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Abstract

We study online learning problems in which a de-
cision maker has to make a sequence of costly
decisions, with the goal of maximizing their
expected reward while adhering to budget and
return-on-investment (ROI) constraints. Existing
primal-dual algorithms designed for constrained
online learning problems under adversarial inputs
rely on two fundamental assumptions. First, the
decision maker must know beforehand the value
of parameters related to the degree of strict feasi-
bility of the problem (i.e. Slater parameters). Sec-
ond, a strictly feasible solution to the offline opti-
mization problem must exist at each round. Both
requirements are unrealistic for practical applica-
tions such as bidding in online ad auctions. In
this paper, we show how such assumptions can be
circumvented by endowing standard primal-dual
templates with weakly adaptive regret minimiz-
ers. This results in a “dual-balancing” framework
which ensures that dual variables stay sufficiently
small, even in the absence of knowledge about
Slater’s parameter. We prove the first best-of-
both-worlds no-regret guarantees which hold in
absence of the two aforementioned assumptions,
under stochastic and adversarial inputs. Finally,
we show how to instantiate the framework to op-
timally bid in various mechanisms of practical
relevance, such as first-price auctions.

1. Introduction

A decision maker takes decisions over 7' rounds. At each
round ¢, the decision x; € X is chosen before observing
a reward function f; together with a set of time-varying
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constraint functions. The decision maker is allowed to make
decisions that are not feasible, provided that the overall
sequence of decisions obeys the long-term constraints over
the entire time horizon, up to a small cumulative violation
across the 7" rounds. The goal of the decision maker is to
maximize their cumulative reward, while satisfying the long-
term constraints. This model was first proposed by Mannor
et al. (2009) and later developed along various directions
(Mahdavi et al., 2012; Jenatton et al., 2016; Liakopoulos
etal., 2019; Yu et al., 2017; Castiglioni et al., 2022b).

Motivated by applications in online ad auctions, we consider
the case in which the decision maker has a budget and
a return-on-investment (ROI) constraint (Auerbach et al.,
2008; Golrezaei et al., 2023; 2021). The decision maker
is subject to bandit feedback: at each time ¢, the decision
maker takes a decision x; and then observes the realized
reward fi(x;) and a cost ¢;(z). Inputs (f;, c;) can either
be generated i.i.d. or selected by an oblivious adversary.

A key challenge of our model is that ROI constraints are not
packing, thereby preventing the direct application of known
algorithms for adversarial bandits with knapsacks (ABwK)
(Immorlica et al., 2022; Castiglioni et al., 2022a), or for
online allocation problems with resource-consumption con-
straints (Balseiro et al., 2022). Moreover, previous work
addressing the adversarial case with non-packing constraints
makes the assumption that the “worst-case feasibility” with
respect to all constraint functions observed up to 7' is strictly
positive (Sun et al., 2017; Castiglioni et al., 2022b; Immor-
lica et al., 2022; Balseiro et al., 2022). In other words, there
has to exist a “safe” policy guaranteeing that, at each ¢,
the constraints can be satisfied by a margin at least o > 0,
which has to be known in advance by the learner. This can
be problematic for at least two reasons: i) & may not be
known in advance to the decision maker, and ii) the safe
policy may not exist in all rounds ¢. For example, in the
case of bidding in repeated ad auctions under budget and
ROI constraints, such assumptions do not hold. In particu-
lar, the decision maker would be required to have an action
yielding expected ROI strictly above their target for each
round ¢. If we assume one ad placement is being allocated
at each ¢ then this assumption is equivalent to assuming that
the bidders’ value is always strictly higher than the highest
competing bid, which clearly would not hold in practice.
In this paper, we propose a general approach to enhance
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primal-dual frameworks based on the template by Immor-
lica et al. (2022), in order to obtain best-of-both-worlds
no-regret guarantees while bypassing both assumptions.

1.1. Contributions

Previous primal-dual templates for adversarial inputs as-
sume that the parameter @« > 0 is known (see, e.g., (Im-
morlica et al., 2022; Balseiro et al., 2022)). This is crucial
to ensure boundedness of Lagrange multipliers, which is
typically obtained by requiring the ¢;-norm of the multi-
pliers to be less than or equal to 1/« (Castiglioni et al.,
2022a; Nedi¢ & Ozdaglar, 2009). The key contribution of
the paper is showing that, in absence of any information on
o > 0, if we require the primal and dual regret minimizers
to be weakly adaptive (i.e., to guarantee sublinear regret
on any interval [ty, t3] C [T] (Hazan & Seshadhri, 2007)),
then boundedness of multipliers automatically emerges as
a byproduct of the interaction between the primal and dual
algorithms (thereby solving challenge (i)). Moreover, our
framework only requires the existence of a safe policy “fre-
quently enough”, and not at all time steps ¢ (thereby solv-
ing challenge (ii)). This is the first time that the notion
of adaptive regret minimization is used within primal-dual
frameworks. Interestingly, this usage is significantly differ-
ent from its original motivating applications (Hazan & Se-
shadhri, 2007; Adamskiy et al., 2016; Daniely et al., 2015).

We show that the resulting framework provides best-of-both-
worlds no-regret guarantees while solving both limitations.
We prove a tight O(T"'/2) regret upper bound in the stochas-
tic setting, and an «/(« + 1) constant-factor competitive
ratio in the adversarial setting, under the standard assump-
tion that the budget is 2(7") (Balseiro et al., 2022). In both
settings, our framework guarantees vanishing cumulative
ROI constraint violation, and cumulative expenditure less
than or equal to the available budget. Best-of-both-worlds
algorithms for problems with long-term constraints typically
require different proof techniques for the two input mod-
els. We unify most of the analysis, with the only difference
being in the characterization of a particular set of policies.

Finally, we show how our framework can be employed for
bidding in any mechanism with finite types. In particular,
we show that it can handle the case of repeated non-truthful
auctions (e.g., first-price auctions). Previous work could
only handle budget- and ROI-constrained bidders in the
simpler case of second-price auctions, in which truthfulness
can be exploited (Feng et al., 2023; Golrezaei et al., 2023).

1.2. Related works

Standard primal-dual approaches for bandit problems with
knapsack constraints cannot be applied in our setting, as
they require as an input the Slater’s parameter « (Balseiro &
Gur, 2019; Immorlica et al., 2022; Balseiro et al., 2022; Cas-

tiglioni et al., 2022a;b). In these works, the knowledge of o
is exploited to ensure that dual variables are “small” through
an explicit projection step over a set which depends on «a.
This is not possible in our setting, due to the presence of
non-packing ROI constraints. In our new analysis, we show
how such frameworks can be suitably adapted to work in
more complex scenarios than the standard one. The issue of
not knowing « has been effectively addressed in stochastic
settings (Yu et al., 2017; Wei et al., 2020; Castiglioni et al.,
2022b; Lobos et al., 2021). Nonetheless, since our goal
is to provide guarantees that hold also in the presence of
adversarial inputs, such results do not extend to our setting.

Repeated auctions. The problem of online bidding under
budget constraints has been studied in various settings (Bal-
seiro & Gur, 2019; Ai et al., 2022). In the context of online
allocation problems with an arbitrary number of constraints,
Balseiro et al. (2020; 2022) propose a class of primal-dual
algorithms attaining asymptotically optimal performance in
the stochastic and adversarial case. In their setting, at each
round, the input (f, ¢;) is observed by the learner before
they make a decision. This makes the problem substantially
different from ours. In particular, their framework cannot
handle non-truthful repeated auctions such as first-price auc-
tions. Recent works have also examined settings similar to
ours, involving bidders with constraints on their budget and
ROLI. The framework by Feng et al. (2023) can handle both
ROI and budget constraints, but crucially relies on truthful-
ness of second-price auctions, and on the stochasticity of the
environment. The recent work by Wang et al. (2023) consid-
ers the problem of bidding in repeated first-price auctions
under only budget constraints and stationary competition.
Their analysis cannot be extended to our setting for the same
reasons mentioned at the beginning of the section.

Concurrent work. Slivkins et al. (2023) studies a stochastic
setting with general long-term constraints similar to Cas-
tiglioni et al. (2022b). They provide a O(T'/?) guaran-
tee when « is known, and O(T?/*) guarantees when «
is not known. The latter result cannot be extended to the
case of inputs generated by an adversary. The recent pa-
per by Bernasconi et al. (2023) studies a different setting
from ours, in which they only have budget constraints, and
knowledge of « is hindered by the fact that resources can
be replenished (i.e., costs can be negative, as in Kumar &
Kleinberg (2022)). They provide best-of-both-world guar-
antees by exploiting results presented in this paper. Further,
related works are presented in Appendix A.

