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Abstract

We study the problem of private vector mean es-

timation in the shuffle model of privacy where n
users each have a unit vector v(i) ∈ R

d. We pro-

pose a new multi-message protocol that achieves

the optimal error using Õ
(
min(nε2, d)

)
mes-

sages per user. Moreover, we show that any (un-

biased) protocol that achieves optimal error re-

quires each user to send Ω(min(nε2, d)/ log(n))
messages, demonstrating the optimality of our

message complexity up to logarithmic factors.

Additionally, we study the single-message set-

ting and design a protocol that achieves mean

squared errorO(dnd/(d+2)ε−4/(d+2)). Moreover,

we show that any single-message protocol must

incur mean squared error Ω(dnd/(d+2)), showing

that our protocol is optimal in the standard setting

where ε = Θ(1). Finally, we study robustness to

malicious users and show that malicious users can

incur large additive error with a single shuffler.

1. Introduction

Vector mean estimation is a fundamental problem in fed-

erated learning, where a large number of distributed users

can provide information to collaboratively train a machine

learning model. Formally, there are n users that each have a

real-valued vector v(i) ∈ R
d. In the vector mean estimation

problem, the goal is to compute the average of the vectors

v = 1
n

∑n
i=1 v

(i), whereas in the closely related vector ag-

gregation problem, the goal is to compute the sum of the

vectors nv =
∑n

i=1 v
(i). As the privacy error scales with

the norms of the vectors, we normalize and thus assume

that ∥v(i)∥2 ≤ 1. The vectors could represent frequencies
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of sequences of words in smartphone data for predictive

text suggestions, shopping records for financial transactions

or recommendation systems, various medical statistics for

patients from different healthcare institutions, or gradient

updates to be used to train a machine learning model. Thus,

vector mean estimation and vector aggregation are used in

a number of applications, such as deep learning through

federated learning (Shokri & Shmatikov, 2015; Abadi et al.,

2016; McMahan et al., 2017), frequent itemset mining (Sun

et al., 2014), linear regression (Nguyên et al., 2016), and

stochastic optimization (Chaudhuri et al., 2011; Cheu et al.,

2022).

Due to the sensitive nature of many of these data types,

recent efforts have concentrated on facilitating federated

analytics while preserving privacy. Differential privacy

(DP) (Dwork et al., 2006) has emerged as a widely adopted

rigorous mathematical definition that quantifies the amount

of privacy leaked by a mechanism for any given individual

user. In particular, local differential privacy (LDP) (Ka-

siviswanathan et al., 2011) demands that the distribution

of the transcript of the communication protocol cannot be

greatly affected by a change in a single distributed user’s

input. This approach enables the distributed collection of

insightful statistics about a population, while protecting the

private information of individual data subjects even with an

untrusted curator who analyzes the collected statistics.

Unfortunately, in order to ensure privacy, the local model

often requires a high amount of noise that results in poor

accuracy of the resulting mechanisms. For example, in the

simple case where v(i) ∈ {0, 1}, i.e., binary summation,

there exist private mechanisms with O (1) additive error in

the central setting where the data curator is trusted (Dwork

et al., 2016), but the additive error must be Ω(
√
n) in the

local model (Beimel et al., 2008; Chan et al., 2012). Con-

sequently, the Encode, Shuffle, Analyze (ESA) model was

proposed as an alternative distributed setting that could po-

tentially result in a lower error (Bittau et al., 2017). The

shuffle model of privacy is a special case of the ESA frame-

work introduced by (Cheu et al., 2019), where a trusted shuf-

fler receives and permutes a set of encoded messages from

the distributed users, before passing them to an untrusted

data curator. (Cheu et al., 2019) and (Erlingsson et al., 2019)
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showed that for the important tasks of binary and real-valued

summation, there are shuffle protocols that nearly match the

accuracy of the optimal central DP mechanisms. Of note,

(Balle et al., 2019; 2020; Ghazi et al., 2020; 2021) study

the 1-dimensional real summation problem both under the

lens of minimizing the error and the message complexity

to achieve optimal error. In particular, (Ghazi et al., 2021)

show that there is an optimal protocol that requires each

user to send 1+o(1) messages in expectation. However, the

natural extension of their approach to d-dimensional mean

estimation requires a number of messages that is exponential

in d.

For d-dimensional mean estimation in the single-message

setting, the most relevant works are that of (Scott et al.,

2021; 2022), who study minimizing the mean-squared er-

ror of protocols that aim to compute the mean of vectors

u(1), . . . , u(n) ∈ R
d, where each sampled vector u(i) con-

sists of a number of coordinates sampled from the input

vector v(i) ∈ R
d. (Scott et al., 2021; 2022) treat the sampled

vectors u(i) as the true vectors and show a single-message

shuffle protocol for estimating their mean. However, the

mean-squared error of the overall protocol can be large, due

to the large variance incurred by the procedure of sampling

vectors u(i) from the true vectors.

Private vector mean estimation in the shuffle model is thus

not well-understood, both under single-message and multi-

message settings. In particular the following natural ques-

tions are open: first, in the multi-message setting, what is

the total number of messages required in the shuffle model

in order to obtain optimal rates for vector mean estimation.

Secondly, what are the optimal algorithms for the single-

messages setting.

Another desiderata in the design of distributed algorithms

is that of robustness to malicious agents. In our context,

we would like the system to be somewhat robust to one or

a small number of clients that behave maliciously. For a

problem like vector aggregation, a client can always misrep-

resent their input, and thus impact the sum; when vectors

are restricted to having norm at most one, this can impact

the true sum by at most two in the norm. The poisoning

robustness of a protocol is defined to be ρ if the impact of

an adversarial client on the computed sum is upper bounded,

in Euclidean norm, by ρ. Thus a protocol that computes

the exact sum has robustness 2. We would like to design

protocols with robustness that is not much larger. We note

that robustness of this kind has been previously been studied

in other models of privacy (Cheu et al., 2021; Talwar, 2022).

In the shuffle model with multiple messages, there are two

different possible models from the robustness point of view.

In any implementation of a shuffle protocol that aims to

achieve robustness, one must limit the number of contribu-

tions a single client can make: indeed if a single malicious

client can pretend to be a million different clients without

being detected, one cannot hope to achieve any reasonable

robustness. In typical implementations of a shuffler, such

control can be achieved. For example, in a mix-net imple-

mentation of shuffling (Bittau et al., 2017), each client sends

a non-anonymous but encrypted message to the first hop,

where this first server can see who sent the message but not

the contents of the message. This first hop can then validate

that each sender sends at most one, or at most a predeter-

mined number of messages to the server. When this bound

is B and there are n clients, this server can implement this

rate control usingO (n) counters that can count up to B, for

a total of n log2(B + 1) bits of storage. We call this model,

where each client can send a bounded number of messages

to a single shuffler, the multi-message shuffle model.

This is distinct from a multi-shuffler model, where a client

is allowed to send 1 message to each of B shufflers (or

equivalently, B messages to a single shuffler with the con-

straint that there be at most 1 of each of B “types” of mes-

sage). To ensure robustness, the shuffler would then need

to rate-limit each type of message. When implemented in a

mix-net setting as above, this multi-shuffler would require

the first hop server to store O (nB) bits. It is easy to see

that information-theoretically, a server cannot ensure nB
separate rate limits using o(nB) bits of state. For large B,

this is significantly more than the n log2(B + 1) bits that

suffice for the multi-message shuffle.

Similarly in other implementations, e.g. those building

on PrivacyPass or OHTTP tokens (Davidson et al., 2018;

Thomson & Wood, 2023; Hendrickson et al., 2023), there

is a server that implements the rate control at some step,

and its cost scales as nB for multiple shufflers, compared

to n log2(B + 1) for a multi-message shuffle. Thus from an

overhead point of view, these two models are significantly

different. As a concrete example, when n = 108, and the

vectors are d = 106-dimensional, a d-message shuffle re-

quires a few hundred megabytes of storage for the counters,

whereas a multi-shuffle would require 12 terabytes of stor-

age. It is thus much preferable to design algorithms that are

robust in the multi-message shuffle model, rather than in the

multi-shuffler model.

1.1. Our Contributions

In this work, we study the vector aggregation and vector

mean estimation problems in the shuffle model of privacy,

both in the single-message and multi-message settings, and

from the viewpoint of robustness. We show the following

results.

Multiple messages per user (Section 2). We consider

the multi-message setting where users are allowed to send

multiple messages. We propose a new protocol in the shuffle
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model that obtains optimal mean squared error of Õ
(

d
ε2

)

using Õ
(
min(d, nε2)

)
messages per user, matching the

performance of the central model of privacy (Bassily et al.,

2014) up to logarithmic factors.

Theorem 1.1. There exists an (ε, δ)-DP mechanism for

vector aggregation that uses Õ
(
min(d, nε2)

)
messages per

user and achieves mean squared error Õ
(

d
ε2

)
.

Moreover, we prove the following lower bound which shows

that Ω(min(nε2, d)/ log(n)) messages are necessary in the

shuffle model in order to obtain the optimal rate. The lower

bound holds for any unbiased or summation protocol (as we

define in Section 1.3).

Theorem 1.2. For any (unbiased or summation) (ε, δ)-
Shuffle DP protocol for vector aggregation that achieves

the optimal mean squared error O
(

d
ε2

)
, must send k =

Ω(min(nε2, d)/ log(n)) messages.

Single message per user (Section 3). We also study

the single-message setting where each user is allowed to

send only a single message. We show that there exists

a private protocol that can achieve mean squared error

O
(
dnd/(d+2)ε−4/(d+2)

)
.

Theorem 1.3. For any ε ∈ (0, 1), δ ∈ (0, 1), and d, n ∈ N,

there exists an (ε, δ)-DP protocol in the one-message shuffle

model with mean squared error Oδ

(
dnd/(d+2)ε−4/(d+2)

)
.

Though the mean squared error of Theorem 1.3 seems some-

what arbitrary, we show that it is tight for a single message

per user shuffle.

Theorem 1.4. Let P be an (ε, δ)-DP protocol for vector

aggregation on the unit ball Bd−1
2 in the one-message shuffle

model with δ < 1
2 . Then the mean squared error of P

satisfies MSE(P) = Ω
(
dnd/(d+2)

)
.

Robustness to malicious users (Section 4). We subse-

quently study the robustness of shuffle DP protocols to

malicious users, who may distribute adversarial messages

in an effort to induce the maximal possible mean squared

error by a protocol.

