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Abstract

Domain generalization (DG) seeks predictors which perform well on unseen test
distributions by leveraging data drawn from multiple related training distributions
or domains. To achieve this, DG is commonly formulated as an average- or worst-
case problem over the set of possible domains. However, predictors that perform
well on average lack robustness while predictors that perform well in the worst case
tend to be overly-conservative. To address this, we propose a new probabilistic
framework for DG where the goal is to learn predictors that perform well with
high probability. Our key idea is that distribution shifts seen during training should
inform us of probable shifts at test time, which we realize by explicitly relating
training and test domains as draws from the same underlying meta-distribution. To
achieve probable DG, we propose a new optimization problem called Quantile Risk
Minimization (QRM). By minimizing the ³-quantile of predictor’s risk distribution
over domains, QRM seeks predictors that perform well with probability ³. To solve
QRM in practice, we propose the Empirical QRM (EQRM) algorithm and provide:
(i) a generalization bound for EQRM; and (ii) the conditions under which EQRM
recovers the causal predictor as ³→1. In our experiments, we introduce a more
holistic quantile-focused evaluation protocol for DG, and demonstrate that EQRM
outperforms state-of-the-art baselines on datasets from WILDS and DomainBed.

1 Introduction

Despite remarkable successes in recent years [1–3], machine learning systems often fail calamitously
when presented with out-of-distribution (OOD) data [4–7]. Evidence of state-of-the-art systems
failing in the face of distribution shift is mounting rapidly—be it due to spurious correlations [8–10],
changing sub-populations [11–13], changes in location or time [14–16], or other naturally-occurring
variations [17–23]. These OOD failures are particularly concerning in safety-critical applications
such as medical imaging [24–28] and autonomous driving [29–31], where they represent one of the
most significant barriers to the real-world deployment of machine learning systems [32–35].

Domain generalization (DG) seeks to improve a system’s OOD performance by leveraging datasets
from multiple environments or domains at training time, each collected under different experimental
conditions [36–38] (see Fig. 1a). The goal is to build a predictor which exploits invariances across the
training domains in the hope that these invariances also hold in related but distinct test domains [38–
41]. To realize this goal, DG is commonly formulated as an average- [36, 42, 43] or worst-case [9, 44,
45] optimization problem over the set of possible domains. However, optimizing for average perfor-
mance provably lacks robustness to OOD data [46], while optimizing for worst-domain performance
tends to lead to overly-conservative solutions, with worst-case outcomes unlikely in practice [47, 48].
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Figure 1: Overview of Probable Domain Generalization and Quantile Risk Minimization. (a) In domain
generalization, training and test data are drawn from multiple related distributions or domains. For example,
in the iWildCam dataset [50], which contains camera-trap images of animal species, the domains correspond to
the different camera-traps which captured the images. (b) We relate training and test domains as draws from the
same underlying (and often unknown) meta-distribution over domains Q. (c) We consider a predictor’s estimated
risk distribution over training domains, naturally-induced by Q. By minimizing the ³-quantile of this distribution,
we learn predictors that perform well with high probability (≈ ³) rather than on average or in the worst case.

In this work, we argue that DG is neither an average-case nor a worst-case problem, but rather a prob-
abilistic one. To this end, we propose a probabilistic framework for DG, which we call Probable Do-
main Generalization (§ 3), wherein the key idea is that distribution shifts seen during training should
inform us of probable shifts at test time. To realize this, we explicitly relate training and test domains
as draws from the same underlying meta-distribution (Fig. 1b), and then propose a new optimization
problem called Quantile Risk Minimization (QRM). By minimizing the ³-quantile of predictor’s risk
distribution over domains (Fig. 1c), QRM seeks predictors that perform well with high probability
rather than on average or in the worst case. In particular, QRM leverages the key insight that this
³-quantile is an upper bound on the test-domain risk which holds with probability ³, meaning that ³ is
an interpretable conservativeness-hyperparameter with ³=1 corresponding to the worst-case setting.

To solve QRM in practice, we introduce the Empirical QRM (EQRM) algorithm (§ 4). Given a
predictor’s empirical risks on the training domains, EQRM forms an estimated risk distribution using
kernel density estimation (KDE, [49]). Importantly, KDE-smoothing ensures a right tail that extends
beyond the largest training risk (see Fig. 1c), with this risk “extrapolation” [41] unlocking invariant
prediction for EQRM (§ 4.1). We then provide theory for EQRM (§ 4.2, § 4.3) and demonstrate
empirically that EQRM outperforms state-of-the-art baselines on real and synthetic data (§ 6).

Contributions. To summarize our main contributions:

• A new probabilistic perspective and objective for DG: We argue that predictors should be trained
and tested based on their ability to perform well with high probability. We then propose Quantile
Risk Minimization for achieving this probable form of domain generalization (§ 3).

