Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Practical Parallel Algorithms for Near-Optimal Densest Subgraphs on

Massive Graphs

Pattara Sukprasert*!

Abstract

The densest subgraph problem has received significant
attention, both in theory and in practice, due to its
applications in problems such as community detection,
social network analysis, and spam detection. Due to the
high cost of obtaining exact solutions, much attention
has focused on designing approximate densest subgraph
algorithms. However, existing approaches are not able
to scale to massive graphs with billions of edges.

In this paper, we introduce a new framework that
combines approximate densest subgraph algorithms
with a pruning optimization. We design new parallel
variants of the state-of-the-art sequential Greedy++ al-
gorithm, and plug it into our framework in conjunction
with a parallel pruning technique based on k-core de-
composition to obtain parallel (14-¢)-approximate dens-
est subgraph algorithms. On a single thread, our algo-
rithms achieve 2.6-34 x speedup over Greedy++, and ob-
tain up to 22.37x self-relative parallel speedup on a 30-
core machine with two-way hyper-threading. Compared
with the state-of-the-art parallel algorithm by Harb et
al. [NeurIPS’22] , we achieve up to a 114x speedup on
the same machine. Finally, against the recent sequential
algorithm of Xu et al. [PACMMOD’23] , we achieve up
to a 25.9x speedup. The scalability of our algorithms
enables us to obtain near-optimal density statistics on
the hyper1ink2012 (with roughly 113 billion edges) and
clueweb (with roughly 37 billion edges) graphs for the
first time in the literature.

1 Introduction

The densest subgraph problem is a fundamental prob-
lem in graph mining that has been studied extensively
for decades, both because of its theoretical challenges
and its practical importance. The numerous applica-
tions of the problem include community detection and

~ *Databricks, San Francisco, CA

TA significant part of this work was done while P.S. was a
Ph.D. candidate and Q.C. Liu was a postdoc at Northwestern
University.

fSimons Institute at UC Berkeley, Berkeley, CA

$University of Maryland, College Park, MD

IMIT CSAIL, Cambridge, MA

Quanquan C. Liu!

Laxman Dhulipala® Julian Shun?

visualization in social networks [1, 15, 27, 31, 33, 42],
motif discovery in protein and DNA [21, 25, 45], and
pattern identification [2, 22, 29].

Significant effort has been made in the theoretical
computer science community in computing exact and
approximate densest subgraphs under various models
of computation, in particular in the static [10, 11, 13,
32, 46], streaming [7], distributed [4, 26, 44], paral-
lel [5, 19, 17, 28], dynamic [7, 12, 14, 43|, and privacy-
preserving [20, 24, 39] settings. However, despite a
plethora of theoretical improvements on these fronts,
there still does not exist practical near-optimal densest
subgraph algorithms that can scale up to the largest
publicly-available graphs with tens to hundreds of bil-
lions of edges. In particular, for the largest such graphs,
hyperlink2012 (with roughly 113 billion edges) and
clueweb (with roughly 37 billion edges), no previous
approximations for the densest subgraph were known
that are better than a 2-approximation.

There are two typical approaches for solving the
densest subgraph problem exactly. The first is to
solve a combinatorial optimization problem using a
linear program solver. The other is to set up a flow
network with size polynomial in the size of the original
graph, and then run a maximum flow algorithm on it.
However, the caveat to both approaches is that they
are not scalable to modern massive graphs; namely,
both approaches have large polynomial runtimes and
the best theoretical algorithms for these approaches are
often not practical. Because of this bottleneck, many
have instead investigated approaches for approximate
densest subgraphs.

The best-known approximation algorithms for the
densest subgraph problem fall into two categories. The
first category contains parallel approximation algo-
rithms, which work by iteratively removing carefully
chosen subsets of low-degree vertices while comput-
ing the density of the induced subgraph of the re-
maining vertices; then, the induced subgraph with the
largest density is taken as the approximate densest sub-
graph [5, 7, 11] using poly(logn) rounds of peeling ver-
tices with degree smaller than some threshold. Unfor-
tunately, such methods give (2 + ¢)-approximations at

Copyright ©) 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

best and no one has thus far made such methods work
in poly(logn) rounds and give better approximations.

The second category consists of algorithms obtained
from the multiplicative weight update (MWU) method.
The multiplicative weight update framework approx-
imately solves an optimization problem by using ex-
pert oracles to update the weights assigned to the vari-
ables multiplicatively and iteratively over several rounds
depending on how the experts performed in previous
rounds. The MWU framework allows for obtaining
(1 + e)-approximate densest subgraphs in poly(logn)
iterations; however, it requires more work than the peel-
ing algorithm per iteration to update the weights of the
variables. As such, neither approach is particularly scal-
able to massive graphs.

In terms of practical solutions, Boob et al. [10]
present a fast, sequential, iterative peeling algorithm
called Greedy++ that combines peeling with the MWU
framework. Chekuri et al. [13] show that running
Greedy++ for Q(API*OEZ") iterations results in a (1 + ¢)-
approximation of the densest subgraph, where p* is the
density of the densest subgraph. However, Greedy++
is not parallel, and does not take advantage of modern
multi-core and multiprocessor architectures. Recently,
Harb et al. [28] proposed an iterative algorithm based
on projections that solves a quadratic objective function
with linear constraints derived from the dual of the
densest subgraph linear program of Charikar [11]. For
a graph with m edges and maximum degree A, they
prove that their algorithm converges to a (1 + ¢&)-
approximation in O(v'mA/e) iterations, where each
iteration takes O(m) work.

Xu et al. [48] recently introduce a framework for
a generalized version of the densest subgraph prob-
lem that includes variants like the densest-at-least-k-
subgraph problem. Their framework alternates between
iteratively using maximum flow to obtain denser sub-
graphs and then peeling according to the k-core to
shrink the graph for the next maximum flow iteration.
However, their algorithm is not parallel and, thus, can-
not scale to the largest publicly available graphs. Paral-
lel implementations exist that give 2-approximations on
the densest subgraph [18, 19, 36], but such algorithms
and implementations achieve worse theoretical approx-
imation guarantees than our (1 + ¢)-approximation al-
gorithms. We also demonstrate that they obtain worse
empirical approximations.

In our work, we design fast practical algorithms that
simultaneously make use of parallelism as well as the
closely related concept of the k-core decomposition. The
k-core decomposition decomposes the graph into k-cores
for different values of k. Within the induced subgraph
of each k-core, each vertex has degree at least k. It is a

60

well-known fact that the density of the densest subgraph
is within a factor of 2 of the maximum core value.
However, it is less clear how to make use of this fact
in creating scalable algorithms for the largest publicly-
available graphs. In this paper, we design a pruning
framework that, combined with our parallel densest
subgraph subroutines, results in both theoretical as well
as practical improvements over the state-of-the-art. The
main idea of our framework is to iteratively prune the
graph using lower bounds on the density of densest
subgraph computed from our parallel densest subgraph
subroutines, while preserving the densest subgraph.

The concept of using pruning to obtain a smaller
subgraph from which to approximate the densest sub-
graph is also used in some recent works [23, 48]. How-
ever, in their works, the pruning procedures they use are
inherently sequential. Compared to previous work, we
introduce a parallel, iterative pruning approach in this
paper and demonstrate via our comprehensive exper-
imentation that our algorithms are more efficient and
more scalable than all previous baselines.

Specifically, we give parallel peeling-based MWU
and sorting-based MWU iterative algorithms that use
pruning and are based on Greedy++ [10]. Our algo-
rithms achieve the same theoretical number of itera-
tions as Chekuri et al. [13], but is more amenable to
parallelization. Experimentally, on an 30-core machine
with hyperthreading, our parallel sorting-based algo-
rithm outperforms our parallel peeling-based algorithm,
as well as previous state-of-the-art algorithms on most
graphs. For instance, compared with the state-of-the-
art parallel algorithm by Harb et al. [28], we achieve up
to a 114x speedup on the same machine.