We first show that for additive protocols in the multi-

message shuffle model, each malicious user can induce

additive mean squared error up to Ω
(

d
log2(nd)

)
, for a total

of Ω
(

kd
log2(nd)

)
additive mean squared error across k mali-

cious users. More generally, we show the following result

for the case of s shufflers.

Theorem 1.5. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-

DP mechanism for vector summation in which s shufflers

take messages corresponding to a disjoint subset of the

coordinates and returns the sum of the messages across

n players with k malicious users has additive error mean

squared error Ω
(

kd
s log2(nd)

)
.

On the other hand, we show that our protocol is robust to

malicious users when multiple shufflers exist: in this case,

k malicious users can only induce error O (k), rather than

Ω(kd). Since the input of each user is a vector with at most

unit length, then our result essentially says that a malicious

user can at most hide its input vector by generating the pro-

tocol for a different vector. By comparison, each malicious

user in the context of Theorem 1.5 can be responsible for

error Ω
(

d
log2(nd)

)
, which can be significantly larger than

the unit length of each input vector.

Thus our results show that a large class of accurate pro-

tocols in the multi-message shuffle model are inherently

non-robust. While the multi-shuffler model can allow for

better robustness, it comes at a significant additional cost.

We remark that an trusted aggregator such as one built on

top of PRIO (Corrigan-Gibbs & Boneh, 2017) can ensure

high robustness as well as low overhead (c.f. (Rothblum

et al., 2023)). While it is more complex to implement a

trusted aggregator (compared to a shuffler), our results point

to an important reason why a shuffler may not be sufficient

when robustness is a concern.

1.2. Related Work

Mean estimation is a fundamental problem for data analytics

and is the building block for many algorithms in stochas-

tic optimization such as stochastic gradient descent. As a

result, privacy-preserving frequency estimation has been

extensively studied in applications of federated learning.

Real summation in the shuffle model. There has also

been a line of work studying real summation, i.e., vector

summation with d = 1, in the shuffle model. In the single-

message shuffle model, (Balle et al., 2019) showed that the

optimal additive error is Θ̃ε(n
1/6), whereas in the multi-

message shuffle model, there exist protocols that achieve

additive error O
(
1
ε

)
(Balle et al., 2020; Ghazi et al., 2020;

2021). In particular, (Balle et al., 2020; Ghazi et al., 2020)

use the split-and-mix protocol of (Ishai et al., 2006) to

achieve additive error O
(
1
ε

)
, though at the cost of using at

least 3 messages, each of length at least
log 1

δ

logn . Subsequently,

the protocol of (Ghazi et al., 2021) achieves near-optimal

error, while using only 1+ o(1) messages per user in expec-

tation.

Lower bounds for the multi-message shuffle model. For

the problem of mean estimation, existing work does not

have any lower bounds in the multi-shuffle model. How-

ever, for other problems such as private selection or par-

ity learning, several recent papers have demonstrated new
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lower bounds for the multi-message model (Cheu & Ull-

man, 2021; Chen et al., 2020a; Beimel et al., 2020). More

precisely, (Cheu & Ullman, 2021) proved new lower bounds

of Ω(
√
D) on the sample complexity of selection from D

candidates (and other learning problems) under the pan-

privacy model, which implies lower bounds for the shuffle

model. However, their results do not extend to our set-

ting as high-dimensional mean estimation is not difficult in

the pan-private model and thus do not translate to strong

lower bounds for privacy in the shuffle model. Moreover,

(Chen et al., 2020a) proved lower bounds of D/k for pri-

vate selection for the multi-message model with k messages.

Finally, (Beimel et al., 2020) consider the the common el-

ement problem (which aims to identify an element that is

common to all users) and prove non-trivial lower bounds for

the multi-message model when k is small. However, these

lower bounds are different from ours in two distinct ways:

first, none of them hold for the problem of high-dimensional

mean estimation, and secondly, they do not exhibit the same

phase transition behavior that our lower bounds show, where

an optimal rate is achieved only when k ≥ d.

Mean estimation in the LDP model. (Duchi & Rogers,

2019; Duchi et al., 2016) studied the vector mean estimation

problem in the LDP model, showing how to achieve optimal

error without accounting for any communication constraints.

(Bhowmick et al., 2018) developed a new algorithm, PrivU-

nit, and proved it is optimal up to constants, and (Asi et al.,

2022) show that PrivUnit with optimized parameters is the

optimal mechanism. More recently, there have been several

works that study LDP aggregation with low communication

cost such as (Chen et al., 2020b; Feldman & Talwar, 2021;

Asi et al., 2023). Another line of work considers improving

the communication cost in the setting where the input vector

of each user is k-sparse (Bassily & Smith, 2015; Fanti et al.,

2016; Ye & Barg, 2018; Acharya & Sun, 2019; Zhou et al.,

2022).

1.3. Preliminaries and problem setting

Notation. We let Sd−1 = {v ∈ R
d : ∥v∥2 = 1} denote

the d-dimensional sphere. For a set S ⊆ R
d and a vector

v ∈ R
d, define dist(v, S) = infu∈S ∥v − u∥22. Let Bd−1 =

{v ∈ R
d : ∥v∥2 ≤ 1} be the unit ball in d dimensions.

We recall the standard definition of differential privacy.

Definition 1.6 (Differential privacy). (Dwork et al., 2006)

Given a privacy parameter ε > 0 and a failure parame-

ter δ ∈ (0, 1), a randomized algorithm A : D → R is

(ε, δ)-differentially private if, for every neighboring datasets

D,D′ ∈ D and for all U ⊆ R,

Pr [A(D) ∈ U ] ≤ eε ·Pr [A(D′) ∈ U ] + δ.

We require the standard advanced composition of differen-

tial privacy.

Theorem 1.7 (Advanced composition of differential pri-

vacy (Dwork & Roth, 2014)). Let ε, δ ≥ 0 and δ′ >
0. The composition of k algorithms that are each (ε, δ)-
differentially private is itself (ε̃, δ̃)-differentially private,

where

ε̃ = ε
√
2k ln(1/δ′) + kε

(
eε − 1

eε + 1

)
, δ̃ = kδ + δ′.

Shuffle differential privacy. In the shuffle DP model,

we have n users, each holding a vector vi ∈ S
d−1. A

protocol in this model is a pair of procedures (A,R) where

R : Sd−1 → Zk is a local randomizer that each user applies

to produce k messages in Z . Then, a shuffler Π is applied

to all messages output by the users, before applying an

aggregation A : Z⋆ → R
d over the shuffled messages to

return an output

v̂ = A(Π(R(v1), . . . ,R(vn)).

We say that a protocol (A,R) is (ε, δ)-Shuffle DP if the

algorithm that outputs Π(R(v1), . . . ,R(vn)) is (ε, δ)-DP.

Moreover, we define the mean squared error Err(A,R) of

the protocol to be

sup
v1,...,vn∈Sd−1

E



∥∥∥∥∥A(Π(R(v1), . . . ,R(vn)))−

n∑

i=1

vi

∥∥∥∥∥

2

2


 .

Throughout the paper, we use the notion of unbiased and

summation protocols. More specifically, we say that a pro-

tocol (A,R) is unbiased if for all v1, . . . , vn ∈ S
d−1

E[A(Π(R(v1), . . . ,R(vn))] =
n∑

i=1

vi.

We also let A+ denote the summation aggregation, that is,

A+(Π(R(v1), . . . ,R(vn))) =
∑

m∈Π(R(v1),...,R(vn))

m.

These notions will be useful for our lower and upper bounds.

1.3.1. KASHIN REPRESENTATION

We use Kashin’s representation in our multi-message algo-

rithms, which has the following property.

Lemma 1.8 (Kashin’s representation). (Lyubarskii & Ver-

shynin, 2010) Let d ≥ 1. There exists a transformation

UK ∈ R
2d×d and a constant CK such that

(1) UT
K
UK = Id

(2) For all x ∈ S
d−1, ∥UKx∥∞ ≤ CK√

d
.
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Here we use the subscript K simply to denote Kashin’s repre-

sentation. We call the matrix UK the Kashin transformation.

We remark that Kashin’s representation was first used for

locally-private mean estimation in (Feldman et al., 2021).

2. Multiple Messages

In this section, we study algorithms for vector aggregation

in the shuffle model of privacy when each user is permit-

ted to send multiple messages. In particular, we study the

number of messages that each user should send so that the

resulting protocol can achieve the same mean squared error

as the optimal mechanism in the central setting of DP. We

first show a lower bound for the number of messages that

must be sent per user to achieve the best possible error while

guaranteeing DP. We then give an algorithm with match-

ing number of messages per user, while achieving the best

possible error for DP protocols.

2.1. Ω̃(min(nε2, d)) messages are necessary

In this section, we prove that any unbiased shuffle DP pro-

tocol that obtains optimal error must send at least k ≥
Ω
(

min(nε2,d)
logn

)
messages per user. We prove this lower

bound for summation protocols in Section 2.1.1 and for any

unbiased protocol in Section 2.1.2.

In our setting, we have n users with inputs v1, . . . , vn ∈
R

d where ∥vi∥2 ≤ 1. Each user applies a local

randomizer R(vi) which sends k messages, R(vi) =
(m1

i , . . . ,m
k
i ), then an aggregation protocol A is applied

over the shuffled messages, producing an output µ̂ =
A(Π(R(v1),R(v2), . . . ,R(vn))), where Π is the shuffling

operation.

2.1.1. LOWER BOUND FOR SUMMATION PROTOCOLS

We begin by proving the lower bound for summation pro-

tocols where A+(m1, . . . ,mnk) =
∑nk

i=1 mi. Through-

out this section, we assume that the aggregation protocol

A = A+ and thatR : Sd−1 → Zk where Z = R
d.

Theorem 2.1. Let ε, δ ≤ 1 and R : Sd−1 → Zk be an

(ε, δ)-Shuffle DP randomizer. If Err(A+,R) ≤ O
(
d/ε2

)

then k ≥ Ω
(

min(nε2,d)
logn

)
.

Towards proving this result, we first prove the following

symmetry property that is satisfied by an optimal summa-

tion protocol. For a randomizer R, let R+(vi) denote the

summation of all messages in R(vi), that is, R+(vi) =∑k
j=1R(vi)j . We defer the proof to Appendix A.1.1.