• A new algorithm: We propose the EQRM algorithm to solve QRM in practice and ultimately learn
predictors that generalize with probability ³ (§ 4). We then provide several analyses of EQRM:
– Learning theory: We prove a uniform convergence bound, meaning the empirical ³-quantile risk

tends to the population ³-quantile risk given sufficiently many domains and samples (Thm. 4.1).
– Causality. We prove that EQRM learns predictors with invariant risk as ³→1 (Prop. 4.3), then

provide the conditions under which this is sufficient to recover the causal predictor (Thm. 4.4).
– Experiments: We demonstrate that EQRM outperforms state-of-the-art baselines on several stan-

dard DG benchmarks, including CMNIST [9] and datasets from WILDS [12] and DomainBed [38],
and highlight the importance of assessing the tail or quantile performance of DG algorithms (§ 6).

2 Background: Domain generalization

Setup. In domain generalization (DG), predictors are trained on data drawn from multiple related
training distributions or domains and then evaluated on related but unseen test domains. For example,
in the iWildCam dataset [50], the task is to classify animal species in images, and the domains
correspond to the different camera-traps which captured the images (see Fig. 1a). More formally, we
consider datasets De = {(xe

i , ye
i )}

ne
i=1 collected from m different training domains or environments

Etr := {e1, . . . , em}, with each dataset De containing data pairs (xe
i , ye

i ) sampled i.i.d. from
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P(Xe, Ye). Then, given a suitable function class F and loss function ℓ, the goal of DG is to learn
a predictor f ∈ F that generalizes to data drawn from a larger set of all possible domains Eall ⊃ Etr.

Average case. LettingRe( f ) denote the statistical risk of f in domain e, and Q a distribution over
the domains in Eall, DG was first formulated [36, 37] as the following average-case problem:

min
f∈F

Ee∼QR
e( f ) where Re( f ) := EP(Xe ,Ye)[ℓ( f (Xe), Ye)]. (2.1)

Worst case. Since predictors that perform well on average provably lack robustness [46], i.e. they
can perform quite poorly on large subsets of Eall, subsequent works [9, 22, 41, 44, 45, 51] have
sought robustness by formulating DG as the following worst-case problem:

min
f∈F

max
e∈Eall

Re( f ). (2.2)

As we only have access to data from a finite subset of Eall during training, solving (2.2) is not just
challenging but in fact impossible [41, 52, 53] without restrictions on how the domains may differ.

Causality and invariance in DG. Causal works on DG [9, 41, 53–55] describe domain differences
using the language of causality and the notion of interventions [56, 57]. In particular, they assume
all domains share the same underlying structural causal model (SCM) [56], with different domains
corresponding to different interventions (see Appendix A.1 for formal definitions and a simple ex-
ample). Assuming the mechanism of Y remains fixed or invariant but all Xs may be intervened upon,
recent works have shown that only the causal predictor has invariant: (i) predictive distributions [54],
coefficients [9] or risks [41] across domains; and (ii) generalizes to arbitrary interventions on the
Xs [9, 54, 55]. These works then leverage some form of invariance across domains to discover causal
relationships which, through the invariant mechanism assumption, generalize to new domains.

3 Quantile Risk Minimization

In this section we introduce Quantile Risk Minimization (QRM) for achieving Probable Domain
Generalization. The core idea is to replace the worst-case perspective of (2.2) with a probabilistic one.
This approach is founded on a great deal of work in classical fields such as control theory [58, 59] and
smoothed analysis [60], wherein approaches that yield high-probability guarantees are used in place
of worst-case approaches in an effort to mitigate conservatism and computational limitations. This
mitigation is of particular interest in domain generalization since generalizing to arbitrary domains is
impossible [41, 52, 53]. Thus, motivated by this classical literature, our goal is to obtain predictors
that are robust with high probability over domains drawn from Eall, rather than in the worst case.

A distribution over environments. We start by assuming the existence of a probability distribution
Q(e) over the set of all environments Eall. For instance, in the context of medical imaging, Q could
represent a distribution over potential changes to a hospital’s setup or simply a distribution over
candidate hospitals. Given that such a distribution Q exists2, we can think of the risk Re( f ) as a
random variable for each f ∈ F , where the randomness is engendered by the draw of e ∼ Q. This
perspective gives rise to the following analogue of the optimization problem in (2.2):

min
f∈F

ess sup
e∼Q

Re( f ) where ess sup
e∼Q

Re( f ) = inf
{

t ≥ 0 : Pr
e∼Q
{Re( f ) ≤ t} = 1

}
(3.1)

Here, ess sup denotes the essential-supremum operator from measure theory, meaning that for each
f ∈ F , ess supQR

e( f ) is the least upper bound on Re( f ) that holds for almost every e ∼ Q. In
this way, the ess sup in (3.1) is the measure-theoretic analogue of the max operator in (2.2), with the
subtle but critical difference being that the ess sup in (3.1) can neglect domains of measure zero under
Q. For example, for discrete Q, (3.1) ignores domains which are impossible (i.e. have probability
zero) while (2.2) does not, laying the foundation for ignoring domains which are improbable.

