenomenon, see Figure 3 (Right).

5. Numerical Simulations

To support and illustrate our theoretical results, we present

some numerical simulations. We use the shifted ReLU

activation Ã(x) = max(x, 0) − 1/
√
2Ã, n = 1000, N =

500, d = 300, and the regularization parameter ¼ = 0.01.

Singular Value Spectrum of F. We let the the teacher

function be f⋆(x) = H1(β
¦
⋆ x) +H2(β

¦
⋆ x), set the noise

variance Ã2
ε = 0.5, and the step size to ¸ = n0.29, so

ℓ = 2. We plot the histogram of singular values of the

updated feature matrix F. In Figure 2, we see two spikes

corresponding to X̃β, (X̃β)◦2 as suggested by Theorem

3.2 and 3.3. Since f⋆ has a linear component H1 and a

quadratic component H2, these spikes will lead to feature

learning. In Appendix P, we demonstrate a similar finding

for a real-world dataset.

Quadratic Feature Learning. To support the findings of

Corollary 4.4 and Theorem 4.5 for ℓ = 2, we consider the

following two settings:

Setting 1 : y = H1(β
¦
⋆ x) + ε, ε ∼ N(0, 1),

Setting 2 : y = H1(β
¦
⋆ x) +

1√
2
H2(β

¦
⋆ x).

Note that c⋆,1 and c⋆ + Ã2
ε are same in these two settings.

This ensures that the improvement due to learning the linear

component is the same. We plot the training and test errors

of the two-layer neural networks trained with the procedure

described in Section 2.1 as functions of log(¸)/ log(n). In

Figure 3 (Left), we see that the errors decrease in the range

log(¸)/ log(n) ∈ (0, 14 ) as the model learns the linear com-

ponent H1(β
¦
⋆ x). In the range log(¸)/ log(n) ∈ ( 14 ,

1
3 ),

the model starts to learn the quadratic feature. However

since the quadratic feature is not present in Setting 1, the

errors under the two settings diverge. Although the proofs

reveal that the convergence rates of the training/test errors

after one step can be slow, these results are consistent with

Corollary 4.4 and Theorem 4.5. See Appendix P for experi-

ments on other target functions.

8



A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks

Figure 3. (Left, Middle) Training and test errors after one gradient as functions of log(¸)/ log(n). (Right) A toy plot illustrating the

theoretical training/test error curve as a function of log(¸)/ log(n).

6. Conclusion

We have studied feature learning in two-layer neural net-

works under one-step gradient descent with step size

¸ ≍ n³, ³ ∈ (0, 12 ). We showed that if ³ ∈ ((ℓ −
1)/(2ℓ), ℓ/(2ℓ+2)), the gradient update will add ℓ separated

singular values to the initial feature matrix spectrum corre-

sponding to different nonlinear features. We then proved

equivalence theorems and used them to derive a precise

characterization of the training and test errors in the high-

dimensional proportional limit. Using this, we showed that

in certain examples, non-linear components of the teacher

function are learned.

Future Work. In this paper, we only study the problem

when ¸ ≍ n³ with ³ ∈ ((ℓ − 1)/(2ℓ), ℓ/(2ℓ + 2)). The

boundary case where ¸ ≍ n(ℓ−1)/(2ℓ) is an interesting prob-

lem and is left as future work.

Also, following prior work in the area (see e.g., Damian et al.

(2022); Ba et al. (2022); Dandi et al. (2023); Nichani et al.

(2023); Wang et al. (2023), etc.), we use sample splitting

in our two-step training procedure. Although this setting

is natural for the analysis of pretrained models, it does not

cover the case where feature learning and ridge regression

use the same data. We leave this setting as a future direction.

In this paper, we focused on the case where ³ < 1/2. The

behaviour of the feature matrix can be significantly different

when ³ = 1/2. When ³ < 1/2, as proved in this paper,

the spectrum of the feature matrix will consist of a finite

number of spikes added to the spectrum of the untrained

feature matrix. However, when ³ = 1/2, the behaviour can

deviate from the spectrum of the untrained model in other

ways. Note that according to Theorem 3.2, the number of

spikes in the spectrum of F will increase as we increase ³
from 0 to 1/2 and will diverge as we approach 1/2. The

limiting empirical singular-value distribution of the feature

matrix and the training and test errors of the network when

³ = 1/2 is an open problem and we leave it as future work.
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generic features maps for realistic datasets with a teacher-

student model. In Advances in Neural Information Pro-

cessing Systems, 2021.

Lu, Y. M. and Yau, H.-T. An equivalence principle for the

spectrum of random inner-product kernel matrices. arXiv

preprint arXiv:2205.06308, 2022.

Mehta, M. L. Random matrices. Elsevier, 2004.

Mei, S. and Montanari, A. The generalization error of

random features regression: Precise asymptotics and the

double descent curve. Communications on Pure and

Applied Mathematics, 75(4):667–766, 2022.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field

view of the landscape of two-layer neural networks. Pro-

ceedings of the National Academy of Sciences, 115(33):

E7665–E7671, 2018.

Mei, S., Misiakiewicz, T., and Montanari, A. Mean-field

theory of two-layers neural networks: dimension-free

bounds and kernel limit. In Conference on Learning

Theory, 2019.

Mel, G. and Pennington, J. Anisotropic random feature re-

gression in high dimensions. In International Conference

on Learning Representations, 2021.

Misiakiewicz, T. Spectrum of inner-product kernel ma-

trices in the polynomial regime and multiple descent

phenomenon in kernel ridge regression. arXiv preprint

arXiv:2204.10425, 2022.

Montanari, A. and Saeed, B. N. Universality of empirical

risk minimization. In Conference on Learning Theory,

2022.

Montanari, A., Ruan, F., Sohn, Y., and Yan, J. The gen-

eralization error of max-margin linear classifiers: High-

dimensional asymptotics in the overparametrized regime.

arXiv preprint arXiv:1911.01544, 2019.

Naveh, G. and Ringel, Z. A self consistent theory of gaus-

sian processes captures feature learning effects in finite

cnns. In Advances in Neural Information Processing

Systems, 2021.

Nichani, E., Damian, A., and Lee, J. D. Provable guaran-

tees for nonlinear feature learning in three-layer neural

networks. arXiv preprint arXiv:2305.06986, 2023.

O’Donnell, R. Analysis of boolean functions. Cambridge

University Press, 2014.

Opper, M. Statistical mechanics of learning: Generalization.

The Handbook of Brain Theory and Neural Networks,, pp.

922–925, 1995.

Opper, M. and Kinzel, W. Statistical mechanics of general-

ization. In Models of Neural Networks III, pp. 151–209.

Springer, 1996.

Paul, D. and Aue, A. Random matrix theory in statistics:

A review. Journal of Statistical Planning and Inference,

150:1–29, 2014.
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A. Additional Related Work

Goel & Klivans (2019) provide a polynomial time algorithm that learns neural networks with two non-linear layers. Our

setting is different because we do not apply a non-linear activation after the second layer. Chen et al. (2022) show that

learning two-hidden-layer neural networks from noise-free Gaussian data requires superpolynomially many statistical

queries. Zhenmei et al. (2022) show that neural networks trained by gradient descent can succeed on problems where the

labels are determined by a set of class-relevant patterns and if these patterns are removed, no polynomial algorithm in the

Statistical Query model can learn even weakly.

B. Additional Notation and Terminology

In the appendix, we use the following additional notations. We let N0 = {0, 1, 2, . . .} be the set of non-negative integers.

For a set X and x1, x2 ∈ X , ¶x1,x2
is the Kronecker delta, which equals unity if x1 = x2, and is zero otherwise. We use

Õ(·) for the standard big-O notation up to logarithmic factors in n. For a positive integer k, k!! is the product of all the

positive integers up to n with the same parity as n. For two random quantities X,Y , X §§ Y denotes that X is independent

of Y . By orderwise analysis, we mean bounding a term by the triangle inequality and the inequality ∥Ab∥2 f ∥A∥op∥b∥2
for a conformable matrix-vector pair A, b, to reduce it to operator norms of matrices and Euclidean norms of vectors, and

then use simple bounds for those quantities. Constants such as C, c′, etc., can change from line to line unless specified

otherwise. For two random quantities A,B, A =d B denotes that A and B have the same distribution. Limits of random

variables are understood in probability. For two matrices A,B with equal shape, we write A ◦B to denote their entry-wise

(Hadamard) product.

We denote Xβ = θ, X̃β = θ̃, Xβ⋆ = θ⋆, and X̃β⋆ = θ̃⋆. We also define R̄0 = (F0F
¦
0 + ¼nIn)

−1 and R0 =
(F¦

0 F0 + ¼nIN )−1.

C. Basic Lemmas

Lemma C.1 (Orthogonality of Hermite polynomials). Let (Z1, Z2) be jointly Gaussian with E[Z1] = E[Z2] = 0, E[Z2
1 ] =

E[Z2
2 ] = 1, and E[Z1Z2] = Ä. Then for any k1, k2 ∈ N0,

E[Hk1(Z1)Hk2(Z2)] = k1!Ä
k1¶k1,k2 .

In particular, if for some positive integer d, Z ∼ N(0, Id), and if a, b ∈ S
d−1, then

E[Hk1(a
¦Z)Hk2(b

¦Z)] = k1!(a
¦b)k1¶k1,k2 .

Proof. See O’Donnell (2014, Chapter 11.2).

Lemma C.2 (Taylor expansion of Hermite polynomials). For any k ∈ N0 and x, y ∈ R,

Hk(x+ y) =

k∑

j=0

(
k

j

)

xjHk−j(y).

Proof. Note that d
dxHk(x) = kHk−1(x) (Abramowitz & Stegun, 1968, Equation 22.8.8) and thus dj

dxjHk(x) =
k!

(k−j)!Hk−j(x). By Taylor expanding Hk(x+ y) at y, we find

Hk(x+ y) =

k∑

j=0

xj

j!

dj

dyj
Hk(y) =

k∑

j=0

(
k

j

)

xjHk−j(y).

The following Lemma, proved in Section O.1, provides several bounds used in the proofs.

Lemma C.3. Under Conditions 2.1-2.4, there exists C > 0 such that the following holds with probability 1− o(1).
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(a) Ma := max1fifN |ai| f Cn−
1
2 log

1
2 n,

(b) Mβ := max1fifn |ïx̃i,βð| f C log
1
2 n,

(c) MW0 := supkg1 ∥(W0W
¦
0 )

◦k∥op f C,

(d) ∥X̃∥op f C
√
n.

D. Proof of equation 3

Proof. By Lemma K.1 with v = β⋆ and D = Id, we have

β¦
⋆ β →P c⋆,1∥β⋆∥22 = c⋆,1, ∥β∥22 = β¦β →P ϕ(c

2
⋆ + Ã2

ε) + c2⋆,1β
¦
⋆ β⋆ = c2⋆,1 + ϕ(c2⋆ + Ã2

ε).

By the continuous mapping theorem, we conclude

|β¦
⋆ β|

∥β⋆∥2∥β∥2
→P

|c⋆,1|
√

c2⋆,1 + ϕ(c2⋆ + Ã2
ε)
.

E. Proof of Lemma 3.1

Proof. For k = 1, we have by Ba et al. (2022, Proposition 2)—substituting our c1 for their µ1 and using that β = 1
nX

¦y;

as well as noting that by the discussion below (Ba et al., 2022, Proposition 2), ∥G∥op = OP(1)—and by Lemma C.3 (d),

that with probability 1− o(1),

∥X̃G¦ − c1X̃βa¦∥op = O(n−
1
2 log2 n). (10)

For k g 2, expanding (X̃G¦)◦k = (X̃G¦ − c1X̃βa¦ + c1X̃βa¦)◦k using the binomial formula, we have

(X̃G¦)◦k − ck1(X̃β)◦k(a◦k)¦ =

k∑

j=1

(
k

j

)

(X̃G¦ − c1X̃βa¦)◦j ◦ (c1X̃βa¦)◦(k−j)

=

k∑

j=1

(
k

j

)

ck−j1 diag(X̃β)k−j(X̃G¦ − c1X̃βa¦)◦j diag(a)k−j .

Recalling Ma,Mβ from Lemma C.3, and using that

∥(X̃G¦ − c1X̃βa¦)◦j∥op f ∥X̃G¦ − c1X̃βa¦∥jop

(see e.g., Bai & Silverstein (2010, Corollary A.21)), we have

∥ diag(X̃β)k−j(X̃G¦ − c1X̃βa¦)◦j diag(a)k−j∥op

f ∥diag(X̃β)k−j∥op∥(X̃G¦ − c1X̃βa¦)◦j∥op∥ diag(a)k−j∥op

f (MaMβ)
k−j∥X̃G¦ − c1X̃βa¦∥jop.

Hence, by the triangle inequality,

∥(X̃G¦)◦k − ck1(X̃β)◦k(a◦k)¦∥op f
k∑

j=1

(
k

j

)

(c1MaMβ)
k−j∥X̃G¦ − c1X̃βa¦∥jop.

By Lemma C.3 (a), (b) and equation 10, there exists C > 0 such that for any k ∈ N,

k∑

j=1

(
k

j

)

(c1MaMβ)
k−j∥X̃G¦ − c1X̃βa¦∥jop f (C/2)k

k∑

j=1

(
k

j

)

(n−
1
2 log n)k−j(n− 1

2 log2 n)j f Ckn− k
2 log2k n

with probability 1− o(1).
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F. Proof of Theorem 3.2

Proof. We consider any fixed W0 such that the event Ω = {supkg1 ∥(W0W
¦
0 )

◦k∥op f C} from Lemma C.3 (c) holds.

By Lemma C.1, each row of Hj(X̃W¦
0 ) has second moment matrix

Ex∼N(0,Id)[Hj(W0x)Hj(W0x)
¦] = j!(W0W

¦
0 )

◦j ,

whose operator norm is O(j!) on Ω. Thus by Vershynin (2012, Theorem 5.48) and Markov’s inequality, for any j ∈ [L], for

t g (Cnj!)1/2, and with M = Emaxni=1 ∥Hj(W0x̃i)∥2, ¶ = C
√

M logmin(n,N),

P (∥Hj(X̃W¦
0 )∥op g t) f P (∥Hj(X̃W¦

0 )Hj(X̃W¦
0 )

¦/n− j!(W0W
¦
0 )

◦j∥op g t2/n− Cj!)

f E∥Hj(X̃W¦
0 )Hj(X̃W¦

0 )
¦/n− j!(W0W

¦
0 )

◦j∥op

t2/n− Cj!
f ¶max((Cj!)1/2, ¶)

t2/n− Cj!
.

Next, we observe that since Hj is a j-th degree polynomial and the normal absolute moments increase with j, M =
Emaxni=1 ∥Hj(W0x̃i)∥2 f CjEmaxni=1 ∥(W0x̃i)

◦j∥2. Now, note that for any vectors x1,x2, we have ∥x1 ◦ x2∥2 f
∥x1∥2∥x2∥2 by simply expanding the norms. Thus, on the event Ω, one can verify that for all x, ∥(W0x)

◦j∥2 f C ′
j∥x∥2j

for some C ′
j > 0. Also, we have that Ai = ∥x̃i∥2j/N for i ∈ [n] are sub-Weibull random variables with tail parameter

1/(2j), (see e.g., Vladimirova et al. (2020); Zhang & Chen (2021)). Thus, by the maximal inequality for sub-Weibull

random variables (Kuchibhotla & Chakrabortty, 2022, Proposition A.6 and Remark A.1), it follows that for all j g 1, there

is Cj > 0 such that Emaxni=1Ai f Cj(log n)
2j . Hence, M f C ′′

j N(log n)2j .

Thus, choosing t = C ′√nj!(log n)j for sufficiently large C ′ leads to

∥Hj(X̃W¦
0 )∥op = O

(√

nj!(log n)j
)

(11)

with probability 1− o(1).

Define, for all z ∈ R, ÃL(z) =
∑L
k=0 ckHk(z), where L = max

{
ℓ, logn

4(ℓ+1) log logn

}
. Each row of (Ã − ÃL)(X̃W¦

0 ) has

second moment matrix

Ex∼N(0,Id)[(Ã − ÃL)(W0x)(Ã − ÃL)(W0x)
¦] =

∞∑

k=L+1

k!c2k(W0W
¦
0 )

◦k,

whose operator norm is O(L− 1
2−É) by Lemma C.3 (c) and Condition 2.3. Therefore,

∥(Ã − ÃL)(X̃W¦
0 )∥op = O(

√

n log nL− 1
2−É) = o(

√
n) (12)

with probability 1− o(1). Since ¸ = o(
√
n), the rows of have W norm of OP(1). Thus, we can repeat the same argument

to show that with probability 1− o(1), we have

∥(Ã − ÃL)(X̃W¦)∥op = O(
√

n log nL− 1
2−É) = o(

√
n). (13)

Let F(L) := ÃL(X̃W¦) and F
(L)
0 := ÃL(X̃W¦

0 ). We can write

F(L) = F
(L)
0 +

L∑

k=1

ck(Hk(X̃W¦)−Hk(X̃W¦
0 )).

By Lemma C.2, using W = W0 + ¸G so that X̃W¦ = X̃W¦
0 + ¸X̃G¦, and using that H0(z) = 1 for all z ∈ R,

Hk(X̃W¦)−Hk(X̃W¦
0 ) = ¸k(X̃G¦)◦k +

k−1∑

j=1

(
k

j

)

¸jHk−j(X̃W¦
0 ) ◦ (X̃G¦)◦j .
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Therefore,

F(L) = F
(L)
0 +

ℓ∑

k=1

ck1ck¸
k(X̃β)◦k(a◦k)¦ +

L∑

k=1

ck¸
k
[

(X̃G¦)◦k − ck1(X̃β)◦k(a◦k)¦
]

︸ ︷︷ ︸

∆1

+

L∑

k=ℓ+1

ck1ck¸
k(X̃β)◦k(a◦k)¦

︸ ︷︷ ︸

∆2

+
L∑

k=1

k−1∑

j=1

ck

(
k

j

)

¸jHk−j(X̃W¦
0 ) ◦

[

(X̃G¦)◦j − cj1(X̃β)◦j(a◦j)¦
]

︸ ︷︷ ︸

∆3

+

L∑

k=1

k−1∑

j=1

cj1ck

(
k

j

)

¸jHk−j(X̃W¦
0 ) ◦

[
(X̃β)◦j(a◦j)¦

]

︸ ︷︷ ︸

∆4

.

We will show that each of ∥∆1∥op, ∥∆2∥op, ∥∆3∥op, ∥∆4∥op is o(
√
n) with probability 1− o(1).

By Lemma 3.1,

∥∆1∥op f
L∑

k=1

ckC
k¸kn− k

2 log2k n = Õ(¸/
√
n) = o(

√
n)

with probability 1− o(1).

By Lemma C.3 (a) and (b), using that ³ < ℓ
2ℓ+2 ,

∥∆2∥op f
L∑

k=ℓ+1

ck1ck¸
k∥(X̃β)◦k∥2∥a◦k∥2 f

L∑

k=ℓ+1

ck1ck¸
knMk

aM
k
β = Õ(n(¸/

√
n)ℓ+1) = o(

√
n)

with probability 1− o(1).

By Bai & Silverstein (2010, Corollary A.21), equation 11, and Lemma 3.1,

∥∆3∥op f
L∑

k=1

k−1∑

j=1

ckC
j

(
k

j

)
√

(k − j)!¸jn− j
2+

1
2 logk+j n = Õ(¸) = o(

√
n).

Finally, since

∥Hk−j(X̃W¦
0 ) ◦ (X̃β)◦j(a◦j)¦∥op f (MaMβ)

j
√

(k − j)!n
1
2 logk−j n

f Cj
√

(k − j)!n− j
2+

1
2 logk n,

we also have

∥∆4∥op f
L∑

k=1

k−1∑

j=1

ckC
j

(
k

j

)
√

(k − j)!¸jn− j
2+

1
2 logk n = Õ(¸) = o(

√
n).

This proves that with probability 1−o(1), we have F(L) = F
(L)
0 +

∑ℓ
k=1 c

k
1ck¸

k(X̃β)◦k(a◦k)¦+∆, with ∥∆∥op = o(1).
This, alongside equation 12 and equation 13, concludes the proof.