Lemma 2.2. Let ε ≤ 1, R : S
d−1 → Zk be (ε, δ)-

Shuffle DP. There exists an (ε, δ)-Shuffle DP randomizer

R̂ : Sd−1 → Zk such that

(1) Err(A+, R̂) ≤ Err(A+,R)

(2) (Symmetry) For all u, v ∈ S
d−1,

E

[∥∥∥R̂+(v)− v
∥∥∥
2

2

]
= E

[∥∥∥R̂+(u)− u
∥∥∥
2

2

]

Proof. (sketch) The new randomizer R̂ works as follows:

first, it samples a rotation matrix U ∈ R
d×d (known public

randomness) such that UTU = I , then sets

R̂(v) = UTR(Uv),

where UTR(Uv) denotes multiplying each message in

R(Uv) by UT . The lemma then follows using standard alge-

braic manipulations (see Appendix A.1.1 for full proof).

The proof of the lower bound builds on the following recon-

struction attack against summation protocols. The attack

essentially iterates over all subsets of messages of size k
and adds their sum to the output set. We argue that if the

protocol has small error (less than n), then the input vector

will be close to a vector in the output set.

Algorithm 1 Reconstruction attack against summation pro-

tocols

Input: Shuffled set of messages W = {mi}i∈[nk] ∈ R
d

Output: A set S ⊆ R
d

1: Initialize S = ∅
2: for t = 1 to

(
nk
k

)
do

3: Pick a (new) set of k messages from W ; denote it by

Wt

4: S ← S ∪ {∑m∈Wt
m}

5: end for

6: Return S

The following proposition states the guarantees of this re-

construction attack.

Proposition 2.3. Let v1, . . . , vn ∈ S
d−1, R : S

d−1 →
Zk be randomizer that satisfies the symmetry condition

of Lemma 2.2. For an input set W = Π(R(v1), . . . , R(vn)),
Algorithm 1 outputs a set S ⊂ R

d of size
(
nk
k

)
such that

E [dist(v1, S)] = E

[
min
u∈S
∥v1 − u∥22

]
≤ Err(A+,R)

n
,

where the expectation is over the randomness of the algo-

rithm.

We can now provide the main idea for proving Theorem 2.1.

We defer the full proof to Appendix A.1.2.

Proof. (sketch) Consider d ≤ nε2/100 and let P =
{v1, v2, . . . , vM} be a ρ-packing of Sd−1 where ρ = 1/10.
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We will prove the lower bounds by analyzing the algorithm

over the following M datasets:

Xi = (vi, v1, . . . , v1).

The main idea is to show that if an algorithm is accurate,

then our reconstruction attack Algorithm 1 will return a set

S of size
(
nk
k

)
≈ 2k log(n) that contains vi. If k ≪ d, then

the size of the reconstructed set S is much smaller than the

size of the packing P which contradicts privacy.

More formally, let Si be the output of the re-

construction attack (Algorithm 1) over the input

Π(R(vi),R(v1), . . . ,R(v1)), and let Oi be the projection

of Si to the packing P ; that is, Oi = {ProjP (v) : v ∈ Si}.
Proposition 2.3 states that E[dist(vi, Si)] ≤ d

nε2 ≤ 1/100,

hence we get that

Pr(vi ∈ Oi) ≥ Pr(dist(vi, Si) < ρ) ≥ 9/10,

where the first inequality follows as P is ρ-packing, and the

second inequality follows from Markov’s inequality.

On the other hand, note that

M∑

i=1

Pr(vi ∈ O1) =

M∑

i=1

E[1{vi ∈ O1}]

= E

[
M∑

i=1

1{vi ∈ O1}
]

≤ E[|O1|] ≤
(
nk

k

)
.

Hence there exists an 1 ≤ i ≤M such that

Pr(vi ∈ O1) ≤
(
nk
k

)

M
.

As the protocol is (ε, δ)-DP, we also have

Pr(vi ∈ O1) ≥ Pr(vi ∈ Oi)e
−ε − δ

≥ 9

10e
≥ 1/6.

Combining these together, and given that M ≥ 2d for ρ =
1/10, we have that

2d ≤ 6

(
nk

k

)
≤ 6(en)k.

This implies that k ≥ Ω(d/ log(n)) whenever d ≤
nε2/100.

Now consider d ≥ nε2/100. The proof builds on a reduc-

tion (Proposition A.1) which converts an optimal protocol

for d-dimensional inputs into an optimal protocol for d′-
dimensional inputs where d′ = nε2/200 with the same

number of messages. The lower bound then follows imme-

diately from the lower bound for small d.

We provide the full details of the proof and the missing

proof for d ≥ nε2/100 in Appendix A.1.

2.1.2. LOWER BOUND FOR UNBIASED PROTOCOLS

In this section, we prove the same lower bound for any

aggregation strategy as long as it is unbiased. We assume

that the aggregation protocol A is unbiased; that is, for all

v1, . . . , vn ∈ S
d−1,

E [A(Π(R(v1),R(v2), . . . ,R(vn)))] =
n∑

i=1

vi.

The lower bound builds on the following reconstruction at-

tack against unbiased protocols (Algorithm 2). The attack

follows the same recipe as the attack against summation

protocols (Algorithm 1) to iterate over all subsets of mes-

sages of size k. However, given k messages, now we apply

a different reconstruction scheme that uses the aggregation

A with zero-mean dummy inputs, and finally taking expec-

tations.

Algorithm 2 Reconstruction attack against unbiased proto-

cols

Input: Shuffled set of messages W = {mi}i∈[nk]

Output: A set S ⊆ R
d

1: Initialize S = ∅
2: for t = 1 to

(
nk
k

)
do

3: Pick a (new) set of k messages from W ; denote it by

Wt

4: Calculate ut to be

Eṽ2,...,ṽn∼Unif(Sd−1) [A (Π(Wt,R(ṽ2), . . . ,R(ṽn)))]

5: S ← S ∪ {ut}
6: end for

7: Return S

The following proposition states the guarantees of this re-

construction attack against unbiased protocols. We defer the

proof to Appendix A.2.1.

Proposition 2.4. Let v1, . . . , vn ∈ S
d−1 where v1 ∼

Unif(Sd−1), R : Sd−1 → Zk and A be an unbiased pro-

tocol. For an input set W = Π(R(v1), . . . , R(vn)), Algo-

rithm 2 outputs a set S ⊂ R
d of size

(
nk
k

)
such that

E [dist(v1, S)] = E

[
min
u∈S
∥v1 − u∥22

]
≤ Err(A,R)

n
,

where the expectation is over the randomness of v1 and the

algorithm.

We can now prove our main lower bound for unbiased proto-

cols. The proof is similar to the proof of Theorem 2.1 using

the new construction attack. We defer it to Appendix A.2.2.

Theorem 2.5. Let ε ≤ 1, R : S
d−1 → Zk be (ε, δ)-

shuffle DP, and A be an unbiased protocol. If Err(A,R) ≤
O
(
d/ε2

)
then k ≥ Ω

(
min(nε2,d)

logn

)
.

6



Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages

2.2. Optimal multi-message protocol

In this section, we briefly overview a private protocol that

achieves the optimal mean squared error for vector aggre-

gation. The protocol requires that each user sends O (d)
messages in expectation.

We adapt the 1-dimensional mechanism of (Ghazi et al.,

2021) to vector aggregation by requiring that each user sep-

arately performs the scalar aggregation on each coordinate

and padding the resulting messages to vectors in the natural

manner, before sending the messages. Due to standard com-

position theorems, the privacy parameter for each coordinate

must have a smaller privacy budget, so that the overall pri-

vacy loss across the d coordinates is still ε. We describe the

local randomizer in Algorithm 3 and the aggregation in Al-

gorithm 4. Our algorithms use the optimal 1-dimensional

algorithm of (Ghazi et al., 2021): we let R(ε,δ)
GKMPS

denote

their local randomizer with parameters (ε, δ)

Algorithm 3 Local randomizer for vector aggregation

Input: v(i) ∈ S
d−1, privacy parameters (ε, δ)

Output: S(i) ⊂ R
d

1: Let S(i) = ∅ and UK ∈ R
2d×d be the Kashin transfor-

mation with constant CK

2: Set u(i) =
√
d

CK
UKv

(i)

3: for j = 1 to 2d do

4: Let Sj = R(ε0,δ0)
GKMPS

(u
(i)
j ) where ε0 = ε

2
√

2d log(2/δ)

and δ0 = δ
2d

5: Update S(i) = S(i) ∪ {m · ej : m ∈ Sj}
6: end for

7: Output S(i)

Algorithm 4 Aggregation for vector aggregation

Input: Shuffled messages M ⊂ R
2d

Output: v̂ ∈ R
d

1: Let UK ∈ R
2d×d be the Kashin transformation with

constant CK

2: Calculate û =
∑

m∈M m

3: Output v̂ = CK√
d
UT
K
û

We have the following result for our protocol. The proof is

standard and we defer it to Appendix A.3.

Theorem 2.6. LetR : Sd−1 → R
2d be the local randomizer

in Algorithm 3 and A : (R2d)⋆ → R
d be the aggregation

in Algorithm 4. Then, R is (ε, δ)-Shuffle DP randomizer,

each users sends d ·
(
1 + Õε

(
log(1/δ)√

n

))
messages in ex-

pectation, and the protocol has error

Err(A,R) ≤ O
(
d log(1/δ)

ε2

)
.

Finally, we note that it is possible to achieve this rate with

O
(
nε2
)

messages using the protocols in (Chen et al., 2023):

their protocols work in the shuffle model and send O
(
nε2
)

bits per users in T rounds. However, their approach can also

work in a single round if the coordinates are independent

(which is the case if the Kashin representation is applied).

Overall, we conclude that there is a protocol for the shuffle

model that requires O
(
min(nε2, d)

)
messages.

3. Single Message per User

In this section, we study private vector summation when

each user is only allowed to send a single message. We first

give an algorithm for this setting in Section 3.1 and then

show that the algorithm is near-optimal in Section 3.2.

3.1. A Single-Message Protocol

In this section, we describe a simple protocol for private

vector summation in the shuffle model that achieves near-

optimal error when each user can only send a single mes-

sage and ε is constant. Indeed, both the protocol and the

corresponding analysis can be viewed as a generalization of

(Balle et al., 2019) from the aggregation of real numbers to

real-valued vectors.

