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Abstract

Feature learning is thought to be one of the fundamental reasons for the success of deep
neural networks. It is rigorously known that in two-layer fully-connected neural networks under
certain conditions, one step of gradient descent on the first layer can lead to feature learning;
characterized by the appearance of a separated rank-one component—spike—in the spectrum of
the feature matrix. However, with a constant gradient descent step size, this spike only carries
information from the linear component of the target function and therefore learning non-linear
components is impossible. We show that with a learning rate that grows with the sample size,
such training in fact introduces multiple rank-one components, each corresponding to a specific
polynomial feature. We further prove that the limiting large-dimensional and large sample
training and test errors of the updated neural networks are fully characterized by these spikes.
By precisely analyzing the improvement in the training and test errors, we demonstrate that
these non-linear features can enhance learning.

1 Introduction

Learning non-linear features—or representations—from data is thought to be one of the fundamental
reasons for the success of deep neural networks (see e.g., [BCV13| [DKD16, YH21,[SWL22, RBPB22],
etc.). This has been observed in a wide range of domains, including computer vision and natural
language processing. At the same time, the current theoretical understanding of feature learning is
incomplete. In particular, among many theoretical approaches to study neural networks, much work
has focused on two-layer fully-connected neural networks with a randomly generated, untrained first
layer weights and a trained second layer—or random features models [RRQT]. Despite their simplicity,
random features models can capture various empirical properties of deep neural networks, and have
been used to study generalization, overparametrization and “double descent”, adversarial robustness,
transfer learning, estimation of out-of-distribution performance, and uncertainty quantification (see
e.g., [MM22, [HJ22, [TAP21, LMH™23, BM23|, (CLKZ23| [LD21, [ALP22], etc.).

Nevertheless, feature learning is absent in random features models, because the first layer weights
are assumed to be randomly generated, and then fixed. Although these models can represent
non-linear functions of the data, in the commonly studied setting where the sample size, dimension,
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Figure 1: Spectrum of the updated feature matrix for different regimes of the gradient step size 7.
Spikes corresponding to monomial features are added to the spectrum of the initial matrix. The
number of spikes depends on the range of a. See Theorems and for details.

and hidden layer size are proportional, under certain reasonable conditions they can only learn the
linear component of the true model—or, teacher function—and other components of the teacher
function effectively behave as Gaussian noise. Thus, in this setting, learning in a random features
model is equivalent to learning in a noisy linear model with Gaussian features and Gaussian noise.
This property is known as the Gaussian equivalence property (see e.g., [GLR'22, [ALP22, [AP20a),
MM22, MS22, [HL23|). While other models such as the neural tangent kernel [JGHIS, [DZPS19] can
be more expressive, they also lack feature learning.

To bridge the gap between random features models and feature learning, several recent approaches
have shown provable feature learning for neural networks under certain conditions; see Section for
details. In particular, the recent pioneering work of [BES™22| analyzed two-layer neural networks,
trained with one gradient step on the first layer. They showed that when the step size is small,
after one gradient step, the resulting two-layer neural network can learn linear features. However,
it still behaves as a noisy linear model and does not capture non-linear components of a teacher
function. Moreover, they showed that for a sufficiently large step size, under certain conditions, the
one-step updated random features model can outperform linear and kernel predictors. However,
the effects of a large gradient step size on the features is unknown. Moreover, what happens in the
intermediate step size regime also remains unexplored. In this paper, we focus on the following key
questions in this area:

What nonlinear features are learned by a two-layer neural network after one gradient
update? How are these features reflected in the singular values and vectors of the feature
matriz, and how does this depend on the scaling of the step size? What is the improvement
in the training and test errors due to the nonlinear features learned?

Main Contributions. Toward answering the above questions, we make the following contributions:

e We study feature learning in two-layer neural networks. Specifically, we follow the training
procedure introduced in [DLS22, BES™22] where one step of gradient descent with step size 7
is applied to the first layer weights, and the second layer weights are found by solving ridge
regression on the updated features. We consider a step size n < n®, a € (0, %) that grows with
the sample size n and examine how the learned features change with « (Section [2.1]).

e In Section [3] we present a spectral analysis of the updated feature matrix. We first show that
the spectrum of the feature matrix undergoes phase transitions depending on the range of «.



In particular, we find that if o € (%, Tf_Q) for some ¢ € {1,2,...}, then ¢ separated singular

values—spikes—will be added to the spectrum of the initial feature matrix (Theorem |3.2).
Figure [1]illustrates this finding.

e Building on perturbation theory for singular vectors, we argue that the left singular vectors
(principal components) associated with the ¢ spikes are asymptotically aligned with polynomial
features of different degrees (Theorem @ In other words, the updated feature matrix will
contain information about the degree-¢ polynomial component of the target function.

e The Gaussian equivalence property [HL23,[MM22], an essential tool to analyze random features
models, fails after a gradient update with a large step size n. To overcome this difficulty, we
establish equivalence theorems (Theorem and stating that the trained features F can
be replaced by sum of the untrained features Fy and ¢ spikes without changing the training
and test errors. Then, by applying the Gaussian equivalence to the untrained component Fy,
we provide a precise characterization of the training and test errors in the high-dimensional

proportional regime (Theorem and .

e From the derived results, we show that in the simple case where ¢ = 1, the neural network
does not learn non-linear functions. However, in the £ = 2 regime, the neural network in fact
learns quadratic components of the target function.

1.1 Related Works

Theory of shallow neural networks. Random features models [RRO7] have been used to study
various aspects of deep learning, such as generalization [MM22| [ALP22| [LD21, MP21], adversarial
robustness [HJ22, BKM23|, transfer learning [TAP21], out-of-distribution performance estimation
[LMH™"23|, uncertainty quantification [CLKZ23], stability, and privacy [BM23|. This line of work
builds upon nonlinear random matrix theory (see e.g., [PW17, [LLC18, [FW20, [BP21], etc.) studying
the spectrum of the feature matrix of two-layer neural networks at initialization.

Two-layer neural networks have been studied extensively in the mean-field regime (see e.g.,
[CB18, MMN18, MMM19, [SS20, RVE22], etc.), and the neural tangent kernel (NTK) regime (see
e.g., [JGHI1S, [LXS™19, [HY20], etc.). However, these results often require the neural net to have an
extremely large width. In particular, in the NTK regime, this large width will result in features
not evolving over the course of training and the model behaves similar to classic kernel methods.
I[GMMM21] show that for NTKs and other kernel methods, with a sample size linear in size of
the input, non-linear functions cannot be learned. See also [Mis22, XHM™22, [LY22]. Perturbative
corrections to the large-width regime to capture feature learning have also been studied in the
literature (see e.g., [Yai20, [HN19, [SNR23, NR21], etc.). See Section@ for more discussion on related
work in deep learning theory.

Feature learning. The problem of feature learning has been gaining a lot of attention recently.
[DLS22] study the problem of learning polynomials with only a few relevant directions and show a
sample complexity improvement over kernel methods. |[CHS™23] extend these results and analyze
multi-task feature learning in two-layer ReLU networks. [WES™22| empirically show that if learning
rate is sufficiently large, an outlier in the spectrum of the weight and feature matrix emerges with
the corresponding singular vector aligned to the structure of the training data. [NDL23, WNL23]



provide theoretical evidence that three-layer neural networks have provably richer feature learning
capabilities than their two-layer counterparts.

Recently, [BEST22] show that in two-layer neural networks, when the dimension, sample size
and hidden layer size are proportional, one gradient step with a constant step size on the first
layer weights can lead to feature learning. However, non-linear components of a single-index target
function are still not learned. They further show that with a sufficiently large step size, when
the teacher function has a non-zero first Hermite coefficient, and under certain conditions, the
updated neural networks can outperform linear and kernel methods. However, the precise effects of
large gradient step sizes on learning nonlinear features, and their precise effects on the loss remain
unexplored. [DKL™23| show that with a sample size proportional to the input dimension d, it is only
possible to learn a single direction of multi-index teacher function using gradient updates on the first
layer of a two-layer neural network. They also show that for single index models with information
exponent (the index of the first non-zero Hermite coefficient) «, there are hard directions whose
learning requires a sample size of order O(d"). See also [BAGJ21].

High-dimensional asymptotics. We use tools developed in work on high-dimensional asymp-
totics, which dates back at least to the 1960s [Rau67, [Dee70, [Rau72]. Recently, these tools have
been used in a wide range of areas such as wireless communications (e.g., [TV04, [CD11], etc.),
high-dimensional statistics (e.g., [RY04, [Ser07, [PA14, YBZ15, [DW18], etc.), and machine learning
(e.g., [GT90, [Opp95, IOK96, [CL22, [EVdBO1], etc.). In particular, the spectrum of so-called infor-
mation plus noise random matrices that arise in Gaussian equivalence results has been studied in
[DS07, [Péc19] and its spikes in [Capl4].

2 Preliminaries

Notation. We let N = {1,2,...} be the set of positive integers. For a positive integer d > 1, we
denote [d] = {1,...,d}. We use O(+) and o(-) for the standard big-O and little-o notation. For a
matrix A and a non-negative integer k, A°%* = Ao Ao...o A is the matrix of the k-th powers of
the elements of A. For positive sequences (Ay,)n>1, (Bp)n>1, we write A, = ©(B,,) or A, < By, or
A, = B,, if there is C,C" > 0 such that CB,, > A, > C’'B,, for all n. We use Op(-), op(-), and Op(-)
for the same notions holding in probability. The symbol —p denotes convergence in probability.

2.1 Problem Setting

In this paper, we study a supervised learning problem with training data (x;,y;) € R x R, for
i € [2n], where d is the feature dimension and n > 2 is the sample size. We assume that the data is
generated according to

z; N0, 1), and y; = fi(ms) + e, (1)

in which f, is the ground truth or teacher function, and ¢; i N(0, 02) is additive noise.

We fit a model to the data in order to predict outcomes for unlabeled examples at test time; using
a two-layer neural network. We let the width of the internal layer be N € N. For a weight matrix
Whan € RV*?an activation function o : R — R applied element-wise, and the weights any € RY
of a linear layer, we define the two-layer neural network as fwyy.axx (%) = a@xno (WNNT) -
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Following [DLS22, BES™22], for the convenience of the theoretical analysis, we split the training

data into two parts: X = [x1,...,2,)" € R y = (y1,...,y,)" € R" and X = [Tni1,. .., Ton]! €
Rnde g = (yn+17 o 7y2n)T € R™.

We train the two layer neural network as follows. First, we initialize axy with @ = (ag,...,ayn)"
where a; <" N (0,1/N) and initialize Wy with Wo = [wo,...,woy] € RVX4, gy, "K'

Unif(S?!) where S%! is the unit sphere in R? and Unif(S%!) is the uniform measure over it.
Although we choose this initialization for a simpler analysis, many arguments can be shown to hold
if we switch from the uniform distribution over the sphere to a Gaussian; for example, see Section
Fixing ann at initialization a, we perform one step of gradient descent on Wyn with respect
to the squared loss computed on (X, y). Recalling that o denotes element-wise multiplication, the
negative gradient can be written as

0 1 2 1
G = — *H o (XWY, H :f[ T _aaTo(WoX T ’WXT]X,
v Lo v o OWEal| = (e - e (WX ) (WX )
and the one-step update is W = [wl, . ,'wN]—r = Wy + 1 G for a learning rate or step size 1.

After the update on Wy, we perform ridge regression on a using (X,4). Let F = o(XW ') €
R™*N be the feature matrix after the one-step update. For a regularization parameter A > 0, we set

A sy N Ry 2 2 (@T T
a =a(F) =argmin— |y — Fall; + A|a|lz = (F' F+Anly) F'g. (2)
acRN T

Then, for a test datapoint with features x, we predict the outcome § = fw 4(x) = a'oc(We).

2.2 Conditions

Our theoretical analysis applies under the following conditions:

Condition 2.1 (Asymptotic setting). We assume that the sample size n, dimension d, and width
of hidden layer N all tend to infinity with

d/n—¢>0, and d/N—1>0.

We further consider the following model for the teacher function, leading to a single-index model.

Condition 2.2. We let f, : R? = R be fi(x) = o (xB,) for all , where 3, € R? is an unknown
parameter with 3, ~ N(0, éId) and o, : R — R is a O(1)-Lipschitz teacher activation function.

This condition is in line with prior work (see e.g., [BEST22, [HL23, IGLR22], etc.). Recently,
[DKL"23] showed that under Condition E, two-layer neural networks trained with one gradient
descent step can only learn a single-index approximation of a multi-index model. This shows that
when studying a single-step update, is not restrictive.

We let Hy, k > 1 be the (probabilist’s) Hermite polynomials on R defined by

k
Hi(w) = (<1 exp(a?/2) 7 exp(—22 2),



for any 2 € R. These polynomials form an orthogonal basis in the Hilbert space L? of mea-
surable functions f : R — R such that [ f2(z)exp(—2%/2)dz < oo with inner product (f,g) =
[ f(x)g(x) exp(—x?/2)dz. The first few Hermite polynomials are Ho(xz) = 1, Hi(z) = z, and
HQ({L‘) = 1‘2 — 1.

Condition 2.3. The activation function o : R — R has the following Hermite expansion in L?:

o(2) = Y aHi(2), = Bz lo(Z)Hy(2)]
k=1

The coefficients satisfy c1 # 0 and cik! < Ck=3— for some C,w > 0 and for all k > 1. Moreover,
the first three derivatives of o exist almost surely, and are bounded.

Note that in this paper, unlike [HL23|, we do not require the activation function to be odd. The
reason is that here, unlike [HL23|, we do not analyze the problem for a general loss function and
use a proof technique specialized for squared loss. We remark that the above condition requires
co =0, i.e., that Eo(Z) = 0 for Z ~ N(0,1). This condition is in line with prior work in the area
(e.g., [AP20a, IBEST22], etc.), and could be removed at the expense of more complicated formulas
and theoretical analysis. The smoothness assumption on ¢ is also in line with prior work in the
area (see e.g., [HL23, BEST22], etc.). Note that the above condition is satisfied by many popular
activation functions (after shifting) such as the ReLU o(x) = max{z,0} — \/%7, hyperbolic tangent

1
14+e—2

ef—e "
ex +67(L’ 9

o(x) = and sigmoid o(z) = — 1, for all z.
We also make similar assumptions on the teacher activation:
Condition 2.4. The teacher activation o, : R — R has the following Hermite expansion in L*:

1

0x(2) = ) capHi(2), cop = nEzlox(2)Hi(Z)],
k=1

‘ 0 1
with Z ~ N(0,1). Also, we define c, = (D -4 /@!cz’k)z

3 Analysis of the Feature Matrix

The first step in analyzing the spectrum of the feature matrix F is to study the negative gradient G.
It is shown in [BES™22, Proposition 2] that in operator norm, the matrix G can be approximated by
the rank-one matrix c;aB’ with high probability, where the Hermite coefficient ¢; of the activation

o is defined in Condition and B = %XTy € R9. Moreover, under Conditions [BES™22]
show that B can be understood as a noisy estimate of 3,, namely

18, 8] L 1] .
18.ll21181l2 \/0371 + ¢(c2 + 02)

(3)

See also Lemma In particular, if the sample size used for the gradient update is very large; i.e.,
¢ — 0, B will converge to being completely aligned to 3,.

Building on this result, we can prove the following rank-one approximation lemma. Note that the
updated feature matrix can be written as F = o(X(Wg 4+ 7G) ") and terms of the form (XG 1)k,
k € N, will appear in polynomial and Taylor expansions of F' around Fy. In the following lemma,
we show that for any fixed power k, these terms can be approximated by rank one terms.
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Figure 2: Histogram of the scaled singular values (divided by y/n) of the feature matrix F = o(XW)
after the update with step size n = n%2% (¢ = 2). In this regime, two isolated spikes appear in the
spectrum as stated in Theorem [3.2. The top two left singular vectors u; and wus are aligned with
X3 and (Xﬁ)oz, respectively. See Section || for the simulation details.

Lemma 3.1 (Rank-one approximation). If Conditions hold, then there exists C' > 0 such
that for ¢y from Condition [2.5, for any fized k € N,

I(XGT)™ — el (XB)* (@) Tlop < C*n~2 log™ n
with probability 1 — o(1).

Next, we will show that after the gradient step, the spectrum of the feature matrix F will consist
of a bulk of singular values that stick close together—given by the spectrum of the initial feature
matrix Fy = O'(XWS— )—and ¢ separated spike where / is an integer that depends on the step
size used in the gradient update. Specifically, when the step size is n < n® with 42_—; <a< ﬁ for
some £ € N, the feature matrix F can be approximated in operator norm by the untrained features
Fo = O‘(XW(—)F ) plus ¢ rank-one terms, where the left singular vectors of the rank-one terms are

aligned with the non-linear features X - (X3)°%, for k € [(]. See Figure .

Theorem 3.2 (Spectrum of feature matrix). Let n =< n® with ZQ_—; <a< Teﬁ for some £ € N. If
Conditions hold, then for cj, from Condition and Fo = o(XW, ),

0
F=F,+A, with Fy=Fo+ ) cfan®(XB8)* @™, (4)
k=1

where ||Allop = o(y/n) with probability 1 — o(1).

To understand (X3)°*(a®*)", notice that for a datapoint with features &;, the activation of each
neuron is proportional to the polynomial feature (.’i:;rﬁ)k , with coefficients given by a°* for the
neurons. The spectrum of the initial feature matrix Fy is fully characterized in [PW17, BP21, BP22,
LLC18, [FW20], and its operator norm is known to be Op(y/n). Moreover, it follows from the proof
that the operator norm of each of the terms c¥epn*(XB8)°%(a®*)7, k € [¢] is with high probability of
order larger than y/n. Thus, Theorem identifies the spikes in the spectrum of the feature matrix.

Proof Idea. We approximate the feature matrix F = o(X(Wg +7G)") by a polynomial using
its Hermite expansion. Next, we use the binomial expansion and apply Lemma to approximate

!Using terminology from random matrix theory [BS10] [YBZ15].



(XG )%k by k(XB)°*(a*)T, for all k. Then, spike terms with k > ¢ 4+ 1 are negligible since we
can show that their norm is Op(nkoﬂ'%_%) = op(\/n).