Leveraging the scalability of our parallel algorithms,
we provide a number of previously unknown graph
statistics and graph mining results on the largest of
today’s publicly available graphs, hyperlink2012 and
clueweb, using commodity multicore machines. We also
provide statistics (such as the empirical width) that may
prove to be interesting and useful in aiding future work
on this topic.

2 Preliminaries

Given an undirected, unweighted graph G = (V, E), let
n = |V| and m = |E|. Let degs(v) be the degree
of vertex v in G. We define the density of G to
be p(G) = % The goal of the densest subgraph
problem is to find a subgraph S C G, such that p(S) is
maximized. We will use S* to denote a densest subgraph
of G with maximum density p*.

A central structure that we study is the k-core of
an undirected graph. We now define k-core formally.

DEFINITION 1. (k-CORE) A k-core core(G,k) of G is

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Symbol Meaning
G=(V,E) undirected, unweighted input graph
n,m number of vertices, edges resp.
deg(v) current degree of vertex v
A current maximum degree of graph
cp Peeling complexity
p(G) current density of graph G
p* maximum induced subgraph density of graph G
p the best density found in our algorithms
core(G, k) k-core of G
core(v) core number of v
kmaz max non-empty core number
£(v) current load of vertex v

Table 1: Common notation used throughout the paper.

defined to be a maximal vertex-induced subgraph S C G
such that degg(v) > k for any v € V(S5).

It is well known that to find core(G, k), one can
repeatedly peel' an arbitrary vertex v from G so long
as degi(v) < k. This process terminates when all
remaining vertices have degree at least k, or the graph
becomes empty. If the remaining graph is not empty,
then it is the unique subgraph, core(G, k). Next, we
define the coreness or core number of a vertex v:

DEFINITION 2. (CORE NUMBER) For any vertex v, we
let core(v) = k if k is the mazimum integer such that v
is in core(G, k).

An easy modification of the peeling algorithm de-
scribed above yields core(v) for all vertices v. We call
this peeling-based algorithm Coreness. In this al-
gorithm, we pick a vertex with minimum degree and
peel it one at a time until there are no vertices left.
Let D be a variable that represents the maximum de-
gree of peeled vertices at the time we peel them. Ini-
tially, D = 0. Once v is about to be peeled, we set
D + max(D, degq(v)). We then set core(v) + D and
peel v from G. We refer to the ordering of vertices that
we peel in this process as a degeneracy ordering of
the graph, which is unique up to permuting vertices in
the order with the same coreness.

We also use the following notion of c-approximate
k-core decomposition, which can be computed more
efficiently than exact k-core.

DEFINITION 3. (¢-APPROX k-CORE DECOMPOSITION)
A c-approximate k-core decomposition is a parti-
tion of wvertices into layers, such that a vertex v is in
approzimate core k(v), denoted apzcore(G,k(v)), only
if @ < k(v) < ck(v), where k(v) is the coreness of v.

TThroughout this paper, we say a vertex v is peeled from G

when v and all its adjacent edges are deleted.

61

Later on, we will want to find an ordering that is
similar to the degeneracy ordering, but certain loads
of vertices are also given as input. Let ¢(v) be load
of v. At each step, we peel the vertex that minimizes
the term £(v) + deg(v). Note that after v is peeled,
the induced degrees degq~(v’) of v’s neighbors v’ are
decreased. As a special case, we obtain the degeneracy
ordering by setting ¢(v) = 0 for all v. For the remainder
of this paper, we refer to the ordering obtained using
£(v) + degq(v) as the load ordering.

Model Definitions. We analyze the theoretical ef-
ficiency of our parallel algorithms in the work-depth
model [16, 30]. In this model, the work is the to-
tal number of operations executed by the algorithm
and the depth (parallel time) is the longest chain of
sequential dependencies. We assume that concurrent
reads and writes are supported in O(1) work/depth. A
work-efficient parallel algorithm is one with work that
asymptotically matches the best-known sequential time
complexity for the problem. All of our algorithms pre-
sented in this paper are work-efficient. We say that a
bound holds with high probability (whp) if it holds
with probability at least 1 — 1/n° for any ¢ > 1.

We use the following parallel primitives in our al-
gorithms: ParFor, SufficSum, FindMax, Bucket-
ing, and IntegerSort. Each primitive takes a sequence
A of length n. ParFor is a parallel version of a for-
loop that we use to apply a function f to each ele-
ment in the sequence. If a function f takes O(t) work
and O(d) depth, then ParFor takes O(tn) work and
O(d) depth. SuffixSum returns a sequence B where
Blj] = Y- ; Ali]. FindMaz returns an element with
maximum value among those in the sequence. Suffix-
Sum and FindMax can be implemented to take O(n)
work and O(logn) depth. IntegerSort returns a se-
quence in sorted order (either non-increasing or non-
decreasing order) according to integer keys. We use two
different implementations of IntegerSort: the first is
an algorithm by Raman [40] which takes O(nloglogn)
expected work and O(logn) depth whp, and the sec-
ond is a folklore algorithm that takes O(n/e) work and
O(n®) depth for 0 < ¢ < 1 [47]. The decision to use
one of these two sorting algorithms depends on whether
work or depth is more important. We state the com-
plexity of our algorithm in both ways when necessary.

2.1 Pruning with Cores In this section, we de-
scribe a pruning idea that takes an input graph G and
outputs a subgraph H C G such that (1) H is smaller
than G and (2) any densest subgraph S* C G is in H.
We begin with a property that relates a graph’s density
and its vertices’ degrees.

LEMMA 2.1. (FOLKLORE, (SEE, E.G., [13])) Given

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

G = (V,E), if there is a wvertex v with degree
dega(v) < p(GQ), then G' = G\ {v} is a graph with
density p(G") > p(Q).

Proof. Tt holds that
|E(G")| + degg(v)

p(G) = 4
V=1 |B(@)] |, degg(v)
R
CWVI-1 . deag(v)
v ATy

=z p(G") + (1 - 2) - degg(v),

for some real number x € (0,1). The last line can
be viewed as a weighted average between p(G’) and
degq(v). Since dege(v) < p(G), it has to be the case
that p(G’) > p(G) so that their average becomes p(G).
]

As a corollary, any vertex in a densest subgraph has
induced degree at least p(S*).

COROLLARY 2.1. Let S* be the densest subgraph. Then
for any v € V(5*), degg(v) > degg- (v) > [p"].

Corollary 2.1 follows immediately from Lemma 2.1
because vertices v with deg,(v) < p* can be peeled
while increasing the density of the remaining subgraph.
Thus, a natural procedure that we have for obtaining
the densest subgraph is to iteratively remove any vertex
v that has degree less than the current density of the
subgraph. Notice that this process is very similar to
the algorithm for computing core(G, k) described in
Section 2. In fact, we can relate k-core to the densest
subgraph.

LEMMA 2.2. For some k < [p*], let C = core(G, k) be
the k-core of G. It must be the case that S* C C.

Proof. We prove this by contradiction. Assume that
S*\ C is non-empty (i.e., there is a vertex in S* but
not in C). Let H = S* UC. Notice that, for any vertex
v € §* UC, it holds that degy (v) > k—if v € S*, then
degy (v) > degg.(v) > [p*] > k by Corollary 2.1, and
if v € C, then degy(v) > deg-(v) > k. Hence, S* UC
is a k-core with more vertices than C, implying that C'
is not maximal, which is a contradiction. O

COROLLARY 2.2. (FOLKLORE) Let kppar be the maxi-
mum integer such that the core(G, kmaz) is not empty.
Let C be the [EmazT-core. Then S* C C.