High-probability generalization. Although the minimax problem in (3.1) explicitly incorporates the
distribution Q over environments, this formulation is no less conservative than (2.2). Indeed, in many
cases, (3.1) is equivalent to (2.2); see Appendix B for details. Therefore, rather than considering the
worst-case problem in (3.1), we propose the following generalization of (3.1) which requires that
predictors generalize with probability ³ rather than in the worst-case:

min
f∈F , t∈R

t subject to Pr
e∼Q
{Re( f ) ≤ t} ≥ ³ (3.2)

2As Q is often unknown, our analysis does not rely on using an explicit expression for Q.
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The optimization problem in (3.2) formally defines what we mean by Probable Domain General-
ization. In particular, we say that a predictor f generalizes with risk t at level ³ if f has risk at
most t with probability at least ³ over domains sampled from Q. In this way, the conservativeness
parameter ³ controls the strictness of generalizing to unseen domains.

A distribution over risks. The optimization problem presented in (3.2) offers a principled formulation
for generalizing to unseen distributional shifts governed by Q. However, Q is often unknown in
practice and its support Eall may be high-dimensional or challenging to define [22]. While many
previous works have made progress by limiting the scope of possible shift types over domains [19, 22,
45], in practice, such structural assumptions are often difficult to justify and impossible to test. For
this reason, we start our exposition of QRM by offering an alternative view of (3.2) which elucidates
how a predictor’s risk distribution plays a central role in achieving probable domain generalization.

To begin, note that for each f ∈ F , the distribution over domains Q naturally induces3 a
distribution T f over the risks in each domain Re( f ). In this way, rather than considering the
randomness of Q in the often-unknown and (potentially) high-dimensional space of possible
shifts (Fig. 1b), one can consider it in the real-valued space of risks (Fig. 1c). This is analogous
to statistical learning theory, where the analysis of convergence of empirical risk minimizers (i.e.,
of functions) is substituted by that of a weaker form of convergence, namely that of scalar risk
functionals—a crucial step for VC theory [61]. From this perspective, the statistics of T f can be
thought of as capturing the sensitivity of f to different environmental shifts, summarizing the effect
of different intervention types, strengths, and frequencies. To this end, (3.2) can be equivalently
rewritten in terms of the risk distribution T f as follows:

min
f∈F

F−1
T f

(³) where F−1
T f

(³) := inf
{

t ∈ R : Pr
R∼T f

{R ≤ t} ≥ ³
}

. (QRM)

Here, F−1
T f

(³) denotes the inverse CDF (or quantile4) function of the risk distribution T f . By means

of this reformulation, we elucidate how solving (QRM) amounts to finding a predictor with minimal
³-quantile risk. That is, (QRM) requires that a predictor f satisfy the probabilistic constraint for at
least an ³-fraction of the risks R ∼ T f , or, equivalently, for an ³-fraction of the environments e ∼ Q.
In this way, ³ can be used to interpolate between typical (³=0.5, median) and worst-case (³=1)
problems in an interpretable manner. Moreover, if the mean and median of T f coincide, ³=0.5 gives
an average-case problem, with (QRM) recovering several notable objectives for DG as special cases.

Proposition 3.1. For ³=1, (QRM) is equivalent to the worst-case problem of (3.1). For ³ = 0.5,
it is equivalent to the average-case problem of (2.1) if the mean and median of T f coincide ∀ f ∈F :

min f∈F ER∼T f
R = min f∈F Ee∼QR

e( f ) (3.3)

Connection to DRO. While fundamentally different in terms of objective and generalization
capabilities (see § 4), we draw connections between QRM and distributionally robust optimization
(DRO) in Appendix F by considering an alternative problem which optimizes the superquantile.

4 Algorithms for Quantile Risk Minimization

We now introduce the Empirical QRM (EQRM) algorithm for solving (QRM) in practice, akin to
Empirical Risk Minimization (ERM) solving the Risk Minimization (RM) problem [63].

4.1 From QRM to Empirical QRM

In practice, given a predictor f and its empirical risks R̂e1( f ), . . . , R̂em( f ) on the m training domains,
we must form an estimated risk distribution T̂ f . In general, given no prior knowledge about the
form of T f (e.g. Gaussian), we use kernel density estimation (KDE, [49, 64]) with Gaussian kernels
and either the Gaussian-optimal rule [65] or Silverman’s rule-of-thumb [65] for bandwidth selection.
Fig. 1c depicts the PDF and CDF for 10 training risks when using Silverman’s rule-of-thumb. Armed

3T f can be formally defined as the push-forward measure of Q through the risk functionalRe( f ); see App. B.
4In financial optimization, when concerned with a distribution over potential losses, the ³-quantile value is

known as the value at risk (VaR) at level ³ [62].
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with a predictor’s estimated risk distribution T̂ f , we can approximately solve (QRM) using the
following empirical analogue:

min
f∈F

F−1
T̂ f

(³) (4.1)

Note that (4.1) depends only on known quantities so we can compute and minimize it in practice, as
detailed in Alg. 1 of Appendix E.1.
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Figure 2: Risk CDFs.