2. Preliminaries

Ateachround t € [T, the decision maker chooses an action
ry € X, where X is non-empty set of available actions, and
subsequently observes reward f;(z;) with f; : X — [0, 1],
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and incurs a cost ¢;(x¢), with ¢; : X — [0, 1]. We denote
as JF, respectively C, the set of all the possible functions f;,
respectively ¢; (e.g., F and C may contain all the Lipschitz-
continuous functions defined over X, or all the convex func-
tions over X). We assume that functions in F and C are
measurable with respect to probability measures over X.
This ensures that expectations are well-defined, since the
functions are assumed to be bounded above, and they are
therefore integrable. Following previous work (Agarwal
et al., 2014b; Badanidiyuru et al., 2018; Immorlica et al.,
2022), we assume the existence of a void action & such
that, for any pair (f,c) € F x C, f(@) = ¢(&) = 0. The
decision maker has an overall budget B € Ry, B = Q(T),
which limits the total expenditure throughout the 7" rounds.
We denote by p > 0 the per-iteration budget defined as
B/T. Moreover, the decision maker has a target return-on-
investments (ROI) w > 0. In order to simplify the notation,
throughout the paper we will assume w := 1. This comes
without loss of generality: whenever w > 1 we can suit-
ably scale down values of reward functions f;. Then, the
decision maker has the goal of maximizing their cumulative
utility 23:1 fe(x¢), subject to the following constraints:

e Budget constraints: EtT:l ct(xy) < pT. Such con-
straints should be satisfied “no matter what,” so we refer
to them as hard constraints.

o ROI constraints: Zle(ct(xt) — fi(zy)) < 0. We say
ROI constraints are soft meaning that we allow, in ex-
pectation, a small (vanishing in the limit) cumulative
violation across the 7" rounds.

In the context of repeated ad auctions, as we will discuss in
Section 8, this model can be easily instantiated to describe
any mechanism with finite types beyond the well-studied
case of second-price auctions.

Auxiliary LP. We endow X with the Lebesgue o-algebra,
and we denote by II be the set of randomized policies, de-
fined as the set of probability measures on the Borel sets
of X. At any ¢t € [T] the decision maker will compute
a policy m; € II and play an action x; ~ ; accord-
ingly.! Given a reward function f and a cost function c,
letg : 11 o w — Egox[c(x)] — p be the expected gap
between the cost for policy 7 and the per-iteration budget
p,and b : II 3 7 — E,r[c(z) — f(x)] be the expected
ROI constraint violation for policy 7. We will denote by
gt, resp. hy, the constraints defined for the pair ( f;, ¢;) ob-
served at round ¢. In order to simplify the notation, given
x € X, the value of the reward function for the policy that
derministically plays action x (i.e., the Dirac mass ¢,,) will
be denoted by f;(x) in place of f;(d,). Analogously, we

'The set {1,...,n}, withn € N, is compactly denoted as [n],
and we let [0] be equal to the empty set. Moreover, given a discrete
set X, we denote by Ax the |X'|-simplex.

will write ¢;(x), g:(z), and h¢(x) instead of using Dirac
measures §,.. Let P be an arbitrary probability measure over
the space of possible inputs F x C. Then, we define the
linear program LP as follows:

sup  Ejopf(m)
well

OPTyp = s.t. (LP9)

LP selects the bidding policy 7w maximizing the expected
reward according to P, while ensuring that constraints g
and h encoded by P are satisfied in expectation (both g and
h are defined by (f,c) ~ P). The Lagrangian function
Ly : I x RZ, — R of the above LP is defined as

L?(ﬂ-a )‘7 p’) = E(f,c)wfp[f(ﬂ-) - Ag(ﬂ.) - ,U,h(ﬂ')]

3. Baselines

Our goal is to design online algorithms that output a se-
quence of policies 71, ..., 7 such that i) the cumulative
regret with respect to the performance of the baseline grows
sublinearly in 7', ii) the budget constraint is (deterministi-
cally) satisfied, i.e., 3, ¢;(z;) < B, and iii) the cumu-
lative ROI constraint violation Zf:l hi(7:) grows sublin-
early in the number of rounds 7'. The cumulative regret of
the algorithm is defined as RT := T OPT — Zthl fi(zy),
where the baseline OPT depends on how the input sequence
v = (ft,c)L, is generated. We consider the following
two settings for which we define an appropriate value of the
baseline, and a suitable problem-specific parameter o € R
which is related to the feasibility of the offline problem.

Stochastic setting: at each ¢ € [T, the pair (fi, ¢;) is
independently drawn according to a fixed but unknown dis-
tribution P over F x C. The baseline is OPTp, which is
the standard baseline for stochastic BWK problems since
its value is guaranteed to be closed to that of the best dy-
namic policy (Badanidiyuru et al., 2018, Lemma 3.1). In
this setting, let

o= — imlfT max{Epg(7),Eph(m)}.
e

Adversarial setting: the sequence of inputs ~ is selected
by an oblivious adversary. Given v, we define the follow-
ing distribution over inputs: for any pair (f,¢) € F x C,
f, ] = Zthl 1[f; = f,ct = ¢|/T. Then, the baseline
is the solution of LP5 (i.e., OPT5), which is the standard
baseline for the adversarial setting (see, e.g., Balseiro et al.
(2022); Immorlica et al. (2022)). Therefore, the baseline
is obtained by solving the offline problem initialized with
the average of the realizations observed over the 7" rounds.
Moreover, our results will also hold with respect to the best
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unconstrained policy. We define « as

a = —inf max max{g; (), he(m)}.
™ te[T)

In this setting, o represents the “worst-case feasiblity” with
respect to functions observed up to 7.

We remark that the parameter @ measures the worst case
feasibility of the problem by considering both budget and
ROI constraints. In absence of the latter constraints, «
would coincide with p. We start by developing our analysis
under the following standard assumption.

Assumption 3.1. In the adversarial (resp., stochastic) set-
ting, v (resp., P) is such that a > 0.

This means that LPp and LP satisfy (stochastic) Slater’s
condition. In particular, in the adversarial setting we are
requiring the existence of a randomized “safe” policy that,
in expectation, strictly satisfies the constraints for each ¢.
This is a frequent assumption in works focusing on settings
similar to ours (see, e.g., (Chen et al., 2017; Neely & Yu,
2017; Yi et al., 2020; Castiglioni et al., 2022b)). In Section 7
we show how this requirement can be relaxed.

When studying primal-dual algorithms, a key implication
of Slater’s condition is the existence and boundedness of
Lagrange multipliers (see, e.g., Nedi¢ & Ozdaglar (2009)).
Therefore, when o« > 0 is known, the set of dual multipli-
ers can be safely bounded by requiring the ¢;-norm of the
multiplier to be less than or equal to 1/« (see, e.g., Balseiro
et al. (2022)). This is the case, for example, for problems
with only budget constraints, in which o = p > 0, which is
achieved by bidding the void action & at each round. How-
ever, ROI constraints complicate the problem as the decision
maker does not know a beforehand.

4. Adaptivity in Primal-Dual Frameworks

In this section, we first provide a concise overview of
a generic primal-dual template that adheres to the struc-
ture presented by Immorlica et al. (2022); Castiglioni et al.
(2022a). Then, we provide a simple example demonstrating
that a direct application of such framework would result in
violations of the constraints which are linear in 7. Finally,
we describe the modifications needed to update the standard
primal-dual template in order to achieve the desired behav-
ior, and we show that online gradient descent already meets
the new criteria for the dual regret minimizer.

4.1. A Standard Primal-Dual Template

Algorithm 1 summarizes the structure of a standard primal-
dual framework. It assumes access to two regret minimizers
with the following characteristics. The first one is the primal
regret minimizer RF . It outputs policies in I, and receives

Algorithm 1 Primal-dual framework.

Input: parameters B, T, d; regret minimizers RF, RP
Initialization: B, < B; initialize R, RP
fort=1,2,...,Tdo
Dual decision: (A, ;) < output of R
Primal decision: II 5 m; < output of RF
Select action as
Ty ~ Ty if Bt Z 1
Ty < .
& otherwise
Observe: observe f;(z:) and c;(z:), and update avail-
able resources: B;y1 < By — ()
Primal update: update R using ¢% (z;)
Dual update: update R" using u?(-)
end for

as feedback the loss £5 : X — R>¢ such that, for any z;
sampled according to policy 7,

G (we) = — fulxe) + Ae(ge(we) + 1)
+ pe(he(ze) +1) + 1.

The primal loss function is obtained from the Lagrangian
relaxation of the problem at time ¢, plus the additive term
1+ A+ p to ensure £ (+) € R>g. For ease of presentation,
whenever we write ££ () we mean £ () = E,. £ ().
The second regret minimizer is the dual regret minimizer
RP. Tt outputs points in the space of dual variables D, =
{y € RZ, : |ly|lx < 1/a}, and observes the linear utility

uf i Do D (N, 1) = Agi(z¢) + phe(xy) € R.

The dual regret minimizer has full feedback by construction.

For each ¢, the algorithm first computes primal and dual
actions. The action at time ¢ is x; ~ 7r; unless the available
budget B; is less than 1, in which case we set x; equal
to the void action &. Then, £ (z;) and u} are observed,
and the budget consumption is updated according to the
realized cost ¢;. Finally, the internal state of the two regret
minimizers is updated on the basis of the feedback specified
by /£, u?. We will denote by 7 € [T the time in which
the budget is fully depleted and the decision maker starts
playing the void action &.