Proof. For any v in C = core(G,kmaz), we have
degg(v) > kmas- Hence,

2vev, dego(v)/2
p(C) = [EO)|/IV(C)| = €V|CV(C)(T > kmaz/2-

62

-©@-®

Iteration 2 Iteration 3
Iteration 1 L = p(S)), C, = [L]-core L = p(S}), C3 = [L]-core
L = [kyq, /2], C, = L-core, S; = Refine(C,, L) 8y = Refine(Cy, L) Sy = Refine(Cy, L)

Figure 1: Example illustrating the Pruning-and-Refining
Framework (Algorithm 1). The i-th iteration of the algo-
rithm computes a lower bound L on the density, computes
the C; = [L]-th core of G, and then applies a Refine algo-
rithm on C; to compute a new subgraph S;. In the example,
the density of each successive S, is increasing, and the cores
C; decrease in size.

Thus, p* > p(C) > kmaz/2. It follows from Lemma 2.2
that S* is contained in the [£maz]-core. O

Similarly, the largest non-empty c-approximate k-
core, Kmqz, also gives us a lower bound on p*, in terms
of the density of a (potentially larger) approximate core

with smaller approximate core number:

COROLLARY 2.3. Let I%man be the maximum integer
such that the apzcore(G,kmaz) is not empty. Let C

be the [kg‘; 1-approximate core. Then S* C C.

Proof. The proof is identical to that of Corollary 2.2;
the only difference is that since the core is approx-
imate, the lower bound on degg(v) for any v in
apzcore(G, l%maz), is I%mam/c. a

3 Pruning-and-Refining Framework

Based on the properties described in Section 2, any
algorithm that yields a lower bound on p* can be
used for pruning the graph while retaining the densest
subgraph. The main idea of the framework is as follows.
Let L be a lower bound on p*. We can prune the input
graph G by computing G’, which is the [L]-core of G
and then search for the densest subgraph in G’ instead of
G. This process can be repeated multiple times, making
it useful in algorithms that iteratively refine (tighten)
the lower bounds for p* over a sequence of steps.

To the best of our knowledge, the idea of using
cores to prune the graph adaptively while refining
the approximate densest subgraph solution has not
been done in the literature. The closest idea is from
Fang et al. [23] and Xu et al. [48]. In [23], their
pruning rules first compute Coreness, and then inspect
connected components from the [I“”T”]—core. They
take the maximum density found among the connected
components as a lower bound and use k., as an
upper bound. They then run a flow-based algorithm on
each connected component separately. Note that flow-
based algorithm can only tell if a graph has a subgraph

Copyright ©) 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

of a specific density p, so a binary search over the
optimal density is required to solve the densest subgraph
problem. Their pruning rules do not help much if there
is only a single component in the (%W—COM. Then,
in [48], they give a sequential pruning-based algorithm
based on flow where their implementation prunes the
graph at the beginning and runs a flow-based algorithm
to find approximate densities.

3.1 Framework Overview We apply this idea in an
algorithmic framework for computing an approximate
densest subgraph, which is shown in Algorithm 1. The
pseudocode uses exact pruning, i.e., it uses the value
of the exact k,,q.-core, but we also describe how to
use approximate k-cores below. On Lines 1-4, we
compute the lower bound L by applying Corollary 2.2
and either an exact k-core algorithm or an approximate
k-core algorithm. Both algorithms take O(m+ n) work,
but approximate k-core has provably poly-logarithmic
depth. For exact k-core, we use the bucketing-based
k-core implementation of [18, 19]. The algorithm
iteratively peels all vertices with degree at most d
in parallel, starting with d = 0, and incrementing d
whenever there are no more vertices with degree at most
d. The algorithm takes O(m + n) expected work and
O(cplogn) depth with high probability, where ¢, is the
peeling complexity, which is defined as the number
of iterations needed to completely peel the graph. For
approximate k-core, we use the implementation of Liu
et al. [35], which gives a (2 + §)-approximation to all
core numbers and takes O(m + n) expected work and
O(log®n) depth whp. Line 2 shows the lower bound
L given k.., but we can alternatively compute the
lower bound for the approximate k-core approach using
Corollary 2.3. Given the coreness values in cores, we
extract the j-core from G using getCore(G, cores, j) on
Line 3.

On Lines 5-10, we iterate for T rounds, where
each round calls a function Refine which computes
subgraphs with potentially higher density. Note that for
algorithms that we use in our paper, our Refine step
on Line 6 is oblivious to the parameter L. However,
knowing L might be useful for other algorithms (e.g.,
flow-based algorithms). After each refinement step,
we then get a potentially better solution, which we
memorize in Line 7-9. In line 10, we leverage this
lower bound L by shrinking G to be [L]—core. By
Lemma 2.2, the densest subgraph [L]-core contains
densest subgraph S*. We then return the approximate
densest subgraph on Line 11. In Section 3.2, we describe
various options for the Refine function.

63

Algorithm 1: Pruning-and-Refining Frame-
work
Input : an input graph G = (V, F), number
of iterations T'
Output: an approximate densest subgraph S

1 cores, kmar < Coreness(G)
2 L+ [kmaz/2]
3 G < getCore(G, cores, L)
a4 S+G // Initial pruning
5 for i=1 to T do
6 S’ < Refine(G,L) // Refine candidate
subgraph
7 if p(S") > p(S) then
8 S5
L + max(L, p(95))
10 G + getCore(G,cores, [L])

11 return S

3.2 Refinement Algorithms Next, we describe al-
gorithms that can be used for the Refine function in
Algorithm 1. We first describe two existing sequential
algorithms, the peeling algorithm and Greedy++, and
then introduce our parallel algorithms.

Peeling Algorithm [11]. At each step, we compute
the density of the current graph. Then, we pick a vertex
v with the minimum induced degree and remove it from
the graph. We continue until there are no vertices
remaining, and return the subgraph with the maximum
density found in this process. The peeling algorithm
can be parallelized [18], but can have linear depth in
the worst case. Charikar [11] proves that the subgraph
returned by this peeling algorithm has a density at least
half the optimum density, i.e., it gives a 2-approximation
to the densest subgraph.

Greedy++ [10]. Algorithm 2 presents a greedy load-
based densest subgraph algorithm, for which the state-
of-the-art Greedy++ algorithm is a special case. Ini-
tially, each vertex v is associated with a load ¢(v) =0
(Lines 2-3). The algorithm runs for T iterations (Lines
4-11). On each iteration, we compute the degeneracy
order O with respect to the load ¢ on graph H to obtain
the ordered set of vertices vy,...,v, (Line 6). Then, on
Lines 7-11, we peel vertices in this order. When v; is
peeled, we compare the density of the remaining sub-
graph to the density of the best subgraph found so far,
and save the denser of the two. We also update the
loads, setting £(v;) + £(v;) + deg;(v;), where degy; (v;)
here is the induced degree of v; when it is peeled. We re-
turn the best subgraph found after T = ©( Aplf’fz") itera-
tions, where A is the maximum degree and 0 < ¢ < 1 is
an adjustable parameter. This algorithm yields a (1+¢)-
approximation of the densest subgraph as shown in [13].

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 2: Greedy Load-Based Densest
Subgraph

Algorithm 3: Parallel Density and Load
Computation

Input : an input graph G = (V, E), number
of iterations T, ordering function O
Output: an approximate densest subgraph S

1 for v in V do

2 | L(v)«0

3 H= (VH,EH) — (V, E)

4 S+G

5 for i=1 to T do

6 let vy,...,v, be the ordering provided by

the function O

7 for j=1 to n do

8 if p(H) > p(S) then
| S« H

w0 || fo) — ev) + degiy(vy)

// degy(v;) is degree of v; when

peeled

11 H «+ H\ {v;}

12 return S

The first iteration of Greedy++ is exactly the peeling al-
gorithm of Charikar.