Smoothing permits risk extrapolation. Fig. 2 compares the KDE-
smoothed CDF (black) to the unsmoothed empirical CDF (gray). As
shown, the latter places zero probability mass on risks greater than
our largest training risk, thus implicitly assuming that test risks cannot
be larger than training risks. In contrast, the KDE-smoothed CDF
permits “risk extrapolation” [41] since its right tail extends beyond
our largest training risk, with the estimated ³-quantile risk going to
infinity as ³→1 (when kernels have full support). Note that different
bandwidth-selection methods encode different assumptions about
right-tail heaviness and thus about projected OOD risk. In § 4.3,
we discuss how, as ³→ 1, this KDE-smoothing allows EQRM to
learn predictors with invariant risk over domains. In Appendix C, we
discuss different bandwidth-selection methods for EQRM.

4.2 Theory: Generalization bound

We now give a simplified version of our main generalization bound—Thm. D.1—which states that,
given sufficiently many domains and samples, the empirical ³-quantile risk is a good estimate of the
population ³-quantile risk. In contrast to previous results for DG, we bound the proportion of test do-
mains for which a predictor performs well, rather than the average error [36, 42], and make no assump-
tions about the shift type, e.g. covariate shift [37]. The full version, stated and proved in Appendix D,
provides specific finite-sample bounds on ϵ1 and ϵ2 below, depending on the hypothesis class F , the
empirical estimator F−1

T̂ f
(³), and the assumptions on the possible risk profiles of hypotheses f ∈ F .

Theorem 4.1 (Simplified form of Thm. D.1, uniform convergence). Given m domains and n samples
in each, then with high probability over the training data,

sup
f∈F

∣∣∣∣F
−1
T f

(³− ϵ2)− F−1
T̂ f

(³)

∣∣∣∣ ≤ ϵ1, (4.2)

where ϵ1 → 0 as n→ ∞ and ϵ2 → 0 as m→ ∞.

While many domains are required for this to bound be tight, i.e. for ³ to precisely estimate the true
quantile, our empirical results in § 6 demonstrate that EQRM performs well in practice given only a
few domains. In such settings, ³ still controls conservativeness, but with a less precise interpretation.

4.3 Theory: Causal recovery

We now prove that EQRM can recover the causal predictor in two parts. First, we prove that, as
³→ 1, EQRM learns a predictor with minimal, invariant risk over domains. For Gaussian estimators
of the risk distribution T f , some intuition can be gained from Eq. (A.3) of Appendix A.2.1, noting
that ³ → 1 puts increasing weight on the sample standard deviation of risks over domains Ã̂f ,
eventually forcing it to zero. For kernel density estimators, a similar intuition applies so long as the
bandwidth has a certain dependence on Ã̂f , as detailed in Appendix A.2.2. Second, we prove that
learning such a minimal invariant-risk predictor is sufficient to recover the causal predictor under
weaker assumptions than Peters et al. [54] and Krueger et al. [41]. Together, these two parts provide
the conditions under which EQRM successfully performs “causal recovery”, i.e., correctly recovers
the true causal coefficients in a linear causal model of the data.

Definition 4.2. A predictor f is said to be an invariant-risk predictor if its risk is equal almost
surely across domains (i.e., Vare∼Q[R

e( f )] = 0). A predictor is said to be a minimal invariant-risk
predictor if it achieves the minimal possible risk across all possible invariant-risk predictors.

Proposition 4.3 (EQRM learns a minimal invariant-risk predictor as ³→ 1, informal version of
Props. A.4 and A.5). Assume: (i) F contains an invariant-risk predictor with finite training risks;
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and (ii) no arbitrarily-negative training risks. Then, as ³→1, Gaussian and kernel EQRM predictors
(the latter with certain bandwidth-selection methods) converge to minimal invariant-risk predictors.

Props. A.4 and A.5 are stated and proved in Appendices A.2.1 and A.2.2 respectively. In addition,
for the special case of Gaussian estimators of T f , Appendix A.2.1 relates our ³ parameter to the ´
parameter of VREx [41, Eq. 8]. We next specify the conditions under which learning such a minimal
invariant-risk predictor is sufficient to recover the causal predictor.

Theorem 4.4 (The causal predictor is the only minimal invariant-risk predictor). Assume that: (i) Y
is generated from a linear SEM, Y = ´⊺X + N, with X observed and coefficients ´ ∈ Rd; (ii) F
is the class of linear predictors, indexed by ˆ́ ∈ Rd; (iii) the loss ℓ is squared-error; (iv) the risk

E[(Y− ´TX)2] of the causal predictor ´ is invariant across domains; and (v) the system of equations

0 ≥x⊺CovX∼e1
(X, X)x + 2x⊺CovN,X∼e1

(X, N)

= · · ·

=x⊺CovX∼em(X, X)x + 2x⊺CovN,X∼em(X, N) (4.3)

has the unique solution x = 0. If ˆ́ is a minimal invariant-risk predictor, then ˆ́ = ´.