G. Proof of Theorem 3.3

By Theorem 3.2, letting E = F0 + ∆, we have ∥E∥op = OP(
√
n). Note that

∑ℓ
k=1 c

k
1ck¸

k(X̃β)◦k(a◦k)¦ has rank ℓ

almost surely and its left singular vector space is span{(X̃β)◦k}k∈[ℓ]. Also, the subspace spanned by the top-ℓ left singular

vectors of F is Fℓ. By Wedin’s theorem (Wedin, 1972), (Chen et al., 2021, Theorem 2.9), and as ³ > ℓ−1
2ℓ , we have

d(Fℓ, span{(X̃β)◦k}k∈[ℓ]) = OP

(

∥E∥op

¸ℓn
1
2−

ℓ−1
2 − ∥E∥op

)

= OP(n
ℓ−1
2 −³ℓ) = oP(1).
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H. Proof of Theorem 4.1

Proof. By the definition of â(F), we have

max

{
1

n
∥ỹ − Fâ(F)∥22, ¼∥â(F)∥22

}

f 1

n
∥ỹ − Fâ(F)∥22 + ¼∥â(F)∥22

f 1

n
∥ỹ − F · 0∥22 + ¼∥0∥22 =

1

n
∥ỹ∥22 = OP(1).

Thus,

∥â(F)∥2 = OP(1), ∥ỹ − Fâ(F)∥2 = OP(
√
n). (14)

A similar argument gives

∥â(Fℓ)∥2 = OP(1), ∥ỹ − Fℓâ(Fℓ)∥2 = OP(
√
n). (15)

Also, by the triangle inequality, and using equation 15 and Theorem 3.2, which states ∥Fℓ − F∥op = oP(
√
n), we have

∥ỹ − Fâ(Fℓ)∥2 f ∥ỹ − Fℓâ(Fℓ)∥2 + ∥(Fℓ − F)â(Fℓ)∥2
f ∥ỹ − Fℓâ(Fℓ)∥2 + ∥Fℓ − F∥op∥â(Fℓ)∥2 = OP(

√
n). (16)

Similarly, we can prove that

∥ỹ − Fℓâ(F)∥2 = OP(
√
n). (17)

For a = â(F) or a = â(Fℓ),

1

n

(
∥ỹ − Fa∥22 − ∥ỹ − Fℓa∥22

)
=

1

n
ï(Fℓ − F)a, ỹ − Fa+ ỹ − Fℓað

f 1

n
∥Fℓ − F∥op∥a∥2 (∥ỹ − Fa∥2 + ∥ỹ − Fℓa∥2) = oP(1)

by equation 14, equation 15, equation 16, equation 17, and Theorem 3.2. Therefore, using the definition of â(Fℓ),

1

n
∥ỹ − Fℓâ(Fℓ)∥22 + ¼∥â(Fℓ)∥22 f 1

n
∥ỹ − Fℓâ(F)∥2 + ¼∥â(F)∥22

=
1

n
∥ỹ − Fâ(F)∥22 + ¼∥â(F)∥22 + oP(1)

and using the definition of â(F),

1

n
∥ỹ − Fâ(F)∥22 + ¼∥â(F)∥22 f 1

n
∥ỹ − Fâ(Fℓ)∥2 + ¼∥â(Fℓ)∥22

=
1

n
∥ỹ − Fℓâ(Fℓ)∥22 + ¼∥â(Fℓ)∥22 + oP(1).

These together prove the theorem.

I. Proof of Theorem 4.2

First, we will prove a general lemma regarding the equivalence of an augmented training loss. We will later use this result to

prove the equivalence of the test error.

Lemma I.1. Let ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 for some ℓ ∈ N and Fℓ be defined as in equation 4. For the test error Lte

from Section 4.1, define

R·(a,F) =
1

n
∥ỹ − Fa∥22 + ¼∥a∥22 + ·Lte(a).

Then, for any ¼ > 0, · > 0, we have
∣
∣
∣min

a
R·(a,Fℓ)−min

a
R·(a,F)

∣
∣
∣ = o(1), (18)

with probability 1− o(1).
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Proof of Lemma I.1. Letting â·(F) = argmina R·(a,F), we can write

max

{
1

n
∥ỹ − Fâ·(F)∥22, ¼∥â·(F)∥22, ·Lte(â·(F))

}

f 1

n
∥ỹ − Fâ·(F)∥22 + ¼∥â·(F)∥22 + ·Lte(â·(F))

f 1

n
∥ỹ − F · 0∥22 + ¼∥0∥22 + ·Lte(0) = OP(1).

Thus,

Lte(â·(F)) = OP(1), ∥â·(F)∥2 = OP(1), ∥ỹ − Fâ·(F)∥2 = OP(
√
n). (19)

A similar argument gives

Lte(â·(Fℓ)) = OP(1), ∥â·(Fℓ)∥2 = OP(1), ∥ỹ − Fℓâ·(Fℓ)∥2 = OP(
√
n). (20)

Also by the triangle inequality, equation 20 and Theorem 3.2, which states ∥Fℓ − F∥op = oP(
√
n),

∥ỹ − Fâ·(Fℓ)∥2 f ∥ỹ − Fℓâ·(Fℓ)∥2 + ∥(Fℓ − F)â·(Fℓ)∥2
f ∥ỹ − Fℓâ·(Fℓ)∥2 + ∥Fℓ − F∥op∥â·(Fℓ)∥2 = OP(

√
n). (21)

Similarly, we can show that

∥ỹ − Fℓâ·(F)∥2 = OP(
√
n). (22)

For a = â·(F) or a = â·(Fℓ),

1

n

(
∥ỹ − Fa∥22 − ∥ỹ − Fℓa∥22

)
=

1

n
ï(Fℓ − F)a, ỹ − Fa+ ỹ − Fℓað

f 1

n
∥Fℓ − F∥op∥a∥2 (∥ỹ − Fa∥2 + ∥ỹ − Fℓa∥2) = oP(1)

by equation 19, equation 20, equation 21, equation 22, and Theorem 3.2. Therefore, using the definition of â·(Fℓ),

1

n
∥ỹ − Fℓâ·(Fℓ)∥22 + ¼∥â·(Fℓ)∥22 + ·Lte(â·(Fℓ))

f 1

n
∥ỹ − Fℓâ·(F)∥2 + ¼∥â·(F)∥22 + ·Lte(â·(F))

=
1

n
∥ỹ − Fâ·(F)∥22 + ¼∥â·(F)∥22 + ·Lte(â·(F)) + oP(1),

and using the definition of â·(F),

1

n
∥ỹ − Fâ·(F)∥22 + ¼∥â·(F)∥22 + ·Lte(â·(F))

f 1

n
∥ỹ − Fâ·(Fℓ)∥2 + ¼∥â·(Fℓ)∥22 + ·Lte(â·(Fℓ))

=
1

n
∥ỹ − Fℓâ·(Fℓ)∥22 + ¼∥â·(Fℓ)∥22 + ·Lte(â·(Fℓ)) + oP(1).

Putting these together, we have

|min
a

R·(a,Fℓ)−min
a

R·(a,F)| = oP(1), (23)

which concludes the proof.

Now, we use this lemma to prove the equivalence of the test error.
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Proof of Theorem 4.2. We will argue by contradiction. Assume that LF ̸= LFℓ
and let L = 1

2 (LF + LFℓ
). Now, consider

the following two optimization problems:

L1 = min
Lte(a)fL

1

n
∥ỹ − Fa∥22 + ¼∥a∥22, L2 = min

Lte(a)fL

1

n
∥ỹ − Fℓa∥22 + ¼∥a∥22.

Without loss of generality, assume that LF < LFℓ
. The solution of the first optimization problem will still converge to

Ltr(F) because LF < L. However, the solution of the second optimization problem will converge to a value greater than

Ltr(Fℓ), because LFℓ
> L and the objective is ¼-strongly convex. Note that by Theorem 4.1, we asymptotically have

Ltr(Fℓ) = Ltr(F). Thus L1 and L2 converge to different quantities as n→ ∞. However, using the minimax theorem and

since the objectives are ¼-strongly convex, we can write

L1 = max
·>0

−·L+min
a

[
1

n
∥ỹ − Fa∥22 + ¼∥a∥22 + ·Lte(a)

]

,

L2 = max
·>0

−·L+min
a

[
1

n
∥ỹ − Fℓa∥22 + ¼∥a∥22 + ·Lte(a)

]

.

According to Lemma I.1, the two minima above converge to the same value for any fixed ·. Note that, as functions of ·,

both maxima are concave as they are minima of linear functions of ·. Hence, by using the concave version of Abbasi et al.

(2019, Lemma 1), we have that L1 and L2 converge to the same value, which is a contradiction.

J. Gaussian Equivalence Property

Gaussian equivalence results for non-linear random matrices were introduced in El Karoui (2010); Cheng & Singer (2013);

Fan & Montanari (2019). They have been repeatedly used in recent studies of random feature models (Mei & Montanari,

2022; Montanari et al., 2019; Adlam & Pennington, 2020a;b; Tripuraneni et al., 2021; Goldt et al., 2022; Mel & Pennington,

2021; d’Ascoli et al., 2021; Loureiro et al., 2021; Lee et al., 2023; Hassani & Javanmard, 2022; Hu & Lu, 2023; Montanari

& Saeed, 2022). Also, there has been progress on proving the Gaussian equivalence property for a multi-layer network with

only the final layer trained (Bosch et al., 2023; Cui et al., 2023).

In more distantly related work in random matrix theory literature, the phenomenon that eigenvalue statistics in the bulk

spectrum of a random matrix do not depend on the specific law of the matrix entries is referred to as “bulk universality”

(Wigner, 1955; Gaudin, 1961; Mehta, 2004; Dyson, 1962; Erdös et al., 2010; 2012; El Karoui, 2010; Tao & Vu, 2011).

Erdös (2019) shows that local spectral laws of correlated random Hermitian matrices can be fully determined by their first

and second moments, through the matrix Dyson equation. Also, Banna et al. (2015; 2020) show that spectral distributions of

correlated symmetric random matrices can be characterized by Gaussian matrices with matching correlation structures.

In our case, we apply the Gaussian equivalence property to the following quantities for p, q ∈ N0 and β1,β2 ∈ {β,β⋆}:

Hp(X̃β1)
¦R̄0Hq(X̃β2).

J.1. Proof Sketch of Gaussian Equivalence Property

In this section, we describe the proof idea of the Gaussian equivalence property. We use the Lindeberg exchange method

(Lindeberg, 1922) in which we replace each column gi = Ã(X̃w0,i) of F0 with its Gaussian equivalent g̃i = c1X̃w0,i +

c>1zi, zi
i.i.d.∼ N(0, In). Hereafter, we condition on all random variables except W0. Then, Hp(X̃β1) and Hq(X̃β2)

become deterministic vectors with O(1) entries. We write v = Hp(X̃β1), w = Hq(X̃β2), and for all i ∈ [N ], Mi =
∑i−1
j=1 g̃je

¦
j +

∑N
j=i+1 gje

¦
j .

Let F̃0 = [g̃1 · · · g̃N ] ∈ R
n×N be the Gaussian equivalent of F0 and let R̃0 = (F̃0F̃

¦
0 + ¼nIn)

−1. By the triangle

inequality,

|v¦
ĒR0w − v¦

ER̃0w| f
N∑

i=1

|v¦
E(MiM

¦
i + gig

¦
i + ¼nIn)

−1w − v¦
E(MiM

¦
i + g̃ig̃

¦
i + ¼nIn)

−1w|. (24)
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Defining Si = (MiM
¦
i + ¼nIn)

−1, we have by the Sherman-Morrison formula that

(MiM
¦
i + gig

¦
i + ¼nIn)

−1 = Si −
Sigig

¦
i Si

1 + g¦
i Sigi

, and (MiM
¦
i + g̃ig̃

¦
i + ¼nIn)

−1 = Si −
Sig̃ig̃

¦
i Si

1 + g̃¦
i Sig̃i

.

Thus,

v¦
E(MiM

¦
i + gig

¦
i + ¼nIn)

−1w − v¦
E(MiM

¦
i + g̃ig̃

¦
i + ¼nIn)

−1w = E
v¦Sig̃ig̃¦

i Siw

1 + g̃¦
i Sig̃i

− E
v¦Sigig¦

i Siw

1 + g¦
i Sigi

.

Let Σg = Egig
¦
i and Σg̃ = Eg̃ig̃

¦
i . By the Hanson-Wright concentration inequality, g¦

i Sigi = tr(SiΣg) +OP(1/
√
n)

and g̃¦
i Sig̃i = tr(SiΣg̃) +OP(1/

√
n). Hence,

E
v¦Sigig¦

i Siw

1 + g¦
i Sigi

=
tr(Siwv¦SiΣg)

1 + tr(SiΣg)
+OP(n

− 3
2 ),

E
v¦Sig̃ig̃¦

i Siw

1 + g̃¦
i Sig̃i

=
tr(Siwv¦SiΣg̃)

1 + tr(SiΣg̃)
+OP(n

− 3
2 ).

Plugging into equation 24,

|v¦
ĒR0w − v¦

ER̃0w| f
N∑

i=1

∣
∣
∣
∣

tr(Siwv¦SiΣg)

1 + tr(SiΣg)
− tr(Siwv¦SiΣg̃)

1 + tr(SiΣg̃)

∣
∣
∣
∣
+OP(n

− 1
2 )

f
N∑

i=1

( | tr(Siwv¦Si(Σg −Σg̃))|
1 + tr(SiΣg)

+
| tr(Siwv¦SiΣg̃) tr(Si(Σg −Σg̃))|

(1 + tr(SiΣg))(1 + tr(SiΣg̃))

)

+OP(n
− 1

2 ).

Now, we have

| tr(Siwv¦Si(Σg −Σg̃))| f ∥Siv∥2∥Siw∥2∥Σg −Σg̃∥op = OP(∥Σg −Σg̃∥op/n),

| tr(Siwv¦SiΣg̃)| f ∥Siv∥2∥Siw∥2∥Σg̃∥op = OP(1/n),

| tr(Si(Σg −Σg̃))| f ∥Si∥F ∥Σg −Σg̃∥F f
√
n∥Si∥F ∥Σg −Σg̃∥op = OP(∥Σg −Σg̃∥op),

where the first and second inequalities follow from the definition of the operator norm, and the last one follows from the

Cauchy-Schwarz inequality.

By El Karoui (2010, Theorem 2.1), ∥Σg −Σg̃∥op →P 0. Therefore,

|v¦
ĒR0w − v¦

ER̃0w| f OP(∥Σg −Σg̃∥op
) +OP(n

− 1
2 ) →P 0.

K. Proofs of Results from Section 4.2

Here, we will prove the results in Section 4.2. First, we will provide several lemmas, which will be used in our proofs. The

first lemma allows us to approximate linear and quadratic forms of β in terms of β⋆; the quadratic form result is from Ba

et al. (2022). Its proof is in Section O.2.

Lemma K.1. For any d ∈ N, let v ∈ R
d and D ∈ R

d×d be vectors and matrices, fixed or independent of X,β⋆, ε1, . . . , εn,

and satisfy ∥v∥2, ∥D∥op f C almost surely, uniformly for some constant C > 0. Under Condition 2.1, we have

∣
∣v¦β − c⋆,1v

¦β⋆
∣
∣→ 0,

∣
∣
∣
∣
β¦Dβ − 1

n
(c2⋆ + Ã2

ε) trD− c2⋆,1β
¦
⋆ Dβ⋆

∣
∣
∣
∣
→ 0

in probability as d→ ∞.

We will use the expression derived for the training loss in the following lemma; see Section O.3 for the proof.

Lemma K.2. The training loss Ltr(F) can be written as Ltr(F) = ¼ỹ¦(FF¦ + ¼nIn)
−1ỹ.
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The following lemma will be used in proving concentration of certain quadratic forms appearing in the proofs; see Section

O.4 for the proof.

Lemma K.3. Let g : R → R be a polynomial, D ∈ R
n×n be a matrix with ∥D∥op = OP(1/n), and Z ∈ R

n be a vector of

i.i.d. Gaussian random variables with bounded variance independent of D. We have

∣
∣
∣g(Z)¦D g(Z)− E[g(Z)¦D g(Z)]

∣
∣
∣→P 0,

in which g is applied elementwise.

The limiting values of two key quadratic forms appearing in the proof are derived in the following lemma, whose proof is

deferred to Section O.5.

Lemma K.4. Let m1 and m2 be the solutions to the system of fixed point equations from equation 5. Then, the following

holds:

(a) β¦X̃¦R̄0X̃β = È(c2⋆ + Ã2
ε)m2 +

È
ϕ c

2
⋆,1m2 + oP(1) = ΘP(1).

(b) a¦F¦
0 R̄0F0a− ∥a∥22 = −¼È2

ϕ2m1 +
È
ϕ − 1 + oP(1) = ΘP(1).

In particular, È(c2⋆ + Ã2
ε)m2 +

È
ϕ c

2
⋆,1m2 ̸= 0 and −¼È2

ϕ2m1 +
È
ϕ − 1 ̸= 0.

The following lemmas will be used in the computations. We defer the proofs of these lemmas to Sections O.6, O.7, O.8, and

O.9 respectively.

Lemma K.5. For any p, q ∈ N0, p ̸= q and any vector u ∈ R
n, with ∥u∥2 = 1 independent of R̄0, we have

Hq(X̃u)¦R̄0Hp(X̃u) = oP(1).

Lemma K.6. For any p ∈ N, we have

(a)
√
NHp(X̃β⋆)R̄0F0a

◦2 = oP(1),

(b)
√
NHp(X̃β)R̄0F0a

◦2 = oP(1).

Lemma K.7. For s ∈ {1, 2}, p ∈ N, and p ̸= s, we have Hp(X̃β⋆)
¦R̄0(X̃β)◦s = oP(1). Further,

lim
n,N,d→∞

H2(X̃β⋆)
¦R̄0(X̃β)◦2 = 2c2⋆,1

Èm1

ϕ
.

Lemma K.8. We have

lim
n,N,d→∞

(X̃β)◦2¦R̄0(X̃β)◦2 =
3Èm1

ϕ
[ϕ(c2⋆ + Ã2

ε) + c2⋆,1]
2.

Now, we will first provide a proof of Theorem 4.3 in the case of ℓ = 1 and ℓ = 2 for a better insight into the proof techniques.

We will then prove the general form in Section L.

K.1. Proof for ℓ = 1

Proof. In the ℓ = 1 regime, due to Theorem 4.1, we can replace F by F1 (defined in equation 4) to compute the training

loss. Hence, from now on we let F = F1. We can write FF¦ = F0F
¦
0 +UKU¦ where U = [F0a | X̃β ] and

K =

[
0 c21¸
c21¸ c41¸

2∥a∥22

]

.

Based on Lemma K.2, the training loss depends on R̄ = (FF¦ + ¼nIn)
−1. Using the Woodbury formula, this matrix can

be written in terms of R̄0 = (F0F
¦
0 + ¼nIn)

−1 as

R̄ = R̄0 − R̄0U(K−1 +U¦R̄0U)−1U¦R̄0. (25)
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Defining T = (K−1 +U¦R̄0U)−1 ∈ R
2×2 and substituting R̄ = R̄0 − R̄0UTU¦R̄0 in the formula for training loss in

Lemma K.2, we find

Ltr(F0)− Ltr(F) = ¼ỹ¦R̄0UTU¦R̄0ỹ. (26)

Using equation 26 and U = [F0a | X̃β ], the loss difference can be written as

Ltr(F0)− Ltr(F) = ¼

[

T11(ỹ
¦R̄0F0a)

2 + (T12 + T21)ỹ
¦R̄0X̃β · a¦F¦

0 R̄0ỹ + T22(ỹ
¦R̄0X̃β)2

]

, (27)

in which Tij are the elements of the matrix T. Using

T =





β¦X̃¦R̄0X̃β − 1
c21¸

− a¦F¦
0 R̄0X̃β

− 1
c21¸

− β¦X̃¦R̄0F0a a¦F¦
0 R̄0F0a− ∥a∥22





(

β¦X̃¦R̄0X̃β
) (

a¦F¦
0 R̄0F0a− ∥a∥22

)
−
(

1
c21¸

+ a¦F¦
0 R̄0X̃β

)2 , (28)

we will compute the limit of each term appearing in equation 27 separately:

Term 1. The first term can be written as

¶1 = ¼T11(ỹ
¦R̄0F0a)

2 =
¼ (β¦X̃¦R̄0X̃β) (ỹ¦R̄0F0a)

2

(

β¦X̃¦R̄0X̃β
) (

a¦F¦
0 R̄0F0a− ∥a∥22

)
−
(

1
c21¸

+ a¦F¦
0 R̄0X̃β

)2 .

Based on Lemma K.4, we know that β¦X̃¦R̄0X̃β and a¦F¦
0 R̄0F0a− ∥a∥22 are ΘP(1). Also, it can easily be seen that

∥F¦
0 R̄0X̃β∥2 f ∥F0∥op∥R̄0∥op∥X̃β∥2 = OP(1).