The special case where a = 0 is discussed in [BEST22, Section 3], which focuses on the spectrum
of the updated weight matrix W = Wq + nG. However, here we study the updated feature matrix
F = 0(X(Wy +nG)T) because that is more directly related to the learning problem—as we will
discuss in the consequences for the training and test errors below.

In the following theorem, we argue that the subspace spanned by the non-linear features {U(X'wi)}ie[ N]
can be approximated by the subspace spanned by the monomials {(Xﬁ)Ok}kem. For two /(-
dimensional subspaces U;,Us C R”, with orthonormal bases Uy, Uy € R™ ¢, recall the principal
angle distance between U, Us defined by d(Uy,Us) = ming ||U; — U2Q||op, where the minimum is
over ¢ x ¢ orthogonal matrices [SS90]. This definition is invariant to the choice of Uy, Us.

Theorem 3.3. Let Fy be the {-dimensional subspace of R"™ spanned by top-£ left singular vectors
(principal components) of . Under the conditions of Theorem we have

d(Fg, span{(XB)** ) —p 0.

This result shows that after one step of gradient descent with step size n < n® with 657} <a< Tiw

the subspace of the top-£ left singular vectors carries information from the polynomials {(X3)°%} kel
Also, recall that by equation (3] the vector 3 is aligned with 3,. Hence, it is shown that F; carries
information from the first ¢ polynomial components of the teacher function.

Proof Idea. We use Wedin’s theorem [Wed72] to characterize the distance between the left
singular vector space of Z£:1 chepn®(XB3)°k(a°%)T and that of F. Here, we consider the matrix
Fo + A as the perturbation term.

4 Learning Higher-Degree Polynomials

In the previous section, we studied the feature matrix F and showed that when 1 < n® with
22—7} <a< ﬁ, it can be approximated by Fy = O'(XWS— ) plus ¢ rank-one or spike terms. We
also saw that the left singular vectors of the spike terms are aligned with the non-linear functions
X (Xﬁ)Ok . Intuitively, this result suggests that after the gradient update, the trained weights
are becoming aligned with the teacher model and we should expect the ridge regression estimator
on the learned features to achieve better performance. In particular, when a > 0, we expect the
ridge regression estimator to capture the non-linear part of the teacher function. This is impossible
for n = O(1) |BEST22] or n = 0 [HL23| MM22].

In this section, we aim to make this intuition rigorous and show that the spikes in the feature
matrix lead to a decrease in the error achieved by the estimator. Moreover, for large enough step
sizes, the model can learn non-linear components of the teacher function. For this, we first need to
prove equivalence theorems showing that instead of the true feature matrix F, the approximations
from Theorem can be used to compute error terms (i.e., the effect of A on the error is negligible).



4.1 Equivalence Theorems

The Gaussian equivalence property (|GLRT22, [HL23, IMS22], etc.) implies that the training and
test errors of a random features model are asymptotically the same as that of a noisy linear model.
In other words, the limiting behavior of these quantities is unchanged if we replace the untrained
feature matrix Fg = O‘(XW(—)F) with Fy = cl)NCW(T + ¢s1Z, where Z € R™V is an independent
random matrix with i.i.d. N(0,1) entries.

This property has been used extensively in work on random features models (see e.g., [AP20b)
AP20a), [TAP21] IMP21], etc.) as it provides a powerful tool to analyze non-linear random matrices.
However, the Gaussian equivalence property fails when the weight matrix W is updated with a
large gradient descent step [BEST22], posing a significant challenge to the analysis.

In this section, we first prove that we can replace the trained features F with their approximation
F; from Theorem [3.2 in terms of F( and spikes, without changing the limiting training and test
errors. Then, in the next sections we will see that the training and test errors can be derived by
applying the Gaussian equivalence property to the untrained features Fy only.

Given a regularization parameter A > 0, recalling the ridge estimator a(F) from equation [2| we
define the training loss
L. - 2 - 2
Lo(F) =~y — Fa(F)[l3 + Alla(F)]>.
In the next theorem, we show that when 1 < n® with % <a< %;2, the training loss L, (F) can
be approximated with negligible error by L;(F;). In other words, the approximation of the feature
matrix from Theorem can be used to derive the asymptotics of the training loss.

Theorem 4.1 (Training loss equivalence). Let n =< n® with 42_—; <a< 2%% for some £ € N and
recall Fy from equation [f If Conditions hold, then for any fixred X > 0, with probability
1 —o(1) we have

L (F) — L (Fy) = o(1).

Similar equivalence results can also be proved for the test error, i.e., the average test loss. For
any a € RV, we define the test error of @ as Li.(a) = Egy(y — fTa)?, in which the expectation is
taken over (z,y) where f = o(Wzx) with & ~ N(0,1;) and y = f.(x) + ¢ with e ~ N(0,02). The
next theorem shows that one can also use the approximation of the feature matrix from Theorem
to derive the asymptotics of the test error.

Theorem 4.2 (Test error equivalence). Let < n® with ZQ_—; <a< ﬁ for some £ € N, and Fy be
defined as in equation . If Conditions hold, then for any XA > 0, if Lie(a(F)) —p Lr and
Lic(a(Fy)) —p Lr,, we have L = LF,.

Proof Idea. To prove Theorem we show first show that the norm of the trained second layer
weight a, is Op(1). Then, we use Theorem @ to conclude the proof. To prove Theorem @, we
will use a free-energy trick |[ASH19, HL23| [HJ22]. We first extend Theorem E and show that for
any A, ( > 0, the minima over a of

1
Re(a,F) = —[|§ - Fall; + Mal3 + (Lic(a),



for F = F and F = Fy are close. Then, we use this to argue that the limiting test errors are also
close.

With Theorem 4.1 and [4.2 in hand, for n < n®, we can use the approximation F,—with the
appropriate /—of the feature matrix F to analyze the training and test error.

4.2 Analysis of Training and Test Errors

In this section, we quantify the discrepancy between the training loss of the ridge estimator trained

on the new—Ilearned—feature matrix F and the same ridge estimator trained on the untrained

feature matrix Fy. We will do this for the step size n < n® with ZQ_—; <a< Tiz for various £ € N.

Our results depend on the limits of traces of the matrices (FoFg + AnL,)~' and X' (FoFJ +
AnI,) 'X. These limits have been determined in [ALP22, [AP20a], see also [PW17, [Péc19], and
depend on the values mq,mo > 0, which are the unique solutions of the following system of coupled
equations, for A > 0:

¢ (m1 —ma) (2 ym1 + cima) + ¥(m1,my) = 0,

f; (Emama + ¢ (ma —ma)) + ¥ (my, ma) =0, (5)

where W(mi,m2) = c2mima (Mpmi/é — 1) and 1 = (3 poy klc2)/2. Here, my is the limiting
Stieltjes transform of the matrix %FOFJ and my is an auxiliary transform. For instance, we leverage
that under Condition we have

lim (X (FoF] + Anl,) 'X)/d = my/¢ > 0,

d,n,N—oc0

lim  tr((FoF + Anl,)™Y) = ¢mi/¢ > 0.

d,n,N—oc0

See Lemma and its proof for more details. For instance, as argued in [PW17, [ALP22], these
can be reduced to a quartic equation for m; and are convenient to solve numerically. However, the
existence of these limits does not imply our results; on the contrary, the proofs of our results require
extensive additional calculations and several novel ideas.

Theorem 4.3. If Conditions are satisfied, and we have c1,--- ,¢c¢ # 0, as well as n < n®
with ﬁ;—; <a< Jﬁ, then for the learned feature map F and the untrained feature map Fg, we have

Etr(FO) - Ltr(F) —p Aé Z 07
where Ay can be found in Section L.

The expression for Ay is complex and given in Section [[] due to space limitations. For a better
understanding of Theorem [4.3] we consider two specific cases, £ = 1 and £ = 2.

Corollary 4.4. Under the assumptions of Theorem @, for £ =1, we have L;(Fo) — L:(F) —p Ay
with
w)\cilmg
olei + o(cd +02)]
For ¢ =2, we have L(Fo) — Lt (F) —p Ao with
4w>\cilci2m1
30[6(c; +02) + ¢ 1]

Aq = (6)

Ag = A1 + > 0. (7)
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The above result shows that after one gradient step with sufficiently large step size, the model
can fit nonlinear components of the teacher function. This is impossible with a small step size.
For example, when ¢ = 1, the improvement in the loss is increasing in the strength of the linear
component c, 1, keeping the signal strength c, fixed. This is not the case for the strength of the
non-linear component ci>1 =c? - 63,1-

When we further increase the step size to the ¢ = 2 regime, the loss of the trained model will drop
by an additional positive value, depending on the strength c, o of the quadratic signal, which shows
that the quadratic component of the target function is being fit. Also, note that if ¢, 1 = 0; i.e., if
the information exponent (the index of the first non-zero Hermite coefficient) of o, is greater than
one, the gradient step does not change the limiting loss. In this case, according to equation |3 the
alignment between the learned direction 3 and the true direction 3, will converge to zero. It is
known that learning single-index functions with information exponent greater than one requires a
sample size of order larger than d [DKL™23].

The limiting value of the test error can be analyzed similarly.

Theorem 4.5. Let Conditions and the assumptions of Theorem[{.Z hold. If ¢c1 # 0, then
for £ =1, we have Lie(a(Fo)) — Lie(a(F)) —p A1 with

>0, (8)

where I'y does not depend on the target function.
If further co # 0, then for £ = 2, we have Lie(a(Fo)) — Lie(a(F)) —p Az with
03,103,2F2

Ao = A+
2T 2 e( + o)

>0, (9)

where 'y does not depend on the target function. The complete expressions for 'y and I's can be
found in equation [65 and equation [88, respectively.

Similar to the training loss result, when ¢ = 1, the improvement in the test error is increasing in
cx,1; keeping the signal strength c, fixed. Moreover, the improvement in the test error for £ = 2
depends on the strength c, 2 of the quadratic signal, showing that the nonlinear component is being
learned.

Proof Idea. Using Theorem [4.1]and 4.2} in the expression for the training and test error, we replace
the trained features matrix F with its approximation F, from Theorem Then, by applying the
Woodbury formula, we express the training and test errors in terms of Rg = (FOFJ + AnI,)~! and
the non-linear spikes from Theorem Using the Gaussian equivalence property (Appendix |J)) for
the untrained features Fy, we show that the interaction between the first £ Hermite components
of g and the spike terms will result in non-vanishing terms corresponding to learning different
components of the target function. Finally, we compute the limiting value of these terms in terms
of m1,mo and their derivatives using tools from random matrix theory.

4.3 Staircase Property

Recently, [ABAB™21, [AAM?22] show that when learning Boolean functions, under certain conditions
on the teacher function, a two-layer trained by SGD in the mean-field regime will learn the target
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Figure 3: (Left, Middle) Training and test errors after one gradient as functions of log(n)/log(n).
(Right) A toy plot illustrating the theoretical training/test error curve as a function of log(n)/log(n).

function incrementally; i.e., Fourier coefficients of higher order are sequentially learned over time.
[BMZ23] study the problem of learning a single-index function using a wide two-layer neural network
trained using gradient flow, and show that in a specific training setting where the stepsizes for the
first layer are much smaller than those of the second layer, the decrease rate of training error is
non-monotone; there are long plateaus where there is barely any progress, and there are intervals of
rapid decrease.

In the one-step updated two layer neural network, we observe a similar phenomenon. Theorems 4.5
and Theorem [L.1 show that given ¢ € N, the errors of the trained model is asymptotically constant
for all n = en® with % <a< ﬁ and ¢ € R. There are sharp jumps at the edges between
regimes of «, whose size is precisely characterized above. This shows that a non-monotone rate of
decrease in training and test error can also be seen after one step of gradient descent, as a function

of step size. For an illustration of this phenomenon, see Figure 3| (Right).

5 Numerical Simulations

To support and illustrate our theoretical results, we present some numerical simulations. We use
the shifted ReLU activation o(x) = max(x,0) — 1/v/27, n = 1000, N = 500, d = 300, and the
regularization parameter A = 0.01.

Singular Value Spectrum of F. We let the the teacher function be f,(z) = H, (8, x)+H2 (8, x),
set the noise variance o2 = 0.5, and the step size to n = n%?%, so £ = 2. We plot the histogram
of singular values of the updated feature matrix F. In Figure [2| we see two spikes corresponding
to X3, (5(5)02 as suggested by Theorem 3.2 and @ Since f, has a linear component H; and a
quadratic component Hs, these spikes will lead to feature learning.

Quadratic Feature Learning. To support the findings of Corollary [4.4 and Theorem [4.5] for
¢ = 2, we consider the following two settings:

Setting 1:y = H (8] x)+¢, &~ N(0,1),

1
Setting 2 : y = H (8] ) + —=H»(B8/ x).

V2
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Note that ¢, 1 and ¢, + o2 are same in these two settings. This ensures that the improvement due
to learning the linear component is the same. We plot the training and test errors of the two-layer
neural networks trained with the procedure described in Section as functions of log(n)/log(n).
In Figure (Left), we see that the errors decrease in the range log(n)/log(n) € (0, 1) as the model
learns the linear component Hi (3, ). In the range log(n)/log(n) € (1, %), the model starts to
learn the quadratic feature. However since the quadratic feature is not present in Setting 1, the
errors under the two settings diverge. Although the proofs reveal that the convergence rates of the

training/test errors after one step can be slow, these results are consistent with Corollary @ and
Theorem [4.5]

6 Conclusion

We have studied feature learning in two-layer neural networks under one-step gradient descent
with step size n < n% « € (0,3). We showed that if a € ((¢ —1)/(2¢),¢/(2¢ + 2)), the gradient
update will add ¢ separated singular values to the initial feature matrix spectrum corresponding to
different nonlinear features. We then proved equivalence theorems and used them to derive a precise
characterization of the training and test errors in the high-dimensional proportional limit. Using
this, we showed that in certain examples, non-linear components of the teacher function are learned.

Future Work. In this paper, we only study the problem when 7 =< n® with o € ((¢—1)/(2¢),¢/(20+
2)). The boundary case where 1 < n=1/(20 ig an interesting problem and is left as future work.

Also, following prior work in the area (see e.g., [DLS22, BEST22, DKL ™23, NDL23, WNIL23],
etc.), we use sample splitting in our two-step training procedure. Although this setting is natural
for the analysis of pretrained models, it does not cover the case where feature learning and ridge
regression use the same data. We leave this setting as a future direction.

In this paper, we focused on the case where a < 1/2. The behaviour of the feature matrix can
be significantly different when o = 1/2. When « < 1/2, as proved in this paper, the spectrum of
the feature matrix will consist of a finite number of spikes added to the spectrum of the untrained
feature matrix. However, when o = 1/2, the behaviour can deviate from the spectrum of the
untrained model in other ways. Note that according to Theorem [3.2, the number of spikes in the
spectrum of F will increase as we increase a from 0 to 1/2 and will diverge as we approach 1/2.
The limiting empirical singular-value distribution of the feature matrix and the training and test
errors of the network when a = 1/2 is an open problem and we leave it as future work.
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A Additional Related Work

[GK19] provide a polynomial time algorithm that learns neural networks with two non-linear layers.
Our setting is different because we do not apply a non-linear activation after the second layer.
[CGKM22| show that learning two-hidden-layer neural networks from noise-free Gaussian data
requires superpolynomially many statistical queries. [ZWL22] show that neural networks trained by
gradient descent can succeed on problems where the labels are determined by a set of class-relevant
patterns and if these patterns are removed, no polynomial algorithm in the Statistical Query model
can learn even weakly.

B Additional Notation and Terminology

In the appendix, we use the following additional notations. We let Ng = {0, 1,2,...} be the set of
non-negative integers. For a set X and x1,22 € X, dz, 2, is the Kronecker delta, which equals unity
if 1 = x2, and is zero otherwise. We use O() for the standard big-O notation up to logarithmic
factors in n. For a positive integer k, k!! is the product of all the positive integers up to n with
the same parity as n. For two random quantities X,Y, X I Y denotes that X is independent of
Y. By orderwise analysis, we mean bounding a term by the triangle inequality and the inequality
|Abl|2 < ||Allopl|b]]2 for a conformable matrix-vector pair A, b, to reduce it to operator norms of
matrices and Euclidean norms of vectors, and then use simple bounds for those quantities. Constants
such as C, ¢/, etc., can change from line to line unless specified otherwise. For two random quantities
A, B, A =4 B denotes that A and B have the same distribution. Limits of random variables are
understood in probability. For two matrices A, B with equal shape, we write A o B to denote their
entry-wise (Hadamard) product.

We denote X3 =0, X8 =0, X3, =0,, and X3, = 6,. We also define Ry = (FoF§ + Anl,) !
and Rg = (FJ Fo + AnIy)~L.

C Basic Lemmas

Lemma C.1 (Orthogonality of Hermite polynomials). Let (Z1,Z2) be jointly Gaussian with
E[Z1] = E[Z2) =0, E[Z?] = E[Z3] = 1, and E[Z1Z3) = p. Then for any ki, ka2 € N,

E[Hp, (Z1) Hy, (Z2)] = k1'p" Gy 1y
In particular, if for some positive integer d, Z ~ N(0,13), and if a,b € S, then

E[Hy, (@' Z)Hy, (b" Z)] = k1!(a' b)* 6y, 1,

Proof. See [O’D14, Chapter 11.2]. O

Lemma C.2 (Taylor expansion of Hermite polynomials). For any k € Ny and x,y € R,

Hy(z +y) = Zk: <I;> 2 Hy_j(y).

J=0
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Proof. Note that %Hk(:v) = kHjy_1(z) [AS68, Equation 22.8.8] and thus %Hk( )=
By Taylor expanding Hy(x + y) at y, we find

k

k
“‘“’ZZ Jddz; Z<>x]Hk] v

=0 7=0

The following Lemma, proved in Section provides several bounds used in the proofs.

Lemma C.3. Under Conditions there exists C > 0 such that the following holds with
probability 1 — o(1).

(a) Mg = maxj<;<n |a;| < Cn~2 log% n,
(b) Mg :=maxi<i<y |(#;,B)| < ClogZ n,
(¢) M, = supy1 [[(WoWg )% [lop < C,
(d) | Xllop < Cv/n.