Assumptions (i–iii). The assumptions that Y is drawn from a linear structural equation model (SEM)
and that the loss is squared-error, while restrictive, are needed for all comparable causal recovery
results [41, 54]. In fact, these assumptions are weaker than both Peters et al. [54, Thm. 2] (assume a
linear Gaussian SEM for X and Y) and Krueger et al. [41, Thm. 1] (assume a linear SEM for X and Y).

Assumption (iv). The assumption that the risk of the causal predictor is invariant across domains,
often called domain homoskedasticity [41], is necessary for any method inferring causality from the
invariance of risks across domains. For methods based on the invariance of functions, namely the
conditional mean E[Y|Pa(Y)] [9, 66], this assumption is not required. Appendix G.1.2 compares
methods based on invariant risks and to those based on invariant functions.

Assumption (v). In contrast to both Peters et al. and Krueger et al., we do not require specific types of
interventions on the covariates. Instead, we require that a more general condition be satisfied, namely
that the system of d-variate quadratic equations in (4.3) has a unique solution. Intuitively, Cov(X, X)
captures how correlated the covariates are and ensures they are sufficiently uncorrelated to distinguish
each of their influences on Y, while Cov(X, N) captures how correlated descendant covariates are
with Y (via N). Together, these terms capture the idea that predicting Y from the causal covariates
must result in the minimal invariant-risk: the first inequality ensures the risk is minimal and the
subsequent m− 1 equalities that it is invariant. While this generality comes at the cost of abstraction,
Appendix A.2.3 provides several concrete examples with different types of interventions in order to
aid understanding and illustrate how this condition generalizes existing causal-recovery results based
on invariant risks [41, 54]. Appendix A.2.3 also provides a proof of Thm. 4.4 and further discussion.

5 Related work

Robust optimization in DG. Throughout this paper, we follow an established line of work (see
e.g., [9, 41, 51]) which formulates the DG problem through the lens of robust optimization [44]. To
this end, various algorithms have been proposed for solving constrained [22] and distributionally
robust [45] variants of the worst-case problem in (2.2). Indeed, this robust formulation has a firm
foundation in the broader machine learning literature, with notable works in adversarial robustness [67–
71] and fair learning [72, 73] employing similar formulations. Unlike these past works, we consider
a robust but non-adversarial formulation for DG, where predictors are trained to generalize with high
probability rather than in the worst case. Moreover, the majority of this literature—both within and
outside of DG—relies on specific structural assumptions (e.g. covariate shift) on the types of possible
interventions or perturbations. In contrast, we make the weaker and more flexible assumption of
i.i.d.-sampled domains, which ultimately makes use of the observed domain-data to determine the
types of shifts that are probable. We further discuss this important difference in § 7.

Other approaches to DG. Outside of robust optimization, many algorithms have been proposed
for the DG setting which draw on insights from a diverse array of fields, including approaches based
on tools from meta-learning [40, 43, 74–76], kernel methods [77, 78], and information theory [51].
Also prominent are works that design regularizers to generalize OOD [79–81] and works that seek
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domain-invariant representations [82–84]. Many of these works employ hyperparameters which are
difficult to interpret, which has no doubt contributed to the well-established model-selection problem
in DG [38]. In contrast, in our framework, ³ can be easily interpreted in terms of quantiles of the risk
distribution. In addition, many of these works do not explicitly relate the training and test domains,
meaning they lack theoretical results in the non-linear setting (e.g. [9, 41, 43, 85]). For those which
do, they bound either average error over test domains [36, 42, 86] or worst-case error under specific
shift types (e.g. covariate [22]). As argued above, the former lacks robustness while the latter can
be both overly-conservative and difficult to justify in practice, where shift types are often unknown.

High-probability generalization. As noted in § 3, relaxing worst-case problems in favor of prob-
abilistic ones has a long history in control theory [58, 59, 87–89], operations research [90], and
smoothed analysis [60]. Recently, this paradigm has been applied to several areas of machine
learning, including perturbation-based robustness [91, 92], fairness [93], active learning [94], and
reinforcement learning [95, 96]. However, it has not yet been applied to domain generalization.

Quantile minimization. In financial optimization, the quantile and superquantile functions [62, 97,
98] are central to the literature surrounding portfolio risk management, with numerous applications
spanning banking regulations and insurance policies [99, 100]. In statistical learning theory, several
recent papers have derived uniform convergence guarantees in terms of alternative risk functionals
besides expected risk [94, 101–103]. These results focus on functionals that can be written in terms of
expectations over the loss distribution (e.g., the superquantile). In contrast, our uniform convergence
guarantee (Theorem D.1) shows uniform convergence of the quantile function, which cannot be
written as such an expectation; this necessitates stronger conditions to obtain uniform convergence,
which ultimately suggest regularizing the estimated risk distribution (e.g. by kernel smoothing).