Hence,
(

1

c21¸
+ a¦F¦

0 R̄0X̃β

)2

= oP(1) (29)

because a §§ F¦
0 R̄0X̃β. Also, using that R̄0F0F

¦
0 = (F0F

¦
0 + ¼nIn)

−1F0F
¦
0 = I− ¼nR̄0,

(ỹ¦R̄0F0a)
2 = ỹ¦R̄0F0Ea[aa

¦]F¦
0 R̄0ỹ + oP(1)

=
1

N
ỹ¦R̄0F0F

¦
0 R̄0ỹ + oP(1) =

1

N
ỹ¦R̄0ỹ − ¼n

N
ỹ¦R̄2

0ỹ + oP(1) = oP(1),

where in the last inequality, we used that ỹ¦R̄0ỹ f 1
¼n∥ỹ∥22 = OP(1) and ỹ¦R̄2

0ỹ f 1
(¼n)2 ∥ỹ∥22 = oP(1). Putting

everything together, it follows that ¶1 = oP(1) in probability.

Term 2 and Term 3. The second and third terms can be written as

¶2 = ¶3 = ¼T12ỹ
¦R̄0X̃βa¦F¦

0 R̄0ỹ

=
¼
(

− 1
c21¸

− a¦F¦
0 R̄0X̃β

)

(ỹ¦R̄0X̃βa¦F¦
0 R̄0ỹ)

(

β¦X̃¦R̄0X̃β
) (

a¦F¦
0 R̄0F0a− ∥a∥22

)
−
(

1
c21¸

+ a¦F¦
0 R̄0X̃β

)2 .

Recall from the above argument that the denominator is ΘP(1) and that 1
c21¸

+ a¦F¦
0 R̄0X̃β = oP(1). Also,

ỹ¦R̄0X̃βa¦F¦
0 R̄0ỹ f 1

(¼n)2 ∥ỹ∥22∥X̃β∥2∥a∥2∥F0∥op = OP(1). Therefore, we find ¶2 = ¶3 = oP(1).
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Term 4. This term can be written as

¶4 = ¼T22(ỹ
¦R̄0X̃β)2

=
¼
(
a¦F¦

0 R̄0F0a− ∥a∥22
)
(ỹ¦R̄0X̃β)2

β¦X̃¦R̄0X̃β
(
a¦F¦

0 R̄0F0a− ∥a∥22
)
−
(

1
c21¸

+ a¦F¦
0 R̄0X̃β

)2 = ¼
(ỹ¦R̄0X̃β)2

β¦X̃¦R̄0X̃β
+ oP(1),

since 1
c21¸

+ a¦F¦
0 R̄0X̃β = oP(1) and a¦F¦

0 R̄0F0a− ∥a∥22 = ΘP(1) ̸= 0 by Lemma K.4. By equation 1 and Condition

2.4, we can write ỹ =
∑∞
p=1 c⋆,pHp(X̃β⋆) + ε, where ε ∈ R

n is additive Gaussian noise. Note that

ỹ¦R̄0X̃β = c⋆,1β
¦
⋆ X̃

¦R̄0X̃β + oP(1)

by Lemma K.7 and since ∥R̄0X̃β∥2 = OP(1/
√
n) and ε §§ R̄0X̃β.

Further by Lemma K.1,

c⋆,1β
¦
⋆ X̃

¦R̄0X̃β = c2⋆,1β
¦
⋆ X̃

¦R̄0X̃β⋆ + oP(1) →P c
2
⋆,1

È

ϕ
m2, (30)

where the final limit follows from the proof of Lemma K.4. By summing up the fours terms computed above and using

Lemma K.4, we find

Ltr(F0)− Ltr(F) →P ∆1 =
È¼c4⋆,1m2

ϕ[c2⋆,1 + ϕ(c2⋆ + Ã2
ε)]

> 0, (31)

which concludes the proof for ℓ = 1.

K.2. Proof for ℓ = 2

In the ℓ = 2 regime, based on Theorem 4.1, we can replace F with F2 (defined in equation 4) to compute the

training loss. Hence, from now on we let F = F2. We can write FF¦ = F0F
¦
0 + UKU¦ where U =

[F0a | F0a
◦2√N | X̃β | (X̃β)◦2 ] and

K =











0 0 c21¸ 0

0 0 0 c21c2¸
2/
√
N

c21¸ 0 c41¸
2∥a∥22 c41c2¸

3ïa,a◦2ð

0 c21c2¸
2/
√
N c41c2¸

3ïa◦2,að c41c
2
2¸

4ïa◦2,a◦2ð











.

Recalling R̄ = (FF¦ + ¼nIn)
−1 and R̄0 = (F0F

¦
0 + ¼nIn)

−1, we still have equation 25. Defining T = (K−1 +
U¦R̄0U)−1 ∈ R

4×4, we have the following analogue to equation 26:

Ltr(F0)− Ltr(F) = ¼ỹ¦R̄0UTU¦R̄0ỹ. (32)

Denoting in what follows Q = F¦
0 R̄0F0, the inverse T−1 can be written as follows:
















a¦Qa− ∥a∥22 N
1
2a¦(Q− I)a◦2 a¦F¦

0 R̄0θ̃ + 1
c21¸

a¦F¦
0 R̄0θ̃

◦2

N
1
2a¦(Q− I)a◦2 Na◦2¦Qa◦2 −N∥a◦2∥22 N

1
2a◦2¦F¦

0 R̄0θ̃ N
1
2a◦2¦F¦

0 R̄0θ̃
◦2 + N

1
2

c21c2¸
2

θ̃¦R̄0F0a+ 1
c21¸

N
1
2 θ̃¦R̄0F0a

◦2 θ̃¦R̄0θ̃ θ̃¦R̄0θ̃
◦2

θ̃◦2¦R̄0F0a N
1
2 θ̃◦2¦R̄0F0a

◦2 + N
1
2

c21c2¸
2 θ̃◦2¦R̄0θ̃ θ̃◦2¦R̄0θ̃

◦2
















. (33)
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K.2.1. ANALYSIS OF TERMS IN T−1
AND T

In the following section, we will first analyze the elements of T−1:

(1,1): The term a¦Qa− ∥a∥22 has already been analyzed in Lemma K.4 and is ΘP(1).

(1,2) and (2,1): Recalling Q = F¦
0 R̄0F0 and R0 = (F¦

0 F0 + ¼nIN )−1, we can write

[T−1]1,2 = [T−1]2,1 =
√
Na¦Qa◦2 −

√
Nïa,a◦2ð

= −¼n
√
Na¦R0a

◦2 = −¼n
√
Na¦R0

(
a◦2 − 1/N1N + 1/N1N

)
.

Introducing ã =
√
Na ∼ N(0, IN ), and as H2(x) = x2 − 1 for all x, we find

[T−1]1,2 = [T−1]2,1 = −¼n
N

ã¦R0H2(ã)−
¼n√
N

a¦R01N .

The second term converges to zero as n→ ∞ because a ∼ N(0, 1
N IN ) is independent of R0, and

∥
∥ n√

N
R01N

∥
∥
2
= OP(1).

Moreover, the first term also converges to zero; indeed,

ã¦R0H2(ã) =

(
ã¦ +H2(ã)

2

)¦
R0

(
ã¦ +H2(ã)

2

)

−
(
ã¦ −H2(ã)

2

)¦
R0

(
ã¦ −H2(ã)

2

)

.

Lemma K.3 can be used with D = R to prove the concentration of both term around their expectation. Note that the

expectation of ã¦R0H2(ã) is zero because of the orthogonality property of Hermite polynomials and the independence of

ã and R0. Putting everything together, we conclude that [T−1]1,2 = [T−1]2,1 = oP(1).

(1,3) and (3,1): Recalling that θ̃ = X̃β, it follows from equation 29 that this term is oP(1).

(1,4) and (4,1): To bound a¦F¦
0 R̄0θ̃

◦2, note that

∥F¦
0 R̄0θ̃

◦2∥op f ∥F0∥op∥R̄0∥op∥θ̃◦2∥2 = OP(1).

Hence, because a ∼ N(0, 1
N IN ) is independent of F¦

0 R̄0θ̃
◦2, we have

[T−1]1,4 = [T−1]4,1 = a¦F¦
0 R̄0θ̃

◦2 = oP(1).

(2,2): This term is OP(1), because a ∼ N(0, 1
N IN ), so

[T−1]2,2 = Na◦2¦Qa◦2 −N∥a◦2∥22 = −¼Nna◦2¦(F¦
0 F0 + ¼nIN )−1a◦2

f ¼Nn ∥a◦2∥22 · ∥(F¦
0 F0 + ¼nIN )−1∥op = OP(1).

(2,3) and (3,2): To bound
√
Na◦2¦F¦

0 R̄0θ̃, note that

∥
√
Na◦2¦F¦

0 R̄0X̃∥2 f ∥
√
Na◦2∥2∥F0∥op∥R0∥op∥X̃∥op f C ·

√
N · 1

n
·
√
N = OP(1).

Also, by Lemma K.1, we have

[T−1]2,3 = [T−1]3,2 =
√
Na◦2¦F¦

0 R̄0X̃β = c⋆,1
√
Na◦2¦F¦

0 R̄0X̃β⋆ + oP(1),

which converges to zero, because β⋆ ∼ N(0, 1dId) and is independent of
√
Na◦2¦F¦

0 R̄0X̃, which has bounded norm in

probability.
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(2,4) and (4,2): First note that in the regime where ℓ = 2, we have
√
N
¸2 → 0. Hence, we can write

[T−1]2,4 =
√
N(X̃β)◦2¦R̄0F0a

◦2 + oP(1) =
√
NH2(X̃β)¦R̄0F0a

◦2 +
√
N1¦

n R̄0F0a
◦2 + oP(1). (34)

By Lemma K.6, the first term converges in probability to zero. Moreover, a ∼ N(0, 1
N IN ) is independent of R̄0F0, and

∥1¦
n R̄0F0∥2 = OP(1). Thus, we have that

√
N1¦

n R̄0F0

(
a◦2 − 1/N1N

)
→P 0. Hence, we find

[T−1]2,4 =
√
N1¦

n R̄0F01N/N + oP(1).

Based on the Gaussian equivalence from Appendix J, we can replace F0 with F0 = c1X̃W¦
0 +c>1Z, where Z ∈ R

n×d is an

independent random matrix with N(0, 1) entries, without changing the limit. Now, the linearized F0 is left-orthogonally in-

variant, hence F0 has the same distribution as OF0, where O is uniformly distributed over the Haar measure of d-dimensional

orthogonal matrices, independently of all other randomness. Hence, N−1/21¦
n R̄0F01N =d N

−1/21¦
nOR̄0F01N . Now,

O¦1n =d
√
nz/∥z∥2, where z ∼ N(0, In). Moreover ∥z∥2 =

√
n(1 + oP(1)), hence replacing O¦1n with z¦ intro-

duces negligible error. Hence, [T−1]2,4 =d N
−1/2z¦R̄0F01N + oP(1). Now, z¦R̄0F01N ∼ N(0, ∥R̄0F01N∥22), and

∥R̄0F01N∥2 = OP(1), thus [T−1]2,4 →P 0.

(3,3): We have ∥θ̃∥2 = OP(
√
N) and ∥R̄0∥op = OP(1/n). Thus, [T−1]3,3 = OP(1).

(3,4) and (4,3): First, note that defining β̃ = β

∥β∥2
, and as H2(x) = x2 − 1 for all x, we can write

[T−1]3,4 = [T−1]4,3 = θ̃¦R̄0θ̃
◦2 = ∥β∥32

(

(X̃β̃)¦R̄0(X̃β̃)◦2
)

= ∥β∥32
(

(X̃β̃)¦R̄0H2(X̃β̃)
)

+ ∥β∥22
(

θ̃¦R̄01N

)

.

Now, by Lemma K.1, we have θ̃¦R̄01N = c⋆,1θ̃
¦
⋆ R̄01N + oP(1). Now, note that ∥X̃R̄01N∥2 = OP(1) and β⋆ ∼

N(0, 1dId) is independent of X̃R̄01N , which implies that the second term converges to zero. By using Lemma K.5 for

u = β̃, the first term also converges to zero. Putting these together, we have [T−1]3,4 = [T−1]4,3 = oP(1).

(4,4): We have ∥θ̃◦2∥2 = OP(
√
N) and ∥R̄0∥op = OP(1/n). Thus, [T−1]4,4 = OP(1).

Now, putting everything together, the matrix T−1 can be written as

T−1 =














[T−1]1,1 0 0 0

0 [T−1]2,2 0 0

0 0 [T−1]3,3 0

0 0 0 [T−1]4,4














+∆1,

where the all elements of ∆1 are oP(1). Thus the matrix T is equal to

T =














1
[T−1]1,1

0 0 0

0 1
[T−1]2,2

0 0

0 0 1
[T−1]3,3

0

0 0 0 1
[T−1]4,4














+∆2, (35)

where the all elements of ∆2 are oP(1).
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K.2.2. COMPUTING THE TRAINING LOSS

Having computed the limit of the matrix T−1 and T, we are now ready to put everything together and compute the limiting

train loss. One can write the outcome vector ỹ as ỹ = Ã⋆(X̃β⋆) + ε, where ε ∈ R
n is the noise term. Thus, using

equation 32, we find

Ltr(F0)− Ltr(F) = ¼Ã⋆(X̃β⋆)
¦R̄0UTU¦R̄0Ã⋆(X̃β⋆)

+ 2¼Ã⋆(X̃β⋆)
¦R̄0UTU¦R̄0ε+ ¼ε¦R̄0UTU¦R̄0ε. (36)

We will first argue the second and third term will go to zero in probability. To do this, we note that ∥T∥op = OP(1) and also

∥U¦R̄0∥2 f ∥U∥op∥R̄0∥op = OP(1/
√
n). We have ε ∼ N(0, Ã2

εIn) and it is independent of R̄0,U,T, X̃, and β⋆. Also

note that ∥Ã⋆(X̃β⋆)
¦R̄0U∥2 = OP(1). Thus, the second and third term in equation 36 go to zero and we have

Ltr(F0)− Ltr(F) = ¼Ã⋆(X̃β⋆)
¦R̄0UTU¦R̄0Ã⋆(X̃β⋆) + oP(1).

If we expand Ã⋆(X̃β⋆) in the Hermite basis as Ã⋆(X̃β⋆) =
∑∞
p=1 c⋆,pHp(θ̃⋆), we can write

Ltr(F0)− Ltr(F) = ¼

∞∑

p,q=1

c⋆,pc⋆,qHp(θ̃⋆)
¦R̄0UTU¦R̄0Hq(θ̃⋆) + oP(1).

We define ∆p,q = Hp(θ̃⋆)
¦R̄0UTU¦R̄0Hq(θ̃⋆) = ¶p,q1 + ¶p,q2 + ¶p,q3 + ¶p,q4 in which, with Ti,j being the (i, j)-th

elements of the matrix T,

¶p,q1 = T1,1Hp(θ̃⋆)
¦R̄0(F0a)(F0a)

¦R̄0Hq(θ̃⋆)

+ T1,2Hp(θ̃⋆)
¦R̄0(F0a)(

√
NF0a

◦2)¦R̄0Hq(θ̃⋆)

+ T1,3Hp(θ̃⋆)
¦R̄0(F0a)θ̃

¦R̄0Hq(θ̃⋆)

+ T1,4Hp(θ̃⋆)
¦R̄0(F0a)θ̃

◦2¦R̄0Hq(θ̃⋆), (37)

¶p,q2 = T2,1Hp(θ̃⋆)
¦R̄0(

√
NF0a

◦2)(F0a)
¦R̄0Hq(θ̃⋆)

+ T2,2Hp(θ̃⋆)
¦R̄0(

√
NF0a

◦2)(
√
NF0a

◦2)¦R̄0Hq(θ̃⋆)

+ T2,3Hp(θ̃⋆)
¦R̄0(

√
NF0a

◦2)θ̃¦R̄0Hq(θ̃⋆)

+ T2,4Hp(θ̃⋆)
¦R̄0(

√
NF0a

◦2)θ̃◦2¦R̄0Hq(θ̃⋆), (38)

¶p,q3 = T3,1Hp(θ̃⋆)
¦R̄0θ̃(F0a)

¦R̄0Hq(θ̃⋆)

+ T3,2Hp(θ̃⋆)
¦R̄0θ̃(

√
NF0a

◦2)¦R̄0Hq(θ̃⋆)

+ T3,3Hp(θ̃⋆)
¦R̄0θ̃θ̃

¦R̄0Hq(θ̃⋆)

+ T3,4Hp(θ̃⋆)
¦R̄0θ̃θ̃

◦2¦R̄0Hq(θ̃⋆), (39)

and

¶p,q4 = T4,1Hp(θ̃⋆)
¦R̄0θ̃

◦2(F0a)
¦R̄0Hq(θ̃⋆)

+ T4,2Hp(θ̃⋆)
¦R̄0θ̃

◦2(
√
NF0a

◦2)¦R̄0Hq(θ̃⋆)

+ T4,3Hp(θ̃⋆)
¦R̄0θ̃

◦2θ̃¦R̄0Hq(θ̃⋆)

+ T4,4Hp(θ̃⋆)
¦R̄0θ̃

◦2θ̃◦2¦R̄0Hq(θ̃⋆). (40)

We will now look at each ¶p,qi for i ∈ {1, 2, 3, 4}.

27



A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks

Term ¶p,q1 : To prove that the term in equation 37 are asymptotically negligible, note that a ∼ N(0, 1
N IN ) is independent

of Hp(θ̃⋆)R̄0F0 and we have ∥Hp(θ̃⋆)R̄0F0∥2 = OP(1). Thus, Hp(θ̃⋆)R̄0F0a = oP(1) and all other terms multiplying

this are OP(1). This implies that for any p, q ∈ N, we have ¶p,q1 = oP(1).

Term ¶p,q2 : All four terms in equation 38 converge to zero. To prove this, we will use the Lemma K.6. In equation 38, all

terms multiplied by
√
NHp(θ̃⋆)R̄0F0a

◦2 are OP(1). Thus, ¶p,q2 = oP(1) for any p, q ∈ N.

Term ¶p,q3 : The first term in equation 39 converges to zero in probability due to an argument similar to the arguments

used for ¶p,q1 ; and the same holds for the second term in equation 39, by arguing similarly as for ¶p,q2 . We have shown that

T3,4 = oP(1), and by a norm argument, we can see that Hp(θ̃⋆)
¦R̄0θ̃ and θ̃◦2¦R̄0Hq(θ̃⋆) are OP(1). Hence,

¶p,q3 = T3,3
(
Hp(θ̃⋆)

¦R̄0θ̃
)(
θ̃¦R̄0Hq(θ̃⋆)

)
+ oP(1).

Term ¶p,q4 : The first two terms in equation 40 converge to zero by the same reasoning used for ¶p,q1 and ¶p,q2 , respectively.

The third term can also be shown to converge to zero by recalling that T4,3 = oP(1). Hence, we can write

¶p,q4 = T4,4
(
Hp(θ̃⋆)

¦R̄0θ̃
◦2)(θ̃◦2¦R̄0Hq(θ̃⋆)

)
+ oP(1).

Putting everything together, we find

Ltr(F0)− Ltr(F) = ¼T3,3

∞∑

p,q=1

c⋆,pc⋆,q(Hp(θ̃⋆)
¦R̄0θ̃

)(
θ̃¦R̄0Hq(θ̃⋆)

)

+ ¼T4,4

∞∑

p,q=1

c⋆,pc⋆,q
(
Hp(θ̃⋆)

¦R̄0θ̃
◦2)(θ̃◦2¦R̄0Hq(θ̃⋆)

)
+ oP(1).

Using Lemma K.7, we know that in the sums above, the terms corresponding to (p, q) = (1, 1) and (p, q) = (2, 2) are the

only non-negligible terms in the first and second sum respectively.

Hence, as T3,3 = 1/(θ̃¦R̄0θ̃) + oP(1) and T4,4 = 1/(θ̃◦2¦R̄0θ̃
◦2) + oP(1), from Lemmas K.1, K.4, K.7 and K.8, we can

write,

Ltr(F)− Ltr(F0) = ¼T3,3c
2
⋆,1

(
θ̃¦
⋆ R̄0θ̃

)2
+ ¼T4,4c

2
⋆,2

(
H2(θ̃⋆)

¦R̄0θ̃
◦2)2 + oP(1)

= ¼
c2⋆,1
(
θ̃¦
⋆ R̄0θ̃

)2

θ̃¦R̄0θ̃
+ ¼c2⋆,2

(
H2(θ̃⋆)

¦R̄0θ̃
◦2)2

θ̃◦2¦R̄0θ̃◦2
+ oP(1)

→P ∆2 =
È¼c4⋆,1m2

ϕ[c2⋆,1 + ϕ(c2⋆ + Ã2
ε)]

+
4È¼c4⋆,1c

2
⋆,2m1

3ϕ[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2
,

proving the theorem for ℓ = 2.