The protocol first picks a granularity r so that all messages

will only correspond to vectors whose coordinates are multi-

ples of r. Each user i then randomly rounds each coordinate

of their input v(i) to one of the two neighboring multiples of

r to form a vector ṽ(i). Each user then performs randomized

response to determine whether the message w(i) they send

is their randomly rounded input ṽ(i) or a message selected

uniform at random from the set [r]d of all possible rounded

messages. The local randomizer appears in Algorithm 5.

The analyzer takes the set {w(i)}i∈[n] of messages and com-

putes their vector sum z =
∑n

i=1 w
(i). It then adjusts each

coordinate j ∈ [d] of z to account for the expected noise

from randomized response, so that the expectation of the

corrected zj is precisely the sum of the inputs
∑n

i=1 v
(i)
j .

We provide the full details in Algorithm 6.

We first note that since each vector in [r]d can be encoded

as a integer in [rd], then the privacy guarantees of (Balle

et al., 2019) for the local randomizer holds as follows:

Lemma 3.1 (Theorem 3.1 in (Balle et al., 2019)).

The mechanism in Algorithm 6 is (ε, δ)-DP for the

number of buckets k = (r + 1)d and γ ≥
min

(
1,max

(
14k

(n−1)ε2 log
2
δ ,

27k
(n−1)ε

))
.

We now upper bound the mean squared error of Algorithm 6.

Theorem 1.3. For any ε ∈ (0, 1), δ ∈ (0, 1), and d, n ∈ N,

there exists an (ε, δ)-DP protocol in the one-message shuffle

7
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Algorithm 5 Local randomizer for single message per user

Input: v(i) ∈ S
d−1, parameters r, c, d, n

Output: w(i) ∈ {0, 1, . . . , r}d
1: γ ← c(r+1)

n
2: for j = 1 to j = d do

3: ṽ(i)j ∼
⌊
rv

(i)
j

⌋
+ Ber

(
rv

(i)
j −

⌊
rv

(i)
j

⌋)

4: end for

5: Sample b ∼ Ber(γ)
6: if b = 0 then

7: w(i) ← ṽ(i)

8: else

9: w(i) ∼ Unif([r]d)
10: end if

Algorithm 6 Aggregation for bucket-based randomized re-

sponse

Input: w(i) ∈ {0, 1, . . . , r}d for i ∈ [n] and c from Algo-

rithm 5

Output: ṽ ∈ [0, n]d

1: z ← 1
r

∑n
i=1 w

(i)

2: for j = 1 to j = d do

3: ṽj ← 2zj−c(r+1)
2−2γ =

(
zj − c(r+1)

2

)
/(1− γ)

4: end for

5: Return ṽ

model with mean squared error Oδ

(
dnd/(d+2)ε−4/(d+2)

)
.

Proof. Consider Algorithm 6. The mechanism is (ε, δ)-
private by the choice of

γ ≥ min

(
1,max

(
14k

(n− 1)ε2
log

2

δ
,

27k

(n− 1)ε

))

and Lemma 3.1.

The mean squared error is at most

sup
{v(i)}

E




d∑

j=1

(ṽj − vj)
2


 = sup

{v(i)}
E




d∑

j=1

(
ṽj −

n∑

i=1

v
(i)
j

)2

 .

For a real number x, let F (x) = x−c(r+1)/2
1−c(r+1)/n , so that F is

the debiasing function applied coordinate-wise to z.

sup
{v(i)}

E




d∑

j=1

(ṽj − vj)
2




= sup
{v(i)}

E




d∑

j=1

(
F (zj)−

n∑

i=1

v
(i)
j

)2



= sup
{v(i)}

E




d∑

j=1

(
F

(
1

r

n∑

i=1

w
(i)
j

)
−

n∑

i=1

v
(i)
j

)2

 .

Note that by construction E [F (zj)] =
∑n

i=1 v
(i)
j , for all

j ∈ [d]. Thus the cross terms cancel, so that we further have

sup
{v(i)}

E




d∑

j=1

(ṽj − vj)
2




= sup
{v(i)}

E




d∑

j=1

n∑

i=1

(
F

(
w

(i)
j

r

)
−

n∑

i=1

v
(i)
j

)2



= sup
{v(i)}

d∑

j=1

n∑

i=1

V

[
F

(
w

(i)
j

r

)]
,

where we use V to denote the variance. Note that after debi-

asing, the γ fraction of the coordinates that were randomly

generated from the uniform distribution, due to b ∼ Ber(γ),
do not contribute variance. Hence the mean-squared error is

at most

sup
{v(i)}

E




d∑

j=1

(ṽj − vj)
2


 =

nd

(1− γ)2
sup
x
(1)
1

V

[
w

(1)
1

r

]

≤ nd

(1− γ)2

(
1− γ

4r2
+

γ

2

)
.

Recall that we set γ = c(k+1)
n for a parameter c, which we

require to guarantee

γ ≥ min

(
1,max

(
14k

(n− 1)ε2
log

2

δ
,

27k

(n− 1)ε

))
,

to satisfy privacy. Then we have

sup
{v(i)}

E




d∑

j=1

(ṽj − vj)
2


 ≤ nd

(1− γ)2

(
1

4r2
+

c(k + 1)

2n

)

≤ nd

(1− γ)2

(
1

4r2
+

c((r + 1)d + 1)

2n

)
.

By setting c(r + 1)d+2 = O (n) for c = O
(

1
ε2 log

1
δ

)
,

we have that the above quantity is minimized at r =(
Oδ

(
n
c

))1/(d+2)
. Thus since c = O

(
1
ε2 log

1
δ

)
, then the

mean squared error is at most Oδ

(
dnd/(d+2)ε−4/(d+2)

)
.

3.2. Lower Bound

In this section, we show that our protocol in Section 3.1

is near-optimal by proving that for any ε = O (1), the

mean squared error of any protocol that gives ε-DP in the

shuffle model in which each user sends a single message is

Ω(dnd/(d+2)). The main intuition is that we can partition

the space into blocks of size length 1
r , so that there are rd

hypercubes in total. Although r is a parameter that can be

chosen at the protocol’s discretion, there are two sources

8
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of error for any private protocol that result in two opposing

tensions on the value of r.

The first source of error is that due to the privacy guarantees,

the output distribution for an input v(i) to a player i may

overlap with the output distribution for any input in [r]d.

In this case, the message may be decoded to some other

vector with large distance from v(i), resulting in large mean

squared error. In particular, larger values of r force the

output of the local randomizer to have less signal about

the true block containing the input v(i), since the output

distribution must intersect with that of more possible inputs.

This is formalized in Lemma B.3.

The second source of error is that any vector inside a block

may incur error from the message representing the block,

due to the partition of the space. In particular, the message

may be decoded correctly for the block, but the set of all vec-

tors within the block has large diameter, and so the resulting

mean squared error is large. Specifically, smaller values of

r result in blocks with larger diameter, which again force

the output of the local randomizer to have less signal about

the true input v(i) within each block. This is formalized in

Lemma B.4. The resulting lower bound then follows from

optimizing r with respect to the two possible sources of

error, resulting in the following theorem.

Theorem 1.4. Let P be an (ε, δ)-DP protocol for vector

aggregation on the unit ball Bd−1
2 in the one-message shuffle

model with δ < 1
2 . Then the mean squared error of P

satisfies MSE(P) = Ω
(
dnd/(d+2)

)
.

The proof of this result is technical and we defer it to Ap-

pendix B.

4. Robustness to Malicious Users

We first observe that our multi-message protocol is not ro-

bust against malicious users in the single-shuffle setting, in

the sense that a single malicious user can additively incur

much larger than constant mean squared error, even though

their input vector has at most unit length. In fact, each user

can incur up to Ω
(

k
log2(nd)

)
additive mean squared error.

Theorem 4.1. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-

shuffle DP mechanism for vector summation that takes the

sum of the messages across n players with k malicious users

has additive error Ω
(

kd
log2(nd)

)
.

Theorem 1.5 then follows from a simple power mean in-

equality. On the other hand, we observe that Algorithm 4 is

robust against malicious users in the setting where a sepa-

rate shuffler is responsible for the messages corresponding

to each coordinate of a user.

Lemma 4.2. Suppose that a separate shuffler handles the

messages for each coordinate from all users in Algorithm 4.

Then the mean squared error induced by k malicious users

is at most O (k).

Impact Statement

This paper presents work whose goal is to advance the field

of Private Machine Learning. There are many potential

societal consequences of our work, none which we feel

must be specifically highlighted here.
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A. Missing Proofs from Section 2

A.1. Missing Proofs from Section 2.1.1

In this section, we provide the missing proof for the lower bound for the setting of summation protocols (Section 2.1.1).

A.1.1. PROOF OF LEMMA 2.2

Lemma 2.2. Let ε ≤ 1,R : Sd−1 → Zk be (ε, δ)-Shuffle DP. There exists an (ε, δ)-Shuffle DP randomizer R̂ : Sd−1 → Zk

such that

(1) Err(A+, R̂) ≤ Err(A+,R)

(2) (Symmetry) For all u, v ∈ S
d−1,

E

[∥∥∥R̂+(v)− v
∥∥∥
2

2

]
= E

[∥∥∥R̂+(u)− u
∥∥∥
2

2

]

Proof. The new randomizer R̂ works as follows: first, it samples a rotation matrix U ∈ R
d×d (known public randomness)

such that UTU = I , then sets

R̂(v) = UTR(Uv),

where UTR(Uv) denotes multiplying each message inR(Uv) by UT .

To prove privacy, we have to prove that Π(UTR(Uv1), U
TR(Uv2), . . . , U

TR(Uvn)) is (ε, δ)-DP. As U is known,

it is sufficient to prove that Π(R(Uv1),R(Uv2), . . . ,R(Uvn)) is (ε, δ)-DP. This follows directly from the fact that

Π(R(v1),R(v2), . . . ,R(vn)) is (ε, δ)-DP, and that the hamming distance between X = (v1, . . . , vn) and X ′ =
(v′1, . . . , v

′
n) is the same as the hamming distance between XU = (Uv1, . . . , Uvn) and X ′

U = (Uv′1, . . . , Uv′n).