D Proof of equation [3

By Lemma [K.1| with v = 8, and D = I, we have

Iﬁ —p C*JHﬁ*H% = Gk, HIBHQ _IBTB —P ¢(C +o; )+C*1 *16* = c*l +¢(C t+o )

By the continuous mapping theorem, we conclude

18, 8| L 1] .
18.l2118]l2 \/cil + ¢(c2 + 02)

E Proof of Lemma [3.1]

For k = 1, we have by [BEST22, Proposition 2]—substituting our ¢; for their y; and using that
B = 1XTy; as well as noting that by the discussion below [BEST22, Proposition 2], || G||op = Op(1)—
and by Lemma (d), that with probability 1 — o(1),

IXG" —e1XBa’|op = O(n*% log®n). (10)

For k > 2, expanding (XG )% = (XGT — ¢;XBa" 4+ ¢;XBa")°F using the binomial formula, we
have

M=

(XGT)ok _ C?(Xﬁ)ok(aok)'r — <;€) (XGT _ ClXI@aT)Oj ° (Clx/aa'r)o(k—j)

1

<.
Il

I
M=

<k> c’f_j diag(XB8)" 7/ (XG " — ¢;XBa’ )% diag(a)*
J
1

.
Il
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Recalling Mg, Mg from Lemma and using that
IXGT —e1XBa ) |lop < [XG' — 1 XBa' |,
(see e.g., [BS10l, Corollary A.21]), we have

| diag(XB)F ¥ (XG" — c1XBa ') diag(a) lop
< diag(Xﬁ)k_jHOpH(XGT - ClXﬂaT)ojHOPH diag(a)k_jHOp
< (MaMp)* 7 |XGT — c1XBa [},

Hence, by the triangle inequality,

k
¥ o ¥ o o k —J 11w Ve j
IRGTY — AXB)™ @) Tl < 3 ( j> (e:MaM) I |XGT — eiXBaT |,
j=1

By Lemma (a), (b) and equation there exists C' > 0 such that for any k € N,

k k
Z (f) (1 M Mg)* | XGT — clx,BaTH{;p < (C/2)* Z (f) (n*% logn)*=J (n*% log® n)?

j=1 j=1

k
< CFn=210g?* n

with probability 1 — o(1).

F Proof of Theorem [3.2

We consider any fixed Wy such that the event Q = {sup;; [|[(WoW{ )°*||op < C} from Lemma @
(c) holds. By Lemma each row of H;(XW ) has second moment matrix

Eoon(o,1) [Hj (Wom) H(Wox) '] = jI(Wo W, )™,

whose operator norm is O(j!) on Q. Thus by [Verl2, Theorem 5.48] and Markov’s inequality, for
any j € [L], for t > (Cnj")'/2, and with M = Emax?_, | H;(Wo;)|?, 6 = Cy/M logmin(n, N),

P((|H;(XW( )llop > t) < P (I!Hj(XWJ)Hj(XWJ)T/n — J{WoW§ ) [lop > t°/n — Cﬂ)

_ E|H;XW)H;(XW{)T/n— 1 (WoWg)|lop
- t2/n — Cj!
d max((Cj1)Y/2,6)
t2/n—Cj5!

Next, we observe that since H; is a j-th degree polynomial and the normal absolute moments
increase with j, M = Emax? | [|H;(Woz;)||*> < C;Emax?, |[(Woz;)*||%. Now, note that for
any vectors @1, Ta, we have ||x1 o z2||? < ||z1]|?||22||? by simply expanding the norms. Thus, on
the event 2, one can verify that for all x, ||[(Woxz)%|? < CJ/-H:/BHZj for some C7 > 0. Also, we
have that A; = ||&;]|%/ /N for i € [n] are sub-Weibull random variables with tail parameter 1/(2;),
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(see e.g., [VGNA20, [ZC21]). Thus, by the maximal inequality for sub-Weibull random variables
[KC22, Proposition A.6 and Remark A.1], it follows that for all j > 1, there is C; > 0 such that
Emax? ; 4; < Cj(logn)?. Hence, M < C7 N (log n)%.

Thus, choosing t = C'v/nj!(logn)? for sufficiently large C’ leads to

|H;(XWJ ) lop = O (v/ng! (10gn) ) (1)
with probability 1 — o(1).

Define, for all z € R, o1(z) = Zé:o cxHi(z), where L = max{f,m%} Each row of

(0 —o1)(XW, ) has second moment matrix

Ezno1,)[(0 = 0r)(Woz)(0 — 1) (Woz) ' Z klc} (WoWg )k,
k=L+1
whose operator norm is O(L™27“) by Lemma IC_ 3 (¢) and Condition lﬁl Therefore,
(o — o)(XW{)lop = O(y/nlognL™27%) = o(v/n) (12)

with probability 1 — o(1). Since n = o(y/n), the rows of have W norm of Op(1). Thus, we can
repeat the same argument to show that with probability 1 — o(1), we have

[(0 = o) (XW ) lop = O(y/nlognL™=27%) = o(/n). (13)
Let FO) .= 6, (XW ) and F(()L) = o, (XW ). We can write
L - S S
FO =F" 4+ 3" o (Hy(XWT) - Hy(XW()).
k=1

By Lemma @, using W = Wy + 7 G so that XW ' = XWOT +1XG T, and using that Hy(z) = 1
for all z € R,

k—1
- - - AN N - .
Hy(XW ') — H,(XW() =n"(XG )k + § j < ,)nJHk_j(XWJ) o (XGT)%
- J
J=1
Therefore,

l L
FO =B + 3 o (XB)H(a™) T+ e [(XGT) = k(XB)F(a™)]
k=1

k=1
Ay
L k-1

£ dart(REH @R Y o (5 ) i (KW o [(XGT) - (%8707

k=¢+1 k=1 j=1

Ao Aj

L k-1 ~ A ‘
'y k( ) W Hy (KW ) o [(XB)™ (a) 1]

k=1 j=1

Ay

23



We will show that each of [|A1|lop, [|A2]lop, [|As]lop, [|Adllop is 0(y/n) with probability 1 — o(1).
By Lemma [3.1]

L
[Aillop < D7 cxCnn~2 log™ n = O(n/v/n) = o(vn)
k=1
with probability 1 — o(1).
By Lemma (a) and (b), using that o < %lﬁ,

L L
1Asflop < D clen®|(XB)F[2lla®(la < D elern* nMEMS = O(n(n/v/n)™) = o(v/n)
k=(+1 k=(+1

with probability 1 — o(1).
By [BS10, Corollary A.21], equation and Lemma

L k-1

80l < 303 exC? () VT= 2 ogh 0 = O(a) = of ).

k=1j=1

Finally, since

| Hi—(XW( ) 0 (XB)* (@) [lop < (MaMg)\/(k = j)n? log" T n

<IN/ (k- j)!n_%Jr% log® n,
we also have

L k-1

[Adllop <D exC (j) (k= )lpin~ 3+ logh n = O(n) = o(V/n).

k=1 j=1

This proves that with probability 1 — o(1), we have F(/) = F[()L) + Zizl KepnF(XB)F ()T + A,
with ||A|lop = o(1). This, alongside equation |12{ and equation concludes the proof.

G Proof of Theorem [3.3

By Theorem (3.2} letting E = Fo+A, we have [|El|op = Op(y/n). Note that S5_, chepn®(X8)%* (a%)T
has rank ¢ almost surely and its left singular vector space is span{(f(ﬁ)"k}kem. Also, the subspace
spanned by the top-¢ left singular vectors of F is F;. By Wedin’s theorem [Wed72], [CCFM21,
Theorem 2.9], and as « > %, we have

¥ o E o LESS AN
A(Fr,span{(XB)™*) epg) = op< e ) = Op(n'7 =) = (1),
nnz= 2 — |[Elop

N|=

which concludes the proof.
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H Proof of Theorem [4.1]

By the definition of a(F), we have

1, . . . 1, . .
waox {25~ Fa(®)3 Na() 13} < 11 - Fa(e) + Ala(e)[:
1. 1, .
< Ljg—® 03+ 1013 = Lz = 0e(1).
n n
Thus,
Ja(F)l = Ox(1). 13— Fa(F) 2 = Os(v). (1)
A similar argument gives
a(F0)l2 = Op(). 5~ FralFp)ls = O(v). (15)

Also, by the triangle inequality, and using equation [15(and Theorem which states |[Fy — F||op =
op(y/n), we have

19 —Fa(Fy)ll2 < [|lg — Fea(Fy)l2 + [|(Fe — F)a(F)]
< [|g = Fea(Fo)|l2 + [|Fr — Fllop||a(Fe)|l2 = Op(v/n). (16)

Similarly, we can prove that

5 — FealF)s = Os(v/n). (17)
For a = a(F) or a = a(Fy),
Lo 2 _ s 2 1 ~ ~
(I3~ Fal ~ |3 - Fral) =  (F - F)a,§ — Fa +§ - Fra)
1 - -
< ~IFe = Flopllallz (g — Fall2 + ||g — Feall2) = op(1)

by equation [I4, equation [15, equation [16, equation [I7, and Theorem [3.2. Therefore, using the
definition of a(Fy),

1, . Lo )
9 = Fea(Fo)3 + Mla(Fo)|lz < —[|g - Fa(F)|* + Al a(F)[3
Lo R
= —|lg = Fa(F)[5 + Ala(®)|3 + or (1)

and using the definition of a(F'),
1. . . 2 . 9 1, . 2 . 2
~llg = Fa(F)|z + MaF®)lz < ~lly — Fa(Fo)[|" + Ala(Fo)l;

1, . )
=y~ Foa(F)l3 + A|a(Fo)|3 + op(1).

These together prove the theorem.
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I Proof of Theorem 4.2

First, we will prove a general lemma regarding the equivalence of an augmented training loss. We
will later use this result to prove the equivalence of the test error.

Lemma 1.1. Let n < n® with % <a< ﬁ for some £ € N and Fy be defined as in equation .
For the test error Lie from Section[.1], define

1 .
Re(a,F) = —||g = Fall3 + Mal3 + (Lic(a).
Then, for any A > 0, ¢ > 0, we have
’minRC(a,Fg) - minRC(a,F)’ = o(1), (18)

with probability 1 — o(1).

Proof of Lemma[L1. Letting a¢(F) = argmin, R¢(a, F), we can write

IN

maox {11~ Fag(F) 3. Mac(F)|. CCulac(F) } < 1119~ Fac (P + Nac(F) [} + CLio(ac(F)

L, .
< g = F - 0[5+ A[O]J3 + (Lie(0) = Oz(1).

Thus,
Lie(ac(F)) = Op(1), [lac(F)l2 = Op(1), [|g — Fac(F)[2 = Op(Vn). (19)
A similar argument gives
Lie(ac(Fy)) = Op(1), |lac(Fo)ll2 = Op(1), g —Frac(Fo)ll2 = Op(vn). (20)

Also by the triangle inequality, equation [20{ and Theorem which states |F; — F|lop = op(v/n),

1y —Fac(Fo)ll2 < g — Feac(Fo)ll2 + [[(Fe — F)ac(Fe)ll
<19 = Feac(Fo)ll2 + [[Fe — Fllopllac(Fe)ll2 = Op(v/n). (21)

Similarly, we can show that
1§ — Frac(F)]l2 = Op(v/n). (22)
For a = a¢(F) or a = ac(Fy),

(lg — Fa|3 — ||g — Feal3) = = (F, — F)a,§ — Fa+§ — Fa)

S|

IN
S|I=3I=

IFe = Fllopllallz (g — Fall2 + [l — Frall2) = op(1)

by equation [I9, equation 20, equation [21, equation [22, and Theorem [3.2. Therefore, using the
definition of a¢(Fy),

1, ) . )
Sy - Foac(Fo)|3 + Mac(Fo)ll3 + (Lee(ac(Fo))
1, . . )
< lly- Foac(F)|? + Alac(F)|3 + ¢ Lie(ac(F))

= %Hﬂ — Fac(F)|3 + Mlac(F)[13 + (Lee(ac(F)) + o02(1),
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and using the definition of a.(F),
%H@ —Fac(F)|3 + Mlac(F)|I3 + CLie(a(F))
< g~ Fac(Fo) + Alac(Fo) + CLielac(F)
= 1§~ Fuag(Fo) 3 + Nlac(FOl3 + CLuelag (Fo)) + op(1).
Putting these together, we have
|main Re(a, Fy) — main Re(a, F)| = op(1), (23)
which concludes the proof. O

Now, we use this lemma to prove the equivalence of the test error.

Proof of Theorem[{.2 We will argue by contradiction. Assume that Lp # Ly, and let £ =
%(EF + Lr,). Now, consider the following two optimization problems:

1 1
L1 = min =|g—Fal|?+ \|a|?, Lo= min =g —Fal?+ \al?.

Without loss of generality, assume that Lg < Lg,. The solution of the first optimization problem
will still converge to L, (F) because Lg < L. However, the solution of the second optimization
problem will converge to a value greater than L. (F,), because Lg, > L and the objective is
A-strongly convex. Note that by Theorem [4.1, we asymptotically have L (F;) = L (F). Thus £4
and L9 converge to different quantities as n — oo. However, using the minimax theorem and since
the objectives are A-strongly convex, we can write

1
L1 = max —CL + min [Ilzﬂ —Fal3 + Ma|3 + Cﬁte(a)] ,
¢>0 a n
1
2 = L + i | 15~ Fral} + Malf + Cula)|

According to Lemma the two minima above converge to the same value for any fixed (. Note
that, as functions of ¢, both maxima are concave as they are minima of linear functions of (. Hence,
by using the concave version of [ASH19, Lemma 1], we have that £; and £y converge to the same
value, which is a contradiction. ]

J Gaussian Equivalence Property

Gaussian equivalence results for non-linear random matrices were introduced in [EK10} [(CS13] [FM19].
They have been repeatedly used in recent studies of random feature models [MM22, MRSY19,
AP20al, [AP20b, TAP21, [GLR*22, MP21, [dGSB21, LGCT21, LMHT23, [HJ22] [HL23, MS22]. Also,
there has been progress on proving the Gaussian equivalence property for a multi-layer network
with only the final layer trained [BPH23, [(CKZ23].
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In more distantly related work in random matrix theory literature, the phenomenon that eigenvalue
statistics in the bulk spectrum of a random matrix do not depend on the specific law of the matrix
entries is referred to as “bulk universality” [Wigh5l [(Gau61l, Meh04, [Dys62, EPR*10, [EYY12, [EK10,
TV11].

[Erd19] shows that local spectral laws of correlated random Hermitian matrices can be fully
determined by their first and second moments, through the matrix Dyson equation. Also, [BMP15,
BNY20] show that spectral distributions of correlated symmetric random matrices can be character-
ized by Gaussian matrices with matching correlation structures.

In our case, we apply the Gaussian equivalence property to the following quantities for p, g € Ny
and By, 8 € {8, 8,}: Hy(XB;) ' RoHy(XB,).

J.1 Proof Sketch of Gaussian Equivalence Property

In this section, we describe the proof idea of the Gaussian equivalence property. We use the
Lindeberg exchange method |Lin22| in which we replace each column g; = o(Xwy ;) of Fy with its

Gaussian equivalent g; = 01Xw0~7i + es12i, 2 i;z'vd' N(0,I,,). Hereafter, we condition on all random
variables except Wo. Then, H,(X3,) and Hy(X3;,) become deterministic vectors with O(1) entries.
We write v = H,(X,), w = Hy(XBy), and for all i € [N], M; = >.'7} gje] + >V gje].

Let Fo = [G1---Gn] € R™N be the Gaussian equivalent of Fy and let Ry = (Fgf‘g + AnI,) "L
By the triangle inequality,

lv"ERyw — v ERqw|
N
< ST WTEMM] +gig + AnL,) 'w — v TE(MiM] + §igl + ML) lw|. (24)
=1

Defining S; = (MzMZT + AnI,)~!, we have by the Sherman-Morrison formula that

_ Sigig Si
MM, + gig! + L)' =8, — —FZL =2 and
( (3 1 glgz n n) (3 1 —|—ngng il
L B S-Q-QTS-
I T 1_g . 2ididi Di
(MM, +gig; +Anl,)" =S; o Qfsiéi’

Thus,
v E(M;M, + gig; + ML) 'w — v E(M;M, + g:g," + \nI,) 'w

_ v'8S,;g:9; Siw v'8S,;g:9, Siw

1+ g,;S:ig; 1+ g;'Sig;

Let ¥4 = IEgZ-giT and X5 = Egigj . By the Hanson-Wright concentration inequality, g;r S.g; =
tr(S;2q) + Op(1/+/n) and g, S;g; = tr(S;X5) + Op(1/y/n). Hence,

T T T
i9i9; Si i i _3
5 SggZ S;w :tr(S'wv SiXg) + Op(n 3)7
1+g, Sigi 14 tr(S;%y)
Tsi~i~TS¢ tr(S; TSZ'2~
v g~$l ~'w _ r(S;wv ) +Op(n*%).
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Plugging into equation

tr(S;wv'S;Ey)  tr(S;wv’S;3y)

_1
1 + tl“(S by ) N 1 + tr(SiEg) + OP(TL 2)

v ERyw — v ERqw| < Z

N
| tr(Siwv " Si(Bg — )| | | tr(S;wvSiE5) tr(Si(Bg — Bg))| o
Z ( 14 tr(S;3g) + (14 tr(S:Zy))(1 + tr(SiXy)) ) + Op(n™2).

Now, we have
| tr(Siwv ' Si(Sg — Bg))| < [ISiv]l2]ISiwl|2]Zg — Zgllop = Op (59 — Sgllop/n),
[tr(Siwv ' 8:3g)| < [ISivll2]|Siw|2lZgllop = Op(1/n),
[t1(8:(Bg — Zg))| < [ISillrlIZg — Zgllr < VnlSillplIZg — Zgllop = Op(lIZg — Zgllop),

where the first and second inequalities follow from the definition of the operator norm, and the last
one follows from the Cauchy-Schwarz inequality.

By [EK10, Theorem 2.1], ||£g — 3g|/op —p 0. Therefore,

v ERgw — v ERqw| < Op(|Sg — Z5ll,,) + Op(n"2) —p 0.

