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Abstract

Many of the successes of machine learning are

based on minimizing an averaged loss function.

However, it is well-known that this paradigm suf-

fers from robustness issues that hinder its appli-

cability in safety-critical domains. These issues

are often addressed by training against worst-case

perturbations of data, a technique known as adver-

sarial training. Although empirically effective, ad-

versarial training can be overly conservative, lead-

ing to unfavorable trade-offs between nominal

performance and robustness. To this end, in this

paper we propose a framework called probabilis-

tic robustness that bridges the gap between the

accurate, yet brittle average case and the robust,

yet conservative worst case by enforcing robust-

ness to most rather than to all perturbations. From

a theoretical point of view, this framework over-

comes the trade-offs between the performance and

the sample-complexity of worst-case and average-

case learning. From a practical point of view, we

propose a novel algorithm based on risk-aware op-

timization that effectively balances average- and

worst-case performance at a considerably lower

computational cost relative to adversarial training.

Our results on MNIST, CIFAR-10, and SVHN

illustrate the advantages of this framework on the

spectrum from average- to worst-case robustness.

1. Introduction

Underlying many of the modern successes of learning is the

statistical paradigm of empirical risk minimization (ERM),

in which the goal is to minimize a loss function averaged

over data (Vapnik, 1999). Although ubiquitous in practice,
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it is now well-known that prediction rules learned by ERM

suffer from a severe lack of robustness, which in turn greatly

limits their applicability in safety-critical domains (Biggio

et al., 2013; Shen et al., 2021). Indeed, this vulnerability

has led to a pronounced interest in improving the robustness

of modern learning tools (Goodfellow et al., 2014; Madry

et al., 2017; Zhang et al., 2019).

To this end, a growing body of work has motivated a learn-

ing paradigm known as adversarial training, wherein rather

than training on the raw data, predictors are trained against

worst-case perturbations of data (Goodfellow et al., 2014;

Madry et al., 2017). Yet, despite ample empirical evidence

showing that adversarial training improves the robustness

of learned predictors (Su et al., 2018; Croce et al., 2020;

Tang et al., 2021), this framework is not without drawbacks.

Indeed, adversarial training is known to be overly conser-

vative (Tsipras et al., 2018; Raghunathan et al., 2019), a

property often exhibited by other worst-case approaches

ranging from complexity theory (Spielman & Teng, 2004)

to robust control (Zhou & Doyle, 1998). Furthermore, there

are broad classes of problems for which the sample complex-

ity of learning a robust predictor is arbitrarily large (Cullina

et al., 2018; Montasser et al., 2019). Finally, the problem

of computing worst-case perturbations of data is nonconvex

and underparameterized for most modern learning models

including deep neural networks (DNNs).

The fundamental drawbacks of these learning paradigms

motivate the need for a new robust learning framework

that (i) avoids the conservatism of adversarial robustness

without incurring the brittleness of ERM, (ii) provides an

interpretable way to balance nominal performance and ro-

bustness, and (iii) admits an efficient and effective algorithm.

To this end, in this paper we propose a framework called

probabilistic robustness that bridges the gap between the

accurate, yet brittle average-case approach of ERM and the

robust, yet conservative worst-case approach of adversarial

training. By enforcing robustness to most rather than to all

perturbations, we show theoretically and empirically that

probabilistic robustness meets the desiderata in (i)–(iii). In-

deed, our approach parallels a litany of past work in a variety

of fields, including smoothed analysis (Spielman & Teng,

2004) and control theory (Campi & Garatti, 2008), wherein
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Figure 1. The spectrum of robustness. Illustration of the different decision boundaries engendered by robustness paradigms. Left: the

two classes (yellow and blue dots) can be separated by a simple decision boundary, though it may not be robust to data perturbations.

Right: the decision boundary must account for the neighborhood of each data point (yellow and blue boxes), leading to a degraded nominal

performance. Middle: probabilistic robustness bridges these extremes by allowing a small proportion of perturbations (shown in red) to be

misclassified, mitigating the trade-offs between robustness and accuracy both in theory and in practice.

robustness is enforced with high probability rather than in

the worst case. In particular, our contributions include:

• Novel robustness framework. We introduce probabilis-

tically robust learning, a new formulation wherein the

goal is to learn predictors that are robust to most rather

than to all perturbations (see Fig. 1).

• (Lack of) Fundamental trade-offs. We show that in

high dimensional settings, the nominal performance of

probabilistically robust classifiers is the same as the Bayes

optimal classifier, which contrasts with analogous results

for adversarially robust classifiers.

• Sample complexity. We also show that while the sam-

ple complexity of adversarial learning can be arbitrarily

high, the sample complexity of our probabilistically ro-

bust learning is the same as ERM.

• Tractable algorithm. Inspired by risk-aware optimiza-

tion, we propose a tractable algorithm for probabilistically

robust training that spans the full spectrum of robust-

ness (Fig. 1) at a considerably lower computational cost

than adversarial training.

• Thorough experiments. We provide thorough experi-

ments on MNIST, CIFAR-10, and SVHN. In particular,

when we evaluate the ability of algorithms to be robust to

99% of points in ℓ∞-balls on CIFAR-10, our algorithm

outperforms all baselines by six percentage points.

2. Adversarially Robust Learning

In this paper, we consider the standard supervised learning

setting in which data is distributed according to an unknown

joint distribution D over instance-label pairs (x, y), with

instances x drawn from X ¦ R
d and labels y drawn from

Y ¦ R; in particular, for classification problems we let Y =

{1, . . . ,K}. Our goal is to obtain a hypothesis h : X →
Y belonging to a given hypothesis class H that correctly

predicts the corresponding label y for each instance x. One

common approach to this problem is to minimize a suitably-

chosen loss function ℓ : Y × Y → R+ (e.g., the 0-1, cross-

entropy, or squared loss) on average over D. Explicitly,

min
h∈H

SR(h) ≜ E(x,y)∼D

[

ℓ
(

h(x), y
)

]

. (P-NOM)

Here SR(h) denotes the standard risk or nominal perfor-

mance of h.1 The hypothesis class H is often comprised

of models f¹ parameterized by a vector ¹ drawn from a

compact set Θ ¢ R
p, e.g., linear classifiers or deep neural

networks with bounded parameters.

Because the distribution D is unknown, the objective

in (P-NOM) cannot be evaluated in practice. The core idea

behind ERM is to use samples (xj , yj) drawn i.i.d. from D

to estimate the expectation:

min
h∈H

1

N

N
∑

j=1

ℓ(h(xj), yj). (P-ERM)

One of the fundamental problems in learning theory is to es-

tablish the number N of i.i.d. samples needed for (P-ERM)

to approximate the value of (P-NOM) with high probability.

Problems for which N is finite are called probably approxi-

mately correct (PAC) learnable (Vapnik, 1999).

Pitfalls of ERM. While solving (P-ERM) often yields clas-

sifiers that are near-optimal for (P-NOM), there is now over-

whelming evidence that these hypotheses are sensitive to

1We assume that ℓ and h satisfy the integrability conditions
needed for the expectation in (P-NOM) to be well-defined.
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imperceptible perturbations of their input (Biggio et al.,

2013; Szegedy et al., 2013). Explicitly, given an instance x
and a solution h⋆ for (P-ERM), one can often find a small

perturbations ¶ such that h(x + ¶) ̸= h(x) = y.2 This

issue has been observed in hypotheses ranging from linear

models to complex nonlinear models (e.g., DNNs) and has

motivated a considerable body of recent work on robust

learning (Goodfellow et al., 2014; Madry et al., 2017; Jalal

et al., 2017; Zhang et al., 2019; Kamalaruban et al., 2020;

Rebuffi et al., 2021).

2.1. Adversarial robustness

Among the approaches that have been proposed to mitigate

the sensitivity of hypotheses to input perturbations, there is

considerable empirical evidence suggesting that adversarial

training is an effective way to obtain adversarially robust

classifiers (Su et al., 2018; Athalye et al., 2018; Croce et al.,

2020). In this paradigm, hypotheses are trained against

worst-case perturbations of data rather than on the raw data

itself, giving rise to a robust counterpart of (P-NOM):

min
h∈H

AR(h) ≜ E(x,y)

[

sup
¶∈∆

ℓ
(

h(x+ ¶), y
)

]

, (P-ROB)

where ∆ ¢ R
d is the set of allowable perturbations and we

omit the distribution D for simplicity. In (P-ROB), AR(h)
denotes the adversarial risk of h. Observe that in contrast

to (P-NOM), the objective of (P-ROB) explicitly penalizes

hypotheses that are sensitive to perturbations in ∆, thus

yielding more robust hypotheses. Numerous principled ad-

versarial training algorithms have been proposed for solv-

ing (P-ROB) (Goodfellow et al., 2014; Madry et al., 2017;

Kannan et al., 2018) and closely-related variants (Moosavi-

Dezfooli et al., 2016; Wong & Kolter, 2018; Wang et al.,

2019; Zhang et al., 2019).

Pitfalls of adversarial training. Despite the empirical suc-

cess of adversarial training at defending against worst-case

attacks, this paradigm has several limitations. In particular,

it is well-known that the improved adversarial robustness

offered by (P-ROB) comes at the cost of degraded nominal

performance (Tsipras et al., 2018; Dobriban et al., 2020;

Javanmard et al., 2020; Yang et al., 2020). Additionally,

evaluating the supremum in (P-ROB) can be challenging in

practice, since the resulting optimization problem is noncon-

cave and underparameterized for modern hypothesis classes,

e.g., DNNs (Soltanolkotabi et al., 2018). Finally, from a

learning theoretic perspective, there exist hypothesis classes

for which (P-NOM) is PAC learnable while (P-ROB) is not,

i.e., for which (P-NOM) can be approximated using samples

whereas (P-ROB) cannot (Cullina et al., 2018; Montasser

2For conciseness, we focus on perturbations of the form x 7→

x + ¶. However, our results also apply to more general models,
such as those in (Robey et al., 2020; Wong & Kolter, 2020).

et al., 2019; Diochnos et al., 2019).