For utility, we have

Err(A+, R̂) = sup
v1,...,vn

E



∥∥∥∥∥A

+(Π(R̂(v1), R̂(v2), . . . , R̂(vn)))−
n∑

i=1

vi

∥∥∥∥∥

2

2




= sup
v1,...,vn

E



∥∥∥∥∥

n∑

i=1

R̂+(vi)− vi

∥∥∥∥∥

2

2




= sup
v1,...,vn

E



∥∥∥∥∥

n∑

i=1

UTR(Uvi)− vi

∥∥∥∥∥

2

2




= sup
v1,...,vn

E



∥∥∥∥∥U

T
n∑

i=1

(R(Uvi)− Uvi)

∥∥∥∥∥

2

2




= sup
v1,...,vn

E



∥∥∥∥∥

n∑

i=1

(R(Uvi)− Uvi)

∥∥∥∥∥

2

2




= Err(A,R).

For the third claim, note that R̂(−v) = UTR(−Uv). As U and −U has the same distribution, we can also write

R̂(−v) = −UTR(Uv) which is the same as the distribution of −R̂(v).

12
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For the final claim, note that

E

[∥∥∥R̂+(v)− v
∥∥∥
2

2

]
= E

[∥∥UTR(Uv)− v
∥∥2
2

]

= E

[∥∥UT (R(Uv)− Uv)
∥∥2
2

]

= E

[
∥(R(Uv)− Uv)∥22

]
.

The claim follows as Uv1 and Uv2 have the same distribution for any v1 and v2 in the unit ball.

Proposition 2.3. Let v1, . . . , vn ∈ S
d−1,R : Sd−1 → Zk be randomizer that satisfies the symmetry condition of Lemma 2.2.

For an input set W = Π(R(v1), . . . , R(vn)), Algorithm 1 outputs a set S ⊂ R
d of size

(
nk
k

)
such that

E [dist(v1, S)] = E

[
min
u∈S
∥v1 − u∥22

]
≤ Err(A+,R)

n
,

where the expectation is over the randomness of the algorithm.

Proof. Let ∆(v) = E [R+(v)− v] be the bias ofR+ over v. Note that the error of the protocol over dataset (u1, . . . , un) is

E



∥∥∥∥∥A

+(Π(R(u1),R(u2), . . . ,R(un)))−
n∑

i=1

ui

∥∥∥∥∥

2

2




= E



∥∥∥∥∥

n∑

i=1

R+(ui)− ui

∥∥∥∥∥

2

2




=

n∑

i=1

E
[∥∥R+(ui)− ui

∥∥2
2

]
+

∑

i ̸=j∈[n]

E
[
R+(ui)− ui

]T
E
[
R+(uj)− uj

]

=

n∑

i=1

E
[∥∥R+(ui)− ui

∥∥2
2

]
+

∑

i ̸=j∈[n]

∆(ui)
T∆(uj).

For input dataset X = (u, u, . . . , u), this implies

E
[∥∥A+(Π(R(u),R(u), . . . ,R(u)))− nu

∥∥2
2

]

= nE
[∥∥R+(u)− u

∥∥2
2

]
+

(
n

2

)
∥∆(u)∥22

≥ nE
[∥∥R+(u)− u

∥∥2
2

]
.

As R satisfies the symmetry assumption that E[∥R+(v)− v∥22] = E[∥R+(u)− u∥22] for all u, v ∈ S
d−1, and since the

error is bounded by d/ε2, we have that

E
[∥∥R+(v1)− v1

∥∥2
2

]
≤ d

nε2
.

Finally, note thatR+(v1) ∈ S as the attack of Algorithm 1 iterates over all possible subsets of size k and adds their sum to

S. Hence, there exists t such that Wt = R(v1), in which case the algorithm will addR+(v1) to S.

Given the previous attack, we are now ready to prove our lower bound.
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A.1.2. PROOF OF THEOREM 2.1

Theorem 2.1. Let ε, δ ≤ 1 and R : Sd−1 → Zk be an (ε, δ)-Shuffle DP randomizer. If Err(A+,R) ≤ O
(
d/ε2

)
then

k ≥ Ω
(

min(nε2,d)
logn

)
.

Proof. Let Err(A,R) ≤ C · d/ε2 for some universal constant 1 ≤ C <∞. Based on Lemma 2.2, we can assume that the

randomizer R satisfies the symmetry property:

E

[∥∥R+(v)− v
∥∥2
2

]
= E

[∥∥R+(u)− u
∥∥2
2

]
, for all u, v ∈ S

d−1.

First, we prove the lower bounds for d ≤ nε2/100C. Let P = {v1, v2, . . . , vM} be a ρ-packing of the unit ball such that

M = 2d log(1/ρ) (the existence of such packing is standard in the literature (Duchi, 2018)). We will prove the lower bounds

by analyzing the algorithm over the following M datasets:

Xi = (vi, v1, . . . , v1).

Let Si be the output of the reconstruction attack (Algorithm 1) over the input Π(R(vi),R(v1), . . . ,R(v1)), and let Oi be

the projection of Si to the packing P ; that is, Oi = {ProjP (v) : v ∈ Si}.
Proposition 2.3 states that E [dist(vi, Si)] ≤ Cd

nε2 ≤ 1/100, hence we get that

Pr [vi ∈ Oi] ≥ Pr [dist(vi, Si) < ρ] ≥ 9/10,

where the first inequality follows as P is ρ-packing, and the second inequality follows from markov inequality.

On the other hand, note that

M∑

i=1

Pr [vi ∈ O1] =

M∑

i=1

E [1{vi ∈ O1}]

= E

[
M∑

i=1

1{vi ∈ O1}
]

≤ E [|Oi|] ≤
(
nk

k

)
.

Hence there exists an 1 ≤ i ≤M such that

Pr [vi ∈ O1] ≤
(
nk
k

)

M
.

As the protocol is (ε, δ)-DP, we also have

Pr [vi ∈ O1] ≥ Pr [vi ∈ Oi] e
−ε − δ

≥ 9

10e
≥ 1/6.

Combining these together, and given that M ≥ 2d for ρ = 1/10, we have that

2d ≤ 6

(
nk

k

)
≤ 6(en)k.

This implies that k ≥ Ω(d/ log(n)) whenever d ≤ nε2/100C.

Now we prove the lower bound for d ≥ nε2/100. The proof builds on the following proposition which states that we can

convert an optimal protocol for d-dimensional inputs into an optimal protocol for d′-dimensional inputs where d′ = nε2/200
with the same number of messages. We defer the proof to Appendix A.1.3.
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Proposition A.1. Let d′ = nε2/200C ≥ 1 and d ≥ 2d′. LetR : Sd−1 → Zk be an (ε, δ)-shuffle DP protocol with error

Err(A+,R) ≤ O
(
d/ε2

)
. There existsR′ : Sd

′−1 → Zk that is (ε, δ)-shuffle DP such that Err(A+,R′) ≤ O
(
d′/ε2

)
.

Now, let A+ and R : Bd−1 → Zk be a protocol that obtains error Err(A+,R) ≤ O
(
d/ε2

)
using k messages. Proposi-

tion A.1 implies that there is a randomizer R′ : Bd′−1 → Zk such that Err(A,R′) ≤ O
(
d′/ε2

)
for d′ = nε2/200C. As

d′ ≤ nε2/100C, this shows that k ≥ Ω(d′/ log(n)) = Ω(nε2/ log(n)).

A.1.3. PROOF OF PROPOSITION A.1

To prove Proposition A.1, we need the following lemma which shows that we can convert any summation protocol into

another one where the error is split evenly across coordinates.

We use the following notation. For a permutation π : [d]→ [d] and a vector v ∈ R
d, we let v̂ = v(π) denote the shuffling of

the coordinates of v based on π, that is v̂j = vπ(j).

Lemma A.2. IfR : Sd−1 → Zk is (ε, δ)-shuffle DP then there exists R̂ : {−1√
d
, 1√

d
}d → Zk that is (ε, δ)-shuffle DP and

for j ∈ [d] and v1, . . . , vn ∈ {−1√
d
, +1√

d
}d,

E




∣∣∣∣∣∣

(
n∑

i=1

R̂+(vi)−
n∑

i=1

vi

)

j

∣∣∣∣∣∣

2

 ≤ Err(A+,R)

d
.

Proof. R̂ will use shared public randomness to shuffle the coordinates of each vector and flip the signs of each coordinate.

This will ensure that all coordinates will have the same marginal distribution for their error.

More precisely, let π : [d] → [d] be a random permutation of the coordinates picked uniformly at random, and let

s1, . . . , sd ∼ Ber(1/2). Our new randomizer R̂ over input v will first transform the input vector v into v̂ where

v̂ = s · v(π),

where the multiplication is element-wise. Then, we runR(v̂) to get messages m̂1, . . . , m̂k. For each of these messages, we

apply the inverse transformation, and output m1, . . . ,mk where

mi = s · m̂i(π
−1).

Note that

∣∣∣∣∣∣

(
n∑

i=1

R̂+(vi)−
n∑

i=1

vi

)

j

∣∣∣∣∣∣

2

=

∣∣∣∣∣

n∑

i=1

mi,j − vj

∣∣∣∣∣

2

=

∣∣∣∣∣sj
n∑

i=1

m̂i,π−1(j) − v̂π−1(j)

∣∣∣∣∣

2

=

∣∣∣∣∣

n∑

i=1

m̂i,π−1(j) − v̂π−1(j)

∣∣∣∣∣

2

=

(
n∑

i=1

R+(v̂i)−
n∑

i=1

v̂i

)

π−1(j)

.

As v̂1, . . . , v̂n are uniformly random vectors from {−1,+1}d/
√
d, we get that

(∑n
i=1 R̂+(vi)−

∑n
i=1 vi

)2
j

have the same
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distribution for all j ∈ [d]. The claim now follows since

E




d∑

j=1

(
n∑

i=1

R̂+(vi)−
n∑

i=1

vi

)2

j


 = E




d∑

j=1

(
n∑

i=1

R+(v̂i)−
n∑

i=1

v̂i

)2

π−1(j)




= E



∥∥∥∥∥

n∑

i=1

R+(v̂i)−
n∑

i=1

v̂i

∥∥∥∥∥

2

2




≤ Err(A+,R).

We are now ready to prove Proposition A.1.

Proof. (of Proposition A.1) R′ will work as follows for a d′-dimensional input v′: first, apply Kashin representation

U ∈ R
2d′×d′

to get w = Uv′ ∈ R
2d′

such that ∥w∥∞ ≤ 2/
√
d′. Then, we convert w into a binary vector u by setting for

all i ∈ [2d′]

ui =

{
2sign(wi)/

√
d′ with probability wi

√
d′+2
4

−2sign(wi)/
√
d′ with probability −wi

√
d′+2

4

Note that E[ui] = wi and that E[(wi − ui)
2] ≤ 4/d′ since |ui| ≤ 2/

√
d′.