The traditional requirement on the primal and dual regret
minimizers is that their cumulative regret should grow sub-
linearly in time (see, e.g., Castiglioni et al. (2022a)).2 Al-
though sufficient for handling simpler problems, the follow-
ing example shows that this requirement is not enough to
provide guarantees in our setting.

’In general, the cumulative regret for losses ¢; is defined as
infuex 30—, (0e(x¢) — €(z)) (Cesa-Bianchi & Lugosi, 2006).
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| Slot@ | Slot® | Slot® || b:

o | 1 | 12 | 1/16 |

| 1/2 1/2 0 1/2 0
T, 1 1/2 0 0 0
Ts 1 1/2 0 116

Table 1. Setup of the repeated GFP auctions.
4.2. When Standard Primal-Dual Algorithms Fail

We present a simple example in which the direct application
of Algorithm 2 with the standard requirements presented in
Section 4.1 does not yield the desired behavior, even if the
learner knows «v a priori. We observe that this rule out the
direct application of known primal-templates for adversarial
inputs such as those by Balseiro et al. (2022); Immorlica
et al. (2022); Castiglioni et al. (2022a).

Suppose the learner is participating in a sequence of gener-
alized first price auctions (GFP) under an ROI constraint.
In this setting, there are multiple ad slots that have to be
allocated at each ¢. The bidder with the ¢-th highest bid
is allocated the ¢-th slot and, upon winning a slot, their
payment is equal to their bid amount. Table 1 provides
a summary of the instance being considered. There are
three ad slots (1), (2), and (3) at each ¢. The valuation v;
for each slot ¢ is fixed across the entire time horizon. Let
t1,to € [T], t1 < to. We denote by Z = [t1,ts] the set
{t1,t1 +1,...,t2}, and we call T the time interval starting
from round £, to round t5. We consider three time intervals,
denoted by 7y = [t1], Za = (t1,t2), Zs = (t2, T for some
t1,t2. The cells highlighted in gray provide the highest com-
peting bid for the different slots, in the three different time
intervals. As an illustration, within interval Z5 the learner
has to bid 1/2 < b; < 1 to win ). Within Z;, when the
learner bids b; > 1/2 they win (D). The learner has quasi-
linear utilities: their utility for winning slot ¢ at time ¢ is
v; — by. The learner has a ROI constraint with target ROI 1.

The last two columns of Table 1 describe a possible se-
quence of primal actions b; and dual actions p;, which are
constant within each interval. We observe that the dual vari-
able is always at most 1/« = 16. It is possible to show that,
by setting the length of intervals so that |Z;| = 39|Z3| and
|Z5| > 12|Z3|, the primal and dual regret over T are < 0,
thereby matching the standard requirements on regret as
per Section 4.1 (calculations are provided in Appendix B).
Howeyver, the cumulative constraint violations is

T T

D (elbe) = felbe)) =D (2b — v) = QT).

t=1 t=1

Therefore, the standard requirements for primal and dual
regret minimizers are insufficient to ensure sublinear regret
and constraint violations. The crucial problem here is that,
since the primal player attains negative regret in Z; and Z,,

then it can afford to make decisions that significantly vio-
late the ROI constraint in Z3. We observe that frameworks
employing a recovery phase, such as the one by Castiglioni
et al. (2022b), are not viable for our stated goals, since they
rely on knowledge of o to switch between phases.

4.3. New Requirements: Weak Adaptivity

Unlike previous work, we require R and RP to be weakly
adaptive, that is, they should guarantee sublinear adaptive
(a.k.a. interval) regret (see, e.g., (Hazan & Seshadhri, 2007;
Luo et al., 2018)). This notion of regret is stronger than
“standard” external regret, and it will be essential in our
analysis. The primal regret minimizer must be such that, for
d € (0, 1], with probability at least 1 — ¢ it holds that, for
any 7 € II and for any interval Z,

D (G (x) = € () < MZET 5,

tel

“.1)

where M7 is the maximum absolute value of the losses ££
observed in interval Z, and €7 ; is a term of order O(VT).
We require a similar property for the dual regret minimizer.
However, since the dual regret minimizer works under full-
information feedback by construction, we can use a regret
minimizer with deterministic regret guarantees. In particular,
RP should guarantee that, for any time interval Z = [t1, ta],
and for any pair of dual variables (), 1) € R2, it holds

Z(UtD(/\aH) AC))

teT
Su(T)(p = pe)* + E7° + €47,

where v(T') > 0 is such that v/(T') = o(T), and €7:° (resp.,
€2:%) is a term sublinear in T related to the budget (resp.,
ROI) constraint.

The choice of the primal regret minimizer is primarily in-
fluenced by the specific problem being considered. On the
other hand, the dual problem remains constant, and thus we
proceed by presenting an appropriate dual regret minimizer.
Section 8 will provide some examples of primal regret mini-
mizers satisfying Equation (4.1) for relevant applications.

4.4. A Weakly Adaptive Dual Regret Minimizer

As a dual regret minimizer we employ the standard online
gradient descent algorithm (OGD) (Zinkevich, 2003) on
each of the two Lagrangian multipliers A and p. We ini-
tialize the algorithm by letting ;1; = Ay = 0. We employ
two separate learning rates 7z and 7z, which will be speci-
fied in Lemma 4.1. At each round ¢ € [T, the dual regret
minimizer updates the Lagrangian multipliers as A\;11 <
Po,1/p) (A +nsge(24)), and pyp1 = Pr (e + nehe(z1)],
where P denotes the projection operator. The former update
performs a gradient step and then projects the result on the
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interval [0, 1/p]. This is possible because we know that play-
ing the void action @ would satisfy the budget constraints
by a margin of at least p, and therefore we can safely con-
sider as the set of A the interval [0, 1/p] (Castiglioni et al.,
2022a). On the other hand, in the update of u we perform a
grandient step and then ensure that the value is in R .. Since
the decision maker does not know the feasibility parameter
of ROI constraints, bounding 1 becomes more complex, and
we show how to approach this problem in Section 5.

Given a time interval Z = [t1,t2], and § € [0, 1], we let

5%5 — { 3\/(752 —t1)log(2T/0)

if 6 € (0,1]
ifd=0 ’
and, when clear from context, we drop the dependency on 7
to denote S[TTE;. Let £7:° be a term of order O(T*/?/p), and
E%R be a term of order O(T*/?). The regret guarantees of
the dual regret minimizer follow from standard results on
OGD (see Hazan et al. (2016, Chapter 10)).

Lemma 4.1. Let \y = p; = 0. Then, OGD guarantees
that, for any interval T = [ty, t3], it holds

o Y ex tehe(xe) < (= ey ) /nm + €57 for p € Ry,
o Yz Mgi(we) < 7% forall X € Ry,

where learning rates are set as follows: ng = 1/pT'/?,
and s = 1/(6+ T2 + €3 + 6€%. 5 + 1685, ).

The dependency on § in the construction of 75 is resolved
by Algorithm 1 taking § as an input parameter, and the
final guarantees of the framework are parametrized on 4.
Next, we prove the following simple result characterizing
the growth of the  variables, which will be useful in the
remainder of the paper (omitted proofs can be found in the
appendix).

Lemma 4.2. For all t1,ts € [T, it holds

Mty = MR Z

tle[tl,tz—l]

o (@) + g, -

5. Bounding the Lagrange Multipliers

Previous work usually assumes knowledge, either exactly or
via some upper bound, of the Slater’s parameter o (Balseiro
et al., 2020; Castiglioni et al., 2022a). This information
is then used to bound the magnitude of dual multipliers,
which is fundamental in order to obtain meaningful primal
regret upper bounds since the magnitude of ¢£ depends on
dual multipliers. In our setting, the decision maker has no
knowledge of the gap that the strictly feasible solution guar-
antees for the ROI constraint, which renders the traditional
approach to bound pi; not viable. We show that, even with-
out a priori information on «, the primal-dual framework
endowed with weakly adaptive regret minimizers guaran-
tees that, with high probability, the Lagrange multiplier 1

is bounded by 2/« throughout the entire time horizon. We
start by providing a general condition that we will prove to
be satisfied both in the stochastic and adversarial setting.

Definition 5.1 (J-safe policy). Given o € (0, 1], a policy 7°
is d-safe if, for any interval Z = [t1,to], with t1,t5 € [T],
t1 < tg, it holds

D Mg (m°) + puhi(w°) < (nz + Vo) 5 —a >,
tel tel

where p7 is the largest multiplier in the interval Z.

A safe policy gives to the primal regret minimizer a way
to limit the realized penalties imposed by the dual regret
minimizer. In particular, we can show that if the dual regret
minimizer increased the value of Lagrange multipliers
too much, then the primal regret minimizer could “fight
back” by playing the safe policy 7°, thereby preventing the
dual player from being no-regret. Indeed, the next result
shows that whenever there exists a safe policy the Lagrange
multipliers must be bounded.

Theorem 5.2. [f there exists a safe policy and the primal
regret minimizer has regret at most M%S% s for any time
interval I, then the Lagrange multipliers i, are such that
e < 2/ foreach t € [1].