K Proofs of Results from Section 4.2

Here, we will prove the results in Section First, we will provide several lemmas, which will be
used in our proofs. The first lemma allows us to approximate linear and quadratic forms of 3 in
terms of 3,; the quadratic form result is from [BEST22|. Its proof is in Section

Lemma K.1. Foranyd € N, let v € R and D € R¥™4 be vectors and matrices, fized or independent

of X, B,,€1,...,en, and satisfy || V|2, [|[Dl|lop < C almost surely, uniformly for some constant C' > 0.
Under Condition[2.1, we have

V8- VB,

— 0: ‘ﬂTDIB (C to )trD - C* 1/8;|—DB*
i probability as d — oo.

We will use the expression derived for the training loss in the following lemma; see Section for
the proof.
Lemma K.2. The training loss Ly (F) can be written as Ly (F) = Ag' (FFT + AnL,)~!

The following lemma will be used in proving concentration of certain quadratic forms appearing in
the proofs; see Section for the proof.

Lemma K.3. Let g : R — R be a polynomial, D € R"*" be a matriz with ||D||op = Op(1/n), and
Z € R" be a vector of i.i.d. Gaussian random variables with bounded variance independent of D.
We have

9(2)TD ¢(Z) ~ E[g(2) "D g(Z)]| —p 0,

i which g is applied elementwise.
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The limiting values of two key quadratic forms appearing in the proof are derived in the following
lemma, whose proof is deferred to Section

Lemma K.4. Let my and mg be the solutions to the system of fized point equations from equation 5,
Then, the following holds:

(a) BTXTRoXB = ¢(c2 + 02)my + L2 ymg + op(1) = Op(1).
_ 2
(b) a"FjRoFoa — [a]} = —Alzmi+ % — 14 0p(1) = Op(1).

In particular, ¥(c + a2)mag + %Cilmg # 0 and —)\Z—;ml + % —1+#0.

The following lemmas will be used in the computations. We defer the proofs of these lemmas to
Sections [0.6] [0.7] [0.8], and [0.9] respectively.

Lemma K.5. For any p,q € No, p # q and any vector u € R", with ||uz = 1 independent of Ry,
we have Hy(Xwu) RoH,(Xu) = op(1).

Lemma K.6. For any p € N, we have
(a) V'NH,(X3,)RoFoa°? = op(1),
(b) VN Hy(XB)RoFoa? = op(1).
Lemma K.7. For s € {1,2}, pe N, and p # s, we have Hp(Xﬁ*)TRO(X,@)OS = op(1). Further,

lim  Hy(X3,) Ro(XB)% = 2¢2 1¢m1~
n,N,d—o0 9

Lemma K.8. We have

lm (XBPTRy(XP) - 31{;”1 62+ 02) + 22

Now, we will first provide a proof of Theorem in the case of £ =1 and £ = 2 for a better insight
into the proof techniques. We will then prove the general form in Section

K.1 Prooffor /=1

In the ¢ = 1 regime, due to Theorem we can replace F by F; (defined in equation |4) to compute
the training loss. Hence, from now on we let F = F;. We can write FF' = FOFOT + UKU' where
U = [Fpa | X3 ] and

_ [ 0 iy ]
cin cin?llal3]”
Based on Lemma [K.2, the training loss depends on R = (FF' + AnI,)~!. Using the Woodbury
formula, this matrix can be written in terms of Ry = (FOFS— + Anl,) ! as

R = R(] — RoU(K_l + UTR()U)_IUTR(). (25)
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Defining T = (K~! + UTRoU) ! € R?*? and substituting R = Rg — RyUTU Ry in the formula
for training loss in Lemma we find

Li:(Fo) — Lo (F) = \j  RyUTU ' Ryg. (26)
Using equation [26(and U = [Foa | X3 ], the loss difference can be written as
Etr(FO) - ﬁtr(F)

=) [TM(QTI‘{OFOa)2 + (T12 + T21)9 ' RoXB - a'FgRoy + TQQ(QTROXﬂ)Q] , (27)

in which Tj; are the elements of the matrix T. Using
BTXTRXp — 3, —a'F{RoXp
1
—c%%] —B'X"RoFoa a'F(RoFoa — ||al}

T = (28)

(BTXTRoXB) (aT By RoFua — [af3) — (4 +a FRXA)

2
cin

we will compute the limit of each term appearing in equation |27 separately:

Term 1. The first term can be written as
A (,BTXTR()XB) (gTR()F()a)2

51 = )\Tn(gTRoFoa)Q = L ~ — R
(B"XTRoXB) (aTF{ RoFoa — |lal) - (& +a F{ReX)

Based on Lemma we know that 3T X TRX3 and a"F] RoFoa — ||al3 are Op(1). Also, it can
easily be seen that
IF5 RoX B2 < [IFolop|Rollop I XBll2 = O(1).
Hence,
1 N2
<2 + aTFgROXB> = op(1) (29)
an

because a 1L FJROX,B. Also, using that RoF.F| = (FOFJ + /\nIn)_lFOFE)r =1-\nRy,

(9 RoFoa)? = § RoFoE,[aa'|F] Rog + op(1)

1 += _ 1 —= _ M _1=9._
= TRoFoF)Roy +op(1) = —§ Rog — =9 Ry + op(1) = op(1),

N N
where in the last inequality, we used that §' Rog < +&-||g[|3 = Op(1) and ' R3y < (/\}L)Q I

yl3 =
op(1). Putting everything together, it follows that §; = op(1) in probability.

Term 2 and Term 3. The second and third terms can be written as
52 = 53 = )\THQTR()X,BCLTFS—RO’Q
A (=3 — a"F{ReXB) (3" RoXBa' F] Rog)
1

= — - — .
(8"XTRoXB) (a F{ RoFoa — [al3) - (2 +aTFJReXB)
1
Recall from the above argument that the denominator is Op(1) and that ﬁ +a FJRoX3 = op(1).
_ - _ - 1
Also, § ' RoXBa F]Roy < ﬁ||?§H%”Xﬁ’b”aHZHFOHop = Op(1). Therefore, we find Jy = d3 =
op(1).
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Term 4. This term can be written as

81 = Ao (g RoX3)?

A (a"FJRoFoa — ||a|3) (5 RoXB)> (5" RoXB)?
R — . | g BXRxs T
BTXTRoXA (a F RoFoa — |a]2) — (% +aTF] RoXp 0

since C— + a ' FJRoXB = op(1) and a'FJRoFoa — |lal|} = Op(1) # 0 by Lemma K.4. By

equation |1/ and Condition E we can write y = Zp 1 CxpHp (X,B*) + €, where € € R" is additive
Gaussian noise. Note that

gTR()Xﬁ = C*JﬂIXTR()Xﬁ + Op(l)
by Lemma and since |[RoXg||2 = Op(1/y/n) and € 1L RoX3.
Further by Lemma

caBTX RXB = & BT RAXB, +0n(1) p

where the final limit follows from the proof of Lemma[K.4] By summing up the fours terms computed
above and using Lemma we find

ma, (30)

1/1/\cf7lm2
ez 1 + ¢(c +02)]

Lir(Fo) — Lio(F) —p A1 = > 0, (31)

which concludes the proof for ¢ = 1.

K.2 Prooffor /=2

In the ¢ = 2 regime, based on Theorem @, we can replace F with Fy (defined in equation [4)) to
compute the training loss. Hence, fr0m~n0w on we let F = Fy. We can write FF ' = FOFJ +UKU'
where U = [Foa | Fpa®?V/N | X3 | (X3)°?] and

[0 0 cin 0 ]

0 0 0 cleon? /N
“Tlan o cdlald  clemla.a?)

L 0 de?/VN  dent(a®a) ddn*a®, a®)]

Recalling R = (_FFT + AnI,) "t and Ry = (FoF] + Anl,) !, we still have equation Defining
T = (K ' +U'RoyU)"! € R**4, we have the following analogue to equation @t

Li:(Fo) — L (F) = \j  RyUTU ' Ry3. (32)
Denoting in what follows Q = FOT RoF, the inverse T~! can be written as follows:
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[ a"Qa — ||a? N%aT(Q —T)a®? a"FJ R0 + c%n a FJ R0

_ o~ _ o~ 1
NzaT(Q-T)a®?> Na*>"Qa®®— N|a?|2 Nz2a?TF]Rof N2a*2TF]R0°2+ 2>

cican

2
éTR()Foa + ﬁ ]V%0~T].7{()].:“[]CI,O2 éTROé éTR()éOQ
1

~ _ ~ _ 1 ~ _ o~ ~ _ o~
GOZTROFoa N%OOQTROFOQOQ_F 21\/'2 002TR00 002TR0002

L 1 52772

K.2.1 Analysis of Terms in T~! and T

In the following section, we will first analyze the elements of T—!:
(1,1): The term a' Qa — ||a||3 has already been analyzed in Lemma and is ©p(1).

(1,2) and (2,1): Recalling Q = FJ RoFg and Rg = (F Fo + AnIy)~!, we can write
[T 12 = [T Y21 = VNa'Qa*? — VN{a,a®?)
= -V Na Rpa®? = vV Na' Rg (a°2 —1/N1y + 1/N1N) .
Introducing @ = vV Na ~ N(0,1Iy), and as Ho(z) = 2> — 1 for all z, we find

_ _ AN .
[T 12 = [T 21 = N TRoH;(a)

_ A
VN

The second term converges to zero as n — oo because a ~ N(0, %I ~) is independent of Ry, and
n_

H \/NRol NH2 = Op(1). Moreover, the first term also converges to zero; indeed,

8T RoHa(a) = <5'7+2H2(5'I>>TR0 <aT —|—2Hz(d)> B <aT _ZHQ(a)>TRO <‘1T—2H2(a>>

aTRo].N.

Lemma can be used with D = R to prove the concentration of both term around their
expectation. Note that the expectation of @' RoHz (@) is zero because of the orthogonality property

of Hermite polynomials and the independence of @ and Rg. Putting everything together, we conclude
that [T_l]LQ = [T_lbyl = Op(l).

(1,3) and (3,1): Recalling that § = X3, it follows from equation [29| that this term is op(1).
(1,4) and (4,1): To bound a' FJ R¢6°%, note that
IEg Ro8°%(lop < Follop | Rollop||6°% 12 = Op(1).
Hence, because a ~ N(0, %IN) is independent of Fgl-:{oéoz, we have

[T_l]l 4 = [T_1]4,1 = aTF(—)rR()éOQ = Op(l).

)
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(2,2): This term is Op(1), because a ~ N(0,

, vIN), so

[T 22 = Na®?"Qa*? — N|[a®?||} = ~ANna®?" (Fj Fo + Anly) 'a®
< ANn[[a®?[3 - [|(Fg Fo + AnIn) ™ op = Oz(1).

(2,3) and (3,2): To bound vV Na?"F] Ro8, note that

IVNa*®TFRoX |2 < [VNa?|]|Follop|Ro lop | X lop < C - VN -

SRS

Also, by Lemma we have
[T o3 = [T 32 = VNa® T FgRoXS = ¢, 1VNa® FgRoX B, + 0p(1),

which converges to zero, because 3, ~ N(0, éld) and is independent of \/NaOQTFS—ROX, which has
bounded norm in probability.

(2,4) and (4,2): First note that in the regime where ¢ = 2, we have g — 0. Hence, we can
write

[T_1]274 = \/N(X,@)OQTR()F()G,OQ + O]}D(l) = \/NHQ(XB)TRQF()CLOQ =+ \/N]_IROF()CLO2 + 0]}1)(1).
(34)

By Lemma [K.6, the first term converges in probability to zero. Moreover, a ~ N(0, %IN) is inde-
pendent of RQFQ, and H].;LFR()F()HQ = O[p(l). Thus, we have that \/N].ZR()F() (a°2 — 1/N1N) —p 0.
Hence, we find

[T_1]274 = \/ﬁlIROFolN/N + 0]}»(1).

Based on the Gaussian equivalence from Appendix |J| we can replace Fg with Fg = CIXWOT + e Z,
where Z € R™? is an independent random matrix with N(0,1) entries, without changing the
limit. Now, the linearized F is left-orthogonally invariant, hence F( has the same distribution
as OFy, where O is uniformly distributed over the Haar measure of d-dimensional orthogonal
matrices, independently of all other randomness. Hence, N_l/Ql;erOFOlN =4 N_l/ZIIOROFolN.
Now, O'1,, =4 v/nz/||z||2, where z ~ N(0,1,). Moreover | z||2 = v/n(1 + op(1)), hence replacing
O'1, with 2" introduces negligible error. Hence, [T_1]2’4 =4 N"Y22TRFoly + op(1). Now,
ZTR()F()]_N ~ N(O, HR()F()INH%), and HR()FglNHQ = Op(l), thus [T71]274 —p 0.

(3,3): We have ||| = Op(v/N) and ||Rollop = Op(1/n). Thus, [T~1]s5 = Op(1).

3,4) and (4,3): irst, note that defining 3 = ,and as Ho(x) = x* — 1 for all z, we can write
d Fi hat defi gug‘de 2_ 1 for all
(T4 = [T Y15 = 0T R0™ = |83 ((XB) Ro(XB)?)
= 1813 (X8) RoH2(X3)) + 11813 (6 Roln )

Now, by Lemma we have éTRO]_]Y = c*’léjf_{olN +op(1). Now, note that HXRO].NHQ = Op(1)
and 8, ~ N(0, éId) is independent of XRg1y, which implies that the second term converges to zero.

By using Lemma [K.5 for v = B, the first term also converges to zero. Putting these together, we
have [T~ ]34 = [T~ ']43 = op(1).
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(4,4): We have [|6°2|)y = Op(v/N) and |[Rollop = Op(1/n). Thus, [T~44 = Op(1).

Now, putting everything together, the matrix T~! can be written as

[Til]Ll 0 0 0
0 [T Y)20 0 0
T—l = + A17
0 0 [T 33 0
0 0 0 [T~ 44

R -
=11 0 0 0
1
0 s 0 0
T = ) + A27 (35)
0 0 T 155 0
1
L 0 0 0 [T 1]4,4 ]

where the all elements of Ay are op(1).

K.2.2 Computing the training loss

Having computed the limit of the matrix T~! and T, we are now ready to put everything together
and compute the limiting train loss. One can write the outcome vector g as g = 0,(X3,) + ¢,
where € € R" is the noise term. Thus, using equation we find

Li:(Fo) — Li(F) = Mo (XB,) 'RyUTU 'Ry, (X3,)
+2X0.(XB,) '"RoUTU "Ree + e RgUTU 'Rge. (36)

We will first argue the second and third term will go to zero in probability. To do this, we note
that | T|lop = Op(1) and also [[UTRe|l2 < [|Ullop||Rollop = Or(1/v/n). We have e ~ N(0,021,,) and
it is independent of Ro, U, T, X, and B,. Also note that ||o,(X3,) RoU||2 = Op(1). Thus, the
second and third term in equation |36| go to zero and we have

Li:(Fo) — L (F) = Ao, (X8,) ' RoUTU 'Ryo,(X83,) + op(1).
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If we expand 0,(X(3,) in the Hermite basis as 0,(X03,) = P v pH,(6,), we can write

Li(Fo) — L (F) = A Z CopCrgHp(0:) TRQUTU RoH,(6,) + op(1).
P,q=1

We define A, = Hy(0,) T RoUTU 'RoHy(0,) = 677 + 657 + 657 + 65 in which, with T; ; being
the (i, 7)-th elements of the matrix T,

(5]1)’(1 = TLal(é*)TRo(FOa) Foa T1{0]’[ (é )

)
* T 0 Foa éOQTROHq(é*)a (37>

+ Ty 4 H,(8,) "Ro(VNFa)0°2 Ry H, (6,), (38)
5§’q = Tg}al(é*)TRQé(Foa)Tﬁqu(é*)
+ T32H,(0,) "RoO(VNFoa®?) "RoH,(6,)
+ T373Hp(0~*)TR0é0TR0Hq(é*)
+ T3.4H,(0,) "Ro86°> " RoH,(8,), (39)

and

O = Ty, Hy(6,) TR0 (Foa) " RoH,(6,)
+ TaoHy(6,) TRoO2(VNFoa?) R H, (6,)
+ Ty 3H,(0,) "Ro0°%0 "Ry H,(6,)
+ TyaH,(0,) TRo6°26°2 "R H,(6,.). (40)

We will now look at each 677 for i € {1,2,3,4}.

Term 6)%: To prove that the term in equation E are asymptotically negligible, note that
a ~ N(0,+Iy) is independent of H, 2(0,)RoFy and we have ||H,(0,)RoFol2 = Op(1). Thus,
H,(0,)RoFoa = op(1) and all other terms multiplying this are Op(1). This implies that for any
p,q € N, we have 677 = op(1).

Term 05%:  All four terms in equation [38| converge to zero. To prove this, we will use the Lemma
. In equatlon all terms multiplied by VN H,(8,)RoFoa°? are Op(1). Thus, 657 = op(1) for
any p,q € N.
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Term 05%: The first term in equation @ converges to zero in probability due to an argument
similar to the arguments used for 6}"%; and the same holds for the second term in equation by
arguing similarly as for 65", We have shown that T3 4 = op(1), and by a norm argument, we can see
that H,(0,) "Ro6 and 8°*T RoH,(,) are Op(1). Hence,

(Sg’q = T3,3 (Hp(é*)—rﬁoé) (éTROHq(é*)) + 0]}»(1).

Term 6% The first two terms in equation @ converge to zero by the same reasoning used for
67% and 659, respectively. The third term can also be shown to converge to zero by recalling that
Ty 3 = op(1). Hence, we can write

O =Ty (Hp(é*)TROéOQ) (éOZTR()Hq(é*)) +op(1).