L. Asymptotics of the Training Loss for General ℓ

We define the values Ài,j for all i, j ∈ {0, 1, . . .} such that for any p ∈ N and x ∈ R, we have xp =
∑p
i=0 Àp,iHi(x).

Theorem L.1. Let ℓ ∈ N. If Conditions 2.1-2.4 hold, while we also have c1, · · · , cℓ ̸= 0, and ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 ,

then for the learned feature map F and the untrained feature map F0, we have Ltr(F0)− Ltr(F) →P ∆ℓ > 0, where

∆ℓ = ¼

ℓ∑

p=1

ℓ∑

q=1

c⋆,pc⋆,qrprq

ℓ∑

i=1

ℓ∑

j=1

Ωi,j

(
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
)(i+j)/2

Ài,pÀj,q + oP(1),

in which Ω is an invertible matrix with

[Ω−1]i,j =
(
c2⋆,1 + ϕ(c2⋆ + Ã2

ε)
)(i+j)/2 È

ϕ



m2Ài,1Àj,1 +m1

min(i,j)
∑

k=0, k ̸=1

k! Ài,kÀj,k



 , ∀i, j ∈ [ℓ],
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and for p ∈ N,

rp =







p!Èm1

ϕ

(

c⋆,1√
ϕ(c2⋆+Ã

2
ε)+c

2
⋆,1

)p

p ̸= 1

Èm2

ϕ
c⋆,1√

ϕ(c2⋆+Ã
2
ε)+c

2
⋆,1

p = 1

Proof of Theorem L.1. In the regime where ¸ ≍ n³ with ℓ−1
2ℓ < ³ < ℓ

2ℓ+2 , according to the equivalence theorem 4.1, we

can replace F with Fℓ when computing the limiting training loss. To compute the limiting training loss difference according

to lemma K.2, we study the matrix R̄ = (FF¦ + ¼nIn)
−1. Due to equation 4, we can write

FF¦ = F0F
¦
0 +

ℓ∑

k=1

ck1ck¸
kθ̃◦k(F0a

◦k)¦

+

ℓ∑

k=1

ck1ck¸
k(F0a

◦k)θ̃◦k¦ +

ℓ∑

j=1

ℓ∑

i=1

ci+j1 cicj¸
i+j(a◦i)¦(a◦j)θ̃◦iθ̃◦j¦.

Defining the matrix U as

U =



 F0a
∣
∣ · · ·

∣
∣ N (ℓ−1)/2F0a

◦ℓ
︸ ︷︷ ︸

ℓ columns

∣
∣
∣
∣
θ̃
∣
∣ · · ·

∣
∣ θ̃◦ℓ

︸ ︷︷ ︸

ℓ columns



 ∈ R
n×2ℓ,

we can write

FF¦ = F0F
¦
0 +UKU¦, in which K =

[
0ℓ×ℓ Ko

Ko K̃

]

∈ R
2ℓ×2ℓ,

where Ko = diag
(
c1c1¸
N0 , . . . ,

cℓ1cℓ¸
ℓ

N(ℓ−1)/2

)

∈ R
ℓ×ℓ, and K̃ ∈ R

ℓ×ℓ with [K̃]i,j = ci+j1 cicj¸
i+jïa◦i,a◦jð, for all i, j ∈ [ℓ].

Using the Woodbury formula, the matrix R̄ can be written in terms of R̄0 = (F0F
¦
0 + ¼nIn)

−1 and T = (K−1 +
U¦R̄0U)−1 ∈ R

2ℓ×2ℓ as R̄ = R̄0 − R̄0UTU¦R̄0. Now

K−1 =

[

K̂ K−1
o

K−1
o 0ℓ×ℓ

]

, where K−1
o = diag

(

N0

c1c1¸
, . . . ,

N
ℓ−1
2

cℓ1cℓ¸
ℓ

)

,

and [K̂]i,j = −N (i−1)/2N (j−1)/2ïa◦i,a◦jð, for all i, j ∈ [ℓ]. We define M1,M2,Mo ∈ R
ℓ×ℓ as the following blocks of

T−1:

T−1 =

[
M1 Mo

Mo M2

]

.

Hence, we have







[M1]i,j = N (i−1)/2N (j−1)/2a◦i¦(F¦
0 R̄0F0 − I)a◦j ,

[Mo]i,j = N (i−1)/2a◦i¦F¦
0 R̄0θ̃

◦j + oP(1),

[M2]i,j = θ̃◦i¦R̄0θ̃
◦j .

We can expand the monomials in terms of the Hermite polynomials, for scalars Ài,k, k ∈ [i], as follows:

(N1/2a)◦i =
i∑

k=0

Ài,kHk(N
1/2a), and (X̃β)◦i = ∥β∥i2

i∑

k=0

Ài,kHk(X̃β/∥β∥2).

Using these, we will analyze each matrix M1,M2,Mo separately.
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Analysis of M1. It is easily seen that the elements of this matrix are OP(1).

Analysis of M2. To analyze these terms, we need the following lemma, whose proof is deferred to Section O.10.

Lemma L.2. For any i, j ∈ N0, we have

(X̃β)◦i¦R̄0(X̃β)◦j →P

(
c2⋆,1 + ϕ(c2⋆ + Ã2

ε)
)(i+j)/2



Ài,1Àj,1
Èm2

ϕ
+
Èm1

ϕ

min(i,j)
∑

k=0, k ̸=1

k! Ài,kÀj,k



 .

Defining the matrix M̄2 ∈ R
ℓ×ℓ with entries

[M̄2]i,j =
(
c2⋆,1 + ϕ(c2⋆ + Ã2

ε)
)(i+j)/2



Ài,1Àj,1
Èm2

ϕ
+
Èm1

ϕ

min(i,j)
∑

k=0, k ̸=1

k! Ài,kÀj,k



 ,

for all i, j ∈ [ℓ], we have [M2]i,j →P [M̄2]i,j . Note that we can write

M̄2 =
È

ϕ
BZMZ¦B+

Èm1

ϕ
ee¦,

where we define b = (c2⋆,1 + ϕ(c2⋆ + Ã2
ε))

1/2, B = diag(b1, · · · , bℓ) ∈ R
ℓ×ℓ, e = B[À1,0, · · · , Àℓ,0]¦,

M =








1!m2 0 · · · 0
0 2!m1 · · · 0
...

...
. . .

...

0 0 · · · ℓ!m1







∈ R

ℓ×ℓ, and Z =






À1,1 · · · À1,ℓ
...

. . .
...

Àℓ,1 · · · Àℓ,ℓ




 ∈ R

ℓ×ℓ.

Recalling that for all i, j ∈ {0, 1, . . .}, Ài,j are such that such that for any p ∈ N and x ∈ R, we have xp =
∑p
i=0 Àp,iHi(x),

it follows that the matrix Z is lower-triangular with unit diagonal; hence invertible. Thus, since B,M are diagonal with

positive entries, the matrix BZMZ¦B is positive definite. This implies that M̄2 is invertible. We will denote Ω = M̄−1
2 .

Analysis of Mo. We analyze [Mo]i,j by writing N (i−1)/2a◦i in the Hermite basis, finding

[Mo]i,j =

i∑

k=0

Ài,k√
N
Hk(N

1/2a)¦F¦
0 R̄0θ̃

◦j + oP(1).

The terms with k > 0 are all oP(1) because
Hk(N

1/2a)√
N

is a norm OP(1) vector with mean zero, independent from the vector

F¦
0 R̄0θ̃

◦j with norm OP(1). Thus, [Mo]i,j = oP(1). The term with k = 0 can also be shown to be oP(1) by using that the

linearized F0 is left-orthogonally invariant, via an argument identical to the one used to analyze equation 34.

Hence, putting these together, the matrix T can be written as

T =

[
M−1

1 0ℓ×ℓ
0ℓ×ℓ M̄−1

2

]

+ oP(1).

Using lemma K.2, we can write the training loss difference as Ltr(F0)− Ltr(F) = ¼y¦R̄0UTU¦R̄0y. Plugging in the

teacher function f⋆, we find

Ltr(F0)− Ltr(F) =
∑

p,q

¼c⋆,pc⋆,qHp(θ̃⋆)
¦R̄0UTU¦R̄0Hq(θ̃⋆)

+ 2¼
∑

p

(

c⋆,pHp(θ̃⋆)
¦R̄0UTU¦R̄0ε

)

+ ¼ε¦R̄0UTU¦R̄0ε.
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Note that the second term can be shown to be oP(1) because ε ∼ N(0, Ã2
εIn) and it is independent from

Hp(θ̃⋆)
¦R̄0UTU¦R̄0, and ∥Hp(θ̃⋆)

¦R̄0UTU¦R̄0∥op = OP(1/
√
N) with a simple orderwise analysis. The third

can also be shown to be oP(1) by noting that ε is independent from R̄0U, ∥R̄0U∥op = OP(1/
√
n) and that the elements of

T are OP(1).

To analyze the first term, we define ¶p,q = Hp(θ̃⋆)
¦R̄0UTU¦R̄0Hq(θ̃⋆) for all non-negative integers p, q. To analyze

such terms, we first expand UTU¦ as

UTU¦ =

ℓ∑

i=1

ℓ∑

j=1

N (i+j)/2−1[M−1
1 ]i,j(F0a

◦i)(F0a
◦j)¦ +

ℓ∑

i=1

ℓ∑

j=1

[M̄−1
2 ]i,j θ̃

◦iθ̃◦j¦.

Thus, for any p, q ∈ N0, the terms ¶p,q can be written as

¶p,q =
ℓ∑

i=1

ℓ∑

j=1

N (i+j)/2−1[M−1
1 ]i,jHp(θ̃⋆)

¦R̄0(F0a
◦i)(F0a

◦j)¦R̄0Hq(θ̃⋆)

+
ℓ∑

i=1

ℓ∑

j=1

[M̄−1
2 ]i,jHp(θ̃⋆)

¦R̄0θ̃
◦iθ̃◦j¦R̄0Hq(θ̃⋆).

By an argument identical to the argument for the terms in Mo, the first sum goes to zero in probability. Denoting

β/∥β∥2 := β̃, we can expand (X̃β)◦i = ∥β∥i2
∑i
k=0 Ài,kHk(X̃β/∥β∥2), To analyze ¶p,q, we need the following result,

whose proof is deferred to Section O.11.

Lemma L.3. For any p, q ∈ N0, we have

Hp(X̃β⋆)
¦R̄0Hq(X̃β̃) →P







p!Èm1

ϕ

(

c⋆,1√
ϕ(c2⋆+Ã

2
ε)+c

2
⋆,1

)p

p = q ̸= 1

Èm2

ϕ
c⋆,1√

ϕ(c2⋆+Ã
2
ε)+c

2
⋆,1

p = q = 1

0 p ̸= q.

We can now use Lemma L.3 and that ∥β∥2 →P

(
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
)1/2

to write

¶p,q =

ℓ∑

i=1

ℓ∑

j=1

[M̄−1
2 ]i,j∥β∥i+j2 Ài,pÀj,qHp(θ̃⋆)

¦R̄0Hp(X̃β̃) ·Hq(X̃β̃)¦R̄0Hq(θ̃⋆) + oP(1)

=

ℓ∑

i=1

ℓ∑

j=1

[Ω]i,j
(
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
)(i+j)/2

Ài,pÀj,qrprq + oP(1),

for p, q ∈ [ℓ], which concludes the proof.

M. Infinite sample limit

In the infinite sample limit, where nk N, d, we have ϕ→ 0. In this extreme case, the expressions for m1,m2 will further

simplify as m1,m2 → ϕ/¼È. Note that in this limit, we have Ltr(F0) → Ã2
ε + c2⋆ (see e.g., Mei & Montanari (2022,

Section 6). Using Corollary 4.4, we see that for example when ℓ = 2, we have L(F) → Ã2
ε +

2c2⋆,2
3 + c2⋆,>2. In particular,

the term corresponding to the linear component of the teacher function in L(F0) cancels out with the corresponding term in

∆2.

N. Proof of Theorem 4.5

Let (xte, yte) follow the model from (1). Recall that the test error can be written as

Lte(â(F)) = Exte,yte(yte − â¦Ã(Wxte))
2 = Exte,yte(y

2
te) + â¦Σf â− 2â¦µf , (41)
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where Σf = Exte

[
Ã(Wxte)Ã(Wxte)

¦] and µf = Exte,yte [yteÃ(Wxte)]. First, we will show that in the definition of

Σf and µf , we can replace the test feature Ã(Wxte) with the spiked approximation from Theorem 3.2

fℓ = Ã(W0xte) +

ℓ∑

k=1

ck1ck¸
k(β¦xte)

ka◦k, (42)

without changing the test error. To do this, consider an independent test set {xte,i, yte,i}nte
i=1 with nte test samples following

the data generation distribution in equation 1 and we define X = [xte,1, . . . ,xte,n]
¦ ∈ R

nte×d. Let Fte = Ã(XteW
¦) ∈

R
nte×N be the test feature matrix. We can write the test error as

Lte(â(F)) = lim
nte→∞

1

nte
∥yte − Fteâ(F)∥22.

Now, consider the spiked approximation of the test feature matrix Fte,ℓ ∈ R
nte,N where each row of Fte,ℓ follows the

approximation in equation 42. Using Theorem 3.2, we have ∥Fte − Fte,ℓ∥op = oP(
√
nte). Thus,

∣
∣
∣
∣

1

nte
∥yte − Fteâ(F)∥22 −

1

nte
∥yte − Fte,ℓâ(F)∥22

∣
∣
∣
∣
f 1

nte

∣
∣
∣

〈

(Fte − Fte,ℓ)â(F), 2yte − Fte − Fte,ℓ

〉∣
∣
∣

f C√
nte

∥Fte − Fte,ℓ∥op · ∥â(F)∥2 →P 0,

where the last line is due to the fact that under the assumption of Theorem 4.2, we have ∥yte − Fteâ(F)∥22 = OP(
√
nte),

and that ∥â(F)∥2 = OP(1) from the proof of Theorem 4.1. Thus in the test error, we can replace the test features with their

spiked approximation without changing the limiting test error. With this, we can write

Σf = Σ0
f + Exte

[
ℓ∑

k=1

ck1ck¸
k(x¦

teβ)
k
(
a◦kÃ(W0xte)

¦ + Ã(W0xte)a
◦k¦)

]

+ Exte





ℓ∑

i=1

ℓ∑

j=1

ci+j1 ¸i+j(x¦
teβ)

i+jcicj(a
◦ia◦j¦)





= Σ0
f + Exte

[
ℓ∑

k=1

ck1ck¸
k
(
a◦kν¦

k + νka
◦k¦)

]

+ Exte





ℓ∑

i=1

ℓ∑

j=1

ci+j1 ¸i+jcicjℵi+j(a◦ia◦j¦)



 , (43)

where Σ0
f = Exte

[
Ã(W0xte)Ã(W0xte)

¦], νk = Exte
[(x¦

teβ)
kÃ(W0xte)], and ℵk = Exte

(x¦
teβ)

k for all k ∈ [ℓ]. Also,

µf = Exte,yte [ yteÃ(Wxte) ] = µ0
f +

ℓ∑

k=1

ck1ckÄk¸
ka◦k, (44)

where µ0
f = Exte,yte [ yteÃ(W0xte) ], and Äk = Exte

[
yte(x

¦
teβ)

k
]
.

N.1. Proof for ℓ = 1

Without loss of generality, assume that c1 = 1. First, note that

ν1 = Exte
[(x¦

teβ)Ã(W0xte)] = W0β,

ℵ1 = Exte
(x¦

teβ) = 0, and ℵ2 = Exte
(x¦

teβ)
2 = ∥β∥22 →P c

2
⋆,1 + ϕ(c2⋆ + Ã2

ε),

Ä1 = E
[
yte(x

¦
teβ)

]
= c⋆,1β

¦
⋆ β →P c

2
⋆,1,

where the convergence follows from equation 3 and the computations are in its proof.

Thus, using equation 43, we have

µf = µ0
f + c2⋆,1¸a, Σf = Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2

(
c2⋆,1 + ϕ(c2⋆ + Ã2

ε)
)
aa¦.
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From Section K.1, we have R̄ = R̄0 − R̄0UTU¦R̄0, where T is defined in equation 28 and U = [ F0a | X̃β ]. In

Section K.1 it was shown that

T =

[
β¦X̃¦R̄0X̃β − 1

¸ − a¦F¦
0 R̄0X̃β

− 1
¸ − β¦X̃¦R̄0F0a a¦F¦

0 R̄0F0a− ∥a∥22

]

(

β¦X̃¦R̄0X̃β
) (

a¦F¦
0 R̄0F0a− ∥a∥22

)
−
(

1
¸ + a¦F¦

0 R̄0X̃β
)2 , (45)

where T11, T22 = ΘP(1), and T21, T12 = OP(1/¸).

Now, we are ready to study the terms E1 = Exte,yte(y
2
te), E2 = â¦Σf â, and E3 = −2â¦µf that appear in the test error

in equation 41.

N.1.1. ANALYSIS OF E1 .

This term can be readily computed as

E1 = E(y2te) = Ã2
ε + Exte

(
Ã⋆(β

¦
⋆ xte)

)2
= Ã2

ε + c2⋆. (46)

N.1.2. ANALYSIS OF E2 .

Recall that â = (F¦F+¼nIN )−1F¦ỹ, R̄0 = (F¦
0 F0+¼nIn)

−1, and R̄ = (FF¦+¼nIn)
−1. Using these, we can write

E2 = â¦Σf â = ỹ¦F(F¦F+ ¼nIN )−1Σf (F
¦F+ ¼nIN )−1F¦ỹ

= ỹ¦(FF¦ + ¼nIn)
−1FΣfF

¦(FF¦ + ¼nIn)
−1ỹ = ỹ¦R̄FΣfF

¦R̄ỹ. (47)

We have ỹ = f⋆ + ε, thus

E2 = f¦
⋆ R̄FΣfF

¦R̄f⋆ + 2ε¦R̄FΣfF
¦R̄f⋆ + ε¦R̄FΣfF

¦R̄ε. (48)

We will now analyze the terms in equation 48. First note that ε¦R̄FΣfF
¦R̄f⋆ = oP(1) using a simple order-wise

argument. To analyze the third term in equation 48, we write

F¦R̄ ε =
(

F0 + ¸(X̃β)a¦
)¦

R̄ ε = F¦
0 R̄ ε+ ¸(β¦X̃¦R̄ ε)a.

Using a simple order-wise analysis, we have β¦X̃¦R̄ ε = OP(1/
√
n). Thus, the third term can be written as

ε¦R̄FΣfF
¦R̄ ε = ε¦R̄F0ΣfF

¦
0 R̄ ε

︸ ︷︷ ︸
q1

+2¸(β¦X̃¦R̄ ε) ε¦R̄F0Σfa
︸ ︷︷ ︸

q2

+ ¸2(β¦X̃¦R̄ ε)2a¦Σfa
︸ ︷︷ ︸

q3

.

The term q1 can be computed as

q1 = ε¦R̄F0ΣfF
¦
0 R̄ ε = ε¦R̄F0

(
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦)F¦

0 R̄ ε

= ε¦R̄F0Σ
0
fF

¦
0 R̄ ε+ oP(1) = ε¦R̄0F0Σ

0
fF

¦
0 R̄0 ε+ oP(1),

where in the last line we have used that R̄ = R̄0 − R̄0UTU¦R̄0 and an order-wise analysis for various terms. To analyze

q2, note that

ε¦R̄F0Σfa = ε¦R̄F0

(
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦)a = oP(1),

using a simple order-wise analysis, thus q2 = oP(1). Similarly, for q3, we have

q3 = ¸2(β¦X̃¦R̄ ε)2a¦ (Σ0
f + ¸

(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦)a = oP(1).