The original Greedy++ algorithm is implemented in
a way where the degeneracy ordering and the update
steps are fused together. It will become clear once we
introduce our algorithm below why we decouple these
two steps for obtaining greater parallelization.

GreedySorting++ (our algorithm). Our second al-
gorithm uses a simpler method for computing O than
Greedy++, in that it orders vertices based on their loads
at the beginning of the iteration. The motivation for this
algorithm is that sorting is highly parallelizable and is
also faster in practice than the iterative peeling process
used in Greedy++ (which has linear depth). Therefore,
on Line 6 of Algorithm 2, we compute vy, ...,v,, such
that £(v1) < £(ve) < ... < {(v,). Because of the way
we decouple the ordering and update steps in Greedy++,
Line 6 is the only difference between the two algorithms.
Next, we argue that GreedySorting++ has the same
guarantees in terms of the approximation and number
of rounds as Greedy++.

THEOREM 4. For T = © (Aplfi"), GreedySorting++
outputs a (1 + €)-approzimation to the densest subgraph

problem.

Proof. The proof follows almost immediately from Sec-
tion 4 of [13]. To prove that Greedy++ works, they
define an exponential-sized linear program where each
variable corresponds to one possible peeling order (i.e.,
a permutation). They then utilize the multiplicative
weight update (MWU) framework on the linear pro-

64

Input : an input graph G = (V, E), an
ordering vy, ... v,, current loads ¢(-)
Output: updated loads £(-), best density
found ppaz
A := array of size n
parfor e = (v;,v;) in E do
| A[min(j, k)] < A[min(j, k)] + 1
B := Suf fixSum(A)
parfor i =1 to n do
| Bli] + Bli]/(n—i+1)
Pmaz < Mmax; Bfi] // maximum density in
this iteration
parfor v; in V do
| €(vi) « €(v;) + Ali] // update loads
10 return ¢, pyaz

N 0 Gk W N =

© 0w

gram.? By the way the formulate their linear program,
the subproblem that we need to solve w.r.t. MWU is
to find a good ordering. Lemma 4.6 of [13] shows that
the ordering obtained with Greedy++ is a good approz-
imate ordering. The proof of Lemma 4.6 work for any
order wy,...,v, that satisfies the following property:
L(v;) < L(v;) + A if ¢ < j. This is true for the or-
dering used in GreedySorting++, where we sort by the
initial load of the vertices. Hence, by plugging in this
ordering, all of the proofs in [13] go through. O

3.3 Parallel Implementation In this subsection,
we present our parallelizations of Greedy++ and
GreedySorting++. We still run both algorithms for T'
iterations, one iteration at a time, and our aim is to
achieve low depth within each iteration.

Parallelization of Algorithm 2. We first describe
how to parallelize all parts of Algorithm 2 except for
Line 6. Let vy1,...,v, be an ordering of vertices for
peeling. On the ¢’th iteration of the for-loop on Line
7, the induced subgraph of G that we use is S; =
G(vy...,v,). This holds for all 1 < ¢ < n. For any
edge e = (vj,vy), e will contribute to the density of .S;
if and only if i < j and 7 < k.

Our implementation for computing the densities
and updating the loads in parallel is shown in Algo-
rithm 3. We first initialize an empty array A of size n
(Line 1). Then, for each edge e = (v;,vx), we add 1 to
Almin(j, k)] (Lines 2-3). Let B be the suffix sum array
of A (Line 4). Then, BJi] corresponds to the number of

edges remaining in the graph after vertices vq,...,v;_1

are peeled. To see why it is the case, let us consider

the remaining subgraph after vy,...,v;_1 are peeled.
2See, e.g., [3] for a survey on this topic.

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Consider an edge e = (v;,v;). Edge e will appear in
this subgraph if and only if both v; and vy are not yet
peeled, i.e., i < jand i < k. We add 1 to A[min(j, k)] to
account for the presence of e in the subgraphs induced
by Vi<min(jk)s -+ Vn- We then compute the densities
in parallel and take the maximum density on Lines 5-7.
We update the loads in parallel on Lines 8-9. The work
and the depth of this implementation are O(n+m) and
O(logn), respectively. As we described in Section 2,
ParFor, SufficSum, and FindMax all take linear
work. SuffieSum and FindMax have O(logn) depth,
and ParFor have O(1) depth, so our depth bound fol-
lows.

ParallelGreedy++. In order to parallelize Greedy++,
what is left for us is to parallelize the computation
of the degeneracy ordering, which can be computed
with a k-core decomposition algorithm in O(m + n) ex-
pected work and O(c,logn) depth, with high probabil-
ity. When we peel multiple vertices at the same time,
the degeneracy ordering can be different from the order
obtained sequentially. The reason is that when a ver-
tex is peeled in the sequential algorithm, it affects its
neighbors’ degrees immediately. However, in the par-
allel version, this effect is delayed until the end of the
peeling step where multiple vertices may be peeled to-
gether. We claim that this does not significantly affect
the order. Consider a pair of vertices v; and v;. To
make the proof in Theorem 4 go through, it suffices to
show that ¢ < j implies £(v;) < €(v;) + A. We prove
the contrapositive. Suppose ¢(v;) > ¢(v;) + A. Because
the number of neighbors of both v; and v; are bounded
by A, it is the case that, even if all of v;’s neighbors are
peeled and none of v;’s neighbors are peeled, v; will still
be peeled after v;, implying that ¢ > j. Therefore, for
i < j we have that £(v;) < £(v;) + A.

THEOREM 5. For T = @(Alog”>, our paral-

el
lel algorithm ParallelGreedy++ outputs a (1 + &)-
approzimation to the densest subgraph problem. More-
over, each iteration takes O(n +m) expected work and
O(cplogn) depth with high probability.

ParallelGreedySorting++. We replace the degener-
acy order in ParallelGreedy++ with parallel Inte-
gerSort to obtain ParallelGreedySorting++. As dis-
cussed in Section 2, integer sorting takes O(nloglogn)
expected work and O(logn) depth whp, or O(n/e) work
and O(n®) depth for any 0 < & < 1. We proved earlier
that sorting does not affect the approximation guaran-
tee of the algorithm. Therefore, we have the following
theorem.

THEOREM 6. For T =

el

@(Alog”), our paral-
lel ParallelGreedySorting++ outputs a (1 + ¢)-

65

approzimation to the demsest subgraph problem. More-
over, each iteration takes either O(nloglogn + m) ex-
pected work and O(logn) depth whp or O(n + m) work
and O(n®) depth for any 0 < e < 1.

Note that for our algorithms, the number of steps
T depends on p*, but we can choose T based on k;,qz
instead, as it is within a factor of 2 of p*.

Combining Refinement with Pruning. Us-
ing the framework in Algorithm 1, we can com-
bine a pruning method with one iteration of
Greedy++, GreedySorting++, ParallelGreedy++,
and ParallelGreedySorting++ as the Refine
function.  For example, we can combine approx-
imate k-core for pruning with one iteration of
ParallelGreedySorting++, which would give an
algorithm with either O(T(nloglogn + m)) expected
work and O(T'logn + log®n) depth or O(T(n + m))
work and O(T logn + n®) depth for any 0 < e < 1.

Remark. While pruning gives speedups in practice,
it does not improve the theoretical complexity of the
algorithm, as there exists a graph where the core that
we prune down to covers most of the original graph.
However, as we observe in our experiments below,
pruning results in massive improvements in runtime in
practice as most real-world graphs exhibit a densest
subgraph that is a small percentage of the input (in
some graphs, the densest subgraph contains fewer than
1% of the vertices in the input).