2.2. Between the average and worst case

Aside from the now prevalent framework of adversarial

training, many works have proposed alternative methods to

mitigate the aforementioned vulnerabilities of learning. A

standard technique that dates back to (Holmstrom & Koisti-

nen, 1992) is to use a form of data augmentation (P-NOM):

min
h∈H

E(x,y)

[

E¶∼r

[

ℓ(h(x+ ¶), y)
]

]

. (P-AVG)

Here, the inner expectation is taken against a known distri-

bution r. While many algorithms have been proposed for

specific r (Krizhevsky et al., 2012; Hendrycks et al., 2019;

Laidlaw & Feizi, 2019; Chen et al., 2020), they fail to yield

classifiers sufficiently robust to small perturbations.

Toward obtaining robust alternatives to (P-AVG), two recent

works propose relaxations of (P-ROB) that engender notions

of robustness between (P-NOM) and (P-ROB). The first

relies on the hierarchy of Lebesgue spaces, i.e.,

min
hq∈H

E(x,y)

[

∥

∥ℓ(hq(x+ ¶), y)
∥

∥

Lq

]

, (PI)

where ||·||Lq denotes the Lebesgue q-norm taken over ∆
with respect to the measure r (Rice et al., 2021). The second

relaxes the supremum using the soft maximum or LogSum-

Exp function (Li et al., 2020; 2021):

min
ht∈H

E(x,y)

[

1

t
log
(

E¶∼r

[

et·ℓ(ht(x+¶),y)
])

]

. (PII)

While both (PI) and (PII) are strong alternatives to (P-ROB),

both suffer from significant practical issues related to op-

timizing their objectives. More specifically, the objective

in (PI) cannot be efficiently computed during training due to

the difficulty of evaluating the Lq norm (Rice et al., 2021).

And in the case of (PII), the gradient of the objective be-

comes unstable for large values of t when training DNNs.

Furthermore, looking beyond these practical limitations,

there is also no clear relationship between the values of q
and t and robustness properties of the solutions for (PI)

and (PII), making these parameters difficult to choose or

interpret. These limitations motivate the need for an alterna-

tive formulation of robust learning.

Remark 2.1. Formally, the limiting cases of (PI) and (PII)

are not (P-NOM) and (P-ROB). Indeed, for q = 1 and t→
0, the objectives of both problems approach the objective

of (P-AVG). For q =∞ and t→∞, the objectives of (PI)

and (PII) can be written in terms of the essential supremum

min
hr∈H

E(x,y)

[

ess sup
¶∼r

ℓ
(

hr(x+ ¶), y
)

]

, (PIII)

where ess sup¶∼r f(¶) denotes an almost everywhere upper

bound of f , i.e., an upper bound except perhaps on a set
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of r-measure zero. Note that the essential supremum is

a weaker adversary (ess sup f sup), although for rich

enough hypothesis classes, the value of (P-ROB) and (PIII)

can be the same (Bungert et al., 2021, Lemma 3.8).

3. Probabilistically robust learning

The discussion in the previous section identifies three

desiderata for a new robust learning framework:

(i) Interpolation. The framework should strike a balance

between nominal and adversarial performance.

(ii) Interpretability. This interpolation should be pre-

cisely controlled by an interpretable parameter.

(iii) Tractability. The framework should admit a computa-

tionally tractable training algorithm.

While (PI) and (PII) do achieve (i), neither meets the criteria

in (ii) or (iii). On the other hand, the probabilistic robustness

framework introduced in this section satisfies all of these

desiderata. Moreover, as we show in Section 4, it benefits

from numerous theoretical properties.

3.1. A probabilistic perspective on robustness

The core idea behind probabilistic robustness is to replace

the worst-case view of robustness with a probabilistic per-

spective. This idea has a long history in numerous fields,

including chance-constrained optimization in operations re-

search (Charnes et al., 1958; Miller & Wagner, 1965) and

control theory (Campi & Garatti, 2008; Ben-Tal et al., 2009;

Ramponi, 2018; Schildbach et al., 2014) and smoothed anal-

ysis in algorithmic complexity theory (Spielman & Teng,

2004). In each of these domains, probabilistic approaches

are founded on the premise that a few rare events are dispro-

portionately responsible for the performance degradation

and increased complexity of adversarial solutions. In the

context of robust learning, this argument is supported by

recent theoretical and empirical observations suggesting

that low-dimensional regions of small volume in the data

space are responsible for the prevalence of adversarial exam-

ples (Gilmer et al., 2018; Khoury & Hadfield-Menell, 2018;

Shamir et al., 2021). This suggests that because the adver-

sarial training formulation (P-ROB) does not differentiate

between perturbations, it is prone to yielding conservative

solutions that overcompensate for rare events.

To begin our exposition of probabilistic robustness, first con-

sider the case of the 0-1 loss. Here, adversarial training has

shifted focus from the nominal 0-1 loss I[h(x) ̸= y] to the

adversarially robust 0-1 loss I[∃¶ ∈ ∆ s.t. h(x + ¶) ̸= y].
Concretely, this robust loss takes value one if there exists

any perturbation ¶ in a neighborhood ∆ of a fixed instance

x that causes misclassification, and value zero otherwise.

Motivated by our discussion in the previous paragraph, we

seek a relaxed variant of the robust loss which will allow us

Figure 2. The Ä-ess supÄ-ess supÄ-ess sup operator. In this cartoon, we fix (x, y) ∈
Ω to show the perturbation set ∆ on the x-axis and the value of

ℓ(h(x + ¶), y) on the y-axis. The solid line shows the value

of sup
δ∈∆

ℓ(h(x + ¶), y), the least upper bound for ℓ(h(x +
¶), y). The dashed line shows, for a fixed Ä > 0, the value

of Ä-ess sup
δ∼r ℓ(h(x + ¶), y), the smallest number u such that

ℓ(h(x+ ¶), y) takes on values larger than u (shown in red) on a

subset (shown in yellow) with volume not exceeding Ä.

to quantify the robust performance of a candidate hypothesis

while ignoring regions of insignificant volume in ∆. To do

so, we first introduce a probability distribution r (e.g., the

uniform distribution) over ∆ to assess the local probability

of error P¶∼r[h(x+ ¶) ̸= y] around each instance x. Then,

for a fixed tolerance level Ä ∈ [0, 1), the goal of probabilis-

tic robustness is to minimize the probability that the event

P¶∼r[h(x+ ¶) = y] < 1− Ä will occur; that is, the goal is

to ensure that most perturbations do not cause an instance x
to be misclassified. As such, the smaller the value of Ä, the

more stringent the requirement on robustness. In this way,

under the 0-1 loss, our probabilistically robust learning task

can then formulated as follows:

min
h∈H

E(x,y)

[

I
[

P¶∼r [h(x+ ¶) ̸= y] > Ä
]

]

. (PIV)

It is then straightforward to see that under the 0-1 loss,

probabilistically robust learning is an instance of (P-NOM)

in the sense that we are minimizing the expectation of a

particular loss I[P¶∼r [h(x+ ¶) ̸= y] > Ä].

3.2. Generalizing to general loss functions

With this intuition in mind, we now generalize (PIV) to

arbitrary loss functions. To do so, let (Ω,B) define a mea-

surable space, where Ω = X ×Y and B denotes the Borel Ã-

algebra of Ω. Observe that for fixed (x, y) ∈ Ω, the supre-

mum t⋆ := sup¶∈∆ ℓ(h(x + ¶), y) from (P-ROB) can be

written in epigraph form as

t⋆ = min
t∈R

t s.t. ℓ(h(x+ ¶), y) f t ∀¶ ∈ ∆. (3.1)

This formulation makes explicit the fact that the supremum

is the least upper bound of ℓ(h(x+ ¶), y) (see Fig. 2).

As in the development of (PIV), however, we do not need t
to upper bound ℓ(h(x+ ¶), y) for all ¶ ∈ ∆, but only for a

proportion 1− Ä of the volume of ∆. We therefore consider
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the following relaxation of (3.1):

u⋆(Ä) =min
u∈R

u (3.2)

s.t. P¶∼r

[

ℓ(h(x+ ¶), y) f u
]

> 1− Ä

In contrast to (3.1), the upper bound in (3.2) can ignore

perturbations for which ℓ(h(x+ ¶), y) is large (red regions

in Fig. 2) as long as these perturbations occupy a subset of ∆
that has probability less than Ä (yellow regions in Fig. 2).

Thus, note that for Ä g Ä′, it holds that

u⋆(Ä) f u⋆(Ä′) f u⋆(0) f t⋆

and that u⋆(0) is the essential supremum from measure

theory. In view of this connection, we call u⋆(Ä) in (3.2)

the Ä-essential supremum (Ä-ess sup) (dashed line in Fig. 2)

and formalize its definition below.

Definition 3.1. Let (Ω,B, p) be a measure space and let

f : Ω→ R be a measurable function. Define the set

UÄ = {u ∈ R | p(f−1(u,∞)) f Ä} .

Then, the Ä-ess sup is defined as3

Ä-ess sup
x∼p

f(x) =

{

inf UÄ Ä ∈ [0, 1)

inf {f(x) : x ∈ supp(p)} Ä = 1

where supp(p) denotes the support of p.