Now, let R̂ be the randomizer guaranteed from Lemma A.2 for the randomizer R. Our local ranodmizer R′ will do the

following: it constructs v ∈ R
d by setting v = (u, 0, . . . , 0) then applies R̂ over v to generate k messages m1, . . . ,mk.

Finally, it truncates the messages to the first 2d′ coordinates and applies the inverse Kashin transformation to the messages,

that is, sends UTm1[1 : 2d′], . . . , UTmk[1 : 2d′]

Privacy ofR′ follows immediately from privacy ofR. It remains to prove an upper bound on the error forR′.

Let v′1, . . . , v
′
n ∈ B

d′−1 and let u1, . . . , un be their corresponding binary vectors from the above procedure. Let vi =
(ui, 0, . . . , 0) ∈ R

d. Lemma A.2 guarantees that for all j ∈ [d] we have

E




∣∣∣∣∣∣

(
n∑

i=1

R̂+(vi)− vi

)

j

∣∣∣∣∣∣

2

 ≤ Err(A,R)

d
.

Thus, when truncating to the first 2d′ coordinates of R̂, we have

E



∥∥∥∥∥

n∑

i=1

R̂+(vi)[1 : 2d′]− vi[1 : 2d′]

∥∥∥∥∥

2

 ≤ d′

d
Err(A,R).
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Now, let us analyze the error ofR′. Note that

E



∥∥∥∥∥

n∑

i=1

R′+(v′i)− v′i

∥∥∥∥∥

2

 = E



∥∥∥∥∥

n∑

i=1

UT R̂+(vi)[1 : 2d′]− v′i

∥∥∥∥∥

2



= E



∥∥∥∥∥

n∑

i=1

R̂+(vi)[1 : 2d′]− Uv′i

∥∥∥∥∥

2



≤ E



∥∥∥∥∥

n∑

i=1

R̂+(vi)[1 : 2d′]− ui + ui − wi

∥∥∥∥∥

2



≤ 2E



∥∥∥∥∥

n∑

i=1

R̂+(vi)[1 : 2d′]− ui

∥∥∥∥∥

2

+ 2E



∥∥∥∥∥

n∑

i=1

ui − wi

∥∥∥∥∥

2



= 2E



∥∥∥∥∥

n∑

i=1

R̂+(vi)[1 : 2d′]− vi[1 : 2d′]

∥∥∥∥∥

2

+ 2E



∥∥∥∥∥

n∑

i=1

ui − wi

∥∥∥∥∥

2



≤ 2
d′

d
Err(A,R) + 8n

d′

≤ O
(
d′/ε2

)
,

where the last inequality follows since Err(A,R) ≤ O
(
d/ε2

)
and d′ ≥ nε2/200.

A.2. Missing Proofs from Section 2.1.2

A.2.1. PROOF OF PROPOSITION 2.4

Proposition 2.4. Let v1, . . . , vn ∈ S
d−1 where v1 ∼ Unif(Sd−1),R : Sd−1 → Zk and A be an unbiased protocol. For an

input set W = Π(R(v1), . . . , R(vn)), Algorithm 2 outputs a set S ⊂ R
d of size

(
nk
k

)
such that

E [dist(v1, S)] = E

[
min
u∈S
∥v1 − u∥22

]
≤ Err(A,R)

n
,

where the expectation is over the randomness of v1 and the algorithm.

Proof. The proof builds on the arguments of Lemma 3.1 in (Asi et al., 2022) used in the local privacy model. Let P denote

the uniform distribution over the sphere S
d−1. First, note that as Algorithm 2 iterates over all possible subsets of messages

of size k, we have that Wt = R(v1) for some t, hence the set S has the point

ut = Eṽ2,...,ṽn∼P [A (Π(R(v1),R(ṽ2), . . . ,R(ṽn)))] ∈ S

We define R̂i to be

R̂i(vi) = Evj∼P,j ̸=i[A(Π(R(v1), . . . ,R(vn)))].

Note that R̂1(v1) ∈ S and that E[R̂i(v)] = v for all v ∈ S
d−1. We define

R̂≤i(v1, . . . , vi) = Evj∼P,j>i


A(Π(R(v1), . . . ,R(vn)))−

i∑

j=1

vj | v1:i


 ,
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and R̂0 = 0. We now have

Ev1,...,vn∼P



∥∥∥∥∥A(Π(R(v1), . . . ,R(vn)))−

n∑

i=1

vi

∥∥∥∥∥

2

2




= Ev1,...,vn∼P

[∥∥∥R̂≤n(v1, . . . , vn)
∥∥∥
2

2

]

= Ev1,...,vn∼P

[∥∥∥R̂≤n(v1, . . . , vn)− R̂≤n−1(v1, . . . , vn−1) + R̂≤n−1(v1, . . . , vn−1)
∥∥∥
2

2

]

(i)
= Ev1,...,vn∼P

[∥∥∥R̂≤n(v1, . . . , vn)− R̂≤n−1(v1, . . . , vn−1)
∥∥∥
2

2

]
+ Ev1,...,vn−1∼P

[∥∥∥R̂≤n−1(v1, . . . , vn−1)
∥∥∥
2

2

]

(ii)
=

n∑

i=1

Ev1,...,vi∼P

[∥∥∥R̂≤i(v1, . . . , vi)− R̂≤i−1(v1, . . . , vi−1)
∥∥∥
2

2

]

(iii)

≥
n∑

i=1

Evi∼P

[∥∥∥Ev1,...,vi−1∼P

[
R̂≤i(v1, . . . , vi)− R̂≤i−1(v1, . . . , vi−1)

]∥∥∥
2

2

]

(iv)
=

n∑

i=1

Evi∼P

[∥∥∥R̂i(vi)− vi

∥∥∥
2

2

]

where (i) follows since Evn∼P [R̂≤n(v1, . . . , vn)] = R̂≤n−1(v1, . . . , vn−1), (ii) follows by induction, (iii)

follows from Jensen’s inequality, and (iv) follows since Ev1,...,vi−1∼P [R̂≤i(v1, . . . , vi)] = R̂i(vi) − vi and

Ev1,...,vi−1∼P [R̂≤i−1(v1, . . . , vi−1)] = 0.

Now, as R̂i has the same distribution for all i because of the shuffling operator, we get that

Evi∼P

[∥∥∥R̂1(v1)− v1

∥∥∥
2

2

]
≤ Err(A,R)/n.

Thus, as dist(v1, S) ≤
∥∥∥R̂1(v1)− v1

∥∥∥
2

2
, the claim follows.

A.2.2. PROOF OF THEOREM 2.5

Theorem 2.5. Let ε ≤ 1,R : Sd−1 → Zk be (ε, δ)-shuffle DP, and A be an unbiased protocol. If Err(A,R) ≤ O
(
d/ε2

)

then k ≥ Ω
(

min(nε2,d)
logn

)
.

Proof. The proof will follow the proof of Theorem 2.1 using the new reconstruction attack of Algorithm 2. Let Err(A,R) ≤
C · d/ε2 for some universal constant 1 ≤ C <∞.

First, we prove the lower bounds for d ≤ nε2/100C. Note that Proposition 2.4 and Markov inequality imply that there

is a set A ⊂ S
d−1 such that Pr

v∼Unif(Sd−1)
[A] ≥ 1/2 and for all v ∈ A and v2, . . . , vn ∈ S

d−1, letting Sv be the output

of Algorithm 2 over the input Π(R(v), R(v2), . . . , R(vn)), Markov inequality implies

Pr
[
dist(v, Sv) ≤ 4d/nε2

]
≥ 1/2.

As Pr
v∼Unif(Sd−1)

[A] ≥ 1/2, this implies that there is a ρ-packing of the unit ball P = {v1, v2, . . . , vM} ⊂ A such that

M = 2d log(1/ρ)−1 and Pr(dist(vi, Svi
) ≤ 4Cd/nε2) ≥ 1/2.

We will prove the lower bounds by analyzing the algorithm over the following M datasets:

Xi = (vi, v1, . . . , v1),
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for i ∈ [M ].

Let Si be the output of the reconstruction attack (Algorithm 2) over the shuffled messages Π(R(vi),R(v1), . . . ,R(v1)).
We define the projection set of Si to the packing P to be Oi = {ProjP (v) : v ∈ Si}. Proposition 2.4 now implies that for

all i ∈ [M ], dist(vi, Si) ≤ Cd/nε2 ≤ ρ with probability 1/2, hence as P is ρ-packing we have that

Pr [vi ∈ Oi] ≥ Pr [dist(vi, Si] ≤ ρ) ≥ 9/10.

On the other hand, note that for O1

M∑

i=1

Pr [vi ∈ O1] =

M∑

i=1

E [1{vi ∈ O1}]

= E

[
M∑

i=1

1{vi ∈ O1}
]

≤ E [|O1|] ≤
(
nk

k

)
.

Hence there exists an 1 ≤ i ≤M such that

Pr [vi ∈ O1] ≤
(
nk
k

)

M
.

As the protocol is (ε, δ)-DP, we also have

Pr [vi ∈ O1] ≥ Pr [vi ∈ Oi] e
−ε − δ

≥ 9

10e
− δ ≥ 1/6

Combining these together, and given that M ≥ 2d/2 for ρ = 1/10, we have that

2d ≤ 12

(
nk

k

)
≤ 6(en)k.

This implies that k ≥ Ω(d/ log(n)) whenever d ≤ nε2/100C.

Now we prove the lower bound for d ≥ nε2/100C. The proof builds on the following proposition which states that

we can convert an optimal protocol for d-dimensional inputs into an optimal protocol for d′-dimensional inputs where

d′ = nε2/200C with the same number of messages. We defer the proof to Appendix A.2.3.

Proposition A.3. Let d′ = nε2/200C ≥ 1 and d ≥ 2d′. Let R : Sd−1 → Zk be an (ε, δ)-Shuffle DP randomizer with

aggregation A that is unbiased such that Err(A,R) ≤ O
(
d/ε2

)
. There existsR′ : Sd

′−1 → Zk and aggregation A′ that is

unbiased and (ε, δ)-Shuffle DP such that Err(A′,R′) ≤ O
(
d′/ε2

)
.