4 Experiments

In this section, we implement and benchmark different
instantiations of the Pruning-and-Refining framework
on real-world datasets. We also compare our algorithms
with existing algorithms. We demonstrate that our
approach is practical and is scalable to the largest
publicly-available graphs. In addition, we also provide
interesting statistical data on large-scale graphs, in
particular, near-optimal densities of the larger graphs,
previously not reported to such accuracy in literature.
All of our code is provided at this link.® There is some
experimental data omitted due to space constraints.
They are included in the full version of our paper.

Implementations. We implement Greedy++,
GreedySorting++, and their parallel instantiations as
our refinement algorithms. We consider two algorithms
for pruning: pruning using exact k-cores, and pruning
using approximate k-cores. Both pruning algorithms
are parallel and are modular across all of the refinement
algorithms. We use the exact k-core decomposition

Shttps://github.com/PattaraS/gbbs/tree/ ALENEX

Copyright (© 2024
Copyright for this paper is retained by authors


https://github.com/PattaraS/gbbs/tree/ALENEX
https://github.com/PattaraS/gbbs/tree/ALENEX

Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

algorithm from Dhulipala et al. [18] and the approx-
imate k-core decomposition algorithm from Liu et
al. [35] for our pruning step. The algorithm of Liu et
al. [35] allows us to specify the approximation ratio (c
in Definition 3). When c¢ is higher, the algorithm tends
to be more parallelizable but will be less accurate. We
run our experiments with ¢ = 1.5. We also combine
approximate k-core decomposition with exact k-core
decomposition for further speedups. In particular, our
combined pruning algorithm first uses approximate
k-core decomposition to shrink the graph and then
uses exact k-core decomposition for greater accuracy in
the refine step on the smaller graph. Such a procedure
results in speedups for a peeling-based algorithm
like ParallelGreedy++ since in each iteration, the
algorithm already performs much of the necessary
work (with minimal modification) to find the k-core
decomposition. We name our algorithms as follows:

1. PaRGreedy++: is ParallelGreedy++ combined with
our Pruning-and-Refining framework with exact k-
core pruning.

2. PaRSorting++: is ParallelGreedySorting++ com-
bined with our Pruning-and-Refining framework
with exact k-core pruning.

3. PaRApxGreedy++: is ParallelGreedy++ combined
with our Pruning-and-Refining framework with ap-
proximate k-core pruning followed by exact k-core
pruning.

4. PaRApxSorting++: is ParallelGreedySorting++
combined with our Pruning-and-Refining framework
with approximate k-core pruning.

We present experimental results for each of our methods

and also compare with existing implementations.

Existing Algorithms. We compare with the state-
of-the-art (1 + £)-approximation algorithms from the
sequential algorithms of Fang et al. (CoreExact [23]
and CoreApp [23]), the sequential algorithm of Boob
et al. (Greedy++ [10]), the parallel algorithm of Harb
et al. (FISTA [28], Frank-Wolfe [17], and MWU [4]), and
the sequential algorithm of Xu et al. [48]. We also com-
pare with the state-of-the-art parallel 2-approximation
algorithms of Luo et al. [36] and Dhulipala et al. [19].
Fang et al. [23] and Xu et al. [48] implement vari-
ants of maximum flow algorithms to find the densest
subgraph. Their CoreExact [23] and cCoreExact [48]
implementations are exactly the flow algorithm with bi-
nary search over the density. They perform a density
lower-bound estimation using cores and approximate
maximum flow, which we described in more detail in
Section 2.1. If a graph has many connected components,
then a subgraph with maximum density lies exclusively
in one component. Hence, they run the flow algorithm
on each connected component separately. The densities

66

of cores are then used to determine the lower bounds and
upper bounds of the binary search needed for the flow
computation. cCoreExact [48] improves CoreExact [23]
by using cores to shrink the input graph. Their approx-
imation algorithm, CoreApp [23] is an algorithm that
finds core(G, kmay) directly. Once the maximum core
is found, they return the component with the highest
density. This algorithm yields a 2-approximation for
the densest subgraph problem. cCoreG++ [48] is their
implementation of Greedy++ [10] that uses one itera-
tion of a k-core decomposition algorithm to shrink the
input graph.

Harb et al. [28] propose a gradient descent based
algorithm called FISTA [28], where the number of itera-
tions needed is O(v/Am/e). They use accelerated prox-
imal gradient descent, which is faster than the standard
gradient descent approach [6, 38]. The algorithm runs
in iterations, where each iteration can be made parallel.
The output in each iteration is a feasible solution to a
linear program for the densest subgraph problem. They
then use Greedy++-inspired rounding, which they call
fractional peeling, to round the linear program solution
into an integral solution.

Finally, we benchmark against recent parallel al-
gorithms, Julienne [19] and PXMC [36], for computing
the exact k-core decomposition. Then, the maximum
core gives a 2-approximation of the densest subgraph.
Although these algorithms achieve parallelism, their ap-
proximations are worse than the (1 + £)-approximation
algorithms, both theoretically and empirically.

Setup. We use c2-standard-60 Google Cloud in-
stances (3.1 GHz Intel Xeon Cascade Lake CPUs with
a total of 30 cores with two-way hyper-threading, and
236 GiB RAM) and ml-megamem-96 Google Cloud in-
stances (2.0 GHz Intel Xeon Skylake CPUs with a total
of 48 cores with two-way hyper-threading, and 1433.6
GB RAM). We use hyper-threading in our parallel ex-
periments by default. Our programs are written in
C++. We use parallel primitives from the GBBS [18]
and Parlay [8] libraries. The source code is com-
piled using g++ (version 10) with the -O3 flag. We
terminate experiments that take over 1 hour. We
run each experiment for three times and take the av-
erage for the runtime and accuracy analyses. Us-
ing enough threads, with our framework, Greedy++,
GreedySorting++, and their parallel versions finished
within 1 hour for all of our experiments. However, all
other (1+c¢)-approximation algorithms took longer than
1 hour on all of the large graphs (clueweb, twitter,
friendster, and hyperlink2012), so we omit the en-
tries for these datasets for these algorithms.

Datasets. We run our experiments on various synthetic
and real-world datasets. The real-world datasets are

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

obtained from SNAP [34] (cahepth, ascaida, hepph,
dblp, wiki, youtube, stackoverflow, livejournal,
orkut, twitter, and friendster), Network Reposi-
tory [41] (brain), Lemur project at CMU [9] (clueweb),
and WebDataCommons [37] (hyperlink2012). The
hyper1ink2012 graph is the largest publicly-available
real-world graph today. closecliques is a synthetic
dataset designed to be challenging for Greedy++ [10,
13, 28]. We remove self-loop and zero-degree vertices
from all graphs, and symmetrize any directed graphs.
We run most of our experiments on c2-standard-60
machines. However, on the larger graphs (namely,
twitter, friendster, clueweb, and hyperlink2012),
we use ml-megamem-96 machines as more memory is re-
quired. The sizes of our inputs and their maximum core
values is included in our full paper.

Overview of Results. We show the following experi-

mental results in this section.

e QOur pruning strategy is very efficient in practice as our
pruned graph contains 175x fewer edges on average
and 3,596 fewer vertices on average.

e QOur algorithms, similar to the state of the art, take
only a few iterations to converge. PaRSorting++
takes more iterations, but it still converges to < 1.01-
approximation within 10-20 iterations and each iter-
ation is significantly faster than all other algorithms.

e QOur algorithms are faster than existing algorithms by
a large margin.

e Our algorithms are highly parallelizable, achieving up
to 22.37x self-relative parallel speedup on a 30-core
machine with two-way hyperthreading.

o We measure empirical “width”, which is a parameter
that correlates to the number of iterations needed to
converge. We observe that the empirical width is
much smaller than the upper bound used to analyze
the algorithm. This may lead to more fine-grained
analyses of many MW U-inspired algorithms.