For a given tolerance level Ä ∈ [0, 1), probabilistically ro-

bust learning can now be formalized in full generality as

min
hp∈H

PR(hp; Ä) ≜ E(x,y)

[

Ä-ess sup
¶∼r

ℓ
(

hp(x+ ¶), y
)

]

(P-PRL)

In this problem, r is defined on the measurable

space (∆,B∆), where B∆ is the restriction of the Ã-

algebra B to ∆. For consistency, we define the probabilistic

robustness problem (P-PRL) for Ä = 1 as (P-AVG).

By construction, it is clear that (P-PRL) satisfies desidera-

tum (i): For Ä = 0, we recover (PIII) and for all Ä ∈ (0, 1),
we obtain a strict relaxation of the robustness criteria

in (P-ROB). Furthermore, if r is symmetric—meaning that

the mean and median coincide, as is the case for the uniform

and Gaussian distributions—then we recover (P-AVG) for

Ä = 1/2. However, we note that for general distribution r the

objective of (P-PRL) does not approach that of (P-AVG). In

practice, this is inconsequential because we are primarily

interested in values of Ä close to zero in order to guarantee

3While we define Ä-ess sup as the infimum for Ä = 1, this is
done only for consistency as this value will play no significant role
in subsequent derivations.

robustness in large neighborhoods of the data. Additionally,

as we show in Section 5, the algorithm we put forward to

solve (P-PRL) yields solutions that exactly recover the aver-

age case. Moreover, we show in Sections 5 and 6 that this

algorithm fulfills desideratum (iii).

As for the interpretability of Ä in desideratum (ii), notice

that the relaxation in (P-PRL) explicitly minimizes the loss

over a neighborhood of r-measure at least 1 − Ä of each

data point. Thus, in contrast to (PI) or (PII), this relax-

ation has a practical interpretation. This interpretability is

clearest in the 0-1 loss case (PIV), which effectively min-

imizes P(x,y)

[

P¶∼r[hp(x + ¶) ̸= y] > Ä
]

. In this way,

probabilistic robustness measures the probability of making

an error in a neighborhood of each point and only declares

failure if that probability is too large, i.e., larger than Ä. This

is in contrast to directly measuring the probability of error

as in (P-NOM) or requiring that the probability of failure

vanishes as in (PIII).

4. Statistical properties of probabilistic

robustness

In this section, we characterize the behavior of probabilistic

robustness in different settings to show that, in addition to

meeting the practical desiderata enumerated in Section 3,

this framework also enjoys significant statistical advantages

over its worst-case counterpart. In particular, in line with a

myriad of past work (Su et al., 2018; Bhagoji et al., 2019;

Dobriban et al., 2020; Javanmard et al., 2020; Cullina et al.,

2018; Montasser et al., 2020), we first observe that the se-

curity guarantee of adversarial robustness comes at the cost

of degraded nominal performance as well as an arbitrarily

large sample complexity. However, in stark contrast to these

results, we show that even for arbitrarily small Ä, there ex-

ists classes of problems for which probabilistic robustness

can be achieved with the same sample complexity as clas-

sical learning and at a vanishingly small cost in nominal

performance relative to the Bayes optimal classifier. In the

sequel, we first analyze probabilistically robust learning in

the two fundamental settings of binary classification and lin-

ear regression (Section 4.1), followed by a learning theoretic

characterization of its sample complexity (Section 4.2).

4.1. Nominal performance vs. robustness trade-offs

In this section, we consider perturbation sets of the form

∆ = {¶ ∈ R
d : ||¶||2 f ϵ} (4.1)

for a fixed ϵ > 0 and we let r be the uniform distribution

over ∆. We consider binary classification problems with

data distributed as

x | y ∼ N (yµ, Ã2Id), y =

{

+1 w.p. Ã

−1 w.p. 1− Ã
, (4.2)
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where Ã ∈ [0, 1] is the proportion of the y = +1 class,

Id is the d-dimensional identity matrix, and Ã > 0 is the

within-class standard deviation. We assume without loss

of generality that the class means ±µ are centered about

the origin and, by scaling, that Ã = 1. In this setting, it is

well-known that the Bayes optimal classifier is

h⋆
Bayes(x) = sign

(

x¦µ− q/2
)

(4.3)

where q = ln[(1 − Ã)/Ã] (Anderson, 2003). Moreover,

(Dobriban et al., 2020) recently showed that the optimal

adversarially robust classifier is

h⋆
r(x) = sign

(

x¦µ
[

1− ϵ/ ||µ||2
]

+
− q/2

)

, (4.4)

where [z]+ = max(0, z). In the following proposition, we

obtain a closed-form expression for the optimal probabilisti-

cally robust linear classifier.

Proposition 4.1. Suppose the data is distributed according

to (4.2) and let ϵ < ||µ||2. Then, for Ä ∈ [0, 1/2],

h⋆
p(x) = sign

(

x¦µ

(

1−
vÄ
||µ||2

)

+

−
q

2

)

(4.5)

is the optimal linear solution for (PIV), where vÄ is the

Euclidean distance from the origin to a spherical cap of ∆
with measure Ä. Moreover, it holds that

PR(h⋆
p; Ä)− SR(h⋆

Bayes) =

{

O
(

1√
d

)

, Ä ∈
(

0, 1
2

]

O(1), Ä = 0.
(4.6)

Concretely, Prop. 4.1 conveys three messages.

Firstly, (4.5) shows that the optimal probabilistically ro-

bust linear classifier corresponds to the Bayes classifier

with an effective mean µ 7→ µ(1− vÄ/ ||µ||2)+. Secondly,

h⋆
p depends on the tolerance level Ä through the measure

of a spherical cap of ∆. Indeed, it is straightforward to

check that v1/2 = 0 and v0 = ϵ, and thus (4.5) recov-

ers h⋆
Bayes and h⋆

r respectively. Thus, in this setting, not only

does (P-PRL) interpolate between (P-ROB) and (P-NOM)

as Ä varies from 0 to 1/2, but so too do its optimal solutions.

Finally, (4.6) shows that the best achievable probabilistic

robustness is essentially the same as the best achievable

nominal performance in high dimensions, regardless of the

value of Ä provided that it remains strictly positive. However,

in the adversarially robust setting of Ä = 0, the gap between

robustness and accuracy does not vanish, which lays bare the

conservatism engendered by forcing classifiers to account

for a small set of rare events. In this way, a phase transition

occurs at Ä = 0 in the sense that for any Ä > 0, the gap

between nominal performance and probabilistic robustness

vanishes in high dimensions, despite the fact that we protect

against an arbitrary proportion 1− Ä of perturbations.

In Appendix A.2, we study the distinct yet related problem

of linear regression with Gaussian features. In this set-

ting, we observe exactly the same phenomenon, wherein the

trade-off between nominal performance and probabilistic

robustness vanishes in high dimensions.

4.2. Sample complexity of probabilistic robustness

From a learning theoretic perspective, the behavior of adver-

sarial learning is considerably different from that of classi-

cal learning. Indeed, the sample complexity of adversarial

learning, i.e., the number of samples needed for the em-

pirical counterpart of (P-ROB) to approximate its solution

with high probability, can often be arbitrarily large relative

to (P-NOM) (Cullina et al., 2018; Yin et al., 2019; Mon-

tasser et al., 2019). The following proposition shows that

unlike in the case of adversarial robustness, the sample com-

plexity of probabilistically robust learning can match that

of classical learning even for arbitrarily small Ä > 0.

Proposition 4.2. Let ℓ be the 0-1 loss and let r be fully

supported on ∆ and absolutely continuous with respect to

the Lebesgue measure. For any constant Äo ∈ (0, 1/2), there

exists a hypothesis classHo such that the sample complexity

of probabilistically robust learning at level Ä is

N =

{

Θ
(

log2(1/Äo)
)

, Ä = 0

Θ(1), Äo f Ä f 1− Äo

In particular, Θ(1) is the sample complexity of (P-NOM).

A formal statement of this result and the requisite prelim-

inaries are provided in Appendix B. Concretely, Proposi-

tion 4.2 shows that there exist learning problems for which

the sample complexity of ERM and PRL are the same, and

for which the sample complexity of adversarial training is

much larger4 than PRL and ERM. However, the result also

highlights the fact that when protecting against an over-

whelmingly large proportion 1− Äo of perturbations, PRL

can transition from having the sample complexity of classi-

cal learning to that of adversarial learning depending on the

value of Ä. Note that the hypothesis classHo of the problem

depends on Ä, meaning that although the sample complex-

ity can depend on Ä, there are still problems for which the

sample complexity of PRL is exponentially smaller than

adversarial training. This implies that the conservatism of

adversarial learning can manifest itself not only in the form

of nominal performance degradation (Tsipras et al., 2018),

but also in terms of learning complexity.

4In fact, in the case of Ä = 0, i.e., adversarial robustness,
(Montasser et al., 2019) shows that the problem can be unlearnable,
i.e., have infinite sample complexity.
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Algorithm 1 Probabilistically Robust Learning (PRL)

1: Hyperparameters: sample size M , step sizes ¸³, ¸ >
0, robustness parameter Ä > 0, neighborhood distribu-

tion r, num. of inner optimization steps T , batch size B
2: repeat

3: for minibatch {(xj , yj)}
B
j=1 do

4: for T steps do

5: Draw ¶k ∼ r, k = 1, . . . ,M

6: g³n
← 1− 1

ÄM

M
∑

k=1

I
[

ℓ(f¹(xj+¶k), yj) g ³j

]

7: ³j ← ³j − ¸³g³j
, for n = 1, . . . , B

8: end for

9: g ← 1
ÄMB

∑

j,k

∇¹

[

ℓ
(

f¹(xj + ¶k), yj
)

− ³j

]

+

10: ¹ ← ¹ − ¸g
11: end for

12: until convergence

5. A tractable, risk-aware algorithm

So far, we have established that probabilistically robust

learning has numerous desirable practical and theoreti-

cal properties. However, the stochastic, non-convex, non-

smooth nature of the Ä-ess sup means that in practice solv-

ing (P-PRL) presents a significant challenge. Nevertheless,

in this section we show that the Ä-ess sup admits a tight

convex upper bound that can be efficiently optimized using

stochastic gradient methods. Given this insight, we propose

a novel algorithm for probabilistically robust learning which

is guaranteed to interpolate between (P-AVG) and (P-ROB).