Then, we show that both in the stochastic and in the adver-
sarial setting there exists a safe policy w.h.p., which implies
that w.h.p. the Lagrange multipliers are bounded.

Lemma 5.3. If inputs (f;,c;) are drawn iid. from P,
and there exists a policy 7 such that Epg(w) < —« and
Eph(m) < —a, then there exists a 6-safe policy with prob-
ability at least 1 — 6.

Lemma 5.4. If inputs (f;,g:) are selected adversarially,
and there exists a policy 7 such that g;(w) < —a and
hi(m) < —a for each t € [T, then there exists a 6-safe
policy for any § € [0, 1].

6. Regret and Violations Guarantees

In this section, we describe guarantees for the stochastic and
adversarial setting provided by Algorithm 1 equipped with
a weakly adaptive primal and dual algorithm. Interestingly,
we prove best-of-both-worlds guarantees through a unified
argument which captures both cases. This is not the case in
previous work, where the analysis of the stochastic case typ-
ically requires to study convergence to a Nash equilibrium
of the expected Lagrangian game (Immorlica et al., 2022),
which is not well defined in the adversarial setting.

We introduce the following event that holds w.h.p., most of
our results will hold deterministically given this event.

Definition 6.1. We denote with E the event in which Al-
gorithm 1 satisfies the following conditions: i) the primal
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regret minimizer has regret upper bounded by (3/a+1)€% ;
for all time intervals Z, and ii) the dual multipliers for the
ROI constraint are such that y; < 2/a for each t € [T7].

By applying a union bound to the events of Equation (4.1)
and Lemma 5.3 or Lemma 5.4 (depending on the input
model), we can use Theorem 5.2 to get the following result.

Lemma 6.2. Event E holds with probability at least 1 — 2.

We start by observing that the cumulative violation of ROI
constraints must be sublinear in 7' with high probability,
under both input models. This is a direct consequence of
properties of the dual regret minimizer (see Section 4.4),
and of the bound on dual multipliers implied by Lemma 6.2.

Lemma 6.3. IfE holds, then

> hi(my) < 142/(z0).

te(r]

Then, we define the following class of policies.

Definition 6.4 ((4, g, OPT)-optimal policy). Given § €
(0,1], ¢ € (0,1], a sequence of T inputs {(f:,c¢)}l,,
and the value of a baseline OPT, we say that a policy 7
is (6, q, OPT)-optimal, if

)Y film)>q-T-OPT - E1,, and
te[T]

.. 1
ii) Z Argi(m) + pphy(m) < <N[t'] + a> ETs
]

teft!

for each ¢’ € [T, where py/) is the largest multiplier 1
observed up to ¢’.

A (4, q,0PT)-optimal policy guarantees a reward which is
a fraction ¢ of the reward of the baseline up to a sublinear
term, and guarantees that the cumulative value of the penalty
due to the Lagrangian relaxation is vanishing in time.

First, we need the following result that holds both in the
stochastic and adversarial setting.

Lemma 6.5. Algorithm I guarantees that

Z Aeg(we) >T —7—1/p— €5

te(r)

Given primal (resp., dual) regret minimizer with guarantees
PT,a (resp., SDT’R and SDT’B), and § € (0,1], we let

C(T, 0, 6) = a+ (3a+1)(E 5+ Ers) + EF° + €77

The existence of a (d, g, OPT)-optimal policy implies the
following bound with respect to the generic baseline OPT.

Lemma 6.6. Suppose event E holds and that there exists a
(6, g, OPT)-optimal policy. Then,

Zte[r] fe(xe) > qToPT — C(T, , 9).

Next, we show that a suitable (4, ¢, OPT)-optimal policy
exists w.h.p. both in the stochastic and adversarial setting.

Lemma 6.7. In the stochastic setting, with probability at
least 1—20 there exists a (6,1, OP Tp)-optimal policy (where
OPTy is the optimal value of LP).

This is saying that, given a distribution P, there exists with
high probability a policy satisfying Definition 6.4. Stochas-
ticity of the environment is used to prove that the solution
to LP+p satisfies the second condition of Definition 6.4 for
all t € [T). If we tried a similar approach in the adversarial
setting, the solution to LP~ would guarantee that the second
condition is satisfied over the whole time horizon, but not
necessarily at earlier time steps ¢ < T'. Moreover, feasibility
in expectation has no implications on feasibility of a policy
under the adversarial sequence (A, f, ft, ¢t ), in which dual
variables are optimized to “punish violations”. However,
it is possible to show the existence of a policy satisfying
Definition 6.4 even in the adversarial setting via a different
approach. We build a suitable convex combination between
a strictly feasible policy 7w° guaranteeing that constraints
are satisfied by at least & > 0 for each ¢ € [T, and the
optimal unconstrained policy 7* maximizing , err) Je (7).
The following lemma employs a policy 7 such that, for all
reX, fr, =wl/(1+a)+ami/(1+ ).

Lemma 6.8. In the adversarial setting, there always exists
a (0,a/(1 + «), OPT5)-optimal policy.

Now, we provide the overall guarantees of the dual-
balancing primal-dual algorithm (Algorithm 1).

Theorem 6.9 (Stochastic setting). In the stochastic setting,
for & > 0, with probability at least 1 — 4 Algorithm 1
guarantees

TOPTp — 3 e filae) < C(T, e, 6).

Moreover, we have the following guarantees on con-
straint violations: } e hi(z) < 1+ 2/(nze) and

2ierr ct(@e) < B

Proof. The regret upper bound holds since event E holds
with probability at least 1 — 26 (Lemma 6.2), and by com-
bining Lemma 6.7 and Lemma 6.6. The ROI constraint is
upper bounded by Lemma 6.3, and the budget constraint is
strictly satisfied by construction of Algorithm 1. O

Since the primal regret minimizer guarantees a high-
probability primal regret upper bound of order T/2 (see
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Equation (4.1)), then the cumulative regret and the cumu-
lative ROI constraint violation of Theorem 6.9 are of order
O(VT), while the budget constraint is strictly satisfied.

Analogously, by exploiting Lemma 6.8, we have the follow-
ing guarantees for the adversarial setting.

Theorem 6.10 (Adversarial setting). Suppose the sequence
of inputs v = (fi,ct)L_, is selected by an oblivious ad-
versary. Then, for § > 0, with probability at least 1 — 20,
Algorithm 1 guarantees

HLQOPT"'/ - Zte[T] fi(ze) < C(T, a,9). 3

Moreover, it holds that 3, ) h(z¢) < 14 2/(nza) and
> ierr) (@) < B.

Our competitive ratio matches that of Castiglioni et al.
(2022b).

Remark 6.11. In our analysis, we provide a slightly subopti-
mal competitive ratio with respect to the budget constraint.
Indeed, in our proofs we only use g(x) < 1 while it always
holds g(x) < 1 — p. To optimize the competitive ratio, we
can set

a = — inf max max{9:(m)/1—p, hy(7r)}.
7™ te[T)
Our result continues to hold, and provides a better depen-
dency on the budget constraint. In the case in which there
are only budget constraints, it yields the state-of-the-art 1/p
competitive ratio of Castiglioni et al. (2022a)

7. Relaxing the Safe-Policy Assumption

In the adversarial setting, the usual assumption for recover-
ing Slater’s condition is that there exists a policy guarantee-
ing that constraints are satisfied by at least o« > 0 for each ¢
(Chen et al., 2017; Yi et al., 2020; Castiglioni et al., 2022b).
Our analysis, up to this point, made the same assumption
(Assumption 3.1), except that, unlike those past works, we
do not need to know the value of o. Now, we show that our
analysis carries over with the following looser requirement.

Assumption 7.1. There exists a policy w° € II such that,
for each interval Z = [tq, to] with to — t; = k, we have

Y ier 9¢(7°) < —akand ), hi(7°) < —ak.

The traditional assumption of requiring a safe policy for
each t would require the decision maker to have an action
yielding expected ROI strictly above their target for each
round ¢. This may not hold in practice. For example, in the
case of repeated ad auctions, if we assume one ad placement
is being allocated at each ¢, then the agent would be priced
out by other bidders for at least some time steps. Next, we

3The same guarantees would hold with respect to the optimal
unconstrained policy maximizing > fi (7).

Algorithm 2 Primal regret minimizer.
Input: parameters n > 0, > 0,0 >0
Initialization: [0, 1]"*™ > w; + 1
fort=1,2,...,Tdo

e  Observe valuation v; € V

o Set m(vt)r ¢ W/ D pcx Wivga', VT EX
e Bidz; ~ w(v)
e  Observe loss /£ (x)
o F(x)+ E(x)l[z =af/(m(ve)s +E) VYV €X
e Foreachz € X, set wit1,,,0 (1 — )Wy, 5
e @) 4 C N Wi G
end for

show that if the size of the intervals k is not too big (i.e., if
there exists a “safe” policy frequently enough), there exist
the following policies.

Lemma 7.2. Suppose Assumption 7.1 holds with k <
Er.5/(2Tns). Then, for § > 0, there exists a d-safe and a
(0, /(1 + ), OPT5)-optimal policy.