Invariant prediction and causality. Early work studied the problem of learning from multiple cause-
effect datasets that share a functional mechanism but differ in noise distributions [39]. More generally,
given (data from) multiple distributions, one can try to identify components which are stable, robust,
or invariant, and find means to transfer them across problems [104–108]. As discussed in § 2, recent
works have leveraged different forms of invariance across domains to discover causal relationships
which, under the invariant mechanism assumption [57], generalize to new domains [9, 41, 54, 55, 109–
111]. In particular, VREx [41] leveraged invariant risks (like EQRM) while IRM [9] leveraged
invariant functions or coefficients—see Appendix G.1.2 for a detailed comparison of these approaches.

6 Experiments

We now evaluate our EQRM algorithm on synthetic datasets (§ 6.1), real-world datasets from
WILDS (§ 6.2), and few-domain datasets from DomainBed (§ 6.3). Appendix G reports further
results, while Appendix E reports further experimental details.

6.1 Synthetic datasets

Linear regression. We first consider a linear regression dataset based on the following linear SCM:

X1 ← N1, Y ← X1 + NY, X2 ← Y + N2,

with Nj ∼ N (0, Ã2
j ). Here we have two features: one cause X1=Xcause and one effect X2=Xeffect

of Y. By fixing Ã2
1 =1 and Ã2

Y =2 across domains but sampling Ã2∼LogNormal(0, 0.5), we create
a dataset in which X2 is more predictive of Y than X1 but less stable. Importantly, as we know
the true distribution over domains Q(e)=LogNormal(Ãe

2; 0, 0.5), we know the true risk quantiles.
Fig. 3 depicts results for different ³’s with m = 1000 domains and n = 200000 samples in each,
using the mean-squared-error (MSE) loss. Here we see that: A: for each true quantile (x-axis),
the corresponding ³ has the lowest risk (y-axis), confirming that the empirical ³-quantile risk is
a good estimate of the population ³-quantile risk; B: As ³→ 1, the estimated risk distribution of
f³ approaches an invariant (or Dirac delta) distribution centered on the risk of the causal predictor;
C: the regression coefficients approach those of the causal predictor as ³→ 1, trading predictive
performance for robustness; and D: reducing the number of domains m reduces the accuracy of the
estimated ³-quantile risks. In Appendix G.1, we additionally: (i) depict the risk CDFs corresponding
to plot B above, and discuss how they depict the predictors’ risk-robustness curves (G.1.1); and
(ii) discuss the solutions of EQRM on datasets in which Ã2

1 , Ã2
2 and/or Ã2

Y change over domains,
compared to existing invariance-seeking algorithms like IRM [9] and VREx [41] (G.1.2).
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Figure 3: EQRM on a toy linear regression dataset (A–D) and on ColoredMNIST (E–F). A: Test risk at
different quantiles or degrees of “OODness”. For each quantile (x-axis), the corresponding ³ has the lowest risk
(y-axis). B: Estimated risk distributions (corresponding CDFs in Appendix G.1.1). C: Regression coefficients
approach those of the causal predictor (´cause =1, ´effect =0) as ³→1. D: Q-Q plot comparing the “true” risk
quantiles (estimated with m=1000) against estimated ones (m<1000), for ³=0.9. E: Performance of different
³’s over increasingly OOD test domains, with dots showing training-domain accuracies. F: KDE-estimated
accuracy-CDFs depicting accuracy-robustness curves. Larger ³’s make lower accuracies less likely.

ColoredMNIST. We next consider the ColoredMNIST or CMNIST dataset [9]. Here, the MNIST

dataset is used to construct a binary classification task (0–4 or 5–9) in which digit color (red or green)
is a highly-informative but spurious feature. In particular, the two training domains are constructed
such that red digits have an 80% and 90% chance of belonging to class 0, while the single test domain
is constructed such that they only have a 10% chance. The goal is to learn an invariant predictor
which uses only digit shape—a stable feature having a 75% chance of correctly determining the class
in all 3 domains. We compare with IRM [9], GroupDRO [45], SD [112], IGA [113] and VREx [41]
using: (i) random initialization (Xavier method [114]); and (ii) random initialization followed by
several iterations of ERM. The ERM initialization or pretraining directly corresponds to the delicate
penalty “annealing” or warm-up periods used by most penalty-based methods [9, 41, 112, 113]. For
all methods, we use a 2-hidden-layer MLP with 390 hidden units, the Adam optimizer, a learning rate
of 0.0001, and dropout with p=0.2. We sweep over five penalty weights for the baselines and five
³’s for EQRM. See Appendix E.2 for more experimental details. Table 1 shows that: (i) all methods
struggle without ERM pretraining, explaining the need for penalty-annealing strategies in previous
works and corroborating the results of [115, Table 1]; (ii) with ERM pretraining, EQRM matches
or outperforms baseline methods, even approaching oracle performance (that of ERM trained on
grayscale digits). These results suggest ERM pretraining as an effective strategy for DG methods.