5.1. A convex upper bound for the Ä-ess supÄ-ess supÄ-ess sup

Toward obtaining a practical algorithm for training prob-

abilistically robust predictors, we first consider the rela-

tionship between probabilistic robustness and risk miti-

gation in portfolio optimization (Krokhmal et al., 2002).

To this end, notice that the Ä-ess sup is closely related to

the inverse cumulative distribution function (CDF): If Fz

is the CDF of a random variable z with distribution p,

then Ä-ess supz∼p z = F−1
z (Ä). For an appropriately-

chosen distribution p, F−1
z (Ä) is known as the value-at-

risk (VaR) in the portfolio optimization literature. However,

VaR is seldom used in practice due to its computational and

theoretical limitations. Indeed, VaR is often replaced with

a tractable, convex upper bound known as the condition

value-at-risk (CVaR) (Rockafellar et al., 2000; Rockafellar

& Uryasev, 2002). Concretely, given a function f and a

continuous distribution p, CVaR can be interpreted as the

expected value of f on the tail of the distribution, i.e.,

CVaRÄ(f ; p) = Ez∼p

[

f(z) | f(z) g F−1
z (Ä)

]

. (5.1)

It is straightforward to show that CVaR0(f ; p) =
Ez∼p[f(z)] and CVaR1(f ; p) = ess supz∼p f(z). In view

of this property, it is not surprising that CVaR is an upper

bound on Ä-ess sup, a result we summarize below:

Proposition 5.1 ((Nemirovski & Shapiro, 2007)). CVaR is

the tightest convex upper bound of Ä-ess sup, i.e.,

Ä-ess sup
z∼p

f(z) f CVaR1−Ä(f ; p) (5.2)

with equality when Ä = 0 or Ä = 1.

5.2. Minimizing the conditional value at risk

The main computational advantage of CVaR is that it admits

the following convex, variational characterization:

CVaRÄ(f ; p) = inf
³∈R

³+
Ez∼p

[

[f(z)− ³]+
]

1− Ä
. (5.3)

Given this form, CVaR can be computed efficiently by using

stochastic gradient-based techniques on (5.3). This is the

basis of the probabilistically robust training method detailed

in Algorithm 1, which tackles the statistical problem

min
hp∈H

E(x,y)

[

CVaR1−Ä (ℓ(hp(x+ ¶), y); r)
]

(P-CVaR)

for parameterized, differentiable hypothesis classes H =
{f¹ : ¹ ∈ Θ}. Notice that like (P-ROB), (P-CVaR) is a

composite optimization problem involving an inner mini-

mization over ³ to compute CVaR and an outer minimiza-

tion over ¹ to train the predictor. However, unlike (P-ROB),

the inner problem in (P-CVaR) is convex regardless of H,

and moreover the gradient of the objective in (5.3) can be

computed in closed form. To this end, in lines 5–6 of Al-

gorithm 1, we compute CVaR via stochastic gradient de-

scent (SGD) by sampling perturbations ¶k ∼ r (Thomas

& Learned-Miller, 2019). Then, in lines 9–10, we run

SGD on the outer problem using an empirical approxima-

tion of the expectation based on a finite set of i.i.d. sam-

ples {(xj , yj)} ∼ D as in (P-ERM).

6. Experiments

We conclude our work by thoroughly evaluating the per-

formance of the algorithm proposed in the previous sec-

tion on three standard benchmarks: MNIST, CIFAR-10,

and SVHN. Throughout, we consider the perturbation set

∆ = {¶ ∈ R
d : ||¶||∞ f ϵ} under the uniform distri-

bution r; for MNIST, we use ϵ = 0.3 and for CIFAR-10

and SVHN, we use ϵ = 8/255. Further details concerning

hyperparameter selection are deferred to the appendix.

Baseline algorithms. We consider a range of baselines,

including three variants of ERM: standard ERM (Vapnik,

1999), tilted ERM (denoted TERM) (Li et al., 2020; 2021),

and ERM with data augmentation (denoted ERM+DA)

wherein we run ERM on randomly perturbed instances.
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Figure 3. CVaR as a metric for test-time robustness. We plot the

conditional value at risk CVaR0.95(ℓ(h(x + ¶), y); r) averaged

over the test data points in CIFAR-10, SVHN, and MNIST respec-

tively. Observe that PRL is more effectively able to minimize the

objective in (P-CVaR) than any of the baselines.

Furthermore, we compare to the Lq norm-based Hamil-

tonian Monte Carlo (N-HMC) method of (Rice et al., 2021).

We also run various state-of-the-art adversarial training

algorithms, including FGSM (Goodfellow et al., 2014),

PGD (Madry et al., 2017), TRADES (Zhang et al., 2019),

MART (Wang et al., 2019), and DALE (Robey et al., 2021a).

Evaluation metrics. To evaluate the algorithms we con-

sider, for each dataset we record the clean accuracy and

the adversarial accuracy against a PGD adversary. We also

record the accuracy of each algorithm on perturbed samples

in two ways. Firstly, for each data point we randomly draw

100 samples from r and then record the average accuracy

across perturbed samples x+ ¶; we denote these accuracies

by “Aug.” in the relevant tables. And secondly, to explicitly

measure probabilistic robustness, we propose the following

quantile accuracy metric, the form of which follows directly

from the probabilistically robust 0-1 loss defined in (PIV):

ProbAcc(Ä) = I [P¶∼r [h(x+ ¶) = y] g 1− Ä] . (6.1)

In words, this metric describes the proportion of instances

which are probabilistically robust with tolerance level Ä,

and therefore this will be our primary metric for evaluating

probabilistic robustness for a given tolerance level Ä.

Clean, robust, and quantile accuracies. In Tables 1–3,

we record the clean, robust, and probabilistic error metrics

described above for PRL and a range of baselines. Through-

out, the value of Ä was chosen by cross-validation; see

Appendix C for details. Given these results, several remarks

are in order. Firstly, across each of these tables, it is clear

that the PRL algorithm does not incur the same degradation

in nominal performance as does adversarial training; indeed,

Table 1. Classification results for CIFAR-10.

Algorithm
Test Accuracy ProbAcc(Ä)

Clean Aug. Adv. 0.1 0.05 0.01

ERM 94.38 91.31 1.25 86.35 84.20 79.17

ERM+DA 94.21 91.15 1.08 86.35 84.15 79.19

TERM 93.19 89.95 8.93 84.42 82.11 76.46

N-HMC 85.07 84.41 3.24 79.50 77.96 74.76

FGSM 84.96 84.65 43.50 83.76 83.50 82.85

PGD 84.38 84.15 47.07 83.18 82.90 82.32

TRADES 80.42 80.25 48.54 79.38 79.12 78.65

MART 81.54 81.32 48.90 80.44 80.21 79.62

DALE 84.83 84.69 50.02 83.77 83.53 82.90

PRL 93.82 93.77 0.71 91.45 90.63 88.55

Table 2. Classification results for SVHN.

Algorithm
Test Accuracy ProbAcc(Ä)

Clean Aug. Adv. 0.1 0.05 0.01

ERM 94.44 94.28 2.72 92.16 91.40 89.42

ERM+DA 94.69 94.43 2.08 92.65 92.01 89.92

TERM 91.85 91.58 18.33 89.01 88.04 85.85

N-HMC 90.32 90.55 18.30 88.79 87.61 86.12

FGSM 80.69 85.55 32.82 80.18 78.02 74.87

PGD 91.19 91.29 44.89 90.15 89.68 83.82

TRADES 86.16 86.47 54.89 85.09 84.76 83.82

MART 90.20 90.44 45.23 89.81 88.82 84.32

DALE 93.85 93.72 51.98 92.52 91.08 89.19

PRL 95.00 94.81 3.11 93.28 92.97 91.74

Table 3. Classification results for MNIST.

Algorithm
Test Accuracy ProbAcc(Ä)

Clean Aug. Adv. 0.1 0.05 0.01

ERM 99.37 98.82 0.01 97.96 97.96 96.66

ERM+DA 99.42 99.13 5.23 98.46 98.12 97.30

TERM 99.20 98.55 11.27 97.15 96.42 94.15

N-HMC 99.33 99.25 3.91 98.85 98.71 98.23

FGSM 98.86 98.72 19.34 98.00 97.83 97.25

PGD 99.16 99.10 94.45 99.05 98.63 98.34

TRADES 99.10 99.04 94.76 98.71 98.61 98.33

MART 98.94 98.98 94.13 98.59 98.39 97.98

PRL 99.32 99.25 26.03 99.27 99.01 98.54

on CIFAR-10 and MNIST, the clean accuracy of PRL is

within one percentage point of ERM, and for SVHN, the

clean accuracy of PRL surpasses that of ERM. A second ob-

servation is that across these datasets, PRL offers significant

improvements in the ProbAcc(Ä) metric. This improve-

ment manifests most clearly on CIFAR-10, wherein PRL

improves by more than six percentage points over all base-

line algorithms for Ä = 0.01. Moreover, the gap between

the ProbAcc of PRL and that of the baselines increases as Ä
decreases, indicating that PRL is particularly effective for

more stringent robustness requirements.
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Figure 4. Trade-offs between adversarial and clean accuracy.