Putting everything together, we find

Li(Fo) = Lue(F) = M35 > cupluq(Hp(6,) 'Ro0) (0 RoH,(6,))
p,q=1

FATua Y CopCog(Hp(65) ' Ro0) (8°° T RoHy(6,)) + op(1).
pg=1

Using Lemma [K.7, we know that in the sums above, the terms corresponding to (p,¢) = (1,1) and
(p,q) = (2,2) are the only non-negligible terms in the first and second sum respectively.
Hence, as T33 = 1/(0 " Ro0) + op(1) and Ty 4 = 1/(6°2T Ry6°%) + op(1), from Lemmas @, @,
and we can write,
Lir(F) — Lix(Fo) = A3 3621 (0] Ro)* + AT ac? 5 (Ha(6,) TR00)” + 0p(1)
~ — ~ 2 ~ — ~
¢ (6] Ro) , (Hy(8,)TRy6°2)?
OTROO ) 902TR0902
@Z))\ci,lmg N 41/)Acf’lcz,2m1
plezy +o(c2 +02)]  3p[p(c2 +02) +cF ¥

+ op(1)

—>pA2:

proving the theorem for ¢ = 2.

L Asymptotics of the Training Loss for General /

We define the values & ; for all i,j € {0,1,...} such that for any p € N and = € R, we have
aP =30 o &piHi(x).

Theorem L.1. Let ¢ € N. If Conditions|2.1{2.4 hold, while we also have ci,--- ,¢¢ # 0, and n < n®
with 42_—; <a< Zfﬁ, then for the learned feature map F and the untrained feature map Fgy, we have
Liy(Fo) — Lo (F) = p Ap > 0, where

¢ ¢ ¢ ¢ o
Ap=A Z Z ChopCr,gTpTq Z Z Qij (d(c:+02)+ cf,l)(zﬂ)/2 &ip€jq +or(1),

p=1 g=1 i=1 j=1
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in which  is an invertible matrixz with

min (i,5)
moin&in+mi Y K &Gxbik|, Vijeld,
k=0, k£1

971 = (2, + o(c + 02))

° =

and for p € N,

p
plpmy Cx,1 1
_) ¢ <\/¢(c%+a£)+c%,1> 7

r, =
P Pma Cx,1
¢ ¢(c3+02)+63,1

Proof of Theorem|[L.1l In the regime where n < n® with 32_7} < a < %;2, according to the

equivalence theorem 4.1, we can replace F with F; when computing the limiting training loss.
To compute the limiting training loss difference according to lemma we study the matrix
R = (FF' + Anl,)~'. Due to equation lﬂ, we can write

4
FF' =FF] + Z et 0% (Foa) T

k=1

e ~ e Z . . . . . . ~ .o~ .
+ Z cllccknk(Foaok)eokT + Z Z Cll-‘r]cicjnwrj (aol)T(aog)eozooJT'
k=1 j=1i=1
Defining the matrix U as
U= Foa " N(f—l)/QFané é |‘ éoe GRRXQZ’
£ columns l Col‘lzmns

we can write

FF' = FoF) + UKU', in which K = [Olf{” I;] € R2x2
o

' 2 ~ ~ s s L. . .
where K, = diag (Cﬁ})”, e, Nc(lecfz/Q) € R and K € R with [K;; = ¢\ cicin'™(a®, a),
for all 4,5 € [4].

Using the Woodbury formula, the matrix R can be written in terms of Rg = (FoF + AnIL,) ™!
and T = (K + UTRoU) ! € R?*2? as R = Rg — RyUTU ' Rg. Now

A 1 N0 =1
K!'= [Klil Eio e] , Where K;l = diag( . ’ ) ,
o X

and [K];; = —NO"D2NU-1/2(q% @), for all i,5 € [f]. We define M, My, M, € R*¢ as the
following blocks of T!:

M; M
-1 _ 1 o
T [M Mg].
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Hence, we have
[M,]; j = NE-D2NG-D/2q% T (FTRyFy — I)a®
[M,)i j = NG=1D/2a°TFRo0% + op(1),
M), — 6T Ro6%.

We can expand the monomials in terms of the Hermite polynomials, for scalars & 5, k € [i], as
follows:

(N2a)° ngHk (N'2a), and (XB)" =85 Y _ & rHe(XB/[8l2)-

k=0 k=0

Using these, we will analyze each matrix M;, Mo, M, separately.
Analysis of M;. It is easily seen that the elements of this matrix are Op(1).

Analysis of My. To analyze these terms, we need the following lemma, whose proof is deferred

to Section [0.101

Lemma L.2. For any i,j € Ng, we have

min(z,5)
~ 0oiTH ~ oi i+7)/2 m
(X" Ra(XB)7 —op (1 + (e +01) P 6 T2+ LY Mg
k=0, k#£1
Defining the matrix My € R*¢ with entries
Y. 2 2 2y (i+7)/2 1/’ ¢m1 ey
[Ma)i; = (1 + ¢(cf +02)) €i16j0 > R Gl
d) ¢ k=0, k#£1

for all 4, j € [¢], we have [Ma]; ; —p [Ma]; ;. Note that we can write

1\_/_[2 = g wmle T
¢ P ’
where we define b= (c2 | + ¢(c + 02))"/2, B = diag(b',- -+ ,b) € R, e = B[10,- - , 0],
1'm 0 0
0 ’ 20mq .- 0 11 - &y
M = . . ) ] GREXK’ and Z= | : : c RIXE
6 0 g!;nl Con o &

Recalling that for all ¢,j € {0,1,...}, & ; are such that such that for any p € N and z € R, we
have z¥ = Y0 _ &, iH;(x), it follows that the matrix Z is lower-triangular with unit diagonal; hence
invertible. Thus, since B, M are diagonal with positive entries, the matrix BZMZ "B is positive
definite. This implies that My is invertible. We will denote £ = My L
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(i-1)/2 g0

Analysis of M,. We analyze [M,); ; by writing N in the Hermite basis, finding

Hy(NY2a)TF]Ro0% + op(1).

. 1/2q) . .
The terms with & > 0 are all op(1) because w is a norm Op(1) vector with mean zero,

independent from the vector FJ Ro8% with norm Op(1). Thus, [M,];; = op(1). The term with
k = 0 can also be shown to be op(1) by using that the linearized Fy is left-orthogonally invariant,
via an argument identical to the one used to analyze equation

Hence, putting these together, the matrix T can be written as

Mt 0, g:|
T=| 1 11+ op(1
[Oexz M, (1)-

Using lemma we can write the training loss difference as Lt (Fg)— L (F) = Ay T RyUTU ' Ryy.
Plugging in the teacher function fy, we find

L:(Fo) — Lo(F ZAc*pc*,q 6,) ' RyUTU  RoH,(6,)

+2) Z (c* ) ROUTUTR(]e) + e TRyUTU Rye.

Note that the second term can be shown to be op(1) because € ~ N(0, 621,,) and it is independent
from H,(0,) RoUTU Ry, and ||H,(0,) TRoUTU Ry|lop = Op(l/\/>) with a simple orderwise
analysis. The third can also be shown to be op(1) by noting that e is independent from RoU,
|IRoUllop = Op(1/4/n) and that the elements of T are Op(1).

To analyze the first term, we define 8, , = H,(0,) RgUTU' R H,(0,) for all non-negative integers
p,q. To analyze such terms, we first expand UTU" as

J4 4
UTUT — ZZN(i+j)/2*1[Ml—l]i7j(Foa F()CL ZZ 00100]1'

y4 4
Opa =D > NOETM; 1 H,(8,) "Ro(Foa®) (Foa®) TRoHy(6.)
i=1 j=1
[ — ~
+ 30D MG Y Hy(6,) TR06% 0% TR H, (6,
i=1 j=1

By an argument identical to the argument for the terms in M,, the first sum goes to zero in

probability. Denoting 8/(|8||2 := B, we can expand (Xﬁ)oi = H,BH%ZZZO fl-’ka(X,B/H,BHg), To
analyze J, 4, we need the following result, whose proof is deferred to Section
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Lemma L.3. For any p,q € Ny, we have

p
plyma Cx,1 — 1
o ¢ <¢¢<cz+a§>+cz,1> peaz
Hy(XB,) ' Ro Hy(XB) —p q vma ___cus N
¢ ot e,

0 pP#q.

We can now use Lemma and that ||B|l2 —p (¢(c? + 02) + 0371)1/2 to write

[
Spg =Y > M i 1181157 & pja Hp(6:) ' RoHy(XB) - Hy(XB) RoHy(64) + 0p(1)
i=1 j=1
S (i+4)/2
= Z Z [£2];,5 (45(03 + 052) + 03,1) ’ §ipSiarprq + op(1),
i=1 j=1
for p, q € [¢], which concludes the proof. O

M Infinite sample limit

In the infinite sample limit, where n > N, d, we have ¢ — 0. In this extreme case, the expressions for

my, mg will further simplify as my, mg — ¢/\). Note that in this limit, we have L, (Fo) — 02 + ¢2

(see e.g., [MM22, Section 6]. Using Corollary @, we see that for example when ¢ = 2, we have
2

2
L(F) — o2+ c§’2 + cf7>2. In particular, the term corresponding to the linear component of the
teacher function in £(F() cancels out with the corresponding term in As.

N Proof of Theorem [4.5]

Let (xte, Yte) follow the model from . Recall that the test error can be written as
Lie(a(F)) = Eao,ye (Yte — dTU(the»Q = Eaiepte (y‘?e) + &Tzf& - QaTva (41)

where B¢ = Eg,, [0(Wate)o (W) ' | and pg = Eq, g, [V1e0 (Wte)]. First, we will show that in
the definition of 3¢ and p g, we can replace the test feature o(Wx) with the spiked approximation
from Theorem [3.2]

L

Fo = o(Wome) + 3 chen (BT i) a™, (42)
k=1

without changing the test error. To do this, consider an independent test set {ic, Yte i}y
with n¢ test samples following the data generation distribution in equation [I] and we define
X = [@te,1, - - - ,mte’n]T € RMexd et Fyo = O‘(XteWT) € R™eXN he the test feature matrix. We
can write the test error as

. : 1 X
Lie(a(F)) = lim — ||y — Feea(F)]3.

Nte—>00 T
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Now, consider the spiked approximation of the test feature matrix Fy., € R™eN where each row
of Fye ¢ follows the approximation in equation @ Using Theorem @, we have [|[Fe — Fiellop =

op(y/Nte). Thus,

1 R 1 N
7||yte - Ftea(F)H% - 7”yte - Ftc,éa( ) <(Fte Ftc,é)a'(F)a 2yte - Fte - Ftc,€>‘
Tte TNte

te

C

— Ficllop - [a(F)[l2 = 0,

where the last line is due to the fact that under the assumption of Theorem 4.2, we have ||yt —
Fi.a(F)||3 = Op(\/nte), and that ||a(F)||2 = Op(1) from the proof of Theore Thus in the
test error, we can replace the test features with their spiked approximation without changing the
limiting test error. With this, we can write

T = 2(} +Eo,,

¢
Z c’fcknk(m;ﬂ)k (aOkcr(Woa:te)T + a(WOmte)a"kT)]
k=1

V2
+ Emtc Z Z i+j ’L+j —LB)H—JC’L J(aozaogT)
=1 :

A
= 2.(;" + Bz Z clfcwk <aOkVT + Vka’OkT> Bz, Z Z CH—] H_jczcj i+j (amaoﬂ—) , (43)
Lk=1

=1 j=1

where 2(} = Eg,, [U(ngte)a(womte)T], v, = Emtc[(m;,@)kcy(wgmte)], and Ny = Eg,, (mtTeﬁ)k for
all k € [¢]. Also,

l
By = Emte:yte [yteo'(wwte)] = u’_?” + Z leckankGOk> (44)
k=1

Where “(} = Emteyyte {yteo-(womte) ]7 and Tk = Emte [yte(a:;;ﬁ)k} :

N.1 Prooffor /=1

Without loss of generality, assume that ¢; = 1. First, note that

V1 = Eay,[(€8)0 (Wore)] = WoB,
R = Eg (€8) =0, and Ny =Eq, (0)° = B3 —p cly +o(cd +02),

=K [yte(mtelﬁ)} = 0*71/6113 —P C*,l’

where the convergence follows from equation [3| and the computations are in its proof.

Thus, using equation 43| we have

py=pt+cima, Tp=3X%+7 (a(WoB)T + WoBaT> +0? (1 +é(cd +02)) aa’.
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From Section we have R = Ry — RyUTU Ry, where T is defined in equation @ and
U = [Fpa | X3 ]. In Section it was shown that

BTXTRX3 _% —a'FJRoXp
~1 - BTX"RgFpa a'FJRoFoa — |al3

T =

~ o~ _ o~ 27
<ﬂTXTR0X,8> (aTF] RoFoa — ||al2) — (% + aTFJROXﬁ)

where TH,TQQ == @[p(].), and Tgl,Tlg == O]p(l/??)

Now, we are ready to study the terms Ey = Eq,_ 4. (v%), B2 = @' £¢a, and E3 = —2a' py that
appear in the test error in equation

N.1.1 Analysis of Fj.

This term can be readily computed as

2
By = E(y) = 02 + Ea, (0(8] @) = 02+ (46)

N.1.2 Analysis of Es.

Recall that @ = (F'F + AnIn)"'F'g, Ro = (F§Fo + Anl,) ™!, and R = (FF" + Anl,)"!. Using
these, we can write

Ey=a'2pa=9" F(F'F+nly) 'S (F'F+nly) 'F'y
=g (FF" + \nL,) 'FE;F (FF' + \l,) 'y = 9 RFX;F'Ry. (47)

We have y = f. + €, thus
Ey = f/RFX;F'Rf, +2¢'RFE;F Rf, + ¢ RFX;F'Re. (48)

We will now analyze the terms in equation First note that e RFE;F'Rf, = op(1) using a
simple order-wise argument. To analyze the third term in equation 48] we write

_ ~ T _ _ S
F Re= (FO + n(Xﬂ)aT> Re=F/Re+n(8 X Re)a.

Using a simple order-wise analysis, we have 8" X Re = Op(1/1/n). Thus, the third term can be
written as

e ' RFY;F Re=¢'RF X;FjRe+2n(8' X 'Re)e RF X a+7*(8' X 'Re)’a'Zsa.

q1 q2 g3

The term ¢; can be computed as

¢1 = e RF X;FjRe =¢'RF, (Z(} +1n (a(WOB)T + WoﬁaT> + 772||B\|§aaT) FJRe
= ETRFOE(}FS—RE +op(l) = ETROFOZ[}FJRO e+ op(1),
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where in the last line we have used that R = Ry — RyUTU 'Ry and an order-wise analysis for
various terms. To analyze ¢z, note that

e 'RFySsa = ¢ "RF, (2} + 1 (a(WoB) " + WoBa" ) +n*Bl3aa” ) a = op(1),
using a simple order-wise analysis, thus g2 = op(1). Similarly, for g3, we have
a =08 X Re)a’ (2% +n (a(WoB)" + WoBa" ) +n?Bl3aa”) a= os(1).
Hence, summing everything up
By =e ' RoFoS4F Roe + f/ REX;F R, + op(1). (49)
Next, we will study the term f:RFZfFTRf*. We can write

a—F RS, — <F0 + n(X,B)aT>T (Ro - ROUTUTRO> £

=FjRof. ~FgRoUTU 'Ry f, +7 [(Xﬁ)TROf* — (XB)'RyUTU 'Ry f. | a. (50)
———

p1 D2

p3

Thus, defining E;j =p/ = £p; for i,j € [3], we have Ey = Zf’ =1 E;j . In the following sections, we
will analyze each term in this sum separately.

Preliminary Computations. Before starting the computation, we define K as
K:=B"X"Rof. — B'X"RyUTU 'Ry f.. (51)
Recalling that T1o = Th; = O(1/n) and 3T X "RoFoa = O(1/y/n), the variable K can be simplified
as follows:
K =B"X"Rofi — To(B X "ReXB)(B"X Rof.) + Op (n\l/ﬁ> :

Also, from the definition of the matrix T in equation 45| we have

1 1 1
Ty = ~————— + ——— = — 'f—i-O[PlT]Q.
BTXTRoXB (B'XTRoXB)2(a"FJRoFoa — |lal3) 7 (/)

Hence, putting everything together, and using Lemma we can write

_ IBTXTROf* i )
"o (B'XTRoXB)(a"F]RoFoa — |la3) +op(1/n). (52)

Next, we will study the limit of nT7o. For this, we can use equation 45| to write

—1
(BTXTRXB)(aTFJRoFoa — |alj3)

Tis = ~ j} + Op(1/1P). (53)
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Analysis of E}'. Noting that n = o(n'/4) and a"FJ Rof, = Op(1//n), we can simplify this

term as follows:
Ey' = £/ RoFoZ;F( Rofs
~ £/ RoFo (3% +n (a(WoB) " + WoBa ) +12|8l3aa’ ) Fy Rof.
= ! RoFoS}3F| Rof + op(1).

Analysis of E}? and E5'. By expanding & s and UTU', we have
E3' = B} = — £ RoFoXF; RyUTU' Ry £,

=~ T RoFo (% + 1 (a(WoB)" + WoBa") +12|8]3aa” ) F{ReUTU  Rof.

_ E;l(l) +E221(2) +E221(3) +E§1(4),

in which

21

ES'Y = —fTROFZ4F] ROUTU R s,

21
E2

@ = ) (fTRoFoa)(8T W] FRoUTU Ry f,),
By = (] RoFyWoB)(a  Fg RoUTU Ro ),
B3 = —n?(f] ReFoa)(a F{RyUTU Rof,).
These terms can be simplified as follows. By expanding UTU, we have
Ey'Y = —fTRoFoE4F{ RoUTU Rof.
= —f RoFoZ$F Rox

[711(Foa) (Foa) "+ Tho(Foa)(XB) T + To1(XB) (Foa) "+ To2(XB)(XB) | Ro .

=~ (£TROFOS$F] RoXB) (87X Rof. ) + op(1),

where the last line uses that f! RoFga = op(1) and fIROFOE(}FJROFOa = op(1). Next, noting

that n(f] RoFoa) = op(1) and ,@TWS—FS—R()UTUTR()]C* = Op(1), we can write
EX'® = . (fTRoFoa)(8T W] FJRoUTU Rof,) = op(1).
Using a similar argument, we have
B3 = —n(f] RoFoWoB)(a FJ RoUTU Rof.)
= —nTi2(f, RoFoWoB)(a FjRoFoa)(f, RoXS) + op(1).
Finally, again note that n?(f, RoFoa)? = op(1). Thus,
B2 = _2(fTRoFoa)(a F RyUTU Rof.) = op(1).