Hence, summing everything up

E2 = ε¦R̄0F0Σ
0
fF

¦
0 R̄0 ε+ f¦

⋆ R̄FΣfF
¦R̄f⋆ + oP(1). (49)
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Next, we will study the term f¦
⋆ R̄FΣfF

¦R̄f⋆. We can write

â = F¦R̄f⋆ =
(

F0 + ¸(X̃β)a¦
)¦ (

R̄0 − R̄0UTU¦R̄0

)
f⋆

= F¦
0 R̄0f⋆
︸ ︷︷ ︸

p1

−F¦
0 R̄0UTU¦R̄0f⋆

︸ ︷︷ ︸
p2

+ ¸
[

(X̃β)¦R̄0f⋆ − (X̃β)¦R̄0UTU¦R̄0f⋆

]

a
︸ ︷︷ ︸

p3

. (50)

Thus, defining Eij2 = p¦
i Σfpj for i, j ∈ [3], we have E2 =

∑3
i,j=1E

ij
2 . In the following sections, we will analyze each

term in this sum separately.

Preliminary Computations. Before starting the computation, we define K as

K := β¦X̃¦R̄0f⋆ − β¦X̃¦R̄0UTU¦R̄0f⋆. (51)

Recalling that T12 = T21 = O(1/¸) and β¦X̃¦R̄0F0a = O(1/
√
n), the variable K can be simplified as follows:

K = β¦X̃¦R̄0f⋆ − T22(β
¦X̃¦R̄0X̃β)(β¦X̃¦R̄0f⋆) +OP

(
1

¸
√
n

)

.

Also, from the definition of the matrix T in equation 45, we have

T22 =
1

β¦X̃¦R̄0X̃β
+

1

(β¦X̃¦R̄0X̃β)2(a¦F¦
0 R̄0F0a− ∥a∥22)

· 1

¸2
+ oP(1/¸

2).

Hence, putting everything together, and using Lemma K.4, we can write

K = − β¦X̃¦R̄0f⋆

(β¦X̃¦R̄0X̃β)(a¦F¦
0 R̄0F0a− ∥a∥22)

· 1

¸2
+ oP(1/¸

2). (52)

Next, we will study the limit of ¸T12. For this, we can use equation 45 to write

T12 =
−1

(β¦X̃¦R̄0X̃β)(a¦F¦
0 R̄0F0a− ∥a∥22)

· 1
¸
+OP(1/¸

3). (53)

Analysis of E11
2 . Noting that ¸ = o(n1/4) and a¦F¦

0 R̄0f⋆ = OP(1/
√
n), we can simplify this term as follows:

E11
2 = f¦

⋆ R̄0F0ΣfF
¦
0 R̄0f⋆ = f¦

⋆ R̄0F0

(
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦)F¦

0 R̄0f⋆

= f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0f⋆ + oP(1). (54)

Analysis of E12
2 and E21

2 . By expanding Σf and UTU¦, we have

E21
2 = E12

2 = −f¦
⋆ R̄0F0ΣfF

¦
0 R̄0UTU¦R̄0f⋆

= −f¦
⋆ R̄0F0

(
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦)F¦

0 R̄0UTU¦R̄0f⋆

= E
21(1)
2 + E

21(2)
2 + E

21(3)
2 + E

21(4)
2 ,

in which

E
21(1)
2 = −f¦

⋆ R̄0F0Σ
0
fF

¦
0 R̄0UTU¦R̄0f⋆, E

21(2)
2 = −¸ (f¦

⋆ R̄0F0a)(β
¦W¦

0 F
¦
0 R̄0UTU¦R̄0f⋆),

E
21(3)
2 = −¸(f¦

⋆ R̄0F0W0β)(a
¦F¦

0 R̄0UTU¦R̄0f⋆), E
21(4)
2 = −¸2(f¦

⋆ R̄0F0a)(a
¦F¦

0 R̄0UTU¦R̄0f⋆).

These terms can be simplified as follows. By expanding UTU¦, we have

E
21(1)
2 = −f¦

⋆ R̄0F0Σ
0
fF

¦
0 R̄0UTU¦R̄0f⋆

= −f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0

[

T11(F0a)(F0a)
¦ + T12(F0a)(X̃β)¦ + T21(X̃β)(F0a)

¦ + T22(X̃β)(X̃β)¦
]

R̄0f⋆

= −T22
(

f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0X̃β

)(

β¦X̃¦R̄0f⋆

)

+ oP(1),
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where the last line uses that f¦
⋆ R̄0F0a = oP(1) and f¦

⋆ R̄0F0Σ
0
fF

¦
0 R̄0F0a = oP(1). Next, noting that ¸(f¦

⋆ R̄0F0a) =

oP(1) and β¦W¦
0 F

¦
0 R̄0UTU¦R̄0f⋆ = ΘP(1), we can write

E
21(2)
2 = −¸ (f¦

⋆ R̄0F0a)(β
¦W¦

0 F
¦
0 R̄0UTU¦R̄0f⋆) = oP(1).

Using a similar argument, we have

E
21(3)
2 = −¸(f¦

⋆ R̄0F0W0β)(a
¦F¦

0 R̄0UTU¦R̄0f⋆)

= −¸T12(f¦
⋆ R̄0F0W0β)(a

¦F¦
0 R̄0F0a)(f

¦
⋆ R̄0X̃β) + oP(1).

Finally, again note that ¸2(f¦
⋆ R̄0F0a)

2 = oP(1). Thus,

E
21(4)
2 = −¸2(f¦

⋆ R̄0F0a)(a
¦F¦

0 R̄0UTU¦R̄0f⋆) = oP(1).

Putting all together, we arrive at

E21
2 = E12

2 = −T22
(

f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0X̃β

)(

f¦
⋆ R̄0X̃β

)

− ¸T12(f
¦
⋆ R̄0F0W0β)(a

¦F¦
0 R̄0F0a)(f

¦
⋆ R̄0X̃β) + oP(1). (55)

Analysis of E22
2 . Once again, by expanding Σf and UTU¦, we have

E22
2 = f¦

⋆ R̄0UTU¦R̄0F0ΣfF
¦
0 R̄0UTU¦R̄0f⋆

= f¦
⋆ R̄0

[

T11(F0a)(F0a)
¦ + T12(F0a)(X̃β)¦ + T21(X̃β)(F0a)

¦ + T22(X̃β)(X̃β)¦
]

R̄0F0

×
[
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦]

× F¦
0 R̄0

[

T11(F0a)(F0a)
¦ + T12(F0a)(X̃β)¦ + T21(X̃β)(F0a)

¦ + T22(X̃β)(X̃β)¦
]

R̄0f⋆.

Note that f¦
⋆ R̄0F0a = OP(1/

√
n) and ¸2 = o(

√
n). Hence,

E22
2 = (f¦

⋆ R̄0X̃β)2
[

T21(F0a)
¦ + T22(X̃β)¦

]

× R̄0F0

[
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦]F¦

0 R̄0 ×
[

T12(F0a) + T22(X̃β)
]

+ oP(1)

= (f¦
⋆ R̄0X̃β)2

[

T 2
22

(

β¦X̃¦R̄0F0Σ
0
fF

¦
0 R̄0X̃β

)

+ 2¸T12T22(a
¦F¦

0 R̄0F0a)(β
¦W¦

0 F
¦
0 R̄0X̃β)

+ ∥β∥22¸2T 2
12(a

¦F¦
0 R̄0F0a)

2
]

+ oP(1). (56)

Analysis of E13
2 and E31

2 . Recalling the definition of K in equation 51, this term can be written as

E13
2 = E31

2 = ¸Kf¦
⋆ R̄0F0Σfa = ¸Kf¦

⋆ R̄0F0

[
Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦]a

= ¸2K(f¦
⋆ R̄0F0W0β) + oP(1), (57)

where the last line uses equation 52 and that ¸ f¦
⋆ R̄0F0a = oP(1).

Analysis of E23
2 and E32

2 . Again, recalling the definition of K in equation 51, we have

E23
2 = E32

2 = −¸K f¦
⋆ R̄0UTU¦R̄0F0Σfa

= −¸K f¦
⋆ R̄0

[

T11(F0a)(F0a)
¦ + T12(F0a)(X̃β)¦ + T21(X̃β)(F0a)

¦ + T22(X̃β)(X̃β)¦
]

×
[
R̄0F0Σ

0
fa+ ¸

(
β¦W¦

0 a)R̄0F0a+ R̄0F0W0β
)
+ ¸2∥β∥22R̄0F0a

]

= E
23(1)
2 + E

23(2)
2 + E

23(3)
2 + E

23(4)
2 ,
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in which each term can be written as follows:

E
23(1)
2 = −¸KT11(f¦

⋆ R̄0F0a)
[

a¦F¦
0 R̄0F0Σ

0
fa+ ¸(a¦W0β)(a

¦F¦
0 R̄0F0a)

+ ¸(a¦F¦
0 R̄0F0W0β) + ¸2∥β∥22(a¦F0R̄0F0a)

]

= oP(1),

where we have used that K = ΘP(1/¸
2), a¦W0β = oP(1), a

¦F¦
0 R̄0F0W0β = oP(1), and ¸ f¦

⋆ R̄0a = oP(1). Also,

E
23(2)
2 = −¸KT12(f¦

⋆ R̄0F0a)
[

β¦X̃¦R̄0F0Σ
0
fa+ ¸(a¦W0β)(β

¦X̃¦R̄0F0a)

+ ¸(β¦X̃¦R̄0F0W0β) + ¸2∥β∥22(β¦X̃¦R̄0F0a)
]

= oP(1),

with a very similar argument to that for E
23(1)
2 . Next,

E
23(3)
2 = −¸KT21(f¦

⋆ R̄0X̃β)
[

a¦F¦
0 R̄0F0Σ

0
fa+ ¸(a¦W0β)(a

¦F¦
0 R̄0F0a)

+ ¸(a¦F¦
0 R̄0F0W0β) + ¸2∥β∥22(a¦F¦

0 R̄0F0a)
]

= −¸3KT21∥β∥22(f¦
⋆ R̄0X̃β)(a¦F¦

0 R̄0F0a) + oP(1),

in which we have used the fact that T21 = ΘP(1/¸), and K = Θ(1/¸2). Finally, with a similar argument

E
23(4)
2 = −¸KT22(f¦

⋆ R̄0X̃β)
[

β¦X̃¦R̄0F0Σ
0
fa+ ¸(a¦W0β)(β

¦X̃¦R̄0F0a)

+ ¸(β¦X̃¦R̄0F0W0β) + ¸2∥β∥22(β¦X̃¦R̄0F0a)
]

= −¸2KT22(f¦
⋆ R̄0X̃β)(β¦X̃¦R̄0F0W0β) + oP(1).

Putting everything together, we have

E23
2 = −¸3KT21∥β∥22(f¦

⋆ R̄0X̃β)(a¦F¦
0 R̄0F0a)− ¸2KT22(f

¦
⋆ R̄0X̃β)(β¦X̃¦R̄0F0W0β) + oP(1). (58)

Analysis of E33
2 . This term can be analyzed by expanding Σf as follows:

E33
2 = ¸2K2a¦ [Σ0

f + ¸
(
a(W0β)

¦ +W0βa
¦)+ ¸2∥β∥22aa¦]a

= ¸2K2a¦Σ0
fa+ 2¸3K2(a¦W0β) + ¸4K2∥β∥22 = ¸4K2∥β∥22 + oP(1), (59)

where we have used that K = ΘP(1/¸
2) and ¸ a¦W0β = oP(1).

Putting Everything Together. Now, we can put together the results from previous sections to derive the limiting value of

E2. First, we will explicitly derive the limit of each component. To do so, recall that using equation 3 and Lemma K.4, we

have

∥β∥22 →P

[
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
]
, f¦

⋆ R̄0X̃β →P c
2
⋆,1Èm2/ϕ

β¦X̃¦R̄0X̃β →P

[
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
]
Èm2/ϕ, and a¦F¦

0 R̄0F0a →P È/ϕ− ¼È2m1/ϕ
2.

Also, using Lemma K.1, we have

f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0X̃β →P c

2
⋆,1M, and β¦X̃¦R̄0F0Σ

0
fF

¦
0 R̄0X̃β →P

[
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
]
M,

in which M := limn,N,d→∞ β¦
⋆ X̃

¦R̄0F0Σ
0
fF

¦
0 R̄0X̃β⋆. This limit has been computed in Adlam & Pennington (2020a).

Using the diagram in the proof of Lemma K.4 that shows how the notations of Adlam & Pennington (2020a) match ours, we

find that E32 in Adlam & Pennington (2020a, S148) equals our M . Thus, we find

M = 1− 2m2

m1
− m′

2

m2
1

, (60)
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where m′
2 is the derivative of m2 with respect to ¼. Also, again using K.1, we have

f¦
⋆ R̄0F0W0β →P c

2
⋆,1M̄, and β¦X̃¦R̄0F0W0β →P

[
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
]
M̄,

in which M̄ := limn,N,d→∞ β¦
⋆ X̃

¦R̄0F0W0β⋆. This limit has been computed in Ba et al. (2022). Specifically, using T 0
9

in (C.16), and noting that their Φ0 translates to F0/
√
N , their W0 translates to W¦

0 , and their ¼̃ translates to ¼n
N in our

notation, using Ba et al. (2022, Proposition 29) we find

M̄ = 1− m2

m1
. (61)

Now, we can use equation 55, equation 56, equation 57, equation 58, and equation 59, respectively, to derive the following

expressions:

E21
2 = E12

2 =
c4⋆,1

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

[

−M + M̄

(
È/ϕ− ¼È2m1/ϕ

2

È/ϕ− ¼È2m1/ϕ2 − 1

)]

,

E22
2 =

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[

M − 2M̄

(
È/ϕ− ¼È2m1/ϕ

2

È/ϕ− ¼È2m1/ϕ2 − 1

)

+

(
È/ϕ− ¼È2m1/ϕ

2

È/ϕ− ¼È2m1/ϕ2 − 1

)2
]

,

E13
2 = E31

2 = −
c4⋆,1

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

[
M̄

È/ϕ+ ¼È2/ϕ2 − 1

]

,

E23
2 = E32

2 =
c4⋆,1

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

[

− È/ϕ− ¼È2m1/ϕ
2

(È/ϕ− ¼È2m1/ϕ2 − 1)2
+

M̄

È/ϕ− ¼È2m1/ϕ2 − 1

]

,

E33
2 =

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[
1

(È/ϕ− ¼È2m1/ϕ2 − 1)2

]

.

Thus, summing these terms up, we conclude that

E2 − ỹ¦R̄0FΣ
0
fF

¦
0 R̄0ỹ →P

c4⋆,1 (1−M)

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

, (62)

wrapping up the derivation of the limiting value of E2.

N.1.3. ANALYSIS OF E3 .

To analyze this term, first note that

E3 = −2â¦µf = −2ỹ¦R̄Fµf = −2f¦
⋆ R̄Fµf − 2ε¦FR̄µf .

With a simple order-wise analysis, the second term can be shown to be oP(1). To analyze the first term, we will again use

the decomposition from equation 50. We can write −2f¦
⋆ R̄Fµf = E

(1)
3 + E

(2)
3 + E

(3)
3 , in which E

(i)
3 = −2p¦

i µf . We

will analyze these terms separately. For the first term, we have

E
(1)
3 = −2p¦

1 µf = −2f¦
⋆ R̄0F0

(
c⋆,1W0β⋆ + c2⋆,1¸ a

)
= −2c⋆,1f

¦
⋆ R̄0F0W0β⋆ + oP(1),

where we have used that ¸ f¦
⋆ R̄0F0a = oP(1). Similarly, the second term can be written as

E
(2)
3 = −2p¦

2 µf = 2f¦
⋆ R̄0UTU¦R̄0F0

(
c⋆,1W0β⋆ + c2⋆,1¸ a

)

= 2f¦
⋆ R̄0

[

T11(F0a)(F0a)
¦ + T12(F0a)(X̃β)¦ + T21(X̃β)(F0a)

¦ + T22(X̃β)(X̃β)¦
]

R̄0F0

(
c⋆,1W0β⋆ + c2⋆,1¸ a

)

= 2 (f¦
⋆ R̄0X̃β)

[

T21(F0a)
¦ + T22(X̃β)¦

]

R̄0F0

(
c⋆,1W0β⋆ + c2⋆,1¸ a

)
+ oP(1)

= 2 (f¦
⋆ R̄0X̃β)

[

c2⋆,1¸T21a
¦F¦

0 R̄0F0a+ c⋆,1T22β
¦X̃¦R̄0F0W0β⋆

]

+ oP(1).
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Also, for the third term we can write

E
(3)
3 = −2p¦

3 µf = −2¸Ka¦ (c⋆,1W0β⋆ + c2⋆,1¸ a
)
= −2c2⋆,1¸

2K + oP(1).

Summing up, the limiting value for E3 is

E3 + 2c⋆,1ỹ
¦F0R̄0W0β⋆+ →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[
2M̄ − 2

]
. (63)

N.1.4. THE FINAL RESULT

Putting equations 46, 62, 63 together, we have

Lte(â(F))−
(

Ã2
ε + c2⋆ + ỹ¦R̄0FΣ

0
fF

¦
0 R̄0ỹ − 2c⋆,1ỹ

¦F0R̄0W0β⋆

)

→P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[
2M̄ − 1−M

]
.

The test error of the untrained random features model can be written as

Lte(â(F0)) = Ã2
ε + c2⋆ + ỹ¦R̄0FΣ

0
fF

¦
0 R̄0ỹ − 2c⋆,1ỹ

¦F0R̄0W0β⋆.

Hence, the improvement over the untrained random features model in terms of test error is equal to

Lte(â(F0))− Lte(â(F)) →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[
1 +M − 2M̄

]
.

Hence, using equation 61 and equation 60, we find

Lte(â(F0))− Lte(â(F)) →P

−c4⋆,1
(ϕ(c2⋆ + Ã2

ε) + c2⋆,1)m
2
1

∂m2

∂¼
, (64)

where ∂m1

∂¼ f 0 using that tr(X̃¦(F0F
¦
0 + ¼nIn)

−1X̃)/d = Èm2/ϕ. This concludes the proof for ℓ = 1.

N.2. Proof for ℓ = 2

First, similar to the proof for ℓ = 1, we have

ν2 = Exte
[(x¦

teβ)
2Ã(W0xte)] = 2c2(W0β)

◦2,

ℵ3 = Exte
(x¦

teβ)
3 = 0, and ℵ4 = Exte(x

¦
teβ)

4 = 3∥β∥22 →P 3[c2⋆,1 + ϕ(c2⋆ + Ã2
ε)],

Ä2 = E
[
yte(x

¦
teβ)

2
]
= 2c⋆,2(β

¦
⋆ β)

2 →P 2c2⋆,1c⋆,2,

in which we have used Lemma C.1. Thus, using equation 43 and equation 44, we have

Σf = Σ0
f + ¸

(
a(W0β)

¦ + (W0β)a
¦)+

2c22¸
2

√
N

(

(
√
Na◦2)(W0β)

◦2¦ + (W0β)
◦2(

√
Na◦2¦)

)

+ ¸2∥β∥22aa¦ +
3c22¸

4

N
∥β∥42(

√
Na◦2)(

√
Na◦2¦), and

µf = µ0
f + c2⋆,1¸a+ 2c2c

2
⋆,1c⋆,2¸

2a◦2.

Also, from Section K.2, we have R̄ = R̄0 − R̄0UTU¦R̄0, where the matrix T−1 is defined in equation 33 and

U = [F0a | F0a
◦2√N | X̃β | (X̃β)◦2 ]. Using the analysis in Section K.2.1, we note that

T−1 =












a¦(F¦
0 R̄0F0 − I)a 0 1

c21¸
0

0 Na◦2¦(F¦
0 R̄0F0 − I)a◦2 0 N

1
2

c21c2¸
2

1
c21¸

0 (X̃β)¦R̄0(X̃β) 0

0 N
1
2

c21c2¸
2 0 (X̃β)◦2¦R̄0(X̃β)◦2












+∆,
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in which the elements of ∆ are OP(1/
√
n). Hence, the matrix T = [Ti,j ] has entries

T11 =
1

a¦(F¦
0 R̄0F0 − I)a

+
1

¸2
· 1

(a¦(F¦
0 R̄0F0 − I)a)2((X̃β)¦R̄0(X̃β))

+ oP(1/¸
2),

T13 = T31 = −1

¸
· 1

(a¦(F¦
0 R̄0F0 − I)a)((X̃β)¦R̄0(X̃β))

+ oP(1/¸),

T22 =
1

Na◦2¦(F¦
0 R̄0F0 − I)a◦2 +

N

c22¸
4
· 1

(Na◦2¦(F¦
0 R̄0F0 − I)a◦2)2((X̃β)◦2¦R̄0(X̃β)◦2)

+ oP(N/¸
4),

T24 = T42 = −
√
N

c2¸2
· 1

(Na◦2¦(F¦
0 R̄0F0 − I)a◦2)((X̃β)◦2¦R̄0(X̃β)◦2)

+ oP(1/¸
2),

T33 =
1

(X̃β)¦R̄0(X̃β)
+

1

¸2
· 1

(a¦(F¦
0 R̄0F0 − I)a)((X̃β)¦R̄0(X̃β))2

+ oP(1/¸
2),

T44 =
1

(X̃β)◦2¦R̄0(X̃β)◦2
+

N

c22¸
4
· 1

(Na◦2¦(F¦
0 R̄0F0 − I)a◦2¦)((X̃β)◦2¦R̄0(X̃β)◦2)2

+ oP(N/¸
4),

and its other elements are OP(1/
√
n).