By sweeping over Ä, we show that our approach bridges the average

and worst case by trading-off clean and adversarial accuracy. Thus,

as Ä decreases, trained classifiers improve robustness to adversarial

perturbations at the cost of decreasing clean performance.

We also highlight the fact that PRL consistently outperforms

both TERM and (Rice et al., 2021) on the clean, augmented,

and quantile accuracy metrics.5 This demonstrates that PRL

facilitates a strong empirical trade-off between robustness

and accuracy relative to other methods that seek to interpo-

late between the average and worst case.

CVaR as a metric for test-time robustness. As we showed

in Section 5, CVaR1−Ä is an upper bound for the Ä-ess sup.

In this way, CVaR can be used as a surrogate for assessing

the test-time robustness of trained classifiers. To this end,

in Figure 3 we plot CVaR0.95(ℓ(h(x+ ¶), y); r) averaged

over the test data on CIFAR-10, SVHN, and MNIST. This

plot shows that PRL displays significantly lower values

of CVaR0.95 among all of the algorithms we considered,

which reinforces the message from Tables 1-3 that PRL is

most successful at imposing probabilistic robustness.

Ablation study: the role of Ä in Algorithm 1. In Section 5,

we claimed that our algorithm interpolates between the

average- and worst-case problems in (P-AVG) and (P-ROB)

respectively. To verify this claim, we study the trade-off

between nominal accuracy and adversarial accuracy for vary-

ing values of Ä. In Figure 4, we show that as Ä decreases,

our algorithm improves adversarial accuracy at the cost of

degrading nominal performance.

7. Conclusion

In this paper, motivated by the brittleness of ERM and the

conservatism of adversarial training, we proposed a new

framework called probabilistically robust learning in which

robustness is enforced with high probability over pertur-

5We selected t and q for TERM and N-HMC by cross-
validation; see Appendix C for details.

bations rather than in the worst case. Our analysis of this

framework showed that PRL provably mitigates the well-

known trade-off between robustness and accuracy and can

have a sample complexity that is exponentially lower than

that of adversarial training. We also proposed an algorithm

motivated by risk-aware optimization which shows strong

performance on a variety of metrics designed to evaluate

intermediate robustness between the average and worst case.

There are numerous directions for future work. One fruit-

ful direction is to further explore the use of risk-aware

optimization in other areas of learning. Although these

techniques have been applied to problems in reinforcement

learning (Chow et al., 2015) and active learning (Curi et al.,

2019), there is ample opportunity to use these methods to

improve performance in fields like domain generalization,

domain adaptation, and fair learning. Another exciting di-

rection is to devise tighter and/or more efficient schemes to

optimize the Ä-ess sup in (P-PRL). Furthermore, although

we focused on additive, norm-bounded perturbations in this

paper, there is ample opportunity to extend this framework

to deal with more general distribution shifts, such as those

studied in (Robey et al., 2020; 2021b; Wong & Kolter, 2020;

Gowal et al., 2020; Zhou et al., 2022).

A final direction of interest is to study the connections

between alternative definitions of robustness, including

both (Li et al., 2020; 2021) and (Rice et al., 2021) as well

as existing notions of astuteness (Wang et al., 2018) and of

neighborhood-preserving Bayes optimal classifiers (Bhat-

tacharjee & Chaudhuri, 2021) for non-parametric methods.

Indeed, a unification of these robustness frameworks may

represent a significant advance in our understanding of the

robustness of machine learning models.
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Laskov, P., Giacinto, G., and Roli, F. Evasion attacks

against machine learning at test time. In Joint European

conference on machine learning and knowledge discovery

in databases, pp. 387–402. Springer, 2013. 1, 3

Bungert, L., Trillos, N. G., and Murray, R. The geometry

of adversarial training in binary classification. arXiv

preprint arXiv:2111.13613, 2021. 4

Campi, M. C. and Garatti, S. The exact feasibility of ran-

domized solutions of uncertain convex programs. SIAM

Journal on Optimization, 19(3):1211–1230, 2008. 1, 4

Charnes, A., Cooper, W. W., and Symonds, G. H. Cost hori-

zons and certainty equivalents: an approach to stochastic

programming of heating oil. Management science, 4(3):

235–263, 1958. 4

Chen, S., Dobriban, E., and Lee, J. H. A group-theoretic

framework for data augmentation. Journal of Machine

Learning Research, 21(245):1–71, 2020. 3

Chow, Y., Tamar, A., Mannor, S., and Pavone, M. Risk-

sensitive and robust decision-making: a cvar optimization

approach. arXiv preprint arXiv:1506.02188, 2015. 9

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,

E., Flammarion, N., Chiang, M., Mittal, P., and Hein,

M. Robustbench: a standardized adversarial robustness

benchmark. arXiv preprint arXiv:2010.09670, 2020. 1, 3

Cullina, D., Bhagoji, A. N., and Mittal, P. Pac-learning

in the presence of evasion adversaries. arXiv preprint

arXiv:1806.01471, 2018. 1, 3, 5, 6

Curi, S., Levy, K., Jegelka, S., Krause, A., et al. Adap-

tive sampling for stochastic risk-averse learning. arXiv

preprint arXiv:1910.12511, 2019. 9

Diochnos, D. I., Mahloujifar, S., and Mahmoody, M. Lower

bounds for adversarially robust pac learning. arXiv

preprint arXiv:1906.05815, 2019. 3

Dobriban, E., Hassani, H., Hong, D., and Robey, A. Prov-

able tradeoffs in adversarially robust classification. arXiv

preprint arXiv:2006.05161, 2020. 3, 5, 6, 13

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu,

M., Wattenberg, M., and Goodfellow, I. Adversarial

spheres. arXiv preprint arXiv:1801.02774, 2018. 4

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014. 1, 3, 8

Gowal, S., Qin, C., Huang, P.-S., Cemgil, T., Dvijotham, K.,

Mann, T., and Kohli, P. Achieving robustness in the wild

via adversarial mixing with disentangled representations.

In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 1211–1220,

2020. 9

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016. 20

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer,

J., and Lakshminarayanan, B. Augmix: A simple data

processing method to improve robustness and uncertainty.

arXiv preprint arXiv:1912.02781, 2019. 3

Holmstrom, L. and Koistinen, P. Using additive noise in

back-propagation training. IEEE transactions on neural

networks, 3(1):24–38, 1992. 3

Jalal, A., Ilyas, A., Daskalakis, C., and Dimakis, A. G.

The robust manifold defense: Adversarial training using

generative models. arXiv preprint arXiv:1712.09196,

2017. 3

Javanmard, A., Soltanolkotabi, M., and Hassani, H. Precise

tradeoffs in adversarial training for linear regression. In

Conference on Learning Theory, pp. 2034–2078. PMLR,

2020. 3, 5, 15, 16

Kamalaruban, P., Huang, Y.-T., Hsieh, Y.-P., Rolland, P.,

Shi, C., and Cevher, V. Robust reinforcement learning

via adversarial training with langevin dynamics. arXiv

preprint arXiv:2002.06063, 2020. 3

Kannan, H., Kurakin, A., and Goodfellow, I. Adversarial

logit pairing. arXiv preprint arXiv:1803.06373, 2018. 3



Probabilistically Robust Learning

Khoury, M. and Hadfield-Menell, D. On the geometry of

adversarial examples. arXiv preprint arXiv:1811.00525,

2018. 4

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. 2009. 20

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

Advances in neural information processing systems, 25:

1097–1105, 2012. 3

Krokhmal, P., Palmquist, J., and Uryasev, S. Portfolio

optimization with conditional value-at-risk objective and

constraints. Journal of risk, 4:43–68, 2002. 7

Laidlaw, C. and Feizi, S. Functional adversarial attacks.

arXiv preprint arXiv:1906.00001, 2019. 3

Li, T., Beirami, A., Sanjabi, M., and Smith, V. Tilted empir-

ical risk minimization. arXiv preprint arXiv:2007.01162,

2020. 3, 7, 9

Li, T., Beirami, A., Sanjabi, M., and Smith, V. On tilted

losses in machine learning: Theory and applications.

arXiv preprint arXiv:2109.06141, 2021. 3, 7, 9

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,

2017. 1, 3, 8

Miller, B. L. and Wagner, H. M. Chance constrained pro-

gramming with joint constraints. Operations Research,

13(6):930–945, 1965. 4

MNISTWebPage. The MNIST database of handwritten dig-

its Home Page. http://yann.lecun.com/exdb/

mnist/. 20

Montasser, O., Hanneke, S., and Srebro, N. Vc classes are

adversarially robustly learnable, but only improperly. In

Conference on Learning Theory, pp. 2512–2530. PMLR,

2019. 1, 3, 6, 17

Montasser, O., Goel, S., Diakonikolas, I., and Srebro, N.