This allows us to balance the tightness of the required as-
sumption with the final regret guarantees, by suitably choos-
ing the learning rates rates 7z and nz. When Assumption 7.1
holds for k = log T', we recover exactly the bounds of The-
orem 6.10. As a further example, if k& = T1/4 then we
can obtain regret guarantees of order O(T 3/4) by setting
ns = O(T~3/*) and by suitably updating the definition of
&r,5. In the context of ad auctions, this allows us to make
the milder assumption that the bidder sees an auction with
ROI > 0 at least every k steps, instead of at every step.

8. Bidding in Repeated Non-Truthful Auctions

In automatic bidding systems advertisers usually have to
specify some parameters like their overall budget and their
targeting criteria. Then a proxy bidder operated by the plat-
form places bids on their behalf. A popular autobidding
strategy is value maximization subject to budget and ROI
constrains (Auerbach et al., 2008; Golrezaei et al., 2021;
Deng et al., 2023). Recently, many advertising platforms
have been transitioning from the second-price auction for-
mat toward a first-price format (see, e.g., (Bigler, 2019;
Wong, 2021)), which is not truthful. In this context, existing
results for truthful auctions cannot be applied (Balseiro &
Gur, 2019; Feng et al., 2023).

We show that our framework can be used to manage bidding
in repeated non-truthful auctions under budget and ROI
constraints. We will focus on the case of repeated first-price
auctions, and we will make the simplifying assumption
of having a finite set of possible valuations and bids. In
Appendix G, we provide further details on this application.
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Set-up. At each round ¢ € [T, the bidder observes their
valuation v, extracted from a finite set V C [0,1] of n
possible valuations. The set X C [0, 1] is a set of m pos-
sible bids. Let §; be the highest-competing bid at time
t. In the value-maximizing utility model for each ¢ we
have fi(x;) == v 1[xz; > ;] (Babaioff et al., 2021; Balseiro
etal.,2021), and the cost function is ¢¢(x) == x; L[z > By,
where the indicator function specifies whether the bidder
won the auction at time ¢. We extend the definition of poli-
cies from Section 3 to model randomized bidding policies.
Each 7r € IT is now a mapping 7w : V — A . We denote by
7(v), the probability of selecting  under valuation v.

Primal regret minimizer. Our primal regret minimizer is
based on the EXP3-SIX algorithm by Neu (2015) and it is
described in Algorithm 2. At each round ¢, the algorithm
maintains a set of weights w; € [0, 1]™*™. The probabil-
ity of playing x under valuation v; is proportional to the
weight w; ,, .. After drawing z;, the algorithm observes
(2 (2;) and builds the estimated loss /%, where £ > 0 is
the implicit exploration term. Then, the update of weights
w is inspired by the Fixed Share algorithm by Herbster &
Warmuth (1998). We start by showing Equation (4.1) holds
in the single-valuation setting.

Theorem 8.1. Letn =1, n:=1/vmT, £ :=1/(2vmT),
o = 1/T. For any 6 > 0, EXP3-SIX guarantees that, w.p.
at least 1 — 0, for any interval Z, and for any v € X,

S ier(b (@) — € (2)) < O(VimTlog(L)).

Then, if we instantiate one independent instance of EXP3-
SIX for each valuation in )V with the choice of parameters of
Theorem 8.1, we have that for any time interval Z the regret
accumulated by Algorithm 2 over Z is upper bounded by
M2 .\/n &7 5 with probability at least 1 — nd (see Lattimore
& Szepesvari (2020, Chapter 18.4)). It follows that Equa-
tion (4.1) is satisfied and the guarantees of Theorems 6.9
and 6.10 readily apply to the problem of bidding in repeated
first-price auctions under budget and ROI constraints.
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A. Further Related Works

We survey the most relevant works with respect to ours. For further background on online learning the reader can refer to
the monograph by Cesa-Bianchi & Lugosi (2006).

1) Bandits with Knapsacks. The stochastic Bandits with Knapsacks (BwK) framework was introduced and first solved
by Badanidiyuru et al. (2018). Other regret-optimal algorithms for stochastic BWK have been proposed by Agrawal &
Devanur (2019), and by Immorlica et al. (2022). The BwK framework has been subsequently extended to numerous settings
such as, for example, more general notions of resources and constraints (Agrawal & Devanur, 2014; 2019), contextual
bandits (Dudik et al., 2011; Badanidiyuru et al., 2014; Agarwal et al., 2014a; Agrawal et al., 2016), and combinatorial
semi-bandits (Sankararaman & Slivkins, 2018). Moreover, the BwK framework has been employed to model various
applications with budget/supply constraints such as, for example, dynamic pricing (Besbes & Zeevi, 2009; 2012; Wang et al.,
2014), dynamic procurement (Badanidiyuru et al., 2012), and dynamic ad allocation (Combes et al., 2015; Balseiro & Gur,
2019). The Adversarial Bandits with Knapsacks (ABwK) setting was first studied by Immorlica et al. (2022), who proved a
O(mlog T) competitive ratio for the case in which the sequence of rewards and costs is chosen by an oblivious adversary.
Immorlica et al. (2022) also show that no algorithm can achieve a competitive ratio better than O(log T') on all problem
instances, even in instances with only two arms and a single resource. Recently, Kesselheim & Singla (2020) refined the
analysis for the general ABwK setting to obtain an O(log m log T") competitive ratio. They also prove that such competitive
ratio is optimal up to constant factors. Moreover, Castiglioni et al. (2022a) proved a constant-factor competitive ratio in
the regime B = Q(T'). We mention that further results have been obtained in the simplified setting with one constrained
resource (Rangi et al., 2019; Tran-Thanh et al., 2010; 2012). All the works mentioned in this paragraph can only handle
packing constraints (e.g., budget constraints). They cannot handle ROI constraints, and they need perfect knowledge of the
feasibility parameter .

2) Online packing problems. Various well-known online packing problems can be seen as special cases of ABwK, with a
more permissive feedback model which allows the decision maker to observe the full feedback before choosing an action
(see, e.g., Buchbinder & Naor (2009); Devanur et al. (2011)). In online packing settings, since the decision maker is
endowed with more information at the time of taking decisions, it is possible to derive O(log T') competitive ratio guarantees
against the optimal dynamic policy. In the context of online allocation problems with fixed per-iteration budget, Balseiro
et al. (2020; 2022) propose a class of algorithms which attain asymptotically optimal performance in the stochastic case,
and they attain an asymptotically optimal (parametric) constant-factor competitive ratio when the inputs are adversarial.
In their setting, as we already mentioned, at each round the input (f;, ¢;) is observed by the decision maker before they
make a decision. This makes the problem essentially different from ours. Even in this case, these works cannot handle
problems with ROI-constrained decision makers, since they can handle only packing constraints, and require knowledge of
the feasibility parameter.

3) Online convex optimization with time-varying constraints. Another line of related work concerns online convex
optimization with time-varying constraints (see, e.g., (Mahdavi et al., 2012; 2013; Jenatton et al., 2016; Neely & Yu, 2017;
Chen & Giannakis, 2018; Castiglioni et al., 2022b)), where it is usually assumed that the action set is a convex subset
of R™, in each round rewards (resp., costs) are concave (resp., convex), and most importantly, resource constraints only
apply at the last round. In contrast, in our setting, budget constraints apply in all rounds. Moreover, guarantees are usually
provided either for stochastic constraints (Yu et al., 2017; Wei et al., 2020), or for adversarial constraints (Mannor et al.,
2009; Sun et al., 2017; Liakopoulos et al., 2019), typically by employing looser notions of regret. In contrast, our framework
will provide best-of-both-worlds guarantees. Moreover, these frameworks typically require perfect knowledge of o ad
Assumption 3.1 to hold, while our framework relaxes both assumptions.

4) Bidding in repeated auctions. The problem of online bidding in repeated auctions has been extensively studied using
online learning approaches (see, e.g., Borgs et al. (2007); Weed et al. (2016); Nedelec et al. (2022)). In particular, online
bidding under budget constraints has been studied in various settings. Balseiro & Gur (2019) and Ai et al. (2022) focus
on utility-maximizing agents with one resource-consumption constraint. In the context of online allocation problems
with an arbitrary number of constraints, Balseiro et al. (2020; 2022) propose a class of primal-dual algorithms attaining
asymptotically optimal performance in the stochastic and adversarial case. In their setting, at each round, the input (f;, ;) is
observed by the decision maker before they make a decision. This makes the problem substantially different from ours. In
particular, their framework cannot handle non-truthful repeated auctions. Recent works have also examined settings similar
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to ours, involving bidders with constraints on their budget and ROI. The framework by Feng et al. (2023) can handle ROI
and “hard” budget constraints, but crucially relies on truthfulness of second-price auctions, and on the stochasticity of the
environment. The framework by Castiglioni et al. (2022b) allows for general “soft” constraints under both stochastic and
adversarial inputs. Their framework cannot be applied in our setting for three reasons: i) we have hard budget constraints, ii)
we don’t make the stringent assumption of knowing the parameter o beforehand, and iii) we relax the assumption of having
one strictly feasible solution for each round in the adversarial setting. Finally, Golrezaei et al. (2023) studies the dynamic
pricing problem faced by a seller who repeatedly sells items to a single budget and ROI constrained buyer.