Next, we will study the terms E1 = Exte,yte(y
2
te), E2 = â¦Σf â, and E3 = −2â¦µf that appear in the decomposition of

the test error in equation 41.

N.2.1. ANALYSIS OF E1

Similar to the ℓ = 1 case, we have

E1 = E(y2te) = Ã2
ε + Exte

(
Ã⋆(β

¦
⋆ xte)

)2
= Ã2

ε + c2⋆. (65)

N.2.2. ANALYSIS OF E2

Recall that using equation 48, we have

E2 = f¦
⋆ R̄FΣfF

¦R̄f⋆ + 2ε¦R̄FΣfF
¦R̄f̃⋆ + ε¦R̄FΣfF

¦R̄ε.

First, note that ε¦R̄FΣfF
¦R̄f⋆ = oP(1) using a simple order-wise argument. Using an argument similar to the one for

ℓ = 1, the third term can be written as ε¦R̄FΣfF
¦R̄ ε = ε¦R̄0F0Σ

0
fF

¦
0 R̄0 ε+ oP(1).

Next, we will study the term f¦
⋆ R̄FΣfF

¦R̄f⋆. We can write

F¦R̄f⋆ =
(

F0 + ¸(X̃β)a¦ + c2¸
2(X̃β)◦2a◦2¦

)¦ (
R̄0 − R̄0UTU¦R̄0

)
f⋆

= F¦
0 R̄0f⋆
︸ ︷︷ ︸

p1

−F¦
0 R̄0UTU¦R̄0f⋆

︸ ︷︷ ︸
p2

+ ¸K1a
︸ ︷︷ ︸

p3

+ c2¸
2K2a

◦2
︸ ︷︷ ︸

p4

, (66)

in which K1 and K2 are defined as

K1 =
[

(X̃β)¦R̄0f⋆ − (X̃β)¦R̄0UTU¦R̄0f⋆

]

and K2 =
[

(X̃β)◦2¦R̄0f⋆ − (X̃β)◦2¦R̄0UTU¦R̄0f⋆

]

.

Usign this notation, we have f¦
⋆ R̄FΣfF

¦R̄f⋆ =
∑

i,j∈[4]E
ij
2 , where Eij2 = p¦

i Σfp
¦
j . In the following sections, we

will compute each term separately.

Preliminary Computations. First, we will analyze K1 and K2. Recall that

UTU¦ = T11(F0a)(F0a)
¦ + T13(F0a)(X̃β)¦ +NT22

(
F0a

◦2) (F0a
◦2)¦ +

√
NT24

(
F0a

◦2) (X̃β)◦2¦

+ T31(X̃β)(F0a)
¦ + T33(X̃β)(X̃β)¦ +

√
NT42(X̃β)◦2(F0a

◦2¦) + T44(X̃β)◦2(X̃β)◦2¦.
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Thus, we have

(X̃β)¦R̄0UTU¦R̄0f⋆ = T33

[

(X̃β)¦R̄0(X̃β)
]

·
[

(X̃β)¦R̄0f⋆

]

+OP(1/
√
n),

which gives

K1 = − 1

¸2
· β¦X̃¦R̄¦

0 f⋆

(a¦(F¦
0 R̄0F0 − I)a)((X̃β)¦R̄0(X̃β))

+ oP(1/¸
2). (67)

Similarly, for K2 we have

(X̃β)◦2¦R̄0UTU¦R̄0f⋆ = T44

[

(X̃β)◦2¦R̄0(X̃β)◦2
]

·
[

(X̃β)◦2¦R̄0f⋆

]

+OP(1/
√
n),

which gives

K2 = − N

c22¸
4
· (X̃β)◦2¦R̄¦

0 f⋆

(Na◦2¦(F¦
0 R̄0F0 − I)a◦2¦)((X̃β)◦2¦R̄0(X̃β)◦2)

+ oP(1/¸
4). (68)

Analysis of E11
2 . For this term, by expanding Σf , we can write

E11
2 = f¦

⋆ R̄0F0ΣfF
¦
0 R̄0f⋆ = f¦

⋆ R̄0F0Σ
0
fF

¦
0 R̄0f⋆ + oP(1). (69)

This holds because ¸f¦
⋆ R̄0F0a = oP(1), and ¸2√

N
f¦
⋆ R̄0F0(

√
Na◦2) = oP(1).

Analysis of E12
2 and E21

2 . We have E21
2 = E12

2 = −f¦
⋆ R̄0F0ΣfF

¦
0 R̄0UTU¦R̄0f⋆. Using the expression for T, we

can write

TU¦R̄0f⋆ =










T11a
¦F¦

0 R̄0f⋆ + T13(X̃β)¦R̄0f⋆

T22
√
Na◦2¦F¦

0 R̄0f⋆ + T24(X̃β)◦2¦R̄0f⋆

T31a
¦F¦

0 R̄0f⋆ + T33(X̃β)¦R̄0f⋆

T42
√
Na◦2¦F¦

0 R̄0f⋆ + T44(X̃β)◦2¦R̄0f⋆










. (70)

On the other hand, by expanding U and Σf , we similarly have

(f¦
⋆ R̄0F0ΣfF

¦
0 R̄0U) =










¸(f¦
⋆ R̄0F0W0β)(a

¦F¦
0 R̄0F0a)

2c22¸
2

√
N

(f¦
⋆ R̄0F0(W0β)

◦2)((
√
Na◦2)¦F¦

0 R̄0F0(
√
Na◦2))

f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0X̃β

f¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0(X̃β)◦2










¦

. (71)

This gives

E21
2 = E12

2 =− T13¸(f⋆R̄0F0W0β)(a
¦F¦

0 R̄0F0a)((X̃β)¦R̄0f⋆)

− 2c22¸
2T24√
N

(f¦
⋆ R̄0F0(W0β)

◦2)((
√
Na◦2)¦F¦

0 R̄0F0(
√
Na◦2))((X̃β)◦2¦R̄0f⋆)

− T33(f⋆R̄0F0Σ
0
fF

¦
0 R̄0X̃β)((X̃β)¦R̄0f⋆)

− T44(f
¦
⋆ R̄0F0Σ

0
fF

¦
0 R̄0(X̃β)◦2)((X̃β)◦2¦R̄0f⋆) + oP(1). (72)

Analysis of E13
2 and E31

2 . Recalling equation 67, by expanding Σf we have

E13
2 = E31

2 = ¸K1f
¦
⋆ R̄0F0Σfa = ¸2K1(f

¦
⋆ R̄0F0W0β) + oP(1), (73)

in which we have used that K1 = OP(1/¸
2).
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Analysis of E14
2 and E41

2 . Recalling equation 68, by expanding Σf we have

E14
2 = E41

2 = c2¸
2K2f

¦
⋆ R̄0F0Σfa

◦2 = oP(1), (74)

in which we have used that ¸4K2/N = OP(1).

Analysis of E22
2 . This term is equal to E22

2 = f¦
⋆ R̄0UTU¦R̄0F0ΣfF

¦
0 R̄0UTU¦R̄0f⋆. Using equation 70, we can

write

F¦
0 R̄0UTU¦R̄0f⋆ = [T11a

¦F¦
0 R̄0f⋆ + T13(X̃β)¦R̄0f⋆] F

¦
0 R̄0F0a

+ [T22
√
Na◦2¦F¦

0 R̄0f⋆ + T24(X̃β)◦2¦R̄0f⋆] F
¦
0 R̄0F0(

√
Na◦2)

+ [T31a
¦F¦

0 R̄0f⋆ + T33(X̃β)¦R̄0f⋆] F
¦
0 R̄0X̃β

+ [T42
√
Na◦2¦F¦

0 R̄0f⋆ + T44(X̃β)◦2¦R̄0f⋆] F
¦
0 R̄0(X̃β)◦2. (75)

Further, by expanding Σf , we have

E22
2 = E

22(1)
2 + E

22(2)
2 + E

22(3)
2 + E

22(4)
2 + oP(1), (76)

in which

E
22(1)
2 = [T33(X̃β)¦R̄0f⋆]

2 (β¦X̃¦R̄0F0Σ
0
fF

¦
0 R̄0X̃β)

+ [T44(X̃β)◦2¦R̄0f⋆]
2 ((X̃β)◦2¦R̄0F0Σ

0
fF

¦
0 R̄0(X̃β)◦2),

E
22(2)
2 = 2¸T13T33 · ((X̃β)¦R̄0f⋆)

2(a¦F¦
0 R̄0F0a)(β

¦W¦
0 F

¦
0 R̄0X̃β),

E
22(3)
2 =

4c22¸
2

√
N

T24T44((X̃β)◦2¦R̄0f⋆)
2
(

(
√
Na◦2)¦F¦

0 R̄0F0(
√
Na◦2)

)(

(W0β)
◦2F¦

0 R̄0(X̃β)◦2
)

,

E
22(4)
2 = ¸2T 2

13∥β∥22 ((X̃β)¦R̄0f⋆)
2 (a¦F¦

0 R̄0F0a)
2

+
3c22¸

4

N
T 2
24∥β∥42

(

(X̃β)◦2¦R̄0f⋆

)2 (

(
√
Na◦2)¦F¦

0 R̄0F0(
√
Na◦2)

)2

.

Analysis of E23
2 and E32

2 . We have E23
2 = E32

2 = −¸K1a
¦ΣfF

¦
0 R̄0UTU¦R̄0f⋆. Recall that the vector

F¦
0 R̄0UTU¦R̄0f⋆ has been computed in equation 75. With this, we have

E23
2 = E32

2 =− ¸2K1T33(β
¦X̃¦R̄0f⋆)(β

¦W¦
0 F

¦
0 R̄0X̃β)

− ¸3K1T13∥β∥22(a¦F¦
0 R̄0F0a)(β

¦X̃¦R̄0f⋆) + oP(1), (77)

in which we used that ¸2K1 = OP(1) and ¸T13 = OP(1).

Analysis of E24
2 and E42

2 . This term can be written as E24 = E42 = −c2¸2K2a
◦2¦ΣfF

¦
0 R̄0UTU¦R̄0f⋆. The vector

F¦
0 R̄0UTU¦R̄0f⋆ has been computed in equation 75. By expanding Σf , we have

E24
2 = E42

2 = −2c32¸
4K2T44
N

·
(

(W0β)
◦2¦F¦

0 R̄0(X̃β)◦2
)

·
(

(X̃β)◦2¦R̄0f⋆

)

− 3c32¸
6K2T24∥β∥42
N3/2

(

(
√
Na◦2)¦F̄¦

0 R̄0F0(
√
Na◦2)

)

·
(

(X̃β)◦2¦R̄0f⋆

)

+ oP(1).

Now, noting that K2 = OP(N/¸
4) from equation 68 and ∥(W0β)

◦2∥2 = OP(1/
√
N), we find that the first term is oP(1)

and we have

E24
2 = E42

2 = −3c32¸
6K2T24∥β∥42
N3/2

(

(
√
Na◦2)¦F̄¦

0 R̄0F0(
√
Na◦2)

)

·
(

(X̃β)◦2¦R̄0f⋆

)

+ oP(1). (78)
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Analysis of E33
2 . Similar to the ℓ = 1 case, this term can be written as

E33
2 = ¸2K2

1a
¦Σfa = ¸4K2

1∥β∥22 + oP(1), (79)

noting that K1 = OP(1/¸
2).

Analysis of E34
2 and E43

2 . By expanding Σf , we readily arrive at

E34
2 = E43

2 = ¸3K1K2c2a
¦Σfa

◦2 = oP(1). (80)

Analysis of E44
2 . This term can be written as E44

2 = c22¸
4K2

2a
◦2¦Σfa

◦2. By expanding Σf and noting that K2 =
OP(N/¸

4), we can write

E44
2 =

3c42¸
8K2

2

N2
+ oP(1). (81)

Putting Everything Together. Now, we can use the results derived above to compute the limiting value of E2. Recall that

from Lemma K.7 and Lemma K.8 we have

H2(X̃β⋆)
¦R̄0(X̃β)◦2 →P 2c2⋆,1

Èm1

ϕ
, and (X̃β)◦2¦R̄0(X̃β)◦2 →P

3Èm1

ϕ
[ϕ(c2⋆ + Ã2

ε) + c2⋆,1]
2.

Also using an argument similar to the argument in the proof of Lemma K.7 and Lemma K.8, we have

H2(X̃β⋆)
¦R̄0F0Σ

0
fF

¦
0 R̄0(X̃β)◦2 →p 2c

2
⋆,1M̂, and (X̃β)◦2¦R̄0F0Σ

0
fF

¦
0 R̄0(X̃β)◦2 → 3M̂ [ϕ(c2⋆ + Ã2

ε) + c2⋆,1]
2,

in which M̂ = limn,N,d→∞
1
n tr

[

R̄0F0Σ
0
fF

¦
0 R̄0

]

. This term has been computed in Adlam & Pennington (2020a). Using

the diagram in the proof of Lemma K.4 that shows how the notations of Adlam & Pennington (2020a) match ours, we find

that we can use (S142) with Ãε = 0 in Adlam & Pennington (2020a), to find

M̂ = −m
′
1

m2
1

− 1, (82)

where m′
1 is the derivative of m1 with respect to ¼.

For brevity, we will define Ã := limn,N,d→∞
[

(
√
Na◦2¦)F¦

0 R̄0F0(
√
Na◦2)

]

. With this, equations 72, 73, 74, 76, 77, 78,

79, 80, and 81 give

E12
2 = E21

2 →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[

M̄

(
È/ϕ− ¼È2m1/ϕ

2

È/ϕ− ¼È2m1/ϕ2 − 1

)

−M

]

−
4c4⋆,1c

2
⋆,2M̂

3[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2
,

E13
2 = E31

2 →P −
c4⋆,1

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

· M̄

È/ϕ− ¼È2m1/ϕ2 − 1
, E14

2 = E41
2 →P 0,

as well as

E22
2 →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[

M − 2M̄

(
È/ϕ− ¼È2m1/ϕ

2

È/ϕ− ¼È2m1/ϕ2 − 1

)

+

(
È/ϕ− ¼È2m1/ϕ

2

È/ϕ− ¼È2m1/ϕ2 − 1

)2
]

+
c4⋆,1c

2
⋆,2

[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2

[

4M̂/3 +
4Ã2

3(Ã− 1)2

]

,

E23
2 = E32

2 →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[
M̄

È/ϕ− ¼È2m1/ϕ2 − 1
− È/ϕ− ¼È2m1/ϕ

2

(È/ϕ− ¼È2m1/ϕ2 − 1)2

]

,
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and also

E24
2 = E42

2 →P −
c4⋆,1c

2
⋆,2

[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2

[

4Ã

3(Ã− 1)2

]

, E33
2 →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

[
1

(È/ϕ− ¼È2m1/ϕ2 − 1)2

]

,

E34
2 = E43

2 →P 0, E44
2 = E44

2 →P

c4⋆,1c
2
⋆,2

[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2

[
4

3(Ã− 1)2

]

,

respectively. Putting these together, the component E2 can be written as

E2 − ỹ¦R̄0FΣ
0
fF

¦
0 R̄0ỹ →P

c4⋆,1(1−M)

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

+
4c4⋆,1c

2
⋆,2(1− M̂)

3[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2
. (83)

N.2.3. ANALYSIS OF E3 .

To analyze this component, first note that

E3 = −2â¦µf = −2ỹ¦R̄Fµf = −2f¦
⋆ R̄Fµf − 2ε¦R̄Fµf .

Using a simple order-wise analysis, it can be shown that the second term is oP(1). Now, recalling equation 66 we write

E3 =
∑4
i=1E

(i)
3 , where E

(i)
3 = −2p¦

i µf . By expanding µf and recalling that µ0
f = c⋆,1W0β, we have

E
(1)
3 = −2f¦

⋆ R̄0F0µ
0
f + oP(1). (84)

Next, recall that the matrix F¦
0 R̄0UTU¦R̄0f⋆ is analyzed in equation 75. Using this, and by expanding µf , we get

E
(2)
3 = 2(f¦

⋆ R̄0X̃β)
[

T33(µ
0¦
f F¦

0 R̄0X̃β) + c2⋆,1T13¸(a
¦F¦

0 R̄0F0a)
]

+
4c2c

2
⋆,1c⋆,2T24¸

2

√
N

[

(
√
Na◦2)¦F¦

0 R̄0F0(
√
Na◦2)

] (

(X̃β)◦2¦R̄0f⋆

)

+ oP(1). (85)

Similarly, by expanding µf , we arrive at

E
(3)
3 = −2c2⋆,1¸

2K1 + oP(1), and E
(4)
3 = −

4c22c
2
⋆,1c⋆,2¸

4K2

N
+ oP(1).

Similar to the computation for E2, we can derive the limiting values of the components in E3 as

E
(2)
3 →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

(

2M̄ − 2Ã

Ã− 1

)

−
c4⋆,1c

2
⋆,2

[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2

(

8Ã

3(Ã− 1)

)

,

E
(3)
3 →P

c4⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1

(
2

Ã− 1

)

, E
(4)
3 →P

c4⋆,1c
2
⋆,2

[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2

(
8

3(Ã− 1)

)

.

Putting these together, we have

E3 + 2f¦
⋆ R̄0F0µ

0
f →P

c4⋆,1
(
2M̄ − 2

)

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

−
8c4⋆,1c

2
⋆,2

3[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2
. (86)

N.2.4. THE FINAL RESULT

Putting equations 65, 83, and 86, we have

Lte(â(F0))− Lte(â(F)) →P

c4⋆,1(1 +M − 2M̄)

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

+
4c4⋆,1c

2
⋆,2(1 + M̂)

3[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2
,

where Lte(â(F0)) is the test error of the untrained random feature model. Further, using equation 60, equation 61, and

equation 82, we get

Lte(â(F0))− Lte(â(F)) →P −
c4⋆,1

(ϕ(c2⋆ + Ã2
ε) + c2⋆,1)m

2
1

∂m2

∂¼
−

4c4⋆,1c
2
⋆,2

3[ϕ(c2⋆ + Ã2
ε) + c2⋆,1]

2m2
1

∂m1

∂¼
. (87)

Note that ∂m1

∂¼ ,
∂m2

∂¼ f 0, concluding the proof.
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O. Proofs of Supplementary Lemmas

O.1. Proof of Lemma C.3

Recalling ai
i.i.d.∼ N(0, 1/N) and ïx̃i,βð|β i.i.d.∼ N(0, ∥β∥22), claims (a) and (b) follow from standard Gaussian maximal

inequalities (van der Vaart & Wellner, 2013, Section 2.2) and from ∥β∥22 = OP(1); the latter follows by writing β =
n−1X¦(Ã⋆(Xβ⋆) + ε), where ε = (ε1, . . . , εn)

¦ and using our distributional assumptions on X, ε, as well as Condition

2.2.

By Vershynin (2012, Theorem 5.39) and Bai & Silverstein (2010, Corollary A.21), we have

∥W0W
¦
0 ∥op, ∥(W0W

¦
0 )

◦2∥op = OP(1). Also, by Vershynin (2018, Theorem 3.4.6) and Gaussian maximal in-

equalities van der Vaart & Wellner (2013, Section 2.2), we have max1fi ̸=fjfN ïw0,i,w0,jð = OP(n
− 1

2 log
1
2 n). For

k g 3,

∥(W0W
¦
0 )

◦k∥op f ∥(W0W
¦
0 )

◦k − IN∥op + 1 f ∥(W0W
¦
0 )

◦k − IN∥F + 1

f




∑

1fi ̸=jfN
ïw0,i,w0,jð2k





1
2

+ 1 = oP(1) + 1.

Therefore,

MW0 f max

{

∥W0W
¦
0 ∥op, ∥(W0W

¦
0 )

◦2∥op, sup
kg3

∥(W0W
¦
0 )

◦k∥op

}

= OP(1).

Claim (d) is standard, see e.g. Vershynin (2018, Theorem 4.4.5).