In addition, Fig. 3 depicts the behavior of EQRM with different ³s. Here we see that: E: increasing
³ leads to more consistent performance across domains, eventually forcing the model to ignore
color and focus on shape for invariant-risk prediction; and F: a predictor’s (estimated) accuracy-CDF
depicts its accuracy-robustness curve, just as its risk-CDF depicts its risk-robustness curve. Note
that ³=0.5 gives the best worst-case (i.e. worst-domain) risk over the two training domains—the
preferred solution of DRO [45]—while ³→1 sacrifices risk for increased invariance or robustness.

6.2 Real-world datasets

We now evaluate our methods on the real-world or in-the-wild distribution shifts of WILDS [12]. We
focus our evaluation on iWildCam [50] and OGB-MolPCBA [116, 117]—two large-scale classification
datasets which have numerous test domains and thus facilitate a comparison of the test-domain risk
distributions and their quantiles. Additional comparisons (e.g. using average accuracy) can be found
in Appendix G.3. Our results demonstrate that, across two distinct data types (images and molecular
graphs), EQRM offers superior tail or quantile performance.
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Table 1: CMNIST test accuracy.

Algorithm
Initialization

Rand. ERM

ERM 27.9± 1.5 27.9± 1.5
IRM 52.5± 2.4 69.7± 0.9
GrpDRO 27.3± 0.9 29.0± 1.1
SD 49.4± 1.5 70.3± 0.6
IGA 50.7± 1.4 57.7± 3.3
V-REx 55.2± 4.0 71.6± 0.5
EQRM 53.4± 1.7 71.4± 0.4

Oracle 72.1± 0.7 Figure 4: Test-domain risk distributions.

Table 2: EQRM test risks on iWildCam.

Alg. Mean
risk

Quantile risk

0.0 0.25 0.50 0.75 0.90 0.99 1.0

ERM 1.31 0.015 0.42 0.76 2.25 2.73 4.99 5.25
IRM 1.53 0.098 0.52 1.24 1.86 2.36 6.95 7.46

GroupDRO 1.73 0.091 0.68 1.65 2.18 3.36 5.29 5.54
CORAL 1.27 0.024 0.45 0.73 2.12 2.66 4.50 4.98

EQRM0.25 2.03 0.024 0.46 2.70 3.01 3.48 5.03 5.26
EQRM0.50 1.11 0.004 0.24 0.68 1.71 2.15 4.04 4.11
EQRM0.75 1.05 0.009 0.21 0.68 1.50 2.35 4.88 5.45
EQRM0.90 0.98 0.047 0.28 0.63 1.26 1.81 4.11 4.48
EQRM0.99 0.99 0.12 0.35 0.64 1.30 2.00 3.44 3.55

Table 3: EQRM test risks on OGB-MolPCBA.

Alg. Mean
risk

Quantile risk

0.0 0.25 0.50 0.75 0.90 0.99 1.0

ERM 0.051 0.0 0.004 0.017 0.060 0.13 0.49 16.04
IRM 0.073 0.098 0.52 1.24 1.86 2.36 6.95 7.46

GroupDRO 0.21 0.091 0.68 1.65 2.18 3.36 5.29 5.54
CORAL 0.055 0.0 0.12 0.32 1.23 2.01 5.76 7.44

EQRM0.25 0.054 0.0 0.003 0.016 0.059 0.13 0.48 15.46
EQRM0.50 0.052 0.0 0.003 0.015 0.059 0.13 0.48 11.33
EQRM0.75 0.052 0.0 0.003 0.015 0.059 0.13 0.47 12.15
EQRM0.90 0.052 0.0 0.003 0.015 0.059 0.12 0.47 10.81
EQRM0.99 0.053 0.0 0.003 0.014 0.055 0.11 0.46 7.16

iWildCam. We first consider the iWildCam image-classification dataset, which has 243 training
domains and 48 test domains. Here, the label Y is one of 182 different animal species and the domain e
is the camera trap which captured the image. In Table 2, we observe that EQRM³ does indeed tend
to optimize the ³-risk quantile, with larger ³s during training resulting in lower test-domain risks
at the corresponding quantiles. In the left pane of Fig. 4, we plot the (KDE-smoothed) test-domain
risk distribution for ERM and EQRM. Here we see a clear trend: as ³ increases, the tails of the risk
distribution tend to drop below ERM, which corroborates the superior quantile performance reported
in Table 2. Note that, in Table 2, EQRM tends to record lower average risks than ERM. This has
several plausible explanations. First, the number of testing domains (48) is relatively small, which
could result in a biased sample with respect to the training domains. Second, the test domains may
not represent i.i.d. draws from Q, as WILDS [12] test domains tend to be more challenging.