Let A and R : Sd−1 → Zk be an unbiased (ε, δ)-Shuffle DP protocol that obtains error Err(A,R) ≤ O
(
d/ε2

)
using k

messages. Proposition A.3 implies that there is a randomizer R′ : Sd
′−1 → Zk and aggregation A′ that is (ε, δ)-Shuffle

DP and unbiased such that Err(A′,R′) ≤ O
(
d′/ε2

)
for d′ = nε2/200C. As d′ ≤ nε2/100C, the lower bound we proved

above shows that k ≥ Ω(d′/ log(n)) = Ω(nε2/ log(n)).

A.2.3. PROOF OF PROPOSITION A.3

The proof will follow the proof of Appendix A.1.3 with general aggregation A. To this end, in the next lemma we show that

we can convert any unbiased protocol into another unbiased one where the error is split evenly across coordinates.

Lemma A.4. IfR : Sd−1 → Zk is (ε, δ)-shuffle DP randomizer and A is unbiased, then there existsR′ :
{

−1√
d
, 1√

d

}d

→

Zk and A′ that is (ε, δ)-shuffle DP and unbiased such that for j ∈ [d] and v1, . . . , vn ∈
{

−1√
d
, +1√

d

}d

,

E




∣∣∣∣∣∣

(
A′(Π(R′(v1), . . . ,R′(vn)))−

n∑

i=1

vi

)

j

∣∣∣∣∣∣

2

 ≤ Err(A,R)

d
.
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Proof. R′ will use shared public randomness to shuffle the coordinates of each vector and flip the signs of each coordinate.

This will ensure that all coordinates will have the same marginal distribution for their error.

More precisely, let π : [d] → [d] be a random permutation of the coordinates picked uniformly at random, and let

s1, . . . , sd ∼ Ber(1/2). Our new randomizerR′ over input v has

R′(v) = R(s · v(π)),

where (s · v(π))j = sjvπ(j) is element-wise product.

Moreover, we define A′ given kn messages mi ∈ Z

A′(m1, . . . ,mkn) = s · A(m1, . . . ,mkn)(π
−1).

First, note that the privacy ofR′ follows immediately from the privacy ofR. Moreover, A′ is unbiased as A is unbiased:

E [A′(Π(R′(v1), . . . ,R′(vn)))] = s · E
[
A(Π(R(s · v1(π)), . . . ,R(s · vn(π))))(π−1)

]

= s ·
n∑

i=1

s · vi(π)(π−1)

=

n∑

i=1

vi,

where the last equality follows since s · s = 1d and vi(π)(π
−1) = vi.

Now it remains to prove the claim about the error ofR′ andA′. Letting v̂i = s · vi(π), note that v = s · v̂(π−1), thus we get

∣∣∣∣∣∣

(
A′(Π(R′(v1), . . . ,R′(vn)))−

n∑

i=1

vi

)

j

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

(
s · A(Π(R(s · v1(π)), . . . ,R(s · vn(π))))(π−1)−

n∑

i=1

vi

)

j

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

(
s · A(Π(R(v̂1), . . . ,R(v̂n)))(π−1)−

n∑

i=1

s · v̂i(π−1)

)

j

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

(
A(Π(R(v̂1), . . . ,R(v̂n)))−

n∑

i=1

v̂i

)

π−1(j)

∣∣∣∣∣∣

2

(1)

Summing over all coordinates,

E




d∑

j=1

(
A′(Π(R′(v1), . . . ,R′(vn)))−

n∑

i=1

vi

)2

j


 = E




d∑

j=1

(
n∑

i=1

A(Π(R(v̂1), . . . ,R(v̂n)))−
n∑

i=1

v̂i

)2

π−1(j)




= E



∥∥∥∥∥A(Π(R(v̂1), . . . ,R(v̂n)))−

n∑

i=1

v̂i

∥∥∥∥∥

2

2




≤ Err(A,R).

Finally, the claim now follows since for all j ∈ [d], |(A′(Π(R′(v1), . . . ,R′(vn)))−
∑n

i=1 vi)j |2 have the same distribution

and hence the same expectation: indeed, let

A = |(A(Π(R(v̂1), . . . ,R(v̂n)))−
n∑

i=1

v̂i)|2 and t = π−1(j).

Equation (1) shows that |(A′(Π(R′(v1), . . . ,R′(vn))) −
∑n

i=1 vi)j |2 = At. Now note that v̂1, . . . , v̂n are uniformly

random vectors from {−1,+1}d/
√
d and π−1(j) is random coordinate from [d], hence the distribution of At is the same

for all j.
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We are now ready to prove Proposition A.3 which will follow the proof of Proposition A.1.

Proof. (of Proposition A.3) We will construct R′ and A′ as follows: for a d′-dimensional input v′ ∈ S
d′−1, R′ will first

apply the Kashin representation U ∈ R
2d′×d′

to get w = Uv′ ∈ R
2d′

such that ∥w∥∞ ≤ 2/
√
d′. Then, it converts w into a

binary vector u by setting for all i ∈ [2d′]

ui =

{
2sign(wi)/

√
d′ with probability wi

√
d′+2
4

−2sign(wi)/
√
d′ with probability −wi

√
d′+2

4

Note that E[ui] = wi and that E[(wi − ui)
2] ≤ 4/d′ since |ui| ≤ 2/

√
d′.

Now, let R̂ and Â be the randomizer and aggregation guaranteed from Lemma A.2 for the randomizerR and aggregation A.

OurR′ will construct v ∈ R
d by setting v = (u, 0, . . . , 0) then

R′(v′) = R̂(v).

Moreover, we define A′ : Znk → R
d′

to be

A′(m1, . . . ,mnk) = UT Â(m1, . . . ,mnk)[1 : 2d′]

We nee to argue thatR′ is (ε, δ)-Shuffle DP, that A′ is unbiased, and to prove the claim about utility.

Privacy ofR′ follows immediately from privacy of R̂. As for unbiasedness, let v′1, . . . , v
′
n ∈ S

d′−1 and let u1, . . . , un and

w1, . . . , wn be their corresponding vectors from the above procedure. Let vi = (ui, 0, . . . , 0) ∈ R
d. Note that

E [A′(Π(R′(v′1), . . . ,R′(v′n)))] = E

[
UT Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]

]

= UT
n∑

i=1

E [vi[1 : 2d′]]

= UT
n∑

i=1

E [ui]

= UT
n∑

i=1

wi

= UT
n∑

i=1

Uv′i

=

n∑

i=1

v′i.

It remains to prove an upper bound on the error ofR′ and A′. First, note that Lemma A.2 guarantees that for all j ∈ [d] we

have

E[|
(
Â(Π(R̂(v1), . . . , R̂(vn)))−

n∑

i=1

vi

)

j

|2] ≤ Err(A,R)
d

.

Thus, when truncating to the first 2d′ coordinates of R̂, we have

E[

∥∥∥∥∥Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑

i=1

vi[1 : 2d′]

∥∥∥∥∥

2

] ≤ 2d′

d
Err(A,R).
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Now, let us analyze the error ofR′. Note that

E



∥∥∥∥∥A

′(Π(R′(v′1), . . . ,R′(v′n)))−
n∑

i=1

v′i

∥∥∥∥∥

2



= E



∥∥∥∥∥U

T Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑

i=1

v′i

∥∥∥∥∥

2



= E



∥∥∥∥∥Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−

n∑

i=1

Uv′i

∥∥∥∥∥

2



≤ E



∥∥∥∥∥Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−

n∑

i=1

ui − ui + wi

∥∥∥∥∥

2



≤ 2E



∥∥∥∥∥Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−

n∑

i=1

ui

∥∥∥∥∥

2

+ 2E



∥∥∥∥∥

n∑

i=1

ui − wi

∥∥∥∥∥

2



= 2E



∥∥∥∥∥Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−

n∑

i=1

vi[1 : 2d′]

∥∥∥∥∥

2

+ 2E



∥∥∥∥∥

n∑

i=1

ui − wi

∥∥∥∥∥

2



≤ 4
d′

d
Err(A,R) + 8n

d′

≤ O
(
d′/ε2

)
,

where the last inequality follows since Err(A,R) ≤ O
(
d/ε2

)
and d′ ≥ nε2/200.

A.3. Missing Proofs for Section 2.2

Our d-dimensional algorithm builds on the 1-dimensional algorithm by (Ghazi et al., 2021). We let R(ε,δ)
GKMPS

denote the

local randomizer with parameters (ε, δ) and A+ is their aggregation (which is summation over messages). Their protocol

has the following guarantees for 1-dimensional summation.

Lemma A.5. (Ghazi et al., 2021) There is a local randomizer R(ε,δ)
GKMPS

: [0, 1] → R
⋆ that is (ε, δ)-Shuffle DP such that

each user sends 1 + Õε

(
log(1/δ)√

n

)
in expectation and has error

Err(R(ε,δ)
GKMPS

,A+) ≤ O
(
1/ε2

)
.

We also used advanced composition in our privacy proof.

Lemma A.6 (Advanced composition (Dwork & Roth, 2014)). If A1, . . . , Ak are randomized algorithms that each is

(ε, δ)-DP, then their composition (A1(D), . . . , Ak(D)) is (
√
2k log(1/δ′)ε+ kε(eε− 1), δ′+ kδ)-DP where D is the input

dataset.

Now we present the guarantees of our protocol.

Theorem 2.6. Let R : Sd−1 → R
2d be the local randomizer in Algorithm 3 and A : (R2d)⋆ → R

d be the aggregation

in Algorithm 4. Then,R is (ε, δ)-Shuffle DP randomizer, each users sends d ·
(
1 + Õε

(
log(1/δ)√

n

))
messages in expectation,

and the protocol has error

Err(A,R) ≤ O
(
d log(1/δ)

ε2

)
.
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Proof. First, note that the guarantees of Kashin representation imply that each |u(i)
j | ≤ 1, hence we can use RGKMPS.

The claim from privacy follows from the fact the RGKMPS is (ε0, δ0)-Shuffle DP and advanced composition of d such

mechanisms.

Now we analyze the error of the protocol. We have

E



∥∥∥∥∥v̂ −

n∑

i=1

v(i)

∥∥∥∥∥

2

2


 = E



∥∥∥∥∥
CK√
d
UT
K û− CK√

d
UT
K

n∑

i=1

u(i)

∥∥∥∥∥

2

2




=
C2
K

d
E



∥∥∥∥∥û−

n∑

i=1

u(i)

∥∥∥∥∥

2

2




=
C2
K

d
E



∥∥∥∥∥
∑

m∈M

m− u(i)

∥∥∥∥∥

2

2




≤ C2
K

d

d

ε20

≤ O
(
d log(1/δ)

ε2

)
,

where the last inequality follows from the guarantees of theRGKMPS protocol which has error 1/ε20 in each coordinate. The

claim follows.