O.2. Proof of Lemma K.1

We can write

v¦(β − c⋆,1β⋆) = n−1v¦(X¦(Ã⋆(Xβ⋆) + ε))− c⋆,1β⋆ = n−1
n∑

i=1

(v¦xiÃ⋆(x
¦
i β⋆)− c⋆,1v

¦β⋆) + n−1v¦ε.

Now n−1v¦ε ∼ N(0, Ã2
ε∥v∥22)/n →P 0. Moreover, by Condition 2.4, we can write Ã⋆(x

¦
i β⋆) = c⋆,0 + c⋆,1x

¦
i β⋆ +

(P>1Ã⋆)(x
¦
i β⋆), where conditional on β⋆, (P>1Ã⋆)(x

¦
i β⋆) is orthogonal in L2 to the constant function and to x¦

i β⋆.

Hence the first sum above equals

n−1c⋆,0v
¦

n∑

i=1

xi + n−1c⋆,1v
¦
( n∑

i=1

xix
¦
i − I

)

β⋆ + n−1
n∑

i=1

v¦xi(P>1Ã⋆)(x
¦
i β⋆).

For the first term, n−1c⋆,0v
¦∑n

i=1 xi ∼ n−1c⋆,0 · N(0, n∥v∥22) →P 0. The second term is c⋆,1 times a sample mean of

i.i.d. random variables of the form v¦(xix¦
i − 1)β⋆, which have zero mean by the Gaussianity of xi, and for which all

moments are finite. Hence, by the weak law of large numbers, this term converges to zero in probability.

Similarly, the third term is a sample mean of i.i.d. random variables of the form v¦xi(P>1Ã⋆)(x
¦
i β⋆), which have zero

mean by the Gaussianity of xi and Lemma C.1, and whose second moments are finite since Ã⋆ is Lipschitz. Hence, by the

weak law of large numbers, this term also converges to zero in probability. This finishes the proof of the first claim.

Next, the second statement follows from Ba et al. (2022, Lemma 18). While that work has slightly different assumptions

on the teacher function f⋆, it is straightforward to check that their proof goes through unchanged under our assumptions.

Specifically, their proof requires that x 7→ f⋆(x) = Ã⋆(x
¦β⋆) is O(1)-Lipschitz, which holds in our case because Ã⋆ is

O(1)-Lipschitz, and ∥β⋆∥2 = OP(1).
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O.3. Proof of Lemma K.2

By plugging in â into the training loss, we find

Ltr(F) =
1

n
∥ỹ − Fâ∥22 + ¼∥â∥22 =

1

n
∥ỹ∥22 −

2

n
ỹ¦Fâ+

1

n
â¦(F¦F+ ¼nIN )â

=
1

n
∥ỹ∥22 −

1

n
ỹ¦Fâ =

1

n
∥ỹ∥22 −

1

n
ỹ¦F(F¦F+ ¼nIN )−1F¦ỹ

=
1

n
∥ỹ∥22 −

1

n
ỹ¦FF¦(FF¦ + ¼nIn)

−1ỹ

=
1

n
∥ỹ∥22 −

1

n
ỹ¦(FF¦ + ¼nIn)(FF

¦ + ¼nIn)
−1ỹ + ¼ỹ¦(FF¦ + ¼nIn)

−1ỹ

= ¼ỹ¦(FF¦ + ¼nIn)
−1ỹ,

which proves the lemma.

O.4. Proof of Lemma K.3

To prove the concentration of this term around its mean, we will use the generalized Hanson-Wright inequality (Sambale,

2023, Theorem 2.1) for ³-subexponential random variables. Note that, by definition, if Z is a Gaussian random variable,

Hp(Z) is 2/p-subexponential (see the definition in equation (1.1) of Sambale (2023) and for these variables the Orlicz norm

of order 2/p is bounded (see equation (1.3) of Sambale (2023)). Also note that ∥D∥Fr f
√
n∥D∥op = OP(1/

√
n). Thus,

using Sambale (2023, Theorem 2.1) and setting t = log(n)√
n

, we find

P

(∣
∣
∣g(Z)¦D g(Z)− E[g(Z)¦D g(Z)]

∣
∣
∣ g log n√

n

)

f 2 exp
(

−Cmin
{

log2(n), (
√
n log n)1/p

})

,

where C > 0 is some constant. This concludes the proof.

O.5. Proof of Lemma K.4

First, we show that switching from w0,i
i.i.d.∼ Unif(Sd−1) to ŵ0,i

i.i.d.∼ N(0, 1dId) will not change the limit of the terms
1
dEtr(X̃

¦R̄0X̃) and Etr(R̄0) which will appear later in the proof. First, we define Ŵ0 = [ŵ0,1, · · · , ŵ0,N ]¦,

D = diag

(
1

∥ŵ0,1∥2
, · · · , 1

∥ŵ0,N∥2

)

, W0 =d DŴ0, F̂0 = Ã(X̃Ŵ¦
0 ),

and ˆ̄R0 = (F̂0F̂
¦
0 + ¼nIn)

−1.

Then,

∣
∣
∣
∣
tr
[

R̄0 − ˆ̄R0

]
∣
∣
∣
∣
=

∣
∣
∣
∣
tr
[

(F0F
¦
0 + ¼nIn)

−1 − (F̂0F̂
¦
0 + ¼nIn)

−1
]
∣
∣
∣
∣

=

∣
∣
∣
∣
tr
[

(F0F
¦
0 + ¼nIn)

−1(F0F
¦
0 − F̂0F̂

¦
0 )(F̂0F̂

¦
0 + ¼nIn)

−1
]
∣
∣
∣
∣

f tr(F0F
¦
0 + ¼nIn)

−1∥(F̂0F̂
¦
0 + ¼nIn)

−1∥op∥F0F0 − F̂0F̂0∥op f C

n
∥F0F0 − F̂0F̂0∥op.

Now, using the Gaussian equivalence from Appendix J, we can replace F0 and F̂0 with F0 = c1X̃W¦
0 + c>1Z and

F̂0 = c1X̃Ŵ¦
0 + c>1Z, respectively, without changing the limit. With this, we have

F0F
¦
0 − F̂0F̂

¦
0 = c21X̃(W0W

¦
0 − Ŵ0Ŵ

¦
0 )X̃

¦ + c1c>1X̃(W0 − Ŵ0)
¦Z¦ + c1c>1Z(W0 − Ŵ0)X̃

¦.

Now,

∥W0W
¦
0 − Ŵ0Ŵ

¦
0 ∥op f ∥IN −D∥op∥W0W

¦
0 ∥op(∥D∥op + 1).
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Note that ∥W0W
¦
0 ∥op = OP(1), ∥D∥op = OP(1), and ∥IN − D∥op = oP(1). Thus ∥W0W

¦
0 − Ŵ0Ŵ

¦
0 ∥op =

oP(1). Also, similarly, ∥W0 − Ŵ0∥op = oP(1). Hence, noting that ∥X̃∥op and ∥Z∥op are both OP(
√
N), we have

1
n∥F0F

¦
0 − F̂0F̂

¦
0 ∥op →P 0. This implies that | tr[R̄0 − ˆ̄R0]| = oP(1). Also,

∣
∣
∣
∣

1

d
tr
[

X̃¦R̄0X̃
]

− 1

d
tr
[

X̃¦ ˆ̄R0X̃
]
∣
∣
∣
∣
f | tr[R̄0 − ˆ̄R0]|

∥X̃X̃¦∥op
d

→P 0.

Finally, we can prove the required claims as follows:

(a) Since β⋆ ∼ N(0, 1dId), we have β¦
⋆ X̃

¦R̄0X̃β⋆ =
1
d Etr(X̃

¦R̄0X̃) + oP(1), by the Hanson-Wright inequality. Note

that by the argument above, we can assume that ŵ0,i
i.i.d.∼ N(0, 1dId) without changing the limiting trace. Further, from

Adlam & Pennington (2020a, Proposition 1), see also Adlam et al. (2022), we have 1
d Etr(X̃

¦R̄0X̃) → È
ϕm2; see the

discussion at the end of this proof for the detailed explanation. Now, we arrive at the conclusion by applying Lemma

K.1.

(b) Since a ∼ N(0, 1
N IN ), we have a¦F¦

0 R̄0F0a − ∥a∥22 = 1
N tr

(
F¦

0 R̄0F0

)
− 1 + oP(1) by the Hanson-Wright

inequality. Moreover,

F¦
0 R̄0F0 = F¦

0 F0(F
¦
0 F0 + ¼nIN )−1

= (F¦
0 F0 + ¼nIN − ¼nIN )(F¦

0 F0 + ¼nIN )−1 = IN − ¼n(F¦
0 F0 + ¼nIN )−1.

Hence, 1
N tr

(
F¦

0 R̄0F0

)
− 1 = −¼n

N tr(F¦
0 F0 + ¼nIN )−1. From the argument above, we can assume that ŵ0,i

i.i.d.∼
N(0, 1dId) without changing the limiting trace. It follows from Adlam & Pennington (2020a, Proposition 1) that

E tr R̄0 → È
ϕm1; again see the discussion at the end of this proof for the detailed explanation. Note that limE tr R̄0 is

the limiting Stieltjes transform of F0F
¦
0 . Hence, m̄1 = limE tr(F¦

0 F0 +¼nIN )−1 is the limiting companion Stieltjes

transform of m1 which is given by

m̄1 =
È

ϕ
m1 −

(

1− ϕ

È

)
1

¼
. (88)

This concludes the proof.

For the reader’s convenience, we provide the following diagram that shows how the notations of Adlam & Pennington

(2020a) (left) match (ô) ours (right):

n0 ô d, n1 ô N, mô n, ϕ, È ô ϕ, È,

X¦ ∈ R
m×n0 ô X̃ ∈ R

n×d, F¦ ∈ R
m×n1 ô F0 ∈ R

n×N , ÃW2 = 0,

1

n1
K(¼m/n1)

−1 =
1

n1
F¦F+ ¼Im ô R̄−1

0 = F0F
¦
0 + ¼nIn, · ô c21, ¸ ô c21 + c2>1,

Ä1 =
1

m
E trK−1 ô m1 =

N

n
E tr R̄0, Ä2 =

1

mn0
E trX¦XK−1 ô m2 =

N

nd
E tr X̃X̃¦R̄0.

O.6. Proof of Lemma K.5

Define X̂ = X̃− X̃uu¦, which implies X̂ §§ X̃u due to the Gaussianity of X. Based on the Gaussian equivalence from

Appendix J, we can replace F0 with c1X̃W¦
0 + c>1Z, where Z ∈ R

n×d is an independent random matrix with N(0, 1)
entries, without changing the conclusion. Hence, from now on, we write F0 = c1X̃W¦

0 + c>1Z. Further, we define

F̂0 = c1X̂W¦
0 + c>1Z. (89)

Thus, by the definition of X̂, F̂0 = F0 − c1X̃u(W0u)
¦. As a consequence, we also have F0F

¦
0 = F̂0F̂

¦
0 +VDV¦,

where V =
[

F̂0W0u X̃u
]
∈ R

n×2 and

D =

[
0 c1
c1 c21∥W0u∥22

]

.
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Noting that D is invertible, and using the Woodbury formula, with R̂0 = (F̂0F̂
¦
0 + ¼nIn)

−1, we find

R̄0 = R̂0 − R̂0V(D−1 +V¦R̂0V)−1V¦R̂0. (90)

Now, we can write

Hq(X̃u)¦R̄0Hp(X̃u) = Hq(X̃u)¦R̂0Hp(X̃u)−Hq(X̃u)¦R̂0V(D−1 +V¦R̂0V)−1V¦R̂0Hp(X̃u).

Next, we can analyze each term in the above sum separately.

The first term on the right hand side converges to zero by using Lemma K.3 to prove the concentration of this term around

its mean and noting that the mean is zero using the orthogonality property of Hermite polynomials (Lemma C.1).

To analyze the second term, we first study the matrix K = (D−1 +V¦R̂0V)−1, writing

K−1 = (D−1 +V¦R̂0V) =

[

u¦W¦
0 F̂

¦
0 R̂0F̂0W0u− ∥W0u∥22 u¦W¦

0 F̂
¦
0 R̂0X̃u− 1

c1

u¦X̃¦R̂0F̂0W0u− 1
c1

u¦X̃¦R̂0X̃u

]

.

It can readily verified that all elements in this matrix are OP(1) by checking the order of the operator and Euclidean norms.

Next, we analyze the terms in the expression

Hq(X̃u)¦R̂0VKV¦R̂0Hp(X̃u) = [K]1,1Hq(X̃u)¦R̂0(F̂0W0u)(F̂0W0u)
¦R̂0Hp(X̃u)

+ [K]1,2Hq(X̃u)¦R̂0(F̂0W0u)(X̃u)¦R̂0Hp(X̃u)

+ [K]2,1Hq(X̃u)¦R̂0(X̃u)(F̂0W0u)
¦R̂0Hp(X̃u)

+ [K]2,2Hq(X̃u)¦R̂0(X̃u)(X̃u)¦R̂0Hp(X̃u).

Without loss of generality, we can assume that p ̸= 1.

• First Term. Note that Hq(X̃u)¦ and Hp(X̃u) are orthogonal in L2 by the properties of the Her-

mite polynomials, and conditional on u, they are independent of R̂0(F̂0W0u)(F̂0W0u)
¦R̂0. Moreover,

∥R̂0(F̂0W0u)(F̂0W0u)
¦R̂0∥op = OP(1/n). Thus, by using Lemma K.3, this term converges to zero.

• Second Term. Similar to the argument above, we can show that (X̃u)¦R̂0Hp(X̃u) converges to zero. Also, by

analyzing the operator norms, we have Hq(X̃u)¦R̂0(F̂0W0u) = O(1). This implies that the second term converges

to zero.

• Third Term. First, note that by a simple order-wise analysis, Hq(X̃u)¦R̂0(X̃u) = OP(1). Now, we have Hp(X̃u) is

independent of (F̂0W0u)
¦R̂0 and ∥(F̂0W0u)

¦R̂0∥2 = OP(1/
√
n). The term (F̂0W0u)

¦R̂0Hp(X̃u) converges

to zero in probability by noting that Hp(X̃u) is mean zero for p ̸= 0. For the p = 0 case, we can use an orthogonality

invariance argument identical to the one used to analyze equation 34.

• Fourth Term. This term also converges to zero because (X̃u)¦R̂0Hp(X̃u) converges to zero, as argued above.

Putting everything together, the proof is completed.

O.7. Proof of Lemma K.6

We will prove part (a) first. To do this, we will first handle the cases where p = 0 and p = 1.

For p = 0, we have
√
NH0(θ̃⋆)R̄0F0a

◦2 =
√
N. This is identical to the second term in equation 34 and it is shown to be

oP(1)

For p = 1, we need to analyze
√
NH1(θ̃⋆)R̄0F0a

◦2 =
√
Nβ¦

⋆ X̃
¦R̄0F0a

◦2. Note that β⋆ ∼ N(0, 1dId) is independent of√
NX̃¦R̄0F0a

◦2 and

∥
√
NX̃¦R̄0F0a

◦2∥2 f
√
N∥X̃∥op · ∥R̄0∥op · ∥F0∥op · ∥a◦2∥2 = OP(1).
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Thus, we can conclude that
√
NH1(θ̃⋆)R̄0F0a

◦2 → 0 in probability.

To analyze the case where p > 1, we first define X̂ = X̃ − θ̃⋆β
¦
⋆ . By construction, we have X̂ §§ θ̃⋆. As in the proof

of Lemma K.5, Based on the Gaussian equivalence from Appendix J, we can replace F0 with c1X̃W¦
0 + c>1Z in our

computations without changing the limiting result, where Z ∈ R
n×d is an independent random matrix with N(0, 1) entries.

Thus, from now on, we denote F0 = c1X̃W¦
0 + c>1Z. We define F̂0 as in equation 89. Thus, F̂0 = F0 − c1θ̃⋆(W0β⋆)

¦.

As a consequence, we can write F0F
¦
0 = F̂0F̂

¦
0 +VDV¦, where V =

[

F̂0W0β⋆ θ̃⋆
]
∈ R

n×2 and

D =

[
0 c1
c1 c21∥W0β⋆∥22

]

.

Using the Woodbury formula, we find that equation 90 still holds. Now, we can write
√
NHp(θ̃⋆)

¦R̄0F0a
◦2 (91)

=
√
NHp(θ̃⋆)

¦R̂0F0a
◦2 −

√
NHp(θ̃⋆)

¦R̂0V(D−1 +V¦R̂0V)−1V¦R̂0F0a
◦2

=
√
NHp(θ̃⋆)

¦R̂0(F̂0 + c1θ̃⋆(W0β⋆)
¦)a◦2

−
√
NHp(θ̃⋆)

¦R̂0V(D−1 +V¦R̂0V)−1V¦R̂0(F̂0 + c1θ̃⋆(W0β⋆)
¦)a◦2.

Now, we can analyze each term in the above sum separately.

Term 1. Note that by a simple orderwise analysis,

∥
√
N R̂0F̂0a

◦2∥op f
√
N∥R̂0∥op∥F̂0∥op∥a◦2∥2 = O(1/

√
N).

We have ∥Hp(θ̃⋆)∥2 = OP(
√
N), E[Hp(θ̃⋆)] = 0, and Hp(θ̃⋆) has independent entries. Also Hp(θ̃⋆) §§ R̂0F̂0a

◦2. Thus,√
NHp(θ̃⋆)

¦R̂0F̂0a
◦2 →P 0.

We now need to analyze
√
NHp(θ̃⋆)

¦R̂0θ̃⋆β
¦
⋆ W

¦
0 a

◦2. Note that Hp(θ̃⋆)
¦R̂0θ̃⋆ = OP(1) by a simple order analysis

of the norms. We also have
√
Nβ¦

⋆ W
¦
0 a

◦2 →P 0, because β⋆ ∼ N(0, 1dId) is independent of the norm bounded vector√
NW¦

0 a
◦2.

Term 2. To analyze the second term, we first study the matrix K = (D−1 +V¦R̂0V)−1:

K−1 = (D−1 +V¦R̂0V) =

[

β¦
⋆ W

¦
0 F̂

¦
0 R̂0F̂0W0β⋆ − ∥W0β⋆∥22 β¦

⋆ W
¦
0 F̂

¦
0 R̂0θ̃⋆ − 1

c1

β¦
⋆ X̃

¦R̂0F̂0W0β⋆ − 1
c1

β¦
⋆ X̃

¦R̂0θ̃⋆

]

.

By orderwise analysis, all elements in this matrix converge to deterministic OP(1) values in probability. We write the second

term in equation 91 as follows:
√
NHp(θ̃⋆)

¦R̂0VKV¦R̂0F0a
◦2

= [K]1,1Hp(θ̃⋆)
¦R̂0(F̂0W0β⋆)(F̂0W0β⋆)

¦R̂0F0(
√
Na◦2)

+ [K]1,2Hp(θ̃⋆)
¦R̂0(F̂0W0β⋆)θ̃

¦
⋆ R̂0F0(

√
Na◦2)

+ [K]2,1Hp(θ̃⋆)
¦R̂0(θ̃⋆)(F̂0W0β⋆)

¦R̂0F0(
√
Na◦2)

+ [K]2,2Hp(θ̃⋆)
¦R̂0(θ̃⋆)θ̃

¦
⋆ R̂0F0(

√
Na◦2).

In the sum above, we will show that each term converges to zero.

• First term: By orderwise analysis, we have ∥R̂0(F̂0W0β⋆)∥op = OP(1/
√
N). Further, Hp(θ̃⋆) is independent of it

(only considering the randomness in X̃) with mean zero and ∥Hp(θ̃⋆)∥2 = OP(
√
N). This implies that

Hp(θ̃⋆)
¦R̂0(F̂0W0β⋆) →P 0. (92)

We can use a simple order argument to show that
√
N(F̂0W0β⋆)

¦R̂0F0a
◦2 = OP(1). Thus, the first term converges

to zero.
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• Second term: For this term, we use that Hp(θ̃⋆)
¦R̂0(F̂0W0β⋆) →P 0. We can also use an orderwise analysis to

prove that
√
N(θ̃⋆)

¦R̂0F0a
◦2 = OP(1). This proves that the second term also converges to zero.

• Third term: By a simple orderwise analysis, we have
√
N(F̂0W0β⋆)

¦R̂0F0a
◦2 = OP(1). To show that the third

term converges to zero, it is enough to show that Hp(θ̃⋆)
¦R̂0(θ̃⋆) →P 0, which is true for p ̸= 1 by using Lemma K.3

and the orthogonality property of Hermite polynomials (Lemma C.1).