Efficiently learning adversarially robust halfspaces with

noise. In International Conference on Machine Learning,

pp. 7010–7021. PMLR, 2020. 5

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deep-

fool: a simple and accurate method to fool deep neural

networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2574–2582,

2016. 3

Nemirovski, A. and Shapiro, A. Convex approximations

of chance constrained programs. SIAM Journal on Opti-

mization, 17(4):969–996, 2007. 7

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,

and Ng, A. Y. Reading digits in natural images with

unsupervised feature learning. 2011. 20

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and

Liang, P. Adversarial training can hurt generalization.

arXiv preprint arXiv:1906.06032, 2019. 1

Ramponi, F. A. Consistency of the scenario approach. SIAM

Journal on Optimization, 28(1):135–162, 2018. 4

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles,

O., and Mann, T. Fixing data augmentation to improve

adversarial robustness. arXiv preprint arXiv:2103.01946,

2021. 3

Rice, L., Bair, A., Zhang, H., and Kolter, J. Z. Robustness

between the worst and average case. Advances in Neural

Information Processing Systems, 34, 2021. 3, 8, 9, 20

Robey, A., Hassani, H., and Pappas, G. J. Model-based

robust deep learning: Generalizing to natural, out-of-

distribution data. arXiv preprint arXiv:2005.10247, 2020.

3, 9

Robey, A., Chamon, L., Pappas, G., Hassani, H., and

Ribeiro, A. Adversarial robustness with semi-infinite

constrained learning. Advances in Neural Information

Processing Systems, 34, 2021a. 8

Robey, A., Pappas, G. J., and Hassani, H. Model-based

domain generalization. Advances in Neural Information

Processing Systems, 34:20210–20229, 2021b. 9

Rockafellar, R. T. and Uryasev, S. Conditional value-at-

risk for general loss distributions. Journal of banking &

finance, 26(7):1443–1471, 2002. 7

Rockafellar, R. T., Uryasev, S., et al. Optimization of con-

ditional value-at-risk. Journal of risk, 2:21–42, 2000.

7

Schildbach, G., Fagiano, L., Frei, C., and Morari, M. The

scenario approach for stochastic model predictive control

with bounds on closed-loop constraint violations. Auto-

matica, 50(12):3009–3018, 2014. 4

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-

chine learning: From theory to algorithms. Cambridge

university press, 2014. 17

Shamir, A., Melamed, O., and BenShmuel, O. The dim-

pled manifold model of adversarial examples in machine

learning. arXiv preprint arXiv:2106.10151, 2021. 4

Shen, Y., Zheng, L., Shu, M., Li, W., Goldstein, T., and

Lin, M. C. Improving robustness of learning-based

autonomous steering using adversarial images. arXiv

preprint arXiv:2102.13262, 2021. 1



Probabilistically Robust Learning

Soltanolkotabi, M., Javanmard, A., and Lee, J. D. Theo-

retical insights into the optimization landscape of over-

parameterized shallow neural networks. IEEE Transac-

tions on Information Theory, 65(2):742–769, 2018. 3

Spielman, D. A. and Teng, S.-H. Smoothed analysis of

algorithms: Why the simplex algorithm usually takes

polynomial time. Journal of the ACM (JACM), 51(3):

385–463, 2004. 1, 4

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., and Gao,

Y. Is robustness the cost of accuracy?–a comprehensive

study on the robustness of 18 deep image classification

models. In Proceedings of the European Conference on

Computer Vision (ECCV), pp. 631–648, 2018. 1, 3, 5

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties of

neural networks. arXiv preprint arXiv:1312.6199, 2013.

3

Tang, S., Gong, R., Wang, Y., Liu, A., Wang, J., Chen,

X., Yu, F., Liu, X., Song, D., Yuille, A., et al. Robus-

tart: Benchmarking robustness on architecture design and

training techniques. arXiv preprint arXiv:2109.05211,

2021. 1

Thomas, P. and Learned-Miller, E. Concentration inequali-

ties for conditional value at risk. In International Confer-

ence on Machine Learning, pp. 6225–6233. PMLR, 2019.

7

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and

Madry, A. Robustness may be at odds with accuracy.

arXiv preprint arXiv:1805.12152, 2018. 1, 3, 6

Vapnik, V. The nature of statistical learning theory. Springer

science & business media, 1999. 1, 2, 7

Wang, Y., Jha, S., and Chaudhuri, K. Analyzing the ro-

bustness of nearest neighbors to adversarial examples.

In International Conference on Machine Learning, pp.

5133–5142. PMLR, 2018. 9

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Im-

proving adversarial robustness requires revisiting misclas-

sified examples. In International Conference on Learning

Representations, 2019. 3, 8, 20

Wong, E. and Kolter, J. Z. Learning perturbation sets for ro-

bust machine learning. arXiv preprint arXiv:2007.08450,

2020. 3, 9

Wong, E. and Kolter, Z. Provable defenses against adver-

sarial examples via the convex outer adversarial polytope.

In International Conference on Machine Learning, pp.

5286–5295. PMLR, 2018. 3

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R.,

and Chaudhuri, K. A closer look at accuracy vs. robust-

ness. arXiv preprint arXiv:2003.02460, 2020. 3

Yin, D., Kannan, R., and Bartlett, P. Rademacher complexity

for adversarially robust generalization. In International

conference on machine learning, pp. 7085–7094. PMLR,

2019. 6

Zeiler, M. D. Adadelta: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701, 2012. 20

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and

Jordan, M. Theoretically principled trade-off between

robustness and accuracy. In International Conference on

Machine Learning, pp. 7472–7482. PMLR, 2019. 1, 3, 8,

20

Zhou, A., Tajwar, F., Robey, A., Knowles, T., Pappas,

G. J., Hassani, H., and Finn, C. Do deep networks

transfer invariances across classes? arXiv preprint

arXiv:2203.09739, 2022. 9

Zhou, K. and Doyle, J. C. Essentials of robust control,

volume 104. Prentice hall Upper Saddle River, NJ, 1998.

1



Probabilistically Robust Learning

Figure 5. Spherical cap of an ℓ2-ball with radius ϵ > 0 in two-dimensions.

A. Proofs concerning trade-offs in binary classification and linear regression

A.1. Binary classification under a Gaussian mixture model

In this subsection, we provide proofs for the results for binary classification in Section 4.1. In general, our proof of the

closed form expression for h⋆
p in Proposition 4.1 follows along the same lines as the proof of Theorem 4.2 in (Dobriban

et al., 2020). In particular, our contribution is to generalize the proof techniques to the setting of probabilistic robustness,

thereby subsuming the results in (Dobriban et al., 2020) as a special case when Ä = 0.

Lemma A.1. For any Ä ∈ [0, 1/2], it holds that among all linear classifiers,

h⋆(x) = sign

(

x¦µ

(

1− vÄ
||µ||2

)

+

− q

2

)

(A.1)

is optimal for (P-PRL), where vÄ is the distance from the center of ∆ to a spherical cap of volume Ä.

Proof. To begin, observe that the the probabilistically robust risk PR(hp; Ä) can be written in the following way:

PR(hp; Ä) = E(x,y)∼D

[

I
[

P¶∼r [h(x+ ¶) ̸= y] > Ä
]

]

(A.2)

= P(x,y)∼D

[

P¶∼r [h(x+ ¶) ̸= y] > Ä
]

(A.3)

= P[y = +1] · Px|y=+1

[

P¶∼r [h(x+ ¶) = −1] > Ä
]

(A.4)

+ P[y = −1] · Px|y=−1

[

P¶∼r [h(x+ ¶) = +1] > Ä
]

. (A.5)

Note that it is enough to solve this problem in one dimension, as the problem in d-dimensions can be easily reduced to a

one-dimensional problem. Thus, our goal is to find the value of a threshold c that minimizes the probabilistically robust risk.

In this one-dimensional case, the probabilistically robust risk can be written as

PR(hp; Ä) = Ã · Px|y=+1[x f c+ Ä] + (1− Ã) · Px|y=−1[x g c− Ä] (A.6)

= Ã · Px|y=+1[x− Ä f c] + (1− Ã) · Px|y=−1[x+ Ä g c]. (A.7)

Recall that as x|y ∼ N (yµ, Ã2I). Therefore,

PR(hp; Ä) = Ã · Px∼N (µ−Ä,Ã2I)[x f c] + (1− Ã) · Px∼N (−µ+Ä,Ã2I)[x g c] (A.8)

This is exactly the same as the problem of non-robust classification between tow Gaussians with means µ′ = µ− Ä and −µ′

(by assumption, we have that µ g 0). As is well known (see, e.g., (Anderson, 2003)), the optimal classifier for this setting is

h⋆
p(x) = sign[x · (µ− Ä)− q/2] (A.9)

where q = ln[(1− Ã)/Ã]. And indeed, when moving from the one-dimensional case, one need only recognize that a linear

classifier which ignores a set of volume Ä in ∆ will create a spherical cap of volume Ä in ∆. This is illustrated by the red

region in Figure 5. The form of h⋆
p(x) given in (4.5) follows from (A.9) as a direct analog for the d-dimensional case.
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To prove the second part of Proposition 4.1, we seek to characterize the distance vÄ from the center of ∆ to a spherical cap

of volume Ä. To this end, we have the following result.

Lemma A.2. Let B(0, µ) = {¶ ∈ ∆ : ||¶||2 f µ} for any number µ > 0. Define vÄ to be the distance from the origin such

that the fraction of the volume of the corresponding spherical cap is Ä (see Figure 5). Then we have that

vÄ =

{

ϵ Ä = 0
ϵ√
d
Φ−1(1− Ä)(1− od(1)) Ä ∈ (0, 1/2]

(A.10)

Proof. By inspection, the result is clear for Ä = 0. Thus, we consider the case when Ä ∈ [0, 1/2]. Note that for any number

µ < ϵ, we have that

P¶∼r(B(0, ϵ))− P¶∼r(B(0, ϵ− µ))

P¶∼r(B(0, ϵ))
= 1−

(

1− µ

ϵ

)d

. (A.11)

As a result, by taking µ = ϵ · (ln(d)/d) we obtain

1−
(

1− µ

ϵ

)d

= 1− exp
(

d ln
(

1− µ

ϵ

))

(A.12)

= 1− exp

(

−dµ

ϵ
+O

(

d
(µ

ϵ

)2
))

(A.13)

= 1−O(1/d). (A.14)

In this way, we have shown that the uniform distribution over any ball centered at the origin can be approximated up to

od(1) by the uniform distribution on the sphere.