Putting all together, we arrive at

B} = B = ~T (£ RoFo 4 F] RoXB) (T ReX )

— nTia(f] RoFoWoB)(a F§ RoFoa)(f, RoX3) + op(1).

45



Analysis of E32. Once again, by expanding 3 s and UTU', we have
E2? = fTROUTU 'R(FZ;F] Ry UTU 'Ry f.
= £ Rq [TH(FOa)(FOa)T + T1o(Foa)(XB) T + T (XB)(Foa) T + TQQ(Xﬁ)(Xﬁ)T} RoFo
% |25 +n (a(WoB) ™ + WoBaT) + 1 l3aa |
« F{ R [Tn(Fga)(Foa)T + Tia(Foa)(XB) T + T (XB)(Foa) T + T22(Xﬁ)(X,B)T} Rof..
Note that f,] RoFga = Op(1/+/n) and 1? = o(y/n). Hence,
E3? = (£ RoXp)? {Tm(Foa)T + T22(X6)T}
% RoFo |2 + 1 (a(WoB)" +Wosa ) +Bl3aa’ | Fj R (56)
X [TH(FOG) + T22(X5)} + op(1)
= (£ ReX0)?[T5 (87X RoFoE§F] RoX)

+ 2nT12T(a" F RoFoa)(8'W( Fg RoX3) + ||5H%772T122(‘1TFJR0F00)2} +op(1). (57)

Analysis of EJ? and E3'. Recalling the definition of K in equation @ this term can be written
as

By = E3' = nK £/ RoFo3a
= 0K fIRoFo [£% + 7 (a(WoB) " + WoBa") +7*|Bl3aa’] @
= 1’K(f{ RoFoWoB3) + op(1), (58)
where the last line uses equation l@ and that 1 ] RoFoa = op(1).

Analysis of £ and E3?. Again, recalling the definition of K in equation |51, we have
E? = B = K f/RoUTU RoFoX;a
= —nK £ Ro |T11(Foa)(Foa) " + Tiz(Foa)(XB)" + T1(XB)(Foa) " + T2(XB)(XB) |
X [ROFOE(}G +7 (5TW0TG)ROFOG + R0F0W05> + 772||ﬂ||%R0Foa}
_ E223(1) +E223(2) +E223(3) +E§3(4),
in which each term can be written as follows:
BV = —nK T (£ RoFoa) |a F) RoFoZa + n(a’ WoB)(a Fj RoFoa)
+n(a"F§ RoFoWoB) + 17 Bl/3(a’ FoRoFoa)| = oz(1).

where we have used that K = Op(1/19?), a'WoB8 = op(1), a' F{ReFoWoB = op(1), and
n fIRoa = op(1). Also,

EP® = —nKTia(f] RoFoa) BTX RoFoZ%a + n(a’ WoB)(8' X RoFoa)

+n(B" X RoFoWoB) + n*(|8]3(8' X "RoFoa)| = op(1),

46



with a very similar argument to that for E223(1). Next,
E223(3) = —’I’]KTQ]_(fIROX,B) [GTFS—R[)F()E?G + H(GTWO,@)(GTFS—R[)F()(I)
+n(a'Fg ReFoWoB) + 1°||8/l5(a” Fg RoFoa)
= -’ KTy || BI5(f, RoXB)(a'Fj RoFoa) + op(1),

in which we have used the fact that Th; = Op(1/n), and K = O(1/n?). Finally, with a similar
argument

EPY = KTy (£, RoXB) |8TX RoFo=%a + n(a” WoB) (8T X RoFoa)
+ (8" X RoFoWop) + 1*|B13(8" X "RoFoa)|
= —’ KTy (£ RoXB)(B8" X RoFo W) + op(1).
Putting everything together, we have
E5® = =’ KTy ||BI3(f. RoXB)(a Fj RoFoa)
— * KTy (f, RoXB) (8" X RoFoWo0) + op(1). (59)

Analysis of E53. This term can be analyzed by expanding 3 + as follows:
E§ = iK%" |54+ (a(WoB)" + WoBa") +12|8]3aa | a
=’K*a’ Bfa + 2 K*(a " WoB) + 11 1|85 = 1 K| B + op(1), (60)

where we have used that K = Op(1/9?) and na' Wo3 = op(1).

Putting Everything Together. Now, we can put together the results from previous sections to
derive the limiting value of F5. First, we will explicitly derive the limit of each component. To do
so, recall that using equation [3] and Lemma we have

1815 —p [¢(cF +02)+ 1], £ RoXB —p & 9hma/o
BTX RoXB —p [¢(c +02) + ¢l ] ¢ma/d, and a'FgRoFoa —p o/¢ — M my /¢,
Also, using Lemma we have
FIRFEGFRoXB —p ¢l M, and B X ReFoE4F RoXB —p [¢(c2 +02) + 1] M,

in which M := limy, N 400 B XTRyF XY FOTROX,B*. This limit has been computed in [AP20a].
Using the diagram in the proof of Lemma that shows how the notations of [AP20a] match ours,
we find that E32 in [AP20al, S148] equals our M. Thus, we find

2mg  mh
M=1—-——-——, (61)
ml m%

where m}, is the derivative of my with respect to A. Also, again using we have

FIRoFoWoB —p 2 M, and B'XTRoFoWoB —p [8(c? +02) +c2,] M,
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in which M := lim,, x.4_00 8, X 'RoFgWy8,. This limit has been computed in [BEST22]. Specifi-
cally, using T3 in (C.16), and noting that their ® translates to Fo/ VN, their Wy translates to
WJ , and their \ translates to AW" in our notation, using [BES™22, Proposition 29] we find

M=1-—2 (62)

Now, we can use equation [55] equation equation equation and equation respectively,
to derive the following expressions:

4

21 12 Cxl - U/ — Ap*my /¢
b= = e o, [_M M <w/¢ PR 1)] /
E22 o Ci,l

M—2M< b/ — NP /¢ >+< /6 — Xp?mi /2 )2]

¢(c; +02) + iy /¢ — MpPma /¢? — 1 /¢ — MpPma /¢ — 1

4

13 _ 3l _ %1 M
i Bl [w/qz» VYo 1] ’
B2 _ g3 _ i [_ P/d — Mp*my /§* n M }
2 2 +o2)+c2, [ (/o —MpPmy/¢? —1)2 " /o — MpPmy/¢? — 1]
o =t [
2 g+ o)+ (/¢ — M2y /g2 — 1)2 ]

Thus, summing these terms up, we conclude that

Ci,l (1—-M)

Ey — § ' RyFEYF] Ry — ,
2TV RS R0 R TR G @ ot v &2,

wrapping up the derivation of the limiting value of FEs.

N.1.3 Analysis of Fjs.

To analyze this term, first note that
E3=—2a"ps =29 RFup = —2f RFu; — 2¢ ' FRu;.

With a simple order-wise analysis, the second term can be shown to be op(1). To analyze the first term,
we will again use the decomposition from equation We can write —2f, RF f= :(,,1) +E§2) +E§3)

)

in which E?(’i) = —2p;r py. We will analyze these terms separately. For the first term, we have

E?()l) = _2p1|—/1’f = -2 f:ROFO (C*JW(],B* + 0,2(7177 a) = _20*,1fIROFOWOB* + OP(l)a
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where we have used that  f,' RoFga = op(1). Similarly, the second term can be written as

E§2) - _9 P;Hf =2 f*TRoUTUTRoFo (C*,lwof"* + 03,177“)
=2/ Ro {TH(FOG)(FOG)T + T12(Foa)(XB8) " + T (XB)(Foa) " + T (XB)(XB)T
x RoFo (¢, WoB, + C* 1 a)
2 (£ RoXp) [Tm(Foa) + T22(X5)T} RoFo (.1 WoB, + ¢ 1na) + op(1)
=2(fRoXB) [ ¢ nToa' FyRoFoa + C*,1T22,3TXTROFOWOﬁ*] +op(1).

Also, for the third term we can write

Ey(,g) = —2pjpy=—2nKa' (cx1WoB, + Cz,177 a) = —202,1772[( + op(1).

Summing up, the limiting value for Fj is
4

C*,l

P(c2 4 02) + 63,1

FEs + ZC*’l’gTF()R()W()B*—F —p [QM — 2] . (64)

N.1.4 The Final Result
Putting equations together, we have

Lio@(F)) — (o2 + 2 + 5 RoFSGF] Rog — 26,15 FoRgWo§, )
4

—p Sl o —1-M].
¢(C>% + Ug) + c*,l

The test error of the untrained random features model can be written as
ﬁte(d(Fo)) = O'E2 + CZ + QTROFZ%FJROQ — 26*71’!;TF0R0W0,8*.

Hence, the improvement over the untrained random features model in terms of test error is equal to

4

) . c, _
Lie(a(Fop)) — Lie(a(F)) —p S+ ‘7521) n 03,1 [1 + M — 2M] )

Hence, using equation [62] and equation [61] we find

—Ci1 Oomy
(¢(c2 +02) +ci)mi OX’

Lie(a(Fo)) — Lie(a(F)) —p (65)

where T)\l < 0 using that tr(X " (FoF] + AnlL,)"'X)/d = ¢yma/é. This concludes the proof for
0=1.
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N.2 Prooffor /=2

First, similar to the proof for £ = 1, we have

vy = Eg,. [(208)°0(Womie)] = 2¢2(WoB8)>,
Ng = wte (mtelg) =0, and Ry = mte (mteﬁ) - 3”/6”% —P 3[03,1 + ¢(CE + 03)]7
™ =E [yte($;2,8) :| = 20*,2(516) —P 20*710*,27

in which we have used Lemma Thus, using equation 43| and equation [44] we have

20277 o o o o
T (VNa) (WoB)?T + (W) (VNa™T))

3C2 4
+7lBl3aa” + =ZL|B3(VNa™®)(VNa™T), and
py = u(} + cima + 20203?1c*72772a°2

Also, from Section @, we have R = 1:_{0~— RopTUTl—:{o, where the matrix T~ is defined in
equation @ and U = [Foa | Foa®>V/N | X3 | (X3)°?]. Using the analysis in Section we

g = 5%+ (a(WoB) + (WoB)a' ) +

note that
a’ (FJRoFy —I)a 0 2%7 0 1
1
_ 1
0 Na**" (F§ RoFo — I)a®? 0 T
~ _ ~ 1
T = 3 0 (XB) Ro(XB) 0 +A,
1
1 ~ _ ~
I 0 % 0 (XB)°*TRo(XB)7|

in which the elements of A are Op(1/y/n). Hence, the matrix T =
1

1

[T} ;] has entries

= T F ReFo —Da 7 (a7 (F] RoFo — Da)2(X8) Ro(X)) +or(1/7),
i W T e e ST

ey a°2T(Fg lioFo —I)a? " cé\;‘* " (Na*2T (FJRoFy — I)aiQ)Q((XB)OQTRO(Xﬁ)OQ) + op(N/n'),
Tu=Ta= -2 O TP TR TR

T~ o) P @ TR e Rar Ry )

fi <Xﬂ>O2T;o<Xﬁ>°2 i 2]37 (Na®T(F§ RoFy - I)a"iT)((Xﬂ)°2TR0(Xﬂ)O2)2 + o/,

and its other elements are Op(1/y/n).

Next, we will study the terms By = Eg,_ .. (y2), B2 = @' £¢a, and E3 = —2a " py that appear in
the decomposition of the test error in equation
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N.2.1 Analysis of E;

Similar to the £ = 1 case, we have

2
By =E(y%) = 02 + B, (0(8]@10)) = 0? + . (66)

N.2.2 Analysis of Ej

Recall that using equation we have
Ey = fIRFS;F'Rf, + 2 RFZ;F Rf, + ¢ RFX;F'Re.

First, note that e ' RFX fFTR f+« = op(1) using a simple order-wise argument. Using an argument
similar to the one for £ = 1, the third term can be written as ETRFEfFTR €= ETR()F()E(}FOTRQ e+
op(1).

Next, we will study the term f:RFZfFTRf*. We can write

RS, = (Fo +n(XB)a’ +en(X8)7aT) Ry - RUTUTRy) f.

=FJRof. ~FJRoUTU Ry f, + nKia + o’ Kya®?, (67)
N—— ~—— N———
pP1 D2 Pp3 D4

in which K7 and K5 are defined as
K1 = [(X8)"Rof. - (X8) "RoUTU Rof. .
Ky = [(X8)” Rof. — (XB)" RoUTU Ry .| .

Usign this notation, we have f] RFE;F'Rf, = Zije[
following sections, we will compute each term separately.

4] Eéj, where E;j = pZTEfp;.r. In the

Preliminary Computations. First, we will analyze K; and K. Recall that
UTU' =Ty (Foa)(Foa) " + Ti3(Foa)(XB) "
+ NT22 (Foao2) (]?0&02)—r + \/NT24 (F0a°2) (X,@)OQT
+ T51(XB)(Foa) " + Ts3(XB)(XB) " + VNTia(XB)**(Foa™")
+ T44 (Xﬁ)OQ (Xﬁ)ofr‘

Thus, we have
(X8) "RoUTU Rof, = T | (XB) 'Ro(XB)| - |(XB) Ro .| + Oe(1/v/n).
which gives
1 BTXTR] f.

_ ) a2
= n? (aT(FJRoFo —Da)((XB)TR(XA)) +op(1/77) (68)
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Similarly, for Ky we have
(XB)?TRoUTU Rof, = Tus |(XB)*? Ro(XB)*| - | (XB)™ Rof.| + Op(1/ V).
which gives

N (XB)OQTRE]FJ:*

B = (N (F] RoFo — Dar)(X8) Ro(X5)7)

+op(1/n"). (69)

Analysis of Ei'. For this term, by expanding X f,» We can write
Ey' = £/ RoFoZsF( Rof. = £/ RoFoXGFg Rofi + op(1). (70)

This holds because nf,) RoFoa = op(1), and %f:ROFO(\/Na"?) = op(1).

Analysis of F}? and F}'. We have E3! = FEi? = — fIRoF¢X;FJRoUTU Ry f.. Using the
expression for T, we can write

Tia FRof. + T13(X8) "Ro fs
TooV/Na?"FJ Ro fi + T4(XB)? TRy £,

TU Ry f, = S o (71)
Ts1a ' Fo Rofs + T33(XB) ' Rofx
| T1oV'Na*?TF Ro fi + Tua(XB8)°2 " Ro £, |
On the other hand, by expanding U and X ¢, we similarly have
- — — T
n(f. RoFoWo3)(a'FJ RoFoa)
2650° (£ TRIFo(WoB)°2)((VNa®) TFI RoFo (v Na°?
FTRoFS,FTRGU) — | T T RIF(WoB) ) (VNa) TR RoFa(VR )|
FIRoFoSGF ] RoX3
i f RoFoS}F] Ro(X ) ]
This gives

E3' = B3? = — Tisn(f.RoFoWoB)(a' Fj RoFoa)((X8) 'Rof.)
B QC%U2T24

VN
— Ts3(f.RoFoZ3F ) RoXB)((XB) 'Ro f,)

(£ RoFo(W0B)*2)((VNa™) TFj RoFo(VNa™))((XB)* Rof.)

— Tu(f! RoFoZ4Fg Ro(XB)%)((XB8)* Ro ) + op(1). (73)

Analysis of EJ® and E5'. Recalling equation by expanding ¢ we have
Ey* = E3' = nK ] RoFoZra = n* K1 (f, RoFoWo/3) + op(1), (74)

in which we have used that K; = Op(1/7?).
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Analysis of Ei* and Ej'. Recalling equation by expanding X7 we have
Ey* = By' = con’ Ko f, ] RoFoX5a® = op(1), (75)
in which we have used that 7*Ks/N = Op(1).

Analysis of Egz. This term is equal to E%Q = f*TROUTUTROFOEfFJROUTUTROf*. Using
equation [71] we can write

FyRoUTU 'Rof, = [T11a' Fg Rofs + T13(X8) ' Rof.] Fg RoFoa

+ [TaVNa® Fg Rof. + Tos(XB8)°° T Ro f.] Fg RoFo(VNa™)

+ [Ts10" Fo Rof. + T53(XB) 'Rofi] Fg RoXB

+ [T12VNa®TFi Ro f. + Tua(XB)** ' Ro f.] Fg Ro(XB8)°%.  (76)
Further, by expanding X ¢, we have

E2 = 20 4 2O 4 2O 4 2O 4 o), (77)
in which
EXY = [T33(XB8) Rof.] (BTXTRoFo=4F) RoX/3)
+ [Tua(XB)**TRo f.J* (XB)°*TRoFo Z}F| Ro(XB)°?),

B = 2Ty - (XB) TR f2)(a Fg RoFoa) (3T W] Fj RoXS3),

) 2. 9 _ B _ _ S
B = ST Ty (RO Rof)? ((VNG™) By RoFo(VNa™) ) ((WoB)2F) Ra(X8)™).

4 ~ — —

W — 27211813 (X8) "Rofy)? (aFj RoFoa)?

3cin’
N

22
E2

_|_

12812 (X8 Rof.)” ((VNa™) B RyFo(VNa))'

Analysis of E3* and E3*>. We have E3* = Ej? = —nK1a"XsF] RyUTURof,. Recall that
the vector FJ RoUTU Ry f. has been computed in equation With this, we have

E3 = B3 = — " K1 T53(8" X "Ro f.) (BT W Fg RoX3)
— 3 K1T13)|B|3(a" Fg RoFoa)(B' X Ry f,) + op(1), (78)
in which we used that n?K; = Op(1) and nTi3 = Op(1).

Analysis of E2* and E32. This term can be written as

E24 = E42 = —02n2K2a°2T2fFJR0UTUTRQf*.

The vector FJ RoUTU 'Ry f, has been computed in equation By expanding X3¢, we have

BN — B2 - _20%7742\7% : ((Wog)OﬂFJRO(X,@)O?) . ((X,@)°2Tﬁof*)
3.6 4
3 %37/24”@2 ((\/NGOQ)TFJROFO(\/NGQ)) ‘ <(Xﬂ)o2TR0f*) +op(1).
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Now, noting that Ko = Op(N/n%) from equation @ and |[(WoB)°2||l2 = Op(1/V/N), we find that
the first term is op(1) and we have

3e3n° Ko T4 813

E§4 - Egz - N3/2

((VNa™) B RoFo(vVNa™)) - ((XB)* Rof.) +op(1). (79)

Analysis of E33. Similar to the £ = 1 case, this term can be written as
E3* = n’Kia'Spa =n'K7||BII3 + op(1), (80)
noting that K7 = Op(1/7n?).