4.1 Core-Based Pruning In this section, we
present experimental results related to various different
pruning methods using exact and approximate k-core
decomposition (and combinations thereof).

Pruning with core(G, [®zex]). We first study the
benefit of performing pruning using the ezract k-core
computation. The data for this experiment across all
graphs can be found in our full paper. For the real-
world graphs, the cores contain between 2—-282x fewer
edges than the actual graphs (48.3x fewer on average),
and between 4.5-14227x fewer vertices (2420x fewer
on average). The only exception is the brain dataset,
where the core is half the size of the actual graph. Even
in this case, the number of vertices left in the core is
around 25% of the original graph. For the synthetic

dataset closecliques, the input is designed so that
the maximum-core is identical to the original graph, so
there is no benefit to pruning. However, this situation
is very unlikely to occur in real-world datasets.

Due to the significant reduction in graph sizes in
terms of both the number of vertices and number of
edges, using core(G, fk"g” 1) is almost always preferable
over using G, especially since computing all cores of G (a
linear-work algorithm, with reasonably high parallelism
in practice [18]) is inexpensive compared to the cost
of running any of the refinement algorithms, which
mostly require super-linear work. To summarize, we
find that pruning is nearly always beneficial and should
be applied prior to refinement.

Pruning with Highest Cores. As our algorithms
progress, we perform additional pruning to shrink the
graph even further. We report the sizes of the final
graphs in our full paper. In many cases, the sizes of
the final graph (after pruning to the highest cores) are
less than half of the sizes of their [#mez]-cores. Across
all datasets, we find that iterative pruning yields up
to a 30.3x reduction in the number of vertices over
the core(G, [kmaxz/2]), and up to a 200x reduction in
the number of edges when comparing these quantities
in core(G, [kmax/2]) and core(G,[p]), where p is the
best density found by our algorithms. Thus, we see
advantages in performing multiple rounds of refinement
in certain graphs. Note that, there are cases when this
additional pruning step is not helpful, e.g., in dblp and
clueweb. In each of these cases, we notice that the best
density found is very close to [kpaz/2], so there is no
room for pruning opportunities.

4.2 Number of Iterations Versus Density Next,
we study the progress that different refinement algo-
rithms make in our framework vs. other implementa-
tions toward finding the maximum density. We per-
form this experiment on all variants of our algorithms:
PaRGreedy++, PaRSorting++, PaRApxGreedy++, and
PaRApxSorting++; and all other benchmarks that use
iterations: FISTA, Greedy++, FrankWolfe, MWU, and
cCoreG++. We also include PKMC as a baseline of com-
parison against a 2-approximation algorithm. All al-
gorithms were run for at least 20 iterations. The
results are illustrated in Fig. 2. In fact, most al-
gorithms converge very early with our algorithms
PaRGreedy++ and PaRApxGreedy++ converging no later
than the fastest converging algorithms. In fact, on most
graphs, Greedy++, PaRGreedy++, and PaRSorting++
took the fewest iterations to converge. Two algo-
rithms, PaRSorting++ and MWU, take more iterations
in many graphs. This matches with our understand-
ing of the width of MWU as discussed below. Fur-

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

thermore, PaRApxGreedy++ and PaRApxSorting++ ex-
actly match the convergence rates of PaRGreedy++ and
PaRSorting++, respectively; such is expected as our use
of approximate vs. exact pruning affects the runtime not
the accuracy. PaRApxSorting++ needs more iteration to
converge since we only use approximate k-core pruning.

4.3 Approximation Ratio We compare the densi-
ties returned from various algorithms at iteration 10
with the best density currently known in the literature.
Except for brain, twitter, friendster, clueweb, and
hyper1ink2012, the best known density is equal to the
optimum. To compute the optimum density, we run a
linear program solver on core(G, [p]).

Except for FrankWolfe, all algorithms have ap-
proximation ratios less than 1.02 after 10 iterations.
Our PaRGreedy++ algorithm achieves the best approx-
imation ratio after 10 iterations for all four of the
largest graphs, twitter, friendster, clueweb, and
hyperlink2012. For the rest of the graphs, our algo-
rithm achieves an approximation ratio no worse than
1.0001 x the smallest approximation ratio. We also in-
clude a table that compares densities after iteration 20
in Table 2. After 20 iterations, most approximation ra-
tios are less than 1.001. Our algorithm PaRGreedy++ ob-
tains the best approximation for 8 out of the 12 tested
graphs and obtains an approximation ratio no worse
than 1.0000002x the best for the remaining graphs.

4.4 Empirical Widths As mentioned at the end
of Section 3.2, in the multiplicative weight update
framework, width is a parameter that is correlated
with the number of rounds needed for a solution to
converge. In our context, the width w corresponds to
the mazimum increase of a load of a single vertex in
any iteration. See, e.g., [3, 13] for more details on width
and its analysis. w is lower bounded by p* because when
we peel the first vertex from the densest subgraph, its
degree must be at least p*. The width is also upper
bounded by the maximum degree A, since the increase
of a load of a vertex is bounded by its degree, i.e.,
p* <w < A. This upper bound is reflected in the T" =

o (Alog”) iterations needed for our algorithms in the

ez

worst case. However, this bound does not reflect reality,
as most of our iterative algorithms usually converges
in just a few iterations. The bound on the number of
iterations could have been T = O(‘*’plfegzn). This can
be significant if w <« A. Here, we partially explain
this phenomenon by measuring the width empirically.
In the full paper, we show information about the width
across multiple datasets gathered from our experiments.
We observe that the widths for running PaRGreedy++

are much closer to the best density found, while the

68

widths from PaRSorting++ are closer to A. If we see
empirically that w = O(p*), then our algorithms should

logn
2

converge in T = O iterations. On the other

hand, if w > p*, our algorithms should take more
iterations to converge. This supports what we observed
in our experiments, and also explains why it takes very
few iterations, e.g., fewer than 10-20 iterations, for
PaRGreedy++ to converge.

4.5 Scalability Here, we show the scalability of our
algorithms compared to the parallel version of FISTA
and the parallel 2-approximation algorithms, Julienne
and PKMC in Fig. 3, which shows the running time of
the algorithms (in milliseconds) versus the number of
threads used by our algorithms and parallel FISTA,
Julienne, and PKMC when each algorithm is run for
5 iterations. We show additional plots for 10 and
20 iterations the full version of our paper. We see
that our PaRSorting++ algorithm achieves greater self-
relative speedups than FISTA and PaRGreedy++. Specif-
ically, PaRSorting++ achieves up to a 10.6 x self-relative
speedup (on livejournal), while FISTA achieves up to
a 14x self-relative speedup (on dblp) and PaRGreedy++
achieves up to a 5.51x self-relative speedup (on orkut).
Furthermore, both of our algorithms take shorter time
than parallel FISTA regardless of the number of threads.
Our PaRApxGreedy++ and PaRApxSorting++ achieve
the greatest self-relative speedup. Specifically, On
livejournal, PaRApxGreedy++ and PaRApxSorting++
achieves up to a 17.6x and a 20.51x self-relative
speedup, respectively. PaRApxSorting++ achieves
greater self-relative speedup than the rest of the im-
plementations for 8 of the 12 tested graphs. Although
PKMC achieves greater self-relative speedups on dblp,
hepph, stackoverflow, and friendster, they obtain
worse approximations guarantees since they only guar-
antee a 2-approximation on the density. As we discussed
previously, it is much easier to obtain greater paral-
lelism when the approximation guarantee is relaxed to
a 2-approximation (we see in Fig. 2 that PKMC obtains
noticeably worse approximations on most graphs).