Now let (X1, · · · , Xn) be the random vector generated by uniformly sampling a point on the sphere of radius ϵ. We note

that, up to od(1) terms, the distribution of each of the coordinates, e.g. X1, is ϵZ/
√
d, where Z is the normal random

variable. Again, up to od(1) terms, i.e. when the dimension grows large, the volume of the spherical cap at distance vÄ can

be approximated by

P(X1 g vÄ) = P

(

Z
ϵ√
d
g vÄ

)

= 1− Φ

(

vÄ

√
d

ϵ

)

. (A.15)

where Φ denotes the Gaussian CDF. As a result, for the RHS of the above relation to be equal to Ä, we must have

vÄ =
ϵΦ−1(1− Ä)√

d
. (A.16)

This concludes the proof.

From the above lemma, we can conclude the following phase-transition behavior. When Ä = 0, there is a constant

gap between the adversarially robust risk AR(h⋆
r) and the best attainable clean risk SR(h⋆

Bayes). Indeed, this gap does

not vanish as the dimension d grows, resulting in a non-trivial trade-off between adversarial robustness and accuracy.

However, for Ä > 0, the gap between the probabilistically robust accuracy PR(h⋆
p; Ä) and the clean risk is of the form

PR(h⋆
p; Ä) − SR(h⋆

Bayes) = O(1/
√
d), and as a result, as the dimension d grows, the trade-off between robustness and

accuracy vanishes (a blessing of high dimensions).

A.2. Linear regression with Gaussian features

We next consider the setting of linear regression, wherein it is assumed that there exists an underlying parameter vector

¹0 ∈ Θ ¢ R
d, and that the data is subsequently generated according to the following model:

x ∼ N (0, Id), y = ¹¦0 x+ z, z ∼ N (0, Ã2) (A.17)

where Ã > 0 is a fixed noise level. Furthermore, we consider hypotheses of the form f¹(x) = ¹¦x for ¹ ∈ Θ, and we

use the squared loss ℓ(f¹(x), y) = (f¹(x) − y)2 = (¹¦x − y)2. In this setting, it is straightforward to calculate that at

optimality SR(f¹) = Ã2, which is achieved for ¹ = ¹0. Moreover, in the more general probabilistic robustness setting, we

have the following complementary result:



Probabilistically Robust Learning

Proposition A.3. Suppose that the data is distributed according to (A.17). Let ¹⋆ ∈ Θ denote the optimal solution obtained

by solving (P-PRL) over Θ. Then for any Ä > 0,

PR(f¹⋆ ; Ä)− SR(f¹0) =

{

O(1/
√
d) Ä > 0

O(1) Ä = 0
(A.18)

In this way, as in the previous subsection, it holds that for any Ä > 0, the gap between probabilistic robustness and nominal

performance vanishes in high dimensions. On the other hand, as was recently shown in (Javanmard et al., 2020), there exists

a non-trivial gap between adversarial robustness and clean accuracy that does not vanish to zero by increasing the dimension

in this setting.

To prove this result, we consider the following variational form of the problem in (P-PRL):

min
¹∈Rd, t∈L1

E(x,y)∼D[t(x, y)]

subject to P¶∼r

{

(¹T(x+ ¶)− y)2 f t(x, y)
}

g 1− Ä ∀(x, y) ∈ Ω.
(PV)

where L1 denotes the space of Lebesgue integral functions. We can then characterize t(x, y) as follows:

Lemma A.4. We have the following characterization for t(x, y):

t(x, y) =

{

(|¹Tx− y|+ ϵ||¹||2)2 if Ä = 0,

(¹Tx− y)2 + ϵ2||¹||2(¹Tx−y)√
d

(

Q−1(1− Ä) + od(1)
)

if Ä ∈ (0, 1],

Almost surely for any (x, y).

Proof. Let’s first consider the case in which Ä > 0. Since ¶ ∼ P¶∼r is the uniform distribution over the Euclidean ball of

radius ϵ, we know that for any ¹ ∈ R
d we have

¹T¶
d→ N (0,

ϵ2||¹||22
d

),

where the convergence is in distribution. This is because the uniform distribution over the Euclidean ball of radius ϵ

converges to the Gaussian distribution N(0, ϵ2

d Id). As a result, up to od(1) terms, we have ¹T¶ ∼ ϵ||¹||2√
d

Z, where Z is the

normal random variable.

P¶∼r

{

(¹T(x+ ¶)− y)2 f t(x, y)
}

= PZ

{

ϵ2||¹||22
d

Z2 + 2(¹Tx− y)
ϵ||¹||2√

d
Z + (¹Tx− y)2 f t(x, y)

}

+ od(1)

= PZ

{

2(¹Tx− y)
ϵ||¹||2√

d
Z + (¹Tx− y)2 f t(x, y)

}

+ od(1)

= PZ

{

ϵ||¹||2√
d

Z + (¹Tx− y)2 f t(x, y)

}

+ od(1)

= PZ

{

Z f
√
d
t(x, y)− (¹Tx− y)2

2ϵ||¹||2(¹Tx− y)

}

+ od(1)

= Q

(√
d
t(x, y)− (¹Tx− y)2

2ϵ||¹||2(¹Tx− y)

)

+ od(1)

where Q is the quantile function for Z, i.e. the inverse of the normal CDF. As a result, equating the above with 1− Ä we

obtain

t(x, y) = (¹Tx− y)2 +
2ϵ||¹||2(¹Tx− y)√

d

(

Q−1(1− Ä) + od(1)
)

.

For the case ´ = 0, this is a simple optimization problem where the closed form solution provided in the lemma is its

solution.
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From the above lemma, it is easy to see that for ¹ = ¹0, the value of the objective in (??) becomes Ã2 + O(1/
√
d) for

any value of Ä > 0. This means that the gap between the probabilistically roust risk and the clean risk is of the form

PR(h⋆
p; Ä)− SR(hr) = O(1/

√
d), and as a result, as the dimension d grows, the trade-off between probabilistic robustness

and accuracy vanishes. We further remark that for Ä = 0, i.e. the adversarial setting, there exists a non-trivial gap between

the robust and clean accuracies that does not vanish to zero by increasing dimension. This is indeed clear from the above

lemma, and it has also been shown in (Javanmard et al., 2020).
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B. Learning theory proofs

We restate Proposition 4.2 formally to detail what we mean by sample complexity. Note that this is exactly the number of

sample required for PAC learning.

Proposition B.1. Consider the probabilistically robust learning problem (P-PRL) with the 0-1 loss function and a robust

measure r fully supported on ∆ and absolutely continuous with respect to the Lebesgue measure (i.e., non-atomic). Let P ⋆
r

be its optimal value and consider its empirical version

P̂ ⋆
r = min

hp∈H
1

N

N
∑

n=1

[

Ä-ess sup
¶∼r

ℓ
(

hp(xn + ¶), yn
)

]

,

based on i.i.d. samples (xn, yn) ∼ D. For any threshold Äo ∈ (0, 0.5), there exists a hypothesis class Ho such that the

sample complexity of probabilistically robust learning, i.e., the number of samples N needed for
∣

∣P ⋆
r − P̂ ⋆

r

∣

∣ f ϵ with high

probability, is

N =

{

Θ
(

log2(1/Äo)/ϵ
2
)

, Ä = 0

Θ(1/ϵ2), Äo f Ä f 1− Äo

In particular, Θ(1/ϵ2) is the sample complexity of (P-NOM).

Proof. Let us begin by reducing the task of determining the sample complexity of these problems to that of determining the

VC dimension of their objectives:

Lemma B.2 ((Shalev-Shwartz & Ben-David, 2014, Thm. 6.8)). Consider

P ⋆ = min
h∈H

E(x,y)∼D

[

g(h, x, y)
]

P̂ ⋆ = min
h∈H

1

N

N
∑

n=1

g(h, xn, yn)
(B.1)

where g : H×X×Y → {0, 1} and the samples {(xn, yn)} ∼ D are i.i.d. The number of samples N needed for
∣

∣P ⋆−P̂ ⋆
∣

∣ f
ϵ with probability 1− ¶ over the sample set {(xn, yn)} is

C1
dVC + log(1/¶)

ϵ2
f N f C2

dVC + log(1/¶)

ϵ2
,

for universal constants C1, C2. The VC dimension dVC is defined the largest d such that Π(d) = 2d for the growth function

Π(d) = max
{(xn,yn)}¢(X×Y)d

∣

∣S
(

{(xn, yn)}
)∣

∣,

where S
(

{(xn, yn)}
)

=
{

u ∈ {0, 1}m | ∃h ∈ H such that un = ℓ
(

h(xn), yn
)}

.

We now proceed by defining Ho using a modified version of the construction in (Montasser et al., 2019, Lemma 2).

Let m = +log2(1/Äo),+ 1 and pick {c1, . . . , cm} ∈ Xm such that, for ∆i = ci +∆, it holds that ∆i ∩∆j = ∅ for i ̸= j.

Within each ∆i, define 2m−1 disjoint sets Ab
i of measure r(Ab

i ) f Äo/m labeled by the binary digits b ∈ {0, 1}m whose i-th
digit is one. In other words, ∆1 contains sets with signature 1b2 . . . bm and ∆3 contains sets with signature b1b21 . . . bm.