Analysis of E3* and E33. By expanding & f» we readily arrive at
E§’4 = E%g = ngKlKQCQGTEfaOQ = Op(l). (81)

Analysis of E5%. This term can be written as F3* = c3n*K2a°?T $a°?. By expanding X and
noting that Ko = Op(N/n*), we can write

3cyn° K3

Byt = =

+ op(1). (82)

Putting Everything Together. Now, we can use the results derived above to compute the
limiting value of Fs. Recall that from Lemma [K.7] and Lemma [K.8 we have

~ _ ~ o m ~ ° — ~ ° 3Yvm
Hy(XB,) Ro(XB)™ —p 2cZ,1¢¢17 and (XB)™ Ro(XB)* —p “;) o+ o)+l
Also using an argument similar to the argument in the proof of Lemma [K.7 and Lemma [K.8, we
have

Hy (X,B*)TR()F()E%FJR()(X,B)OZ —p 20371]\2',
(XB)™ T RoFoZ3Fg Ro(XB)* — 3Mp(c; + 02) + L1,

in which M = limy, N d—so0 %tr [ROFOEO FJRO]. This term has been computed in [AP20a]. Using
the diagram in the proof of Lemma [K.4 that shows how the notations of [AP20a] match ours, we
find that we can use (S142) with 0. = 0 in J[AP20a], to find

[ =—-—1-1, (83)

where m/ is the derivative of m; with respect to A.

For brevity, we will define A := lim,, N d— 00 [(\/NaOQT)FS—ROFO(\/Na°2)] . With this, equa-
tions [73] [74] [75}, 77, [78} [79] [80} [81], and [82] give

El2 _ g2t it W P/ — MPmi/¢* \ Ml 4c} el oM
PO @)+ [ \9/o - MPmy [P — 1 3lo(cz +02) + 37
Cil,l M

Ey* =E3' —p — Byt = By —p 0,

S+ 02)+ 2, U/ —NpPmije? —1

o4



as well as

4
22 Cal o [ ] = MpPmy /¢ > ( Y/ p — Mp*my /p?
ey, (MM <w/¢ aeme? —1) T\ G — wrmy et — 1
03,103,2 - 4A?
‘Waﬁ+ﬁww%PPM“+3dn2’
I Cha [ M o= P [
2T (@ o)+ 2y [0)e - MPmy /¢t =1 ()¢ — MpPmy /¢ — 1)?
and also
4 2 e
24 _ 742 B Cx 16,2 4A
B =t [D(c2 +02)+ 2 ]2 |3(A—1)2|
4
33 Cil 1
B e @ e 1 2, [(ch —X%my 2 — 1)2] ’

61,163,2 [ 4
@+ o)+, |3(A—

E3'=E3 »p0, Ey'=E'—p

1)2} ’
respectively. Putting these together, the component Fy can be written as

Cil(l - M) 403,102,2(1 - M)

Ey — § RoFE}F| Rog —p

N.2.3 Analysis of Ej.

To analyze this component, first note that

by = —QdTuf = —QgTRFuf = —2f;r1:_{Fuf — QETRFuf.

d(ci+o2)+cly  3Blo(c+o2)+c )"

)]

Using a simple order-wise analysis, it can be shown that the second term is op(1). Now, recalling

equation lﬂl we write F3 = Zf‘:l Eéi), where Eéi) = —2pz-T pf. By expanding pyp and recalling that

u(} = ¢,,1Wo3, we have

Eél) = *2fIROFOH(}' + Op(l).

(85)

Next, recall that the matrix FOT RoUTU 'Ry f, is analyzed in equation @ Using this, and by

expanding py, we get

E:.EZ) = Q(f;rR()Xﬁ) [ng(u'(}TFJRO}Zﬁ) + cz’lTlgn(aTFgl:_{oFoa)}

2 2
4020*710*,2’_]’2477

VN
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Similarly, by expanding pg, we arrive at

Acie? yeon' Ko
N
Similar to the computation for Eo, we can derive the limiting values of the components in E3 as

4 1 4 2 1
(2) 6*71 — 2A C*7lc*72 8A
By — 2M — — - X ’
3P (24 02) + e < A-1 [6(c2+02) +cZ 12 \3(A—1)

Eég) = —20371172K1 +op(1), and E§4) = + op(1).

ct 2 1€ 8
E(3) s *,1 < _ > 7 E(4) N *,15%,2 ( _ ) '
5P e+ 2, \A-1 P @ o) + 2 P \3(A )
Putting these together, we have
Ci 1 (2]\7—[ - 2) 80&,103,2

Es+ 2fRoFoul — ’ — . 87
3+ 2f RoFopy Po@+o)+ 2, 3[o(2+02)+ 2, (87)

N.2.4 The Final Result

Putting equations and [87] we have
Ci@(l + M — 2M) 403,102,2(1 + M)
P(c2 +a2) +Ci1 3[p(c2 4 02) +Ci,1]27

Lic(a(Fo)) — Lie(a(F)) —p

where Lio(a(Fp)) is the test error of the untrained random feature model. Further, using equation

equation [62] and equation [33] we get

4 4 2
Cil oma 4¢; 1659 omy

($(c2 +02) +c2 )m} ON  3[B(c2 + 02) + 2 \[Pm? 0N

Lic(a(Fo)) — Lic(a(F)) —p — (88)

Note that 85}\1, 85’;\2 < 0, concluding the proof.

O Proofs of Supplementary Lemmas

0.1 Proof of Lemma [C.3
Recalling a; b N(0,1/N) and (z;, 3)|3 b N(0, [|3]]3), claims (a) and (b) follow from standard
Gaussian maximal inequalities [vdVW13, Section 2.2] and from ||3||2 = Op(1); the latter follows by
writing B = n~'X " (0, (XB,) +¢), where € = (1, ...,¢,) " and using our distributional assumptions
on X, ¢, as well as Condition

By [Ver12, Theorem 5.39] and [BS10, Corollary A.21], we have ||[WoW{ |lop, [(WoW{ )2 ||op =
Op(1). Also, by [Verl8, Theorem 3.4.6] and Gaussian maximal inequalities [vtdVW13, Section 2.2],

1 1
we have maxi<jz<j<n(wo, wo ;) = Op(n~ 2 log2 n). For k > 3,

I(WoW3)*[lop < [(Wo W)™ —Inflop +1 < [[(WoWg)** —Inllp +1

(S

< Z <w07i,w07]~>2k +1= O]p(l) + 1.
1<i£j<N
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Therefore,

My, < maX{HWoWoTHom H(WoWoT)(JQllop,igg ll(WoWJ)C’kllop} = Op(1).
Claim (d) is standard, see e.g. [Verl8, Theorem 4.4.5].

0.2 Proof of Lemma [K.1]

We can write

V(B = caB) =n VT (X (0.(XB,) +€)) — 1B,
=n Z(VTwiU*(xiTﬁ*) —cv' B,) +nve
=1

Now n~'vTe ~ N(0,02||v|3)/n —p 0. Moreover, by Condition @, we can write o,(x 8,) =
cx0 + o1z B, + (Ps104)(x] B,), where conditional on B,, (P~10,)(z; B,) is orthogonal in L? to
the constant function and to m;rﬁ* Hence the first sum above equals

n n n

n e, ov’ Z x; +n e v (Z xix, — I) B, +nt Z vz (Psy0y)(z] B,).
i=1 i=1 i=1

For the first term, n e, ov! Y0 @; ~ n"teeo - N(0,n|[v||3) —p 0. The second term is ¢, times

a sample mean of i.i.d. random variables of the form VT(wiwiT —1)3,, which have zero mean by the

Gaussianity of x;, and for which all moments are finite. Hence, by the weak law of large numbers,

this term converges to zero in probability.

Similarly, the third term is a sample mean of i.i.d. random variables of the form v ' x;(P~10.)(x; 3,),
which have zero mean by the Gaussianity of ; and Lemma and whose second moments are
finite since o, is Lipschitz. Hence, by the weak law of large numbers, this term also converges to
zero in probability. This finishes the proof of the first claim.

Next, the second statement follows from [BEST22, Lemma 18]. While that work has slightly
different assumptions on the teacher function f, it is straightforward to check that their proof goes
through unchanged under our assumptions. Specifically, their proof requires that @ — fi(x) =
o.(z'3,) is O(1)-Lipschitz, which holds in our case because o, is O(1)-Lipschitz, and ||3,]|2 = Op(1).

0.3 Proof of Lemma

By plugging in @ into the training loss, we find
1, R R 1, . 2 +. 1, N
L) = |5~ Falp+ Alald = |93~ 2§ Fa+ aT (FTF + wily)a

1 1 1 1
=—[lgl3— -9 ' Fa=—|gl53— 9 ' F(F F+ly) 'F'g
n n n n
1, . 1._ 1
=—||gl53 - —g"FF"(FF' + AnL,) 'y
n n
1 1

— 5\@”3 — ;QT(FFT + ML) (FFT +AnL,) g+ A\gT (FFT 4+ Anl,) "1y
=)y (FF" + \nl,) ',

57



which proves the lemma.

0.4 Proof of Lemma [K.3

To prove the concentration of this term around its mean, we will use the generalized Hanson-Wright
inequality [Sam23, Theorem 2.1] for a-subexponential random variables. Note that, by definition, if
Z is a Gaussian random variable, H,(Z) is 2/p-subexponential (see the definition in equation (1.1)
of [Sam23] and for these variables the Orlicz norm of order 2/p is bounded (see equation (1.3) of

[Sam23]). Also note that [|D|g < /n||D|lop = Op(1/y/n). Thus, using [Sam23, Theorem 2.1] and

setting t = lo\g}) we find

logn
vn

where C > 0 is some constant. This concludes the proof.

P <’9(Z)TD 9(2) ~ Elg(2)'D 9(2))| > ) < 2exp (—~C min {log?(n), (v logn)?}),

0.5 Proof of Lemma [K.4

First, we show that switching from wy ; R Unif (S41) to Wy o N(0, 2I,) will not change the

limit of the terms éEtr(XTROX) and Etr(Rg) which will appear later in the proof. First, we define
WO - [wo,la e )wO,N]T7

D =di ( !
= lag 77. .. T
[wo,12 [0, |2

and f{,() = (FOFJ + )\nIn)_l

) Wi =4 DWWy, Fg = 0(XW{),

Then,

tr [RO — ﬁo}

= |tr [(FOFOT L)L — (FoF] + Anln)—l}

— |t [(FOFOT +AnL,) " Y(FoF] — FoF])(FoF] + )\nIn)’I]

N

tr(FoFg + AnL,) " Y|(FoFg + ML) " opl FoFo — FoFolop
¢
n

IN

|FoFo — FoFollop-

Now, using the Gaussian equlvalence from Appendix |J l we can replace Fg and F with Fy =
chWO 4+ ¢>1Z and Fo = ClXWo + ¢>17Z, respectively, without changing the limit. With this, we
have

F(]FO FOF() = Cl (W()WO WoWJ)XT + clc>1X(W0 — Wo)TZT + c1es1Z(Wy — Wo)XT
Now,
HWOon - WOWE)F”OP < Iy - DHOpHWOWJHOP(”DHOP +1).

Note that [WoW{ [lop = Op(1), |IDllop = Op(1), and |Iy — Dllop = o0p(1). Thus [WoW] —
WoW{ lop = 0p(1). Also, similarly, |[Wqo — Wol|lop = op(1). Hence, noting that ||X|op and ||Z||op
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are both Op(VN), we have 1|FF] — FoF{ |lop —p 0. This implies that |tr[Rg — ﬁoﬂ = op(1).
Also,

XX,
XX oy

’ tr [XTROX} — [XTf{OX} ‘ < |[Ro — Ry - 0.

Finally, we can prove the required claims as follows:

(a) Since B, ~ N(0, 1I,), we have 8] X TRoX8, = éEtr(XTROX) +op(1), by the Hanson-Wright

inequality. Note that by the argument above, we can assume that wo g N(O, éId) without
changing the limiting trace. Further, from [AP20al, Proposition 1], see also [ALP22], we have
é Etr(XTROX) — %mg; see the discussion at the end of this proof for the detailed explanation.
Now, we arrive at the conclusion by applying Lemma [K.1

(b) Since @ ~ N(0, +Iy), we have a' FjRoFoa — ||a||3 = & tr (FJRoFo) — 1 + op(1) by the
Hanson-Wright inequality. Moreover,
FiRoFo = FJFo(F] Fo+ Anly) ™!
= (Fg Fo+ My — A\nly)(Fg Fo 4+ Anly) ™t = Iy — Mn(Fj Fo 4+ Anly) ™t

Hence, % tr (FS—RQFO) —1= —)‘Wn tr(FJFo + AnIy)~!. From the argument above, we can
assume that W ; i N(O, éId) without changing the limiting trace. It follows from [AP20a)

Proposition 1] that Etr Rg — %ml; again see the discussion at the end of this proof for the

detailed explanation. Note that lim E tr Rg is the limiting Stieltjes transform of FOFJ. Hence,
my = 1imEtr(FgFo + AnIy)~! is the limiting companion Stieltjes transform of m; which is

given by
mp = Zml — <1 — z) % (89)

This concludes the proof.

For the reader’s convenience, we provide the following diagram that shows how the notations of
[AP20a] (left) match (<) ours (right):

no < d, ny < N, m < n, O, & 0,1,

XT eR™M o X eR™,  FTeR™™M o Fye RN, oy, =0,

1 1 _
—K(\m/n)"' = —F'F+ I, & Ry =FF] + I, C&cd, ned+d,
ni ni

1 N_ . 1 N o
n=—EtrtK'em =—EtrRy, m=—FEtrX XK' < m;="—EtrXX'Ry.
m n mng nd

0.6 Proof of Lemma [K.5|

Define X = X — Xuu ', which implies X I Xu due to the Gaussianity of X. Based on the Gaussian
equivalence from Appendix |J| we can replace Fy with 01XWOT + ¢s1Z, where Z € R™*? is an
independent random matrix with N(0, 1) entries, without changing the conclusion. Hence, from now
on, we write Fg = clfiwg + ¢>1Z. Further, we define

Fo =1 XW{ + ¢ Z. (90)
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Thus, by the definition of X, Fy=F;— 01Xu(Wou)T. As a consequence, we also have FOFE)r =
FoFj + VDV, where V = [FoWou Xu] € R"*? and

0 C1
D= .
[Cl 3w 0u||%]

Noting that D is invertible, and using the Woodbury formula, with Ro = (FgFg + AnI,)~!, we find
Ro=Ro-RoV(D' + VIR\V)IVTR,. (91)
Now, we can write
H,(Xu) "RoH,(Xu) = Hy(Xu) ' RoH,(Xu) — Hy(Xu) ' RoV(D™! + VIR(V) 'V R H,(Xu).
Next, we can analyze each term in the above sum separately.
The first term on the right hand side converges to zero by using Lemma to prove the

concentration of this term around its mean and noting that the mean is zero using the orthogonality
property of Hermite polynomials (Lemma [C.1)).

To analyze the second term, we first study the matrix K = (D! + VTROV)*l, writing

K- = (D_l + VTROV) _ UTWJFJRPFQWOU — HWOUH% “TWonjgfﬂofgu B %
u' X"RoFgWou — % u X RoXu

It can readily verified that all elements in this matrix are Op(1) by checking the order of the operator
and Euclidean norms. Next, we analyze the terms in the expression
Hy(Xu) 'RoVKV 'RoH,(Xu) = [K]1,1 Hy(Xu) ' Ro(FoWou) (FoWou) " RoH,(Xu)
+ K1 2Hy(Xu) "Ro(FoWou)(Xu) " Ro H,(Xu)
+ [Klo,1 Hy(Xu) "Ro(Xu) (FoWou) ' Ro H,(Xu)
+ Koo Hy(Xu) "Ro(Xu)(Xu) "Ro H,(Xu).

Without loss of generality, we can assume that p # 1.

e First Term. Note that H,(Xu) and H,(Xu) are orthogonal in L? by the properties of the
Hermite polynomials, and conditional on u, they are independent of RO(FOWQu) FOWOu)TRO.
Moreover, ||Ro(FoWou)(FoWou) Rollop = Op(1/n). Thus, by using Lemma this term
converges to zero.

e Second Term. Similar to the argument above, we can show that (X )TROH (Xu) converges
to zero. Also, by analyzing the operator norms, we have H,(Xu)  Ro(FoWou) = O(1). This
implies that the second term converges to zero.

e Third Term. First, note that by a simple order-wise analysis, H,(Xu)' Ro(Xu) = Op(1).
Now, we have H,(Xu) is independent of (FgWou) Rg and ||(FoWou) Roll2 = Op(1/v/n).
The term (FOWOU)TROHP(XU) converges to zero in probability by noting that HP(XU) is
mean zero for p # 0. For the p = 0 case, we can use an orthogonality invariance argument
identical to the one used to analyze equation

e Fourth Term. This term also converges to zero because (Xu) RoH,(Xu) converges to zero,
as argued above.

Putting everything together, the proof is completed.

60



0.7 Proof of Lemma [K.6l

We will prove part (a) first. To do this, we will first handle the cases where p =0 and p = 1.

For p = 0, we have V' N Ho( ) RoFoa®? = /N. This is identical to the second term in equation
and it is shown to be op(1)

For p = 1, we need to analyze \/NHl(é*)RoFga°2 =V NB] XTR(Fya°?. Note that 8, ~ N(O, éId)
is independent of N XTRoFpa®? and
IVNXTRoFoa®|l2 < VN|[Xlop - [Rollop - [Follop - [la*[l2 = Op(1).

Thus, we can conclude that v N H; (0~*)I_{0F0a°2 — 0 in probability.