4.6 Comparing the Total Running Time We
first compare PaRSorting++ with the algorithms given
in [23]. We ran experiments on two of their algorithms,
namely, CoreExact and CoreApp. CoreExact took too
long to run on most datasets. CoreApp is faster than our
implementation on some graphs, however, since it uses
core(G, kmaz ), this algorithm gives a 2-approximation
and is less accurate than our algorithms. More details
are included in the full version of this paper.

We include plots that compare the to-
tal runtime of our algorithms (PaRGreedy++,

Copyright © 2024 by SIAM
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

aRGree aRSortin a xGree a xSortin, -
PaRGreedy-++ A PaRSorting++ @ PaRApxGreedy++ + PaRApxSorting++ ~ FISTA-1
ree ran olre cuore
Greedy++ FrankWolf MWU X PKMC A cCoreG++
p [ . =z W o) ; 1
z " iy o Z 234 { 1B I
S qore : Qé 1022 - 18 /| A il
=" / - : | ] /|
E / :3 % 10232 |- f 5 E 1029 |- = , “ y ,
A / o) | 9
2.3 | |
1014 \? " " 102 | R - 10 I A AT B ‘HT | L
10° 10! 102 10° 10! 102 10° 10! 102 10° 10! 102
Iteration Iteration Iteration Iteration
=
1054 T s T ——— ——— . T — — § T — T
f? z ; B 1033 5 1038 o
& 3 (24 A% g ~ -
& p % A g .
3 2 £ 3 g 1037 2
2 4 B E
= 3.9 =] o 1032 =
5 10% 9 A = 8 1037
2.3 O - a .
AR S| = 10 uj vl el P A B E? P R AT |
10° 10! 102 10° 10! 102 10° 10! 102 10° 10! 102
Iteration Iteration Iteration Iteration

Figure 2: Densities on different iterations for various algorithms. Only our algorithms can successfully process all
of the large graphs (bottom row) within the 1 hour limit.

‘. PaRGreedy++ 4 PaRSorting++#PaRApxGreedy++ + PaRApxSorting++e Julienne + FISTA xPKMC ‘

2 10°F 12 15 10°F ]

E sl 1z T E 105} 12

2 10“; E 13 E - 10° ]

& 2 12 101} 1 i) \, 1

E = 12 I E ‘v‘,,, ——

[a W} 102; 7{; 1+ 103% ?Q; 103’ f"’

2 3 13 0l 18

g | i 15 17 g 0% ]
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Threads Threads Threads Threads

Figure 3: Runtimes (ms) of PaRGreedy++, PaRSorting++, PaRApxGreedy++, PaRApxSorting++, Julienne, FISTA,
and PKMC versus the number of threads when running for 5 iterations.

I B PaRGreedy++ I B PaRSorting++ I l PaRApxGreedy++ I [ PaRApxSorting++ ﬂ B FISTA I 0 Greedy++
Be rankworte B8 mwu BB cCoreG++ BB cCoreExact  BBPKMC
| | | | | |

ikl |||I§ |§| |||I§‘|| ""3 | liks
T T T

—
an)
=
T
|

Runtime (ms)
—
a)
=~

MM ol ol

N ma—

6‘0\? OY\Q)’(J . Y“a\ \‘O\Ietﬁo\ﬂ ‘OY(‘““ Wy\&& o “ﬁ“‘oe he@?‘ﬂ
A Sﬁa@ ¥

—
=
=
=
]

—
]
=
p—
—
=
e
_—

10

Figure 4: Runtimes of different densest subgraph algorithms on our small graph inputs. The algorithms are run
for 20 iterations. Parallel algorithms use 60 hyper-threads.

Copyright (©) 2024

69 Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Graph Dataset H p FISTA MWU | FrankWolfe | Greedy++ | PaRGreedy++ | PaRSorting++ | PaRApxSorting++
hepphx* 265.969 1.00043 | 1.00011 1.00011 1 1 1.00031 1.00001
dblp* 56.565 1 1 1 1 1 1 1
brain 1057.458 | 1.00011 | 1.00005 1.00031 1 1 1.00026 1.0001
wiki* 108.59 1 1 1.00723 1 1 1.00002 1
youtubex* 45.599 1.00023 | 1.00104 1.01522 1.00007 1 1.00079 1.00063
stackoverflow* 181.587 1 | 1.00001 1.0031 1 1 1.00002 1.00001
livejournalx* 229.846 1.00113 | 1.00003 1.03671 1 1 1.00019 1.00006
orkut* 227.874 1 | 1.00011 1.00123 1 1 1.00026 1.00026
twitter 1643.301 n/a n/a n/a 1 1 1.00003 1.00006
friendster 273.519 n/a n/a n/a n/a 1 1 1.00006
clueweb 2122.5 n/a n/a n/a n/a 1 1 1
hyperlink2012 6496.649 n/a n/a n/a n/a 1 1 1.00002

Table 2: Approximation Ratio at the 20th iteration for various algorithms. p is the best densest subgraph known
in the literature. Ratios are computed as the best currently known density (p) divided by the density produced by
the respective algorithm. Results are indicated as n/a if the corresponding algorithms timeout at 1 hour. Graphs
indicated with an * have optimum computed densities. p is rounded to 3 decimal places and approximation ratios

are rounded to 5 decimal places. PaRApxGreedy++ is omitted since the ratios are identical to PaRGreedy++.

PaRSorting++, PaRApxGreedy++, PaRApxSorting++)
with Greedy++ [10], FISTA, FrankWolfe, PKMC,
cCoreG++, cCoreExact, and MWU [28] in Fig. 4. The
detailed results can be found in our full paper. In
short, when measuring the quality of our solutions in
running time, our algorithms outperform all existing
algorithms by significant margins, and is up to 25.9x
faster than the fastest (1 + €)-approximation algorithm
for each graph. On many of the graphs that we tested,
we achieve a 2x improvement in runtime when using
approximate k-core compared to when we use exact.

Large Graph Runtime and Accuracy Results.
Even when using multi-threading, our algorithms
are the only algorithms to finish processing the
large graphs (twitter, friendster, clueweb, and
hyperlink2012) within 1 hour. Specifically, for
20 iterations and 60 threads, our fastest algorithms
PaRGreedy++ and PaRSorting++ require 10.44, 15.35,
112.64, and 352.65 seconds, and 8.41, 10.54, 83.91, and
270.39 seconds on twitter, friendster, clueweb, and
hyperlink2012, respectively. When using approximate
k-core, PaRApxGreedy++ and PaRApxSorting++ require
9.77, 15.15, 120.97, and 375.71 seconds, and 8.27, 8.62,
85.29, and 287.27 seconds on twitter, friendster,
clueweb, and hyperlink2012, respectively. Moreover,
we obtain the best densities known in literature for
these graphs (shown in Table 2). For massive real-world
graphs, our experiments show that using approximate k-
core does not yield much benefit. This is because larger
graphs lead to more parallelism in the exact k-core de-
composition algorithm, so the exact k-core algorithm
exhibits similar parallelism to the approximate k-core
algorithm on a 30-core machine.

70

Initialization time. We measure the initialization
time of our algorithms (i.e., the time to perform the
k-core decomposition step), and report the results in
our full paper. The finding is that significant portion of
total runtime is on this initialization step for all of the
graphs. This makes sense as the initial graph tends to
be much larger than the graph we obtain after pruning.
To illustrate this point, for brain, when running on 60
threads, the initialization step takes at least 2655 ms
for PaRGreedy++, PaRSorting++, and PaRApxGreedy++,
and 1074 ms for PaRApxSorting++. The average time
spent on each iteration for these algorithms are 138, 3,
148, and 2.3 ms, respectively. PaRApxSorting++ is still
faster than all other algorithms despite running for 300
more iterations.