OGB-MolPCBA. We next consider the OGB-MolPCBA (or OGB) dataset, which is a molecular
graph-classification benchmark containing 44,930 training domains and 43,793 test domains with
an average of 3.6 samples per domain. Table 3 shows that ERM achieves the lowest average test
risk on OGB, in contrast to the iWildCam results, while EQRM³ still achieves stronger quantile
performance. Of particular note is the fact that our methods significantly outperform ERM with
respect to worst-case performance (columns/quantiles labeled 1.0); when QRM³ is run with large
values of ³, we reduce the worst-case risk by more than a factor of two. In Fig. 4, we again see that
the risk distributions of EQRM³ have lighter tails than that of ERM.

A new evaluation protocol for DG. The analysis provided in Tables 2-3 and Fig. 4 diverges from the
standard evaluation protocol in DG [12, 38]. Rather than evaluating an algorithm’s performance on
average across test domains, we seek to understand the distribution of its performance—particularly
in the tails by means of the quantile function. This new evaluation protocol lays bare the importance
of multiple test domains in DG benchmarks, allowing predictors’ risk distributions to be analyzed
and compared. Indeed, as shown in Tables 2-3, solely reporting a predictor’s average or worst risk
over test domains can be misleading when assessing its ability to generalize OOD, indicating that the
performance of DG algorithms was likely never “lost”, as reported in [38], but rather invisible through
the lens of average performance. This underscores the necessity of incorporating tail- or quantile-risk
measures into a more holistic evaluation protocol for DG, ultimately providing a more nuanced
and complete picture. In practice, which measure is preferred will depend on the application. For
example, medical applications could have a human-specified robustness-level or quantile-of-interest.

6.3 DomainBed datasets

Finally, we consider the benchmark datasets of DomainBed [38], in particular VLCS [118], PACS [119],
OfficeHome [120], TerraIncognita [5] and DomainNet [121]. As each of these datasets con-
tain just 4 or 6 domains, it is not possible to meaningfully compare tail or quantile performance.
Nonetheless, in line with much recent work, and to compare EQRM to a range of standard baselines
on few-domain datasets, Table 4 reports DomainBed results in terms of the average performance
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Table 4: DomainBed results. Model selection: training-domain validation set.
Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg

ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.9
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9

EQRM 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 64.1

across each choice of test domain. While EQRM outperforms most baselines, including ERM, we
reiterate that comparing algorithms solely in terms of average performance can be misleading (see
final paragraph of § 6.2). Full implementation details are given in Appendix E.3, with further results
in Appendix G.2 (additional baselines, per-dataset results, and test-domain model selection).

7 Discussion

Interpretable model selection. ³ approximates the probability with which our predictor will
generalize with risk below the associated ³-quantile value. Thus, ³ represents an interpretable
parameterization of the risk-robustness trade-off. Such interpretability is critical for model selection
in DG, and for practitioners with application-specific requirements on performance and/or robustness.

The assumption of i.i.d. domains. For ³ to approximate the probability of generalizing, training
and test domains must be i.i.d.-sampled. While this is rarely true in practice—e.g. hospitals have
shared funders, service providers, etc.—we can better satisfy this assumption by subscribing to a
new data collection process in which we collect training-domain data which is representative of
how the underlying system tends to change. For example: (i) randomly select 100 US hospitals; (ii)
gather and label data from these hospitals; (iii) train our system with the desired ³; (iv) deploy our
system to all US hospitals, where it will be successful with probability ≈ ³. While this process may
seem expensive, time-consuming and vulnerable (e.g. to new hospitals), it offers a promising path to
machine learning systems which generalize with high probability. Moreover, it is worth noting the
alternative: prior works achieve generalization by assuming that only particular types of shifts can
occur, e.g. covariate shifts [22, 122, 123], label shifts [123, 124], concept shifts [125], measurement
shifts [19], mean shifts [126], shifts which leave the mechanism of Y invariant [9, 39, 41, 54], etc. In
real-world settings, where the underlying shift mechanisms are often unknown, such assumptions
are both difficult to justify and impossible to test. Future work could look to relax the i.i.d.-domains
assumption by leveraging knowledge of domain dependencies (e.g. time).

The wider value of risk distributions. As demonstrated in § 6, a predictor’s risk distribution has
value beyond quantile-minimization—it estimates the probability associated with each level of risk.
Thus, regardless of the algorithm used, risk distributions can be used to analyze trained predictors.

8 Conclusion

We have presented Quantile Risk Minimization for achieving Probable Domain Generalization,
motivated by the argument that the goal of domain generalization should be to learn predictors which
perform well with high probability rather than on-average or in the worst case. By explicitly relating
training and test domains as draws from the same underlying meta-distribution, we proposed to learn
predictors with minimal ³-quantile risk under the training domains. We then introduced the EQRM
algorithm, for which we proved a generalization bound and recovery of the causal predictor as ³→1,
before demonstrating that EQRM outperforms state-of-the-art baselines on real and synthetic data.
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