To analyze the case where p > 1, we first define X =X- 0~*,6*T. By construction, we have
X L 6,. As in the proof of Lemma Based on the Gaussian equivalence from Appendix
we can replace Fy with 01XW0T + ¢>1Z in our computations without changing the limiting result,
where Z € R"*? is an independent random matrix with N(0,1) entries. Thus, from now on, we
denote Fy = ClXWo + ¢51Z. We define Fy as in equation m Thus, Fo = Fo — 16, (WoB,)T".

a consequence, we can write FOFO F()F—r + VDV, where V = [FOWO,B* 0 ] € R™*2 g d

0 c
D= aiwiz)
Using the Woodbury formula, we find that equation [91] still holds. Now, we can write
VN H,(6,) RoFya°? (92)
= VNH,(0,) "RoFoa®®> — VNH,(6 )TROV(D +V'RoV) 'V RoFya®
= VNH,(6,) Ro(Fy + 10, (Wop,) ")’
—VNH,(0,) "RoV(D ™ + VIRGV) ' VTR (Fo + 10, (WoB,) ")a?.

Now, we can analyze each term in the above sum separately.

Term 1. Note that by a simple orderwise analysis,

IVN RoFoa™|lop < VN|Rolop|Folop|a®?]|2 = O(1/VN).
We have ||H,(8,)|2 = Op(V/N), E[Hp(é*)] — 0, and H,(6,) has independent entries. Also
H (0 )JLR()F()CLO2 Thus fH( )TR()F()CLOQ —p 0.

We now need to analyze v/N H,(0 ) TRe6,8] W] a2, Note that H, 2(0,) TRoB, = Op(1) by a
simple order analysis of the norms. We also have v NG, W{ a2 —p 0, because 3, ~ N(0, éId) is
independent of the norm bounded vector VN WJ a?.

Term 2. To analyze the second term, we first study the matrix K = (D! + V—l—l:A{OV)_1

BIWG EqREGWoB, — [WoB,|I} BT W, FiRob. - 5
B X RoFoWoB, — L B X Rof.

Cl

K'!=(D!14+V'RyV)=
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By orderwise analysis, all elements in this matrix converge to deterministic Op(1) values in probability.
We write the second term in equation (92| as follows:

VNH,(6,)TRgVKV 'R(Fya°?
FoWoB,)(FoWoB,) RoFo(vVNa*?)
FoWo3,)0, RoFo(VNa)
9,)(FoWoB,) ' RoFo(VNa?)
9,06, RoFo(VNa™).

In the sum above, we will show that each term converges to zero.

e First term: By orderwise analysis, we have HRO(FOWOBQHOP = Op(1/V/N). Further,~Hp(9~*)
is independent of it (only considering the randomness in X) with mean zero and ||H,(6.)|2 =
Op(vV/N). This implies that

Hp(é*)TRD(F()W[)B*) —p 0. (93)

We can use a simple order argument to show that v N (F()WO,B*)TR()F()CLO2 = Op(1). Thus,
the first term converges to zero.

e Second term: For this term, we use that H,(8,) Ro(FoWo8,) —p 0. We can also use an
orderwise analysis to prove that v/ N (6,) " RoFoa®® = Op(1). This proves that the second term
also converges to zero.

e Third term: By a simple orderwise analysis, we have v N (FOWO,B *)TROFOa O]p( ). To
show that the third term converges to zero, it is enough to show that H,(8,) Ro(6s) —p 0,
which is true for p # 1 by using Lemma and the orthogonality property of Hermite

polynomials (Lemma [C.1).

e Fourth term: By a simple orderwise analysis, we have vV N GN*TROFOaO2 Op ) Again, to
show that the fourth term converges to zero, it is enough to show that H, ( )T Ro(6,) —p 0,
which is true for p £ 1 as argued above.

Putting everything together, part (a) follows. The proof for part (b) is identical and omitted.

0.8 Proof of Lemma [K.7

We will study the cases where s = 1 and s = 2 separately. For s = 1, we can use Lemma [K.1] to show
that H,(0,)Ro0 = c.,1H,(0,)Ro0, + op(1). Also, by Lemmam7 we have Hp(0.)Ro(64) = o(1) in
probability if p # 1, which proves the lemma.

For the case s = 2, we define 3 = 3/||8||2 and write
Hy(8.)Ro(6) = (8113 Hy(0.)Ro(XB)** = |83 Hp(6.)RoH2(XB) + 0p(1).

Now, we define 3| = %, and set X = X — XB,@ — X,@l,@I. By construction, we have

X 1 X3, 0,. Based on the Gaussian equivalence from Appendix |[J| we can again replace F with
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Fo = 01XW0 +cs1Z, where Z € R™*? is an independent random matrix with N(O 1) entries. Again,
we define F as in equatlonm Thus, Fo = Fg— chﬁ(Woﬁ) —chBL(WOBL) As a consequence,
we also have FoF] = FOFT + VDV—r where V = [Xﬁ X,Bl FoW,03 FOWOBL] € R4 and

[ 2(WoB, WoB) H(WoB,WoB,) e 0]
H(WoB, WoBL) (WoB,, WoB,) 0 c

D=
c1 0 0 0
i 0 c1 0 0]
Using the Woodbury formula, we find that equation [91] still holds. We can write
Hy(0,) 'RoHa(XB) =Hy(0,) ' RoHa(X) (94)

— Hy(6,) "RoV(D ! + VIRGV) 'V Ry Hy(X1).
The first term converges to zero for any p # 2, analogously to the argument in Section for the
term (1,2).

To prove that the second term will also converge to zero, we first observe that the elements
of K= (D~ 1y VTf{OV) are all Op(1). The second term will involve quantities of the form
K]i ;Hp (6, )TROvI TROHQ(X,@) where v;, for ¢ € {1,2,3,4}, is the i-th column of the matrix
V = [Xﬁ XBJ_ FOWOB FOWOHJ_]. We can argue that all these terms converge to zero, as
follows:

e The terms where j = 1 converge to zero because (XB)TROHQ(XB) converges to zero analo-
gously to the argument in Section [K.2.1] m for the term (1,2). The same argument applies to the
terms where j = 2, via the convergence of (X8 ,) RoH2(X03) to zero.

e For j = 3,4, since HQ(XB) is independent of Ry [FOWOB FOWOBL], and has zero-mean
i.i.d. entries, it also follows that these entries converge to zero in probability.

Finally we study Hs(0,)  Ro8°2, by analyzing the terms in equation E for p = 2.

For H(0,) "RoHy(X3), since Hy(0,), Hy(X3) are independent of Ry, it follows from Lemmal@
as in the analysis of term (1, 2) in Section [K. 2 that Ho(6,) " RoHo(X3)—ERy- IEHg(O )THy(XB) —p
0. Now notice that Fo is left-orthogonally invariant in distribution, and thus Ro =4 OROOT
where O is uniformly distributed over the Haar measure of n-dimensional orthogonal matrices,
independently of all other randomness. Hence, ERO =Etr R(]In /n. Moreover, from the Woodbury
formula in equation

[t1Ro — tr Ro| < [tr RoV(D™! + VI RgV) 'V Rg| < [tr(D! + VI RoV) 'V V|- | Ry,
From our previous analysis and as the entries of V_TV areAO]p(n), it follows that the first term
is Op(n); whereas ||Rg||§p = O(1/n?). Hence, [trRg — trRo| —p 0, and thus by the bounded

convergence theorem LE trRg — Etr R0| —p 0. Moreover, we have already argued in the proof of
Lemma [K.4] that Etr Rg — ¢¥m; /é.

Further, by Lemmas and [K.1]
EH>(0. )TH2(X5) =n-EHy (%] B,)Ha (&1 )
(5:@2 —on 63,1
1811 ¢(c; +02) + ¢34

= 2nIE(6*TB)2 = 2nkE + op(1).
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This shows that )
Pmy Ci1

Ho(0,) " Ry Ho (X3 2 .
2(6,) RoH2(XB) —p 1) qﬁ(cz—i-ag)—l-cil

Next, we consider Hy(0,) RV with V = [X,@ X3, FoWyB ]?‘OWO,BJ For the first two

entries of the vector Hy(0,) RV, an analysis very similar to the one above for H2(0 ) TR H2(X3)
shows that they converge to zero in probability. For the last two entries, since H2(0 ) is independent
of Ry [FOWOB f‘owoﬂ 1], and has zero-mean i.i.d. entries, it also follows that these entries
converge to zero in probability. Moreover, the limiting entries of (D~ + VTf{OV)*l have been
shown to be bounded in our above analysis. Hence, the second term converges to zero in probability.

Now, note that 8 = 8/|8]|2. From Lemma 1811 =p ¢(ci + 02) + ¢ ;. Hence,

ymy  ci4llBIE 2¢; 1bma

HQ(O*) ROHQ(X,B) =2 (;5 ¢(62 T 02) i C* | + 01117(1) —p ¢ s

which concludes the proof.

0.9 Proof of Lemma [K.8

As in the proof of Lemma we define X = X —63". By construction, we have X L 6. As in the
proof of Lemma based on the Gaussian equivalence from Appendix [J| we can replace Fy with
c1XW{ + =17 in our computations without changing the limiting result, where Z € R"*¢ is an
independent random matrix with N(0, 1) entries. Thus, from now on, we denote Fy = 01XW3— +cs1Z.
We define f‘o as in equation l@; thus, Fo = Fy— clé(WO,@)T. As a consequence, we can write

FoF| = FOFJ + VDV, where V = [FOWO,B 0] € R™2 and

0 &
D=1 iwoere]
Using the Woodbury formula, we find that equation |91] still holds. Now, we can write
62T RyG? = 67T Ryf7? — 6T RV(D ! + VT ReV) 1V Rof2. (95)
We can analyze each term in the above sum separately.
By Lemma @, éOZTf{OéOQ — E0~°2Tf{00~02 —p 0. Further, conditional on 3, EéOQTf{OHNCQ =
3||B|3E tr Ro; and as in the proof of Lemma @, EtrRo — EtrRg — 0. Moreover, we have

already argued in the proof of Lemma @ that Etr Rg — ¢m1/¢. In addition, from Lemma I@,
1811 =p ¢(ci + 02) + ¢} ;. Hence,

0°2TRy6°% = p 3¢my[p(c2 + 02) + C* 12/ 9.

To analyze the second term in equation m we first study OOQTROFOWOﬁ By an argument similar
to the ones above, we can show that it concentrates around 1, ROFOWO,B =1' FOROWOB Since Fy
is left-orthogonally invariant, 1n FOROWO,B =4 1;1r OFOROWOﬁ, where O is umformly distributed
over the Haar measure of n-dimensional orthogonal matrices, independently of all other randomness.
Then, it follows as in the analysis of term (1,2) from Section @ that 1, OF RoW,8 —p 0; and
hence éOQTRQF()Wo,@ —p 0.

Moreover, the limiting entries of (D=1 + VTROV)_1 can be shown to be bounded by a simple
orderwise analysis. Hence, the second term in equation [95|is op(1).
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0.10 Proof of Lemma [L.2

Denoting B = 3/||8||2, we have

. s~ o~ . — ~ o~ . . . l ] ~ ~ _ ~ o~
(XB)* TRo(XB)” = I8l (XB)* "Ro(XB) = 1Bl D > &im&jha Hia (XB) " RoHy, (XB)

k1=0 ko=0
' 4min(i,j) . - .
= 18157 Y &ubisHr(XB)TRoH(XB) + op(1)
k=0
R min(z,5)
= 18157 |4.1&1(XB) T Ro(XB) + > &GuluHe(XB)  RoHp(XB)| + op(1).
k=0, k#1

The third line fqllows from Lemma Now, we claim that for any p € {0,2,3,...}, we have
H,(X8/18ll2) "RoHy(XB/|1Bll2) —p p! vm1/é. Using this claim, the facts that [|3]|3 —p i+
o(c2 4 02), and tr(XT (FoF] + Anl,)"'X)/d —p 1ma/¢, we can conclude

o min(z,5)
(X TR(XB) —p (2, + 62 +02) 72 | g1, 2002 5 Tl S R &g
k=0, k#1

Now, it remains to prove the claim that for any p € {0,2,3,...}, we have

Hy(XB/18l12) 'RoHp(XB/|1Bll2) —p p! ym1/¢.

As in the proof of Lemma @, we define X = X — XBBT By construction, we have X 1L X.
As in the proof of Lemma based on the Gaussian equivalence from Appendix [J| we can
replace Fy with cl)NCWS— + ¢>1Z in our computations without changing the limiting result, where
Z € R™*? is an independent random matrix with N(0, 1) entries. Thus, from now on, we denote
Fy = ClXWo + ¢s1Z. We define Fy as in equation l@) thus, Fo = Fg — 01X[3(W0ﬁ) . As a
consequence, we can write FoFJ = FOFT + VDV, where V = [FOWOH Xﬁ] € R™? and

0 C1 :|
D= = ol -
[Cl ci[WoBlI3
Using the Woodbury formula, we find that equation [91] still holds. Now, we can write
~ o~ _ ~ o~ ~ o~ T N ~ o~
Hy(XB) " RoHy(XB) = Hy(XB) RoH,(XB)
— Hy(XB) RoV(D! + VTRGV) 'V Ry H,(X3). (96)

We can analyze each term in the above sum separately.

By Lemma @7 HP(XB)Tf{OHp(X,B) = EHP(XB)TROHP(XB) —p 0. Further, conditional on 3,
and using [C.1, we have

EH,(XB) RoH,(XB) = Etr [RoH,(XB)H,(XB) | = p! Etr [Ro .

and as in the proof of Lemma @, EtrRo — EtrRy — 0. Moreover, we have already argued in
the proof of Lemma that Etr Rg — 1»m1/¢. Hence, Hp(Xﬁ)TROHP(XB) —p pl Yvmy/¢. To
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analyze the second term in equation E we first study H, (X,B)TROFOWOﬁ Conditional on 83,
H (XB) is a vector with independent mean-zero, bounded variance entries, independent of the
vector RgFgWy 3 that has norm O(1/,/n). Hence, we conclude that this term goes to zero. Next,
note that H,(X3) Ro(X8) —p 0 using Lemma and Lemma @ Moreover, the limiting entries
of (D71 + VTf{OV)_1 can be shown to be bounded by a simple orderwise analysis. Hence, the
second term in equation [96|is op(1). This concludes the proof.

0.11 Proof of Lemma [L.3|

We define 8, = %, and set X = X — X,@BT — X,BL,BI. By construction, we have
* AWM 2

X 1L X,@, 6,. Based on the Gaussian equivalence from Appendix |J l we can again replace Fy with
Fo = 01XW0 +c¢-1Z, where Z € R4 is an independent random matrix with N(O 1) entries. Again,
we define Fy as in equatlonm Thus, Fo = Fo— ch,B(WO,B) —01X,6'L(W0,8L) As a consequence,
we also have FoF] = FoF] + VDVT where V = [X3 X8, FyWy3 FyW3, ] € R4 and

[ (WoB, WoB) F(WoB,WoB,) ¢ 0]

A(WoB, WoB,) HWoB,,WeB,) 0 e
c1 0 0 O
0 cl 0 O

Using the Woodbury formula, we find that equation [91] still holds. We can write

H,(0,)"RoH,(XP)
= H,(0,) "RoH,(XB) — Hy(8,) "RoV(D ' + VIR)V) 'V RoH,(X3).  (97)

p # q case: The first term converges to zero for any p # ¢, analogously to the argument in Section
for the terms (1,2) and (2,4). In particular, for p = 0, we can use orthogonal invariance as
in the analysis of the term (2,4). To prove that the second term will also converge to zero when
p # q, we first observe that the elements of K = (D' + VTR V)~! are all O(1). The second term
will involve quantities of the form [K}i,ij(ON*)Tf{oviv}—Rqu(XB), where v;, for i € {1,2,3,4}, is
the i-th column of the matrix V = [XB X,BL FoW,3 FOWOﬁL]. We can argue that all these
terms converge to zero, as follows. Because p # ¢, without loss of generality, assume that q # 1.

e The terms where j = 1 converge to zero because (XB)TROHQ (X3) converges to zero using
the concentration argument from Lemma and the orthogonality of Hermite polynomials
from Lemma [C.1. The same argument applies to the terms where j = 2, via the convergence
of (XB,) "RoH,(XB) to zero.

e For j = 3,4, and for ¢ > 0, since Hq(XB) is independent of RO[FOWOB ]?‘OWO,BL], and
has zero-mean i.i.d. entries, it also follows that these entries converge to zero in probability.
For ¢ = 0, we can again use orthogonal invariance as in the analysis of the term (2,4).

The case when p = ¢ # 1: Finally we study Hp(é*)TROHp(XB), by analyzing the terms in
equation
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For H,(8,) RoH,(XM), since Hy(0,), H,(XB3) are independent of Ry, it follows from Lemma
as in the analysis of term (1,2) in the Section that

H,(6,) " RoH,(XB) — ERg - EH,(8,) "H,(XB3) —p 0.

Now notice that f‘o is left-orthogonally invariant in distribution, and thus f{O =4 OROOT, where O
is uniformly distributed over the Haar measure of n-dimensional orthogonal matrices, independently
of all other randomness. Hence, ERy = Etr RolL, /n. Also, similar to the proof of Lemma [K.7, we
have |tr Rg — tr Ro| = op(1). Moreover, we have already argued in the proof of Lemma that

EtrRg — 1¥ym1/¢. Further, by Lemmas and

p
Py Cx,1

o\l +ot)+e,

H,(0,) "RoH,(XB) —p p!

Next, we consider Hy(0,) RV with V = [X,[:} X3, FoWy3 Fowoﬁl]- For the first two
entries of the vector H,(6x) RV, an analysis very similar to the one above for H,(6,) RoH,(X03)
shows that they converge to zero in probability. For the last two entries, since Hp(é*) is independent
of Ry [FOWOB f‘owoﬁ 1], and has zero-mean i.i.d. entries, it also follows that these entries
converge to zero in probability. Moreover, the limiting entries of (D~! + VTf{OV)*l have been
shown to be bounded in our above analysis. Hence, the second term converges to zero in probability.

The case when p = ¢ = 1: In this case, we have

- T o . Pma
(XB,)TRo(XB) = X8 Ro(XB) 17 +op(1),
18]l2 \/¢<cz +02)+c2,

using Lemma and by arguments similar to the ones in the proof of Lemma [K.4

Putting everything together concludes the proof.
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