B. Further Details on the Example of Section 4.2

We have to set the length of 71, 75, and Z3 so that the primal and dual regret are < 0, while the constraint violations are
Q(T). We observe that, by construction, the two candidate actions for being the best in hindsight in the primal problem are
bidding either 0 or 1/2. Therefore, we start by computing the primal regret with respect those two actions. For simplicity,
we drop the rescaling factor from the definition of ¢} since that is only needed for technical reasons in the new construction,
and write:

Kf(bt) = _ft(bt) + ,U,tht(bt) = (Ct(bt) — ’Ut) + Ht (2Ct(bt) — ’Ut).

Then, the regret with respect to bid 1/2 is

T

| |7 [T |Z2| 49|75 5Ty | 15|Z3]

8P12 EPb—€P12 | 16|Z - — = = —
(1/2) ; )6 (1/2) = -7 = T35 H 6L+ 57 - 4 6 T4
and the regret with respect to bid 0 is

T

| |7, |Zi| | |Zo| | 17|Z3] 77| | 273|Z5

EP be) —KP = | 16|Z: — = — .

t; D) = 4(0) = === = Fg H101Tsl + T+ T+ g 6 16

We observe that £7.(0) < 0 for |Z; | big enough. Interval Z; can arbitrarily long since during the first phase the ROI violation
is 0, so it does not impact on the constraints. In particular, we can set |Z;| = 39|Z3|. Moreover, we observe that £7.(1/2) < 0
whenever |Z;| > 12|Z3|. By setting |Z3| = 12|Z3|, we obtain |Z3| = T'/52.

The sequence of dual multipliers y; depicted in Table 1 guarantees no-regret on the dual problem since the dual player
is exactly best responding to the primal actions: p; = 0 when violations are < 0, and p; = 1/« = 16 when violations
are strictly positive. We observe that in this example o« = % since bidding 0 yields a strict feasibility gap of at least 1/16.
Therefore, as expected, the two best-response actions of the dual player are the two extreme points of the interval [0, 1/q]
(see Section 4.1).

Now, we can write the cumulative violation as a function of 7". We have

T T 1 1
2¢:(by) — —|Z 3| = =T = Q(T).
Z Z ct t Ut 16‘ 2|+‘ 3| 208 ( )
t=1 t=1
Therefore, ROI constraint violations grow linearly in 7', thereby violating one of our desiderata.
C. Proofs for Section 4

Lemma 4.2. For all t1,ts € [T, it holds

s > Y he(we) 4 e,
tle[tl,tgfl]

Proof. We prove the result by induction. Fix a starting point ¢; € [T']. First, it’s easy to see that the result holds for to = t;.
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Then, suppose that the statement holds for round ¢5 = ¢. Then,
fesr = [pe + n he(2)]
> pup + 1z hy ()
> MR Z hy (@) + ey + M he (1)

t'efty,t—1]

=n Y () + pu
tElt1 1]

where [z]T := max{z, 0}. This implies that the statement holds for ¢ = ¢ 4+ 1. This concludes the proof. O

D. Proofs for Section 5

Theorem 5.2. If there exists a safe policy and the primal regret minimizer has regret at most M%E% s Jor any time interval
Z, then the Lagrange multipliers 1, are such that py < 2/« for each t € [7].

Proof. We consider two cases.

Case 1: o < 10/+/T. By construction of the dual regret minimizer, and by the choice of 77z, the dual variable ; can reach
at most value 9T < \/T/16. Therefore, we have p; < \/T/lﬁ < 2/a.

Case2: o > 10/\/T. LetZ = [t1,ta], with t1,t2 € [T, t1 < t3. Moreover, assume that there exists a safe policy w°. We
show that, if the Lagrangian multiplier 1, is greater than 2/, we reach a contradiction.

Suppose, by contradiction, that there exists a round ¢ such that p;, > 2/«. Let t; be the the first round such that gy > 1/«
for any ¢ € [t1,t2]. Notice that the structure of the dual regret minimizer (see Section 4.4) implies that

pe, <1l/a+nz and g, < 2/a+ 1, (D.1)

since the dual losses are in [—1, 1]. Therefore, we can upperbound the primal loss function as M) < (1 4 4/a) (i.e., we
use 1y < 3/«). This implies that, for m > 2,

1 4 1 2T
Mp=——[142) < 1+ <1.
) \/mT( Oé) vmT ( 5 ) -

Therefore, the primal regret minimizer satisfies the bound on the adaptive regret of Equation (4.1). Then, by the no-regret
property of the primal we get:

Z(ft(xt) = Mege(@e) — pehe (@)

tel

> Z(ft(ﬂ'o) = Mg (m°) = phy(m°)) — M3 PT,5

tel

1
>a)y - <,LLI + a) et s — M7Eh 5 (by Definition 5.1)
tel

> (ta —t1) — (ﬂ[t17t2_1] + % + nR) 8%5 - M%SPTﬁ (by Def. of t; and Equation (D.1))

2
) 2 1
> (tg — t]) — (a + 77R> 8%’5 — (1 + E + OZ) %’5 (by Def. of MI and ff)
) 16
> (ta —t1) — (a + 77R> ET5 — 2 T.6" (D.2)

Since the Lagrangian multipliers y; is always at least 1/« for t € [t1, t2], the dual regret minimizer never has to project over
R>( during interval [t1, t2]. In particular, projecting the dual multiplier at ¢ back onto R>( would yield i, = 0. This cannot
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happen for ¢ € [t1,ts], since p; > 1/c. Then, since the dual regret minimizer does not perform any projection operation
during [¢1, t2], we have that the statement of Lemma 4.2 holds with equality:

Pty = TR Z ho (z4) + pit, -
t'Efty,ta—1]

Hence, by definition of ¢ and Equation (D.1),

— 1
Y hela) = Hte ZH6 o 2

e’
€ty ta—1] & &

Then, by the regret bound of the dual with respect to i = p; and A = 0, we get

Do (felw) = Mgelme) — ha(e) < Y (flwn) — b)) + €5% + €57

te[tl,tz—l] te[tl,tQ—l]

1
S(tz—h)—a Z h(we) + E7" + &7

tE[tl,tgfl]

1 1
< (trtl)fa—%+a+8%f<+8%3. (D.3)

By putting Equation (D.2) and Equation (D.3) together we have that

1 3 5 16
(ty —t1) — eI + o 2+ EXNHERE > (ty — 1) — (a +nR)8%?5 - B 5

~1
We observe that in Lemma 4.1 we set ng = (6 +EXN + ER + 68%5 + 16€PT> . Then, from the inequality above we

have

1 1
<3 +24+ER + € + (2 + 1)8%5 + —68;5.

aZny T o« a?

However, we reach a contradiction since

4 5 16
> — 24 & +EF <a+1>8%6+a28?

a2ng
16,

3 )
>a+2+8DT’R+£DTvB+<a+1>S%5+ T

o?

where we used the fact that o € (0, 1] by assumption (o > 0), and by boundedness of g; and h; for all ¢ € [T]. This
concludes the proof. O

Lemma 5.3. Ifinputs (fi, c;) are drawn i.i.d. from P, and there exists a policy 7 such that Epg(m) < —a and Eph(m) <
—a, then there exists a 0-safe policy with probability at least 1 — §.

Proof. By the definition of «, there exists a policy 7r such that Epg(w) < —« and Eph(mw) < —a. Then, given a time
interval Z = [tq,ts], t1,t2 € [T], by appling the Azuma—-Hoeffding inequality to the martingale difference sequence
Wy, ..., Wr with

Wi = Mge(m) + pehe(mw) — MEgpg(m) — Eph(m),

< (uz + ;) \/2(t2 —t1) log@)

17

we obtain that

>w

tel
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holds with probability at least 1 — §. By applying a union bound we get that the inequalities for each time interval Z hold
simultaneously with probability at least 1 — T'26. Let 8% 5 = 2\/ (ta — 1) log(¥) as per Definition 5.1. Then, with
probability at least 1 — 4 it holds

S Ohutm) + pute(m) < (pz + % )€ s + X OnEg(m) + ioh(m)

tez teT
1
< (MI + a> 8%’5 - OCZ()\t + pit)
teT
< ,uz+l et —aZu
= o )T t-
teT
This concludes the proof. O

Lemma 5.4. If inputs (f;, g:) are selected adversarially, and there exists a policy 7 such that g.(7) < —« and hy(w) < —«
for each t € [T), then there exists a §-safe policy for any 6 € [0, 1].

Proof. By assumption there exists a policy 7r such that g;(mw) < —« and hy(7) < —a« for each ¢ € [T]. Then, for each
t1,t2 € [T], with 1 <ta,itholds 37, (o (Aege(m) + prehe () < = dZicpy (Ao 4 pe) < =y 2iepy, 4, b, Which
implies that 7 is d-safe for any § € [0, 1]. O
E. Proofs for Section 6

Lemma 6.2. Event E holds with probability at least 1 — 2.