B. Missing Proofs from Section 3

To prove the lower bound, we first note that it suffices to assume that the local randomizer has bounded outputs and that the

analyzer simply adds up all of the messages sent by the users, as shown by the next lemma.

Lemma B.1. Let P = (R,A) be an n-party protocol for vector aggregation in the single-message shuffle model. Let V be

a random variable on
[
− 1√

d
, 1√

d

]d
and suppose that users sample their inputs from the distribution V n. Then there exists a

protocol P ′ = (R′,A′) with user outputs u1, . . . , un ∈ R
d such that:

(1) A′(u1, . . . , un) =
∑n

i=1 ui andR′ maps to
[
− 1√

d
, 1√

d

]d
.

(2) MSE(P ′, V ) ≤ MSE(P, V )

(3) If S ◦ Rn is (ε, δ)-DP, then S ◦ (R′)n is (ε, δ)-DP.

Proof. The proof is similar to Lemma 4.1 in (Balle et al., 2019), generalizing from scalars to vectors. LetR′ = f ◦ R be

the post-processing local randomizer that uses the posterior mean estimator f(u) = E [V | V = u] is the minimum MSE

estimator. ThenR′ maps to
[
− 1√

d
, 1√

d

]d
as claimed.

Observe that for any estimator h of Z := V1 + . . .+ Vn given the input U = {u1, . . . , un}, we have

MSE(h, U) = E
[
(h(u)− Z)2 | U

]

= E
[
Z2 | U

]
− 2h(u) · E [Z | U ] + (h(u))2.

This quantity is minimized over the choice of h at h(u) = E [Z | U ].

Finally, since f is a post-processing local randomizer, then S ◦ (R′)n is (ε, δ)-DP by the post-processing property of DP.
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Lemma B.2. Let P = (R,A) be an n-party protocol for vector aggregation in the single-message shuffle model such that

R :
[
− 1√

d
, 1√

d

]d
→
[
− 1√

d
, 1√

d

]d
and A is vector summation. Suppose V n are n copies of a random variable V . Then

MSE(P, V n) ≥ nE
[
∥R(V )− V ∥22

]
.

Proof. The proof generalizes Lemma 4.2 in (Balle et al., 2019) from scalar inputs to vector inputs. Note that we can

decompose the mean-squared error as follows.

MSE(P, V n) = E

[
∥
∑

i=1

R(Vi)− Vi∥22

]

=
∑

i

E
[
∥R(Vi)− Vi∥22

]
+
∑

i ̸=j

E [⟨R(Vi)− Vi,R(Vj)− Vj⟩] ∥

=
∑

i

E
[
∥R(Vi)− Vi∥22

]
+
∑

i ̸=j

⟨E [R(Vi)− Vi] ,E [R(Vi)− Vi]⟩

≥ nE
[
∥R(V )− V ∥22

]
.

Consider the partition P of the hypercube [0, 1]d into rd disjoint hypercubes with side length 1
r . Let I ={

m
r − 1

2r | m ∈ [r]
}

and J = Id. For each a ∈ J , we use J(a) to denote the hypercube of P that contains J . For

any b ∈ J , we use the notation pa,b to denote the probability that the randomizer maps a to I(b).

Lemma B.3. Let r ≥ 32. For any b ∈ J , we have

1

rd

∑

a∈J\b

(
min

(
∥a− b∥2 −

√
d

2r
, 0

))2

≥ d

2048
.

Proof. Let B be a hypercube with length 1
8 centered at b. Note that we have Pr [a ∈ J \B] ≥ 1

2 . For a ∈ J \B, we have

∥a− b∥2 ≥
√
d

16 . Then for r ≥ 64, we have
(
∥a− b∥2 − 1

2r

)2 ≥ d
322 . Hence we have

1

rd

∑

a∈J\b

(
∥a− b∥2 −

1

2r

)2

≥ 1

2
· d

322
=

d

2048
.

Lemma B.4. The mean-squared error of the randomizerR on the random variable V is at least:

E
[
∥R(V )− V ∥22

]
≥
∑

b∈J

min

(
d(1− pb,b)

4r2+d
,min
a∈J

pa,b ·
d

2048

)
.

Proof. For the cases where the randomizer maps V to a value outside of its hypercube, we have:

E
[
∥R(V )− V ∥22

]
=
∑

b∈J

E
[
∥R(b)− b∥22

]
·Pr [V = b]

=
1

rd

∑

b∈J

E
[
∥R(b)− b∥22

]

≥ 1

rd

∑

b∈J

(1− pb,b) ·
d

4r2

=
∑

b∈J

d(1− pb,b)

4r2+d
.
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We also have

E
[
∥R(V )− V ∥22

]
=

1

rd

∑

b∈J

E
[
∥R(b)− b∥22

]

≥ 1

rd

∑

b∈J

∑

a∈J\b
pa,b

(
min

(
∥a− b∥2 −

√
d

2r
, 0

))2

≥ 1

rd

∑

b∈J

min
a∈J

pa,b
∑

a∈J\b

(
min

(
∥a− b∥2 −

√
d

2r
, 0

))2

≥
∑

b∈J

min
a∈J

pa,b ·
d

2048
,

where the last inequality is from Lemma B.3. Hence, we have

E
[
∥R(V )− V ∥22

]
≥
∑

b∈J

min

(
d(1− pb,b)

4r2+d
,min
a∈J

pa,b ·
d

2048

)
.

Lemma B.5 (Lemma 4.5 in (Balle et al., 2019)). Let R : [0, 1]d → [0, 1]d be a local randomizer such that the shuffled

protocolM = S ◦ Rn is (ε, δ)-DP with δ < 1
2 . Then for any a, b ∈ J with a ̸= b, we have either pb,b, < 1 − e−ε

2 or

pa,b ≥ 1
n ·
(
1
2 − δ

)
.

We are now ready to prove the lower bound.

Proof. By Lemma B.2, we have MSE(P, V n) ≥ nE
[
∥R(V )− V ∥22

]
. By Lemma B.4, we have E

[
∥R(V )− V ∥22

]
≥

∑
b∈J min

(
d(1−pb,b)
4r2+d ,mina∈J pa,b · d

2048

)
. Therefore by Lemma B.5,

MSE(P, V ) ≥ n
∑

b∈J

min

(
d(1− pb,b)

4r2+d
,min
a∈J

pa,b ·
d

2048

)

≥ n
∑

b∈J

min

(
de−ε

4r2+d
,
1

n
·
(
1

2
− δ

)
· d

2048

)

≥ nrd min

(
de−ε

4r2+d
,
1

n
·
(
1

2
− δ

)
· d

2048

)
.

The quantity is maximized for r = O
(
n1/(d+2)

)
with value Ω

(
dnd/(d+2)

)
.

C. Missing Proofs from Section 4

Theorem 4.1. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-shuffle DP mechanism for vector summation that takes the sum

of the messages across n players with k malicious users has additive error Ω
(

kd
log2(nd)

)
.

Proof. Suppose A is a protocol in which 1) each user receives an input v and outputs d messages from a randomizerR(v),
2) after shuffling, the protocol collects the messages and outputs the sum of the messages. We consider casework on the

distribution of the output of the randomizerR.

Firstly, suppose that for an input vector v, Pr

[
maxm∈R(v) ∥m∥2 ≥ 1√

dα

]
≥ 1

dn2 , for some parameter α > 1 to be fixed.

Note that a single malicious user can then run the randomizerR on inputs v(1) and v(2) a total of O
(
dn2
)

times and with

probability 0.99, find a message m such that ∥m∥2 ≥ 1√
dα

. Note that the malicious user can send the message m a total of

d times, which contributes L2 norm
√
d

α . Since each malicious user previously had a unit vector, then the mean squared error

induced by each malicious user is at least d
α2 . Therefore, k malicious users can induce mean squared error kd

α2 .
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Secondly, suppose that for an input vector v, we have sup
〈

m
∥m∥2

, v
〉
> 100

√
lognd√
d

. We claim this would violate privacy.

Note that for a random vector u, we have by the rotational invariance of Gaussians,

Pr

[〈
m

∥m∥2
, u

〉
>

100
√
log nd√
d

]
<

1

10n2d2
.

With probability at least 1
10nd , none of the nd messages has correlation at least 100

√
lognd
d with u. Thus we would be

able to distinguish between the cases where the inputs are the neighboring datasets (v, v, . . . , v) and (u, v, . . . , v), which

contradicts (ε, δ)-differential privacy for ε = O (1) and δ < 1
nd ,

It remains to consider the case where maxm∈R(v)∪R(u) ∥m∥2 < 1√
dα

and sup
〈

m
∥m∥2

, v
〉
≤ 100

√
lognd√
d

. Note that in this

case, we have

〈
∑

i∈[d]

mi, v

〉
=
∑

i∈[d]

∥mi∥2 ·
〈

mi

∥mi∥2
, v

〉

≤ sup
i∈[d]

∥mi∥2 · d · sup
i∈[d]

〈
mi

∥mi∥2
, v

〉

≤ 100
√
log nd√
d

· d · 1√
dα

=
100
√
log nd

α
.

Thus for α > 200
√
log nd and an elementary vector v, we have that

〈
∑

i∈[d]

mi, v

〉
≤ 1

2
,

and thus the mean squared error for the input (v, v, . . . , v) would be at least n
2 .

Hence for n > kd, the mean squared error induced by k malicious users is at least Ω
(

kd
log2(nd)

)
.

Theorem 1.5. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-DP mechanism for vector summation in which s shufflers take

messages corresponding to a disjoint subset of the coordinates and returns the sum of the messages across n players with k

malicious users has additive error mean squared error Ω
(

kd
s log2(nd)

)
.

Proof. For i ∈ [s], let di be the number of coordinates for which the i-th shuffler is responsible. Then we have d1 +
. . . + ds. By Theorem 4.1, there exists a set of messages for which k malicious users can induce mean squared error

Ω
(

kd2
i

log2(nd)

)
through sum of the messages in the i-th shuffler. Now, we have that the mean squared error is

∑
j∈[n] ∥xj∥22

C
(∑

i∈[s]
kd2

i

log2(nd)

)
, which is minimized at Ω

(
kd2

s log2(nd)

)
for d1 = . . . = ds = d

s by a standard power mean inequality.
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