• Fourth term: By a simple orderwise analysis, we have
√
N θ̃¦

⋆ R̂0F0a
◦2 = OP(1). Again, to show that the fourth term

converges to zero, it is enough to show that Hp(θ̃⋆)
¦R̂0(θ̃⋆) →P 0, which is true for p ̸= 1 as argued above.

Putting everything together, part (a) follows. The proof for part (b) is identical and omitted.

O.8. Proof of Lemma K.7

We will study the cases where s = 1 and s = 2 separately. For s = 1, we can use Lemma K.1 to show that Hp(θ̃⋆)R̄0θ̃ =

c⋆,1Hp(θ̃⋆)R̄0θ̃⋆ + oP(1). Also, by Lemma K.5, we have Hp(θ̃⋆)R̄0(θ̃⋆) = o(1) in probability if p ̸= 1, which proves the

lemma.

For the case s = 2, we define β̃ = β/∥β∥2 and write

Hp(θ̃⋆)R̄0(θ̃)
◦2 = ∥β∥22 Hp(θ̃⋆)R̄0(X̃β̃)◦2 = ∥β∥22 Hp(θ̃⋆)R̄0H2(X̃β̃) + oP(1).

Now, we define β§ = β⋆−ïβ⋆, β̃ðβ̃
∥β⋆−ïβ⋆, β̃ðβ̃∥2

, and set X̂ = X̃ − X̃β̃β̃¦ − X̃β§β¦
§ . By construction, we have X̂ §§ X̃β̃, θ̃⋆.

Based on the Gaussian equivalence from Appendix J, we can again replace F0 with F0 = c1X̃W¦
0 + c>1Z, where

Z ∈ R
n×d is an independent random matrix with N(0, 1) entries. Again, we define F̂0 as in equation 89. Thus, F̂0 =

F0 − c1X̃β̃(W0β̃)
¦ − c1X̃β§(W0β§)¦. As a consequence, we also have F0F

¦
0 = F̂0F̂

¦
0 + VDV¦, where V =

[

X̃β̃ X̃β§ F̂0W0β̃ F̂0W0β§
]
∈ R

n×4 and

D =










c21ïW0β̃,W0β̃ð c21ïW0β̃,W0β§ð c1 0

c21ïW0β̃,W0β§ð c21ïW0β§,W0β§ð 0 c1

c1 0 0 0

0 c1 0 0










.

Using the Woodbury formula, we find that equation 90 still holds. We can write

Hp(θ̃⋆)
¦R̄0H2(X̃β̃) =Hp(θ̃⋆)

¦R̂0H2(X̃β̃) (93)

−Hp(θ̃⋆)
¦R̂0V(D−1 +V¦R̂0V)−1V¦R̂0H2(X̃β̃).

The first term converges to zero for any p ̸= 2, analogously to the argument in Section K.2.1 for the term (1,2).

To prove that the second term will also converge to zero, we first observe that the elements of K = (D−1 +V¦R̂0V)−1

are all OP(1). The second term will involve quantities of the form [K]i,jHp(θ̃⋆)
¦R̂0viv

¦
j R̂0H2(X̃β̃), where vi, for

i ∈ {1, 2, 3, 4}, is the i-th column of the matrix V =
[

X̃β̃ X̃β§ F̂0W0β̃ F̂0W0β§
]
. We can argue that all these

terms converge to zero, as follows:

• The terms where j = 1 converge to zero because (X̃β̃)¦R̂0H2(X̃β̃) converges to zero analogously to the argument

in Section K.2.1 for the term (1,2). The same argument applies to the terms where j = 2, via the convergence of

(X̃β§)¦R̂0H2(X̃β̃) to zero.

• For j = 3, 4, since H2(X̃β̃) is independent of R̂0[F̂0W0β̃ F̂0W0β§], and has zero-mean i.i.d. entries, it also

follows that these entries converge to zero in probability.

Finally we study H2(θ̃⋆)
¦R̄0θ̃

◦2, by analyzing the terms in equation 93 for p = 2.
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For H2(θ̃⋆)
¦R̂0H2(X̃β̃), since H2(θ̃⋆), H2(X̃β̃) are independent of R̂0, it follows from Lemma K.3, as in the analysis

of term (1, 2) in Section K.2, that H2(θ̃⋆)
¦R̂0H2(X̃β̃) − ER̂0 · EH2(θ̃⋆)

¦H2(X̃β̃) →P 0. Now notice that F̂0 is left-

orthogonally invariant in distribution, and thus R̂0 =d OR̂0O
¦, where O is uniformly distributed over the Haar measure

of n-dimensional orthogonal matrices, independently of all other randomness. Hence, ER̂0 = E tr R̂0In/n. Moreover,

from the Woodbury formula in equation 25,

| tr R̄0 − tr R̂0| f | tr R̂0V(D−1 +V¦R̂0V)−1V¦R̂0| f | tr(D−1 +V¦R̂0V)−1V¦V| · ∥R̂0∥2op.

From our previous analysis and as the entries of V¦V are OP(n), it follows that the first term is OP(n); whereas ∥R̂0∥2op =

O(1/n2). Hence, | tr R̄0 − tr R̂0| →P 0, and thus by the bounded convergence theorem |E tr R̄0 − E tr R̂0| →P 0.

Moreover, we have already argued in the proof of Lemma K.4 that E tr R̄0 → Èm1/ϕ.

Further, by Lemmas C.1 and K.1,

EH2(θ̃⋆)
¦H2(X̃β̃) = n · EH2(x̃

¦
1 β⋆)H2(x̃

¦
1 β̃) = 2nE(β¦

⋆ β̃)
2 = 2nE

(β¦
⋆ β)

2

∥β∥2 = 2n
c2⋆,1

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

+ oP(1).

This shows that

H2(θ̃⋆)
¦R̂0H2(X̃β̃) →P 2

Èm1

ϕ

c2⋆,1
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
.

Next, we consider H2(θ̃⋆)
¦R̂0V with V =

[

X̃β̃ X̃β§ F̂0W0β̃ F̂0W0β§
]
. For the first two entries of the vector

H2(θ̃⋆)
¦R̂0V, an analysis very similar to the one above for H2(θ̃⋆)

¦R̂0H2(X̃β̃) shows that they converge to zero in

probability. For the last two entries, since H2(θ̃⋆) is independent of R̂0[F̂0W0β̃ F̂0W0β§], and has zero-mean

i.i.d. entries, it also follows that these entries converge to zero in probability. Moreover, the limiting entries of (D−1 +

V¦R̂0V)−1 have been shown to be bounded in our above analysis. Hence, the second term converges to zero in probability.

Now, note that β̃ = β/∥β∥2. From Lemma K.1, ∥β∥2 →P ϕ(c
2
⋆ + Ã2

ε) + c2⋆,1. Hence,

H2(θ̃⋆)
¦R̂0H2(X̃β) = 2

Èm1

ϕ

c2⋆,1∥β∥22
ϕ(c2⋆ + Ã2

ε) + c2⋆,1
+ oP(1) →P

2c2⋆,1Èm1

ϕ
,

which concludes the proof.

O.9. Proof of Lemma K.8

As in the proof of Lemma K.6, we define X̂ = X̃− θ̃β¦. By construction, we have X̂ §§ θ̃. As in the proof of Lemma K.5,

based on the Gaussian equivalence from Appendix J, we can replace F0 with c1XW¦
0 + c>1Z in our computations without

changing the limiting result, where Z ∈ R
n×d is an independent random matrix with N(0, 1) entries. Thus, from now on,

we denote F0 = c1XW¦
0 + c>1Z. We define F̂0 as in equation 89; thus, F̂0 = F0 − c1θ̃(W0β)

¦. As a consequence, we

can write F0F
¦
0 = F̂0F̂

¦
0 +VDV¦, where V =

[

F̂0W0β θ̃
]
∈ R

n×2 and

D =

[
0 c1
c1 c21∥W0β∥22

]

.

Using the Woodbury formula, we find that equation 90 still holds. Now, we can write

θ̃◦2¦R̄0θ̃
◦2 = θ̃◦2¦R̂0θ̃

◦2 − θ̃◦2¦R̂0V(D−1 +V¦R̂0V)−1V¦R̂0θ̃
◦2. (94)

We can analyze each term in the above sum separately.

By Lemma K.3, θ̃◦2¦R̂0θ̃
◦2 − Eθ̃◦2¦R̂0θ̃

◦2 →P 0. Further, conditional on β, Eθ̃◦2¦R̂0θ̃
◦2 = 3∥β∥42E tr R̂0; and as

in the proof of Lemma K.7, E tr R̂0 − E tr R̄0 → 0. Moreover, we have already argued in the proof of Lemma K.4 that

E tr R̄0 → Èm1/ϕ. In addition, from Lemma K.1, ∥β∥2 →P ϕ(c
2
⋆ + Ã2

ε) + c2⋆,1. Hence,

θ̃◦2¦R̂0θ̃
◦2 →P 3Èm1[ϕ(c

2
⋆ + Ã2

ε) + c2⋆,1]
2/ϕ.
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To analyze the second term in equation 94, we first study θ̃◦2¦R̂0F̂0W0β. By an argument similar to the ones above,

we can show that it concentrates around 1¦
n R̂0F̂0W0β = 1¦

n F̂0R̂0W0β. Since F̂0 is left-orthogonally invariant,

1¦
n F̂0R̂0W0β =d 1

¦
nOF̂0R̂0W0β, where O is uniformly distributed over the Haar measure of n-dimensional orthogonal

matrices, independently of all other randomness. Then, it follows as in the analysis of term (1,2) from Section K.2 that

1¦
nOF̂0R̂0W0β →P 0; and hence θ̃◦2¦R̂0F̂0W0β →P 0.

Moreover, the limiting entries of (D−1 +V¦R̂0V)−1 can be shown to be bounded by a simple orderwise analysis. Hence,

the second term in equation 94 is oP(1).

O.10. Proof of Lemma L.2

Denoting β̃ = β/∥β∥2, we have

(X̃β)◦i¦R̄0(X̃β)◦j = ∥β∥i+j2 (X̃β̃)◦i¦R̄0(X̃β̃)◦j = ∥β∥i+j2

i∑

k1=0

j
∑

k2=0

Ài,k1Àj,k2Hk1(X̃β̃)¦R̄0Hk2(X̃β̃)

= ∥β∥i+j2

min(i,j)
∑

k=0

Àj,kÀi,kHk(X̃β̃)¦R̄0Hk(X̃β̃) + oP(1)

= ∥β∥i+j2



Ài,1Àj,1(X̃β̃)¦R̄0(X̃β̃) +

min(i,j)
∑

k=0, k ̸=1

Ài,kÀj,kHk(X̃β̃)¦R̄0Hk(X̃β̃)



+ oP(1).

The third line follows from Lemma K.5. Now, we claim that for any p ∈ {0, 2, 3, . . . }, we have

Hp(X̃β/∥β∥2)¦R̄0Hp(X̃β/∥β∥2) →P p! Èm1/ϕ. Using this claim, the facts that ∥β∥22 →P c2⋆,1 + ϕ(c2⋆ + Ã2
ε),

and tr(X̃¦(F0F
¦
0 + ¼nIn)

−1X̃)/d→P Èm2/ϕ, we can conclude

(X̃β)◦i¦R̄0(X̃β)◦j →P

(
c2⋆,1 + ϕ(c2⋆ + Ã2

ε)
)(i+j)/2



Ài,1Àj,1
Èm2

ϕ
+
Èm1

ϕ

min(i,j)
∑

k=0, k ̸=1

k! Ài,kÀj,k



 .

Now, it remains to prove the claim that for any p ∈ {0, 2, 3, . . . }, we have

Hp(X̃β/∥β∥2)¦R̄0Hp(X̃β/∥β∥2) →P p! Èm1/ϕ.

As in the proof of Lemma K.8, we define X̂ = X̃− X̃β̃β̃¦. By construction, we have X̂ §§ X̃β̃. As in the proof of Lemma

K.5, based on the Gaussian equivalence from Appendix J, we can replace F0 with c1X̃W¦
0 + c>1Z in our computations

without changing the limiting result, where Z ∈ R
n×d is an independent random matrix with N(0, 1) entries. Thus, from

now on, we denote F0 = c1X̃W¦
0 + c>1Z. We define F̂0 as in equation 89; thus, F̂0 = F0 − c1X̃β̃(W0β̃)

¦. As a

consequence, we can write F0F
¦
0 = F̂0F̂

¦
0 +VDV¦, where V =

[

F̂0W0β̃ X̃β̃
]
∈ R

n×2 and

D =

[
0 c1
c1 c21∥W0β̃∥22

]

.

Using the Woodbury formula, we find that equation 90 still holds. Now, we can write

Hp(X̃β̃)¦R̄0Hp(X̃β̃) = Hp(X̃β̃)
¦
R̂0Hp(X̃β̃)−Hp(X̃β̃)

¦
R̂0V(D−1 +V¦R̂0V)−1V¦R̂0Hp(X̃β̃). (95)

We can analyze each term in the above sum separately.

By Lemma K.3, Hp(X̃β̃)
¦
R̂0Hp(X̃β̃)− EHp(X̃β̃)

¦
R̂0Hp(X̃β̃) →P 0. Further, conditional on β̃, and using C.1, we

have

EHp(X̃β̃)
¦
R̂0Hp(X̃β̃) = E tr

[

R̂0Hp(X̃β̃)Hp(X̃β̃)
¦]

= p! E tr
[

R̂0

]

,
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and as in the proof of Lemma K.7, E tr R̂0 − E tr R̄0 → 0. Moreover, we have already argued in the proof of Lemma K.4

that E tr R̄0 → Èm1/ϕ. Hence,Hp(X̃β̃)
¦
R̂0Hp(X̃β̃) →P p! Èm1/ϕ. To analyze the second term in equation 95, we first

study Hp(X̃β̃)¦R̂0F̂0W0β. Conditional on β̃, Hp(X̃β̃) is a vector with independent mean-zero, bounded variance entries,

independent of the vector R̂0F̂0W0β̃ that has norm O(1/
√
n). Hence, we conclude that this term goes to zero. Next, note

that Hp(X̃β̃)¦R̂0(X̃β̃) →P 0 using Lemma K.3 and Lemma C.1. Moreover, the limiting entries of (D−1 +V¦R̂0V)−1

can be shown to be bounded by a simple orderwise analysis. Hence, the second term in equation 95 is oP(1). This concludes

the proof.

O.11. Proof of Lemma L.3

We define β§ = β⋆−ïβ⋆, β̃ðβ̃
∥β⋆−ïβ⋆, β̃ðβ̃∥2

, and set X̂ = X̃ − X̃β̃β̃¦ − X̃β§β¦
§ . By construction, we have X̂ §§ X̃β̃, θ̃⋆.

Based on the Gaussian equivalence from Appendix J, we can again replace F0 with F0 = c1X̃W¦
0 + c>1Z, where

Z ∈ R
n×d is an independent random matrix with N(0, 1) entries. Again, we define F̂0 as in equation 89. Thus, F̂0 =

F0 − c1X̃β̃(W0β̃)
¦ − c1X̃β§(W0β§)¦. As a consequence, we also have F0F

¦
0 = F̂0F̂

¦
0 + VDV¦, where V =

[

X̃β̃ X̃β§ F̂0W0β̃ F̂0W0β§
]
∈ R

n×4 and

D =










c21ïW0β̃,W0β̃ð c21ïW0β̃,W0β§ð c1 0

c21ïW0β̃,W0β§ð c21ïW0β§,W0β§ð 0 c1

c1 0 0 0

0 c1 0 0










.

Using the Woodbury formula, we find that equation 90 still holds. We can write

Hp(θ̃⋆)
¦R̄0Hq(X̃β̃) =Hp(θ̃⋆)

¦R̂0Hq(X̃β̃)−Hp(θ̃⋆)
¦R̂0V(D−1 +V¦R̂0V)−1V¦R̂0Hq(X̃β̃). (96)

p ̸= q case: The first term converges to zero for any p ̸= q, analogously to the argument in Section K.2.1 for the terms

(1,2) and (2,4). In particular, for p = 0, we can use orthogonal invariance as in the analysis of the term (2,4). To prove that

the second term will also converge to zero when p ̸= q, we first observe that the elements of K = (D−1 +V¦R̂0V)−1

are all O(1). The second term will involve quantities of the form [K]i,jHp(θ̃⋆)
¦R̂0viv

¦
j R̂0Hq(X̃β̃), where vi, for

i ∈ {1, 2, 3, 4}, is the i-th column of the matrix V =
[

X̃β̃ X̃β§ F̂0W0β̃ F̂0W0β§
]
. We can argue that all these

terms converge to zero, as follows. Because p ̸= q, without loss of generality, assume that q ̸= 1.

• The terms where j = 1 converge to zero because (X̃β̃)¦R̂0Hq(X̃β̃) converges to zero using the concentration

argument from Lemma K.3 and the orthogonality of Hermite polynomials from Lemma C.1. The same argument

applies to the terms where j = 2, via the convergence of (X̃β§)¦R̂0Hq(X̃β̃) to zero.

• For j = 3, 4, and for q > 0, since Hq(X̃β̃) is independent of R̂0[F̂0W0β̃ F̂0W0β§], and has zero-mean

i.i.d. entries, it also follows that these entries converge to zero in probability. For q = 0, we can again use orthogonal

invariance as in the analysis of the term (2,4).

The case when p = q ̸= 1: Finally we study Hp(θ̃⋆)
¦R̄0Hp(X̃β̃), by analyzing the terms in equation 93.

For Hp(θ̃⋆)
¦R̂0Hp(X̃β̃), since Hp(θ̃⋆), Hp(X̃β̃) are independent of R̂0, it follows from Lemma K.3, as in the analysis

of term (1, 2) in the Section K.2, that Hp(θ̃⋆)
¦R̂0Hp(X̃β̃) − ER̂0 · EHp(θ̃⋆)

¦Hp(X̃β̃) →P 0. Now notice that F̂0

is left-orthogonally invariant in distribution, and thus R̂0 =d OR̂0O
¦, where O is uniformly distributed over the Haar

measure of n-dimensional orthogonal matrices, independently of all other randomness. Hence, ER̂0 = E tr R̂0In/n. Also,

similar to the proof of Lemma K.7, we have | tr R̄0 − tr R̂0| = oP(1). Moreover, we have already argued in the proof of

Lemma K.4 that E tr R̄0 → Èm1/ϕ. Further, by Lemmas C.1 and K.1,

Hp(θ̃⋆)
¦R̂0Hp(X̃β̃) →P p!

Èm1

ϕ




c⋆,1

√

ϕ(c2⋆ + Ã2
ε) + c2⋆,1





p

.
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Next, we consider H2(θ̃⋆)
¦R̂0V with V =

[

X̃β̃ X̃β§ F̂0W0β̃ F̂0W0β§
]
. For the first two entries of the vector

Hp(θ̃⋆)
¦R̂0V, an analysis very similar to the one above for Hp(θ̃⋆)

¦R̂0Hp(X̃β̃) shows that they converge to zero

in probability. For the last two entries, since Hp(θ̃⋆) is independent of R̂0[F̂0W0β̃ F̂0W0β§], and has zero-mean

i.i.d. entries, it also follows that these entries converge to zero in probability. Moreover, the limiting entries of (D−1 +

V¦R̂0V)−1 have been shown to be bounded in our above analysis. Hence, the second term converges to zero in probability.

The case when p = q = 1: In this case, we have

(X̃β⋆)
¦R̄0(X̃β̃) =

(X̃β⋆)
¦R̄0(X̃β)

∥β∥2
=

c⋆,1
Èm2

ϕ
√

ϕ(c2⋆ + Ã2
ε) + c2⋆,1

+ oP(1),

using Lemma K.1 and by arguments similar to the ones in the proof of Lemma K.4.

Putting everything together concludes the proof.

P. Additional Experiments

In this section, we show results of a few additional experiments.

Figure 4. We repeat the experiments in Figure 3 (Left, Middle) with y = H1(β
¦
⋆
x) + 1√

6
H3(β

¦
⋆
x) as setting 3. Here we use the

activation σ(x) = e
x−e

−x

e
x+e

−x
for all x, so that c3 ̸= 0.

Figure 5. We repeat the experiment in Figure 2 with the MNIST dataset. Although the MNIST dataset does not satisfy our theoretical

conditions (Gaussian input, single-index model, etc.), we empirically observe similar phenomena such as the emergence of spikes after a

one-step gradient update.
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Figure 6. We plot the training and test errors of a two-layer neural network (N = 1000) trained on the MNIST dataset with one step of

gradient descent of varying step size. To make the experiments compatible with our theoretical setup, the model is trained using the MSE

loss. We show that a large step size can be beneficial in this more realistic problem.
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