Proof. By Lemmas 5.4 and 5.3, we have that in both settings there exists a safe policy with probability at least 1 — 9.
Moreover, by Equation (4.1) with probability at least 1 — ¢ the regret of the primal is upperbounded by MzE&E. for each
interval Z = [t1,ta], t1,t2 € [T]. Applying a union bound sufficies to show that the two events hold simultaneously with
probability at least 1 — 2§. Then, the statement directly follows from Theorem 5.2. O

Lemma 6.3. IfE holds, then
Z he(me) < 1+2/(nza).

te(r]

Proof. By the definition of event E we have that 1., < 2/«. Moreover, by Lemma 4.2 it holds that 1, > 1z >, €lr—1] hi (7).
Hence, > ;e () he(me) < pir/nr +1 < 2/ () + 1. O

Lemma 6.5. Algorithm I guarantees that

Z Mg(xy) >T —7—1/p— &35

te(r]

Proof. We consider two cases.

e If 7 =T, then

1
Z Mgi(me) > —E3° > T — 17— — = &%,
telr] P
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o Otherwise, if 7 < T,

1
D Negilw) = = > gilw) — €77
P te(r)

telr]
1
=- Z (ci(xe) —p) — EDF
P term)

1
= (B-1-7p) - €2
p

= (T—T—1>—87D_’B.
p

where the first inequality follows by the no-regret guarantee of the dual regret minimizer with respect to the fixed choice
of A = 1/p, and then we use the definition of g; and the fact that 7 is the time at which the budget is depleted, that is the
round in which the available budget becomes strictly smaller than 1 (see Algorithm 1).

This concludes the proof. O

Lemma 6.6. Suppose event E holds and that there exists a (0, g, OPT)-optimal policy. Then,
ZtE[T] fi(ay) > qToPT— C(T, v, 6).

Proof. Let * be a (4, ¢, OPT)-optimal policy. Then, we have that
3
7 felw) = D (fulm™) = Mge(m™) = b (77) + Mege(r) + peha () — (a + 1) o

telr] telr]

E 3 3

> * h 9 (2 1 P

- (Fel™) + degel(me) - pehe(e)) = Ers <a * > 7.5

> ST A+ 3 Agele) — e - (3+1)5P53D7R

> P o . ;
% 1 3 3

> E ft(ﬂ-)—i_T_T_p_aET’é_(a—i_l) 575—533—8%3
- 1 3 3

>3 -t S (e e e

1 3
> qTOPT — P ( + 1) (&%5+Ers) — E7° — &77,

where the first inequality comes from the regret bound of the primal regret minimizer, the second follows by the definition
of (4, g, OPT)-optimal policy, the third follows by the no-regret guarantee of the dual regret minimizer with respect to action
w = 0, the fourth one follows from Lemma 6.5. Finally, the fifth inequality follows from the fact that f,(-) € [0, 1], and the
last one is by definition of (J, ¢, OPT)-optimal policy. This proves our statement. O

Lemma 6.7. In the stochastic setting, with probability at least 1 — 20 there exists a (3,1, OP Tp)-optimal policy (where
OPTy is the optimal value of LPp).
Proof. Let 7* be an optimal solution to LP.,. We show that, with probability at least 1 — 4, the policy 7* is (4, 1, 0P T )-

optimal, proving the statement.

First, by Azuma-Hoeffding inequality we have that, for ¢’ € [T'], with probability at least 1 — §

1 1
5 () + (") = MEa(n”) = o) < (o + 3 ) 271085 ).

te(t’]
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where j1[y/) is the largest dual multiplier y; observed up to ¢'. Notice that we cannot upper bound it righ away as 2/ because
here we are not requiring event E (Definition 6.1) to hold. Then, assuming 7" > 2, by taking a union bound over all possible
rounds ¢', we get that the following inequality holds with probability at least 1 — ¢ simultaneously for all ¢’ € [T,

1 T 1
Z (Aege (") + pehe (") — MEpg(m*) — i Eph(m®)) < <M[t'] + a) 2T 10%((5) < <M[t'] + a>8T,5-

te(t’]
> (film) ~ B f(x)| < 2\/@ = er,;
te[T]

holds with probability at least 1 — . Then,

Z fi(m Z Epf(n*) — €5 = OPTy — Ep 5.

te[T] te([T]

Similarly, we can prove that

Assuming 7' > 2 and applying an union bound, the statement follows. O

Lemma 6.8. In the adversarial setting, there always exists a (0, o/ (1 + ), OPT)-optimal policy.

Proof. Let 7° be a strictly feasible policy such that & = — max;c[7) max{g;(7°), h¢(7w°)}, with @ > 0, and let 7* €
arg maX e Y7y ft() be an optimal unconstrained policy. It holds ;. fi(7*) = TOPT5 since the optimal
uncostrained policy is better than the optimal constrained policy, which is a solution to LPx.

Then, consider the policy 7 such that, for each v € V,b € B,

7 (V) + ——7* (0)s,

7T(U)b:ljtog 1+ a

where, given a policy 7, we denote by 7 (v); the probability of bidding b under valuation v.

At each iteration we have that both the budget and the ROI constraints are satisfied by the policy iy (in expectation with respect
to 7). Indeed, for each ¢ € [T], we have thath g;(7) = gt( o)+ i o(m) < 5% + 17, < 0. Similarly, we can
prove that for each ¢ € [T'] it holds h;(#) < 0. Then, the pohcy T satlsﬁes the condition Zte[t, (/\t gt(7) + pehe (7)) <0

for each ¢’ € [T']. Moreover,
a *
)

te[T] te[T]
o
Z Z fi(7™)
te[T] I+a
> OPTx
T l4+a TV
which satisfies the first condition of Definition 6.4. This concludes the proof. O

F. Proofs for Section 7
Lemma 7.2. Suppose Assumption 7.1 holds with k < Erp5/(2Tng). Then, for § > 0, there exists a 0-safe and a
(0, /(1 + ), OPT)-optimal policy.

Proof. First, we need to show that there exists a §-safe policy. In particular, we show that there exists a policy 7° such that,
for any time interval Z = [tq, 5], it holds

D (ege(m°) + e (7°)) < Er5 — Y (e + Ao). (F1)

tel tel
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To do that, we show that the interval Z can be split in smaller intervals of length k, and for each of such smaller intervals Z’,

it holds
Z()\tgt(ﬂ'o) + phi(m°)) < 2k%np — a Z(Mt + At).
teZ’ teT’

We show that this holds for any Z’ of length k in Lemma F.1. Then, the cumulative sum on the original interval Z is at most

S vantw) + ) < || 2020 = o X+ )

teT tel

< 2Tkns — O‘Z(M + M) < €5 — @Z(#t + o),
teT teT

where we set 7 € arg Maxz, 7=k Yper (1t + A¢). This shows that Equation (F.1) holds for any interval Z.

Then, we can show that a (J, a/(1 + «), OPT5)-optimal policy exists. In particular, by defining a policy 7 as in the proof of
Lemma 6.8, we have

D ige(7) + puh () = ﬁ (Z(Atgt@#) + utht<w°>>) + % > (ege(m) + puhu(m))
teT tel teft’]
<Ers— ﬁ teI(Mt +Ae) + 1_;% ;()\t + 1)

3
<E&rs < —Erpp,
8]

where the first inequality is by Equation (F.1). The first condition of Definition 6.4 can be shown to hold with the same steps
of Lemma 6.8. This concludes the proof. O

Lemma F.1. For any time interval T of length k, there exist a policy 7° € 11 for which it holds

Z()\tgt(ﬂ'o) + pehe(°)) < 2k*np — 042(/% + At).
tel teT

Proof. Given an interval Z of lenght , let (), z) be the largest Lagrangian multipliers in the interval Z, and let (), 1) be the

smallest Lagrangian multipliers in such interval. Let G = max{jx A0 — I } Then, we have G < kng since 75 is more
aggressive than 7z (see Section 4.4), and there are at most k£ gradient updates in the interval. Then,

Z()\tgt( )+ pehe(m Z )\gt Z Agi(°) + Z fihy (e Z pge(m

tel teT: tel: tel tel:
gt (7°)>0 gt (7°)<0 thy(w®)>0 hy(w®)<0

< - E ge(m°) + ok | + E Agi(7°)
teT: teT:
g1 (mw°®)<0 g1 (w°)<0

— i th ) +ak |+ Zﬂgt °)

tel: tel:
he(7°)<0 he(7°)<0

< kG — ak\ + kG — akfi
< 2kG — O‘Z(At + put)

tel

< 2k%ns — Z()\t + p1e),

tel

where the second inequality comes from ), _; g¢(7w°) < —ak and ), 7 hy(7°®) < —ak. This concludes the proof. [

21



Online Learning under Budget and ROI Constraints via Weak Adaptivity

G. Application to Non-truthful Auctions

Recently, many advertising platforms have been transitioning from the second-price auction format toward a first-price
format (Akbarpour & Li, 2018; Despotakis et al., 2021; Paes Leme et al., 2020).This is the case, for example, for Google’s
Ad Manager and AdSense platforms (Bigler, 2019; Wong, 2021). It is not clear what is an appropriate online bidding
strategy for a budget- and ROI-constrained bidder participating in a series of non-truthful auctions. While second-price
auctions are a truthful mechanism, meaning that bidders can bid their true value and maximize their utility, this is not
the case for first-price auctions. This makes existing results for the second-price setting inapplicable to the non-truthful
setting (Balseiro & Gur, 2019; Feng et al., 2023).