Observe that there are indeed 2m−1 sets Ab
i within each ∆i, that their signatures span all possible m-digits binary numbers,

and there are at most m sets with the same signature (explicitly, for b = 11 . . . 1). Additionally, note that it is indeed possible

to fit the Ab
i inside each ∆i given that

2m−1 · Äo
m

<
2log2

(1/Äo)+1Äo
log2(1/Äo) + 1

f 2

log2(1/Äo) + 1
f 1

for Äo < 0.5, where we used the fact that log2(1/Äo) f +log2(1/Äo), < log2(1/Äo) + 1.

We can now construct the hypothesis class Ho = {hb | b ∈ {0, 1}m} by taking

hb(x) =

{

1, x /∈ ⋃m
i=1 Ab

i

0, x ∈ ⋃m
i=1 Ab

i

(B.2)
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Let us proceed first for the probabilistically robust loss g
(

h, x, y
)

= Ä-ess sup¶∼r I
[

h(x+ ¶) ̸= y
]

.

We begin by showing that if Ä = 0, then dVC > m. Indeed, consider the set of points {(ci, 1)}i=1,...,m ¢ (X × Y)m. In

this case, the cardinality of S({(ci, 1)}) is 2m, i.e., this set can be shattered by H. Indeed, for any signature b ∈ {0, 1}m,

we have

Ä-ess sup
¶∼r

I[hb(ci + ¶) ̸= 1] = ess sup
¶∼r

I[hb(ci + ¶) ̸= 1] = bi, for i = 1, . . . ,m,

since hb(ci + ¶) = 0 for all ci + ¶ ∈ Ab
i , a set of positive measure. Using Lemma B.2, we therefore conclude that N =

Θ
(

m/ϵ2
)

.

Let us now show that dVC = 1 for Ä g Äo by showing that Π(2) < 4. To do so, we take two arbitrary

points (x1, y1), (x2, y2) ∈ X × Y and proceed case-by-case. To simplify the exposition, let A = ∪m
i=1 ∪b∈{0,1}m Ab

i .

• Suppose that (x1 +∆) ∩ A = ∅. Then, observe from (B.2) that h(x1 + ¶) = 1 for all h ∈ H and ¶ ∈ ∆. Hence, for

all h ∈ H, we obtain

Ä-ess sup
¶∼r

I
[

h(x1 + ¶) ̸= y1
]

= I
[

1 ̸= y1
]

.

Hence, depending on the value of y1, S
(

{(x1, y1), (x2, y2)}
)

can either contain sets of the form (0, q) or (1, q),

for q = {0, 1}, but not both. For such points, we therefore have
∣

∣S
(

{(x1, y1), (x2, y2)}
)∣

∣ f 2 < 4. The same

argument holds for (x2 +∆) ∩ A = ∅.

• Suppose then that both (x1 + ∆) ∩ A ≠ ∅ and (x2 + ∆) ∩ A ≠ ∅. Then, (xj + ∆) can intersect at most m
sets Ab

i with the same signature b (explicitly, b = 11 . . . 1). But, by construction, r(Ab
i ) f Äo/m, which implies

that r(∪iA11...
i ) f Äo. We then consider the possible labels separately:

– for yj = 1, we know from (B.2) that I
[

h(xj + ¶) ̸= 1
]

= 1 only when xj + ¶ ∈ Ab
i . But since Ä g Äo, these sets

can be ignored when computing the Ä-ess sup and we get that

Ä-ess sup
¶∼r

I
[

h(xj + ¶) ̸= 1
]

= 0, for all h ∈ H;

– for yj = 0, we obtain from (B.2) that I
[

hb(xj + ¶) ̸= 0
]

= 1 everywhere except when xj + ¶ ∈ Ab
i . Recall that

for any signature b, it holds that r({¶ | xj + ¶ ∈ ⋃i Ab
i}) f Äo (possibly with equality if b = 11 . . . ). Hence,

since Ä < 1− Äo, it holds that

Ä-ess sup
¶∼r

I
[

h(xj + ¶) ̸= 0
]

= 1, for all h ∈ H.

Since the Ä-ess sup does not vary over H for either x1 or x2, we conclude that
∣

∣S
(

{(x1, y1), (x2, y2)}
)∣

∣ f 2 < 4, i.e.,

H cannot shatter these points.

This implies dVC f 1 and since |H| > 1, we obtain dVC = 1. Using Lemma B.2, we therefore conclude that N = Θ
(

1/ϵ2
)

.

Finally, we consider the case of (P-NOM) for the nominal loss g
(

h, x, y
)

= I
[

h(x) ̸= y
]

. Once again, we take two

points (x1, y1), (x2, y2) ∈ X × Y and proceed case-by-case.

• Suppose, without loss of generality, that x1 /∈ A. Then, (B.2) yields h(x1) = 1 for all h ∈ H and ℓ
(

h(x1), y1
)

=

I
[

1 ̸= y1
]

. Depending on the value of y1, S
(

{(x1, y1), (x2, y2)}
)

only has sets of the form (0, q) or (1, q), q = {0, 1},

but not both. For such points,
∣

∣S
(

{(x1, y1), (x2, y2)}
)
∣

∣ f 2 < 4. The same holds for x2.

• Suppose now that x1 ∈ Ab1
i and x2 ∈ Ab2

i . Then, hb(xj) = 0 for b = bj or hb(xj) = 1 for b ̸= bj . Hence,

– if b1 = b2, then hb(x1) = hb(x2). Depending on the value of the labels, S
(

{(x1, y1), (x2, y2)}
)

only

has sets of the form (q, q) or (1 − q, q), q = {0, 1}, but not both. For such points, we once again

have
∣

∣S
(

{(x1, y1), (x2, y2)}
)
∣

∣ f 2 < 4;

– if b1 ̸= b2, then hb(x1) = 1− hb(x2). Depending on the value of the labels, S
(

{(x1, y1), (x2, y2)}
)

has, once

again, only sets of the form (q, q) or (1−q, q), q = {0, 1}, but not both. Hence,
∣

∣S
(

{(x1, y1), (x2, y2)}
)∣

∣ f 2 < 4
for such points;
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In none of these cases H is able to shatter two points, meaning that dVC f 1. Since |H| > 1, it holds that dVC = 1 which is

indeed the same value as when Ä g Äo.
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C. Hyperparameter selection and implementation details

In this appendix, we discuss hyperparameter selection and computational details. All experiments were run across

two four-GPU workstations, comprising a total of eight Quadro RTX 5000 GPUs. Our code is available at: https:

//github.com/arobey1/advbench.

C.1. MNIST

For the MNIST dataset (MNISTWebPage), we used a four-layer CNN architecture with two convolutional layers and two

feed-forward layers. To train these models, we use the Adadelta optimizer (Zeiler, 2012) to minimize the cross-entropy loss

for 150 epochs with no learning rate day and an initial learning rate of 1.0. All classifiers were evaluated with a 10-step

PGD adversary. To compute the augmented accuracy, we sampled ten samples from r per data point, and to compute the

ProbAcc metric, we sample 100 perturbations per data point.

C.2. CIFAR-10 and SVHN

For CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011), we used the ResNet-18 architecture (He et al.,

2016). We trained using SGD and an initial learning rate of 0.01 and a momentum of 0.9. We also used weight decay with a

penalty weight of 3.5× 10−3. All classifiers were trained for 115 epochs, and we decayed the learning rate by a factor of 10

at epochs 55, 75, and 90.

C.3. Baseline algorithms

In the experiments section, we trained a number of baseline algorithms. In what follows, we list the hyperparameters we

used for each of these algorithms:

• PGD. For MNIST, we ran seven steps of gradient ascent at training time with a step size of ³ = 0.1. On CIFAR-10

and SVHN, we ran ten steps of gradient ascent at training time with a step size of ³ = 2/255.

• TRADES. We used the same step sizes and number of steps as stated about for PGD. Following the literature (Zhang

et al., 2019), we used a weight of ´ = 6.0 for all datasets.

• MART. We used the same step sizes and number of steps as stated about for PGD. Following the literature (Wang

et al., 2019), we used a weight of ¼ = 5.0 for all datasets.

• DALE. We used the same step sizes and number of steps as stated about for PGD. For all datasets, we used a margin

of Ä = 0.1 (note that this Ä is different from the Ä used in the definition of probabilistically robust learning). For

MNIST, we used a dual step size of ¸p = 1.0; for CIFAR-10 and SVHN, we used ¸p = 0.01. For MNIST, we used a

temperature of
√
2¸T of 10−3; for CIFAR-10 and SVHN, we used 10−5.

• TERM. We chose the value of t in (PII) by cross-validation on the set {0.1, 0.5, 1.0, 5.0, 10.0, 50.0}.

• N-HMC We chose the value of q in (PI) by cross-validation on the set {101, 102, 103} (which is the same range

considered in the experiments in (Rice et al., 2021)).

C.4. Hyperparamters for probabilistically robust learning

We ran sweeps over a range of hyperparameters for Algorithm 1. By selecting M from {1, 2, 5, 10, 20}, we found more

samples from r engendered higher levels of robustness. Thus, we use M = 20 throughout. We use a step size of ¸³ = 1.0
throughout. T was also selected by cross validation from {1, 2, 5, 10, 20}. In general, it seemed to be the case that more than

10 steps did not result in significant improvements in robustness. Finally, in Tables 1–3, we selected Ä by cross-validation on

{0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0} (note that in practice, Ä can be chosen to be larger than one). We found that perhaps

surprisingly, larger values of Ä tended to engender higher levels of probabilistic robustness through the metric ProbAcc.

However, this may be due to the instability of training for small values of Ä. In Figure 4, we show the robustness trade-offs

for a sweep over different values of Ä.