We show that our framework can be used to manage bidding in repeated non-truthful auctions under budget and ROI
constraints. We will focus on the case of repeated first-price auctions, and we will make the simplifying assumption of
having a finite set of possible valuations and bids. Extending our results to the continuous-bid setting is an interesting open
problem, and it would amount to designing a suitable primal regret minimizer to plug into our framework. One option to
accomplish this would be to adapt techniques designed for the unconstrained setting by Han et al. (2020a;b).

At each round ¢ € [T, the bidder observes their valuation v; extracted from a finite set )V C [0, 1] of n possible valuations.
The set X C [0, 1] is interpreted as the finite set of m possible bids. Let 5; be the highest-competing bid at time ¢. In the
value-maximizing utility model for each ¢ we have f;(x;) := v;1[x; > (;] (Babaioff et al., 2021; Balseiro et al., 2021), and
the cost function is ¢;(z;) := x4 1[xy > 5], where the indicator function 1[z; > ;] specifies whether the bidder won the
auction at time ¢. In general, we can handle any reward of the form f;(z;) := (vy — wx¢)1[as > B¢], withw € [0, 1]. We
extend the definition of policies from Section 3 to model randomized bidding policies. Each policy 7 € II is now a mapping
7 :V — Ax. We denote by 7 (v), the probability of selecting 2z under valuation v.

In order to apply Algorithm 1 and obtain the guarantees of Theorem 6.9 and Theorem 6.10 we have to design a suitable
primal regret minimizer satisfying Equation (4.1). The following result is a rewriting of Theorem 8.1 providing an explicit
regret bound.

Theorem G.1. Letn = 1, n := 1/vVmT, § = 1/(2v'mT), 0 := 1/T, and assume that 1 < 1/Mp. For any 6 > 0,
EXP3-SIX guarantees that, w.p. at least 1 — 6, for any interval Z, and for any x € X,

ez (Ui (@) = €7 (x)) < MZE7 5, where

3 T
5= (2 +4log (%) M+ (10g(T)+1)MIQ> vmT.

G.1. Proof of Theorem 8.1

In order to proceed with the analysis of Algorithm 2, let p;11 € [0, 1]™ be the vector of pre-weights for time ¢ + 1, which is
defined as

e (ve)o exp{—1f; ()}
> wex Tt(ve)e exp{—nti (z')}
Then, we have the following intermediate result.

Lemma G.2. Let 1) > 0 be such that nEn0?(z) < 1 forall t € [T] and 7 € IL. Then, for any t € [T, and x' € X, it holds

forallz € X.

Pt+1,2 =

)} )i 1 Pt+1,2/ Nl 70/ N2
P —_0P()) < = ) i P
B0 Vt (x)} ) < n 10g<77t(vt)a:/> * 2E[€t () }

Proof. Lety := m(v;) € A,,. By the fact that, forany n > 0, e™™ < 1 — n + n?/2, we have that

2

—logE, [677,[5(;,;)] > —log (1 —nEy [[tp (z)] + %]Ey [Zf(cc)ﬂ)

log E, 5] < ik, [ (2)] + LB, [ (@)?].
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where the second inequality holds since, by assumption, nlE,, [[f (x)} < 1, which implies that the argument of the logarithm
is strictly greater than 0. Then, by definition of the preweights p; 1, we have that, for any 2’ € X,

MEy |G (2)] < —10gEy [e™77)] 4 %QEy [ @]

L=l (2) 2 -
_ lg(> e [

DPt+1,2’
This yields
B o0 [E0)] ~ ) < Stog( 2 4 T [ (07)
' n Tt (V) 2
for any possible alternative bid 2’ € X. O

Theorem 8.1. Letn =1, n:=1/vmT, £ :=1/(2vmT), o .= 1/T. For any § > 0, EXP3-SIX guarantees that, w.p. at
least 1 — 0, for any interval Z, and for any x € X,

S ier(b (@) — (@) < O(VimTlog(L)).
Proof. In order to increase the readability, we will write 7r, in place of 7, (v) since v € V is constant throughout the proof
(i.e., n = 1).

By definition of £, we have that for any z € X and 7w € Ay, B6} (z) < E[1[z = 2] () /7] = £ (z). Therefore, since
by assumption we have 1 < 1/M|z), where M)y is the maximum range of the loss functions ¢} over the time horizon, the
assumption of Lemma G.2 holds. Then, for any interval [t1, 2], with ¢1,t5 € [T], t1 < t2, by Lemma G.2 we have that for

any 7’ € X,
> (ExlG@]-Ga)) < > <1log<pt““'> + 2 Ex, [Eg’(x)ﬂ).
tE€[t1,t2] telts to] n T,z

Moreover we have that

Pt+1,27 _ 1 Dtz
Z 10g<7rw >_1Og(7rt1,m/) + Z log<m,z/) + log(pto+1,27)

te(t1,ta] tet141,t2]

<log(Z)+ Y log(lio>.

tet1+1,tz]

The last inequality holds since, for any t € [T] and « € X,

(1- U)wt,xe_n[i(z) + 2> cx wme—néi(i)

Tt = AG o P (i
Zieé\’((l — o)wy e 0 + oo Zjex wy, ;e t(1)>
_a- o)weae MW + Z 57y w150
i weie 150
—nf? )
>(1- )wt’ze e ZieX Wt,i

. Y
Dicx Wi D icx Wit e (9)

ﬂ-tﬁwe—n@f(ﬁ)

=0 U)Em [e=nfic0]

=(1- U)pt+1,m7
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where we used the definition of 7; and p; as per Algorithm 2.

Then,

3 (Em@(m)—[z@'))g;(log(?)ﬂtz—tl—l)log(l1 )) 7y Er, |7 (2)?].

te(ty,tz2] te(ty,ta]

(G.1)

Neu (2015, Lemma 1) states that given a fixed non-increasing sequence (&;) with & > 0, and by letting 3; ; be a nonnegative

random variable such that 8; ; < 2&; for all ¢ and ¢ € X, then with probability at least 1 — 4,
Z Zﬁm( ) — 4 (i )) < log(1/9).
te[T]ieX

Then, for any bid 7 € X, by setting

)

0 otherwise

261[i=y] ifteZ
Bt =
and by applying a union bound we obtain that, with probability at least 1 — 9,

%o ey < Mzlog(m/o)
;(m—m) T

where M7 is the maximum range of the loss functions ¢} over time interval Z.
Moreover, from the definition of [tp (see Algorithm 2), we have that

P NACIESY (zP (z) = > & (x )

tel tel reX

Finally, given ¢ € Z, we observe that

Eonm (5 ()2 = > (w10 6 () 6 (2) < Mz > 6 (2

zeX reX

Finally, we conclude by showing that, for any x € X', with probability at least 1 — 9,

Z (6} (zy) — €3 (x Z 0 (x M Z (z)  (by Equation (G.2))

tefty,ta] tG[tl to] te(ty,ta]

MO L S e+ Y (BnfiG)- )

te(t,ta] IEX te[ty,ta]
(by Equation (G.3))
M~1 d)
< Lm/ Z Zggp + MZ Z ZKP
tE[t1 t2] iI€EX tE[t1,ta] i€EX

()

(by Equation (G.1) and Equation (G.4))

o Mz log(m/4)
S

nMzm

+ (ta — t1)mEMz + (t2 — t1)

n % (1og(7:) oty —t —1) log<1_10>).
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with probability at least 1 — §

By setting n = \/%, &= W
(leog(:?) —Hog(%) (T — 1)log(1 — ))

S () - 6@ < Jube 1)y + VT
S a2t - tl)\/?—i— \/nﬁ(zMI log(%) —log(a( U)T—l)).

<
=5 T
—zlogz — (1 — z)log(1l — z) be the binary entropy function for z € [0, 1], we have that, for

te(ty,ta]
zlog(e/z) (see, e.g., Cesa-Bianchi et al. (2012, Corollary 1)). Then, for o = 1/T, we have that

w

1],

By letting h(z) =
€ [0,1], h(2) =
—log 0(1 —0)T=1 <log(eT). This yields
3. 9 m m
§MI(t2 —t1)4/ T + \/mT(ZMI log(g) + log(eT))

Y (Gx) — (@) <

tE[t1,t2]
By taking a union bound over all possible intervals [¢1, {2] we obtain that, with probability at least 1 — §
3
T

S () - E@) < QMg(tQtl)\/?+\/ﬁ(4leog("f)+1og( )+1>
mT)+log(T)+1>m,

tE[t1,t2]
3
gM%( +E1 (5 VE
A

which proves our statement
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