5 Conclusion

We introduced a framework that combines pruning
and refinement for solving the approximate densest
subgraph problem. We designed new parallel variants
of the sequential Greedy++ algorithm, and achieved
state-of-the-art performance by plugging them into our
framework. We showed that our algorithms can scale
to the large hyper1ink2012 and clueweb graphs and
obtain near-optimal approximations of their densest
subgraphs for the first time in the literature.

Acknowledgements

This research was supported by DOE Early Career
Award #DESC0018947, NSF Awards #CCF-1845763
and #CCF-2103483, Google Faculty Research Award,
Google Research Scholar Award, cloud computing cred-
its from Google-MIT, and FinTechQCSAIL Initiative.

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

References

1]

[10]

J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and
A. Vespignani. Large scale networks fingerprinting
and visualization using the k-core decomposition.
In Proceedings of the International Conference on
Neural Information Processing Systems, 2005.

A. Angel, N. Koudas, N. Sarkas, D. Srivastava,
M. Svendsen, and S. Tirthapura. Dense sub-
graph maintenance under streaming edge weight
updates for real-time story identification. VLDB
J., 23(2):175-199, 2014.

S. Arora, E. Hazan, and S. Kale. The multiplicative
weights update method: a meta-algorithm and
applications. Theory of Computing, 8(1):121-164,
2012.

B. Bahmani, A. Goel, and K. Munagala. Efficient
primal-dual graph algorithms for MapReduce. In
International Workshop on Algorithms and Models
for the Web Graph (WAW), pages 59-78, 2014.

B. Bahmani, R. Kumar, and S. Vassilvitskii. Dens-
est subgraph in streaming and MapReduce. Pro-
ceedings of the VLDB Endowment, 5(5), 2012.

A. Beck and M. Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences,

2(1):183-202, 2009.

S. Bhattacharya, M. Henzinger, D. Nanongkai, and
C. Tsourakakis. Space- and time-efficient algorithm
for maintaining dense subgraphs on one-pass dy-
namic streams. In ACM Symposium on Theory of
Computing (STOC), pages 173-182, 2015.

G. E. Blelloch, D. Anderson, and L. Dhulipala. Par-
layLib - a toolkit for parallel algorithms on shared-
memory multicore machines. In Proceedings of the
ACM Symposium on Parallelism in Algorithms and
Architectures, page 507-509, 2020.

P. Boldi and S. Vigna. The webgraph framework
I: compression techniques. In Proceedings of the
International Conference on World Wide Web,
pages 595-602, 2004.

D. Boob, Y. Gao, R. Peng, S. Sawlani,
C. Tsourakakis, D. Wang, and J. Wang. Flowless:
Extracting densest subgraphs without flow com-
putations. In Proceedings of The Web Conference
2020, page 573-583, 2020.

71

[11]

[14]

[15]

[18]

M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In Approx-
imation Algorithms for Combinatorial Optimiza-
tion, pages 84-95, 2000.

C. Chekuri and K. Quanrud. (1 — €)-approximate
fully dynamic densest subgraph: linear space and
faster update time, 2022.

C. Chekuri, K. Quanrud, and M. R. Torres. Dens-
est subgraph: Supermodularity, iterative peeling,
and flow. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ), pages
1531-1555, 2022.

A. B. G. Christiansen, J. Holm, I. van der Hoog,
E. Rotenberg, and C. Schwiegelshohn. Adap-
tive out-orientations with applications. CoRR,
abs/2209.14087, 2022.

E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338-1355,
2003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

M. Danisch, T.-H. H. Chan, and M. Sozio. Large
scale density-friendly graph decomposition via con-
vex programming. In Proceedings of the Inter-
national Conference on World Wide Web, page
233-242, 2017.

L. Dhulipala, G. E. Blelloch, and J. Shun. Juli-
enne: A framework for parallel graph algorithms
using work-efficient bucketing. In ACM Sympo-
stum on Parallelism in Algorithms and Architec-
tures (SPAA), pages 293-304, 2017.

L. Dhulipala, G. E. Blelloch, and J. Shun. Theoret-
ically efficient parallel graph algorithms can be fast
and scalable. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

L. Dhulipala, Q. C. Liu, S. Raskhodnikova, J. Shi,
J. Shun, and S. Yu. Differential privacy from lo-
cally adjustable graph algorithms: k-core decom-
position, low out-degree ordering, and densest sub-
graphs. In IEEE Annual Symposium on Founda-
tions of Computer Science, pages 754-765, 2022.

R. Dondi, M. M. Hosseinzadeh, and 1. Zoppis.
Dense temporal subgraphs in protein-protein inter-
action networks. In International Conference on
Computational Science, pages 469-480, 2022.

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

32]

X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. Thorn-
ton. Migration motif: A spatial - temporal pattern
mining approach for financial markets. In Proceed-
ings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining,
page 1135-1144, 2009.

Y. Fang, K. Yu, R. Cheng, L. V. S. Laksh-
manan, and X. Lin. Efficient algorithms for dens-
est subgraph discovery. Proc. VLDB Endow.,
12(11):1719-1732, 2019.

A. Farhadi, M. T. Hajiaghai, and E. Shi. Differ-
entially private densest subgraph. In International
Conference on Artificial Intelligence and Statistics
(AISTATS), pages 11581-11597, 2022.

E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. MotifCut: regulatory motifs finding
with maximum density subgraphs. In ISMB, pages
156-157, 2006.

M. Ghaffari, S. Lattanzi, and S. Mitrovi¢. Improved
parallel algorithms for density-based network clus-
tering. In Proceedings of the International Confer-
ence on Machine Learning, pages 2201-2210, 2019.

A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and
I. Weber. Piggybacking on social networks. Proc.
VLDB Endow., 6(6):409-420, apr 2013.

E. Harb, K. Quanrud, and C. Chekuri. Faster
and scalable algorithms for densest subgraph and
decomposition. In Advances in Neural Information
Processing Systems, 2022.

B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin,
and C. Faloutsos. FRAUDAR: Bounding graph
fraud in the face of camouflage. In Proceedings
of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, page
895-904, 2016.

J. Jaja.  Introduction to Parallel Algorithms.
Addison-Wesley Professional, 1992.

R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-HOP:
A high-compression indexing scheme for reachabil-
ity query. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
page 813-826, 2009.

S. Khuller and B. Saha. On finding dense sub-
graphs. In International Colloquium on Automata,
Languages and Programming, pages 597—608, 2009.

72

[33]

[34]

[35]

[37]

R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging cyber-
communities. Computer Networks, 31(11):1481—
1493, 1999.

J. Leskovec and A. Krevl. SNAP Datasets: Stan-
ford large network dataset collection. June 2014.

Q. C. Liu, J. Shi, S. Yu, L. Dhulipala, and J. Shun.
Parallel batch-dynamic algorithms for k-core de-
composition and related graph problems. In ACM
Symposium on Parallelism in Algorithms and Ar-
chitectures, pages 191-204, 2022.

W. Luo, Z. Tang, Y. Fang, C. Ma, and X. Zhou.
Scalable algorithms for densest subgraph discovery.
In IEEE International Conference on Data Engi-
neering (ICDE), pages 287-300. IEEE, 2023.

R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer.
The graph structure in the Web - analyzed on
different aggregation levels. J. Web Sci., 1:33-47,
2015.

Y. E. Nesterov. A method of solving a convex pro-
gramming problem with convergence rate o(k%). In
Doklady Akademii Nauk, volume 269, pages 543—
547. Russian Academy of Sciences, 1983.

D. Nguyen and A. Vullikanti. Differentially private
densest subgraph detection. In Proceedings of
the International Conference on Machine Learning,
pages 8140-8151, 2021.

R. Raman. The power of collision: Randomized
parallel algorithms for chaining and integer sorting.
In Foundations of Software Technology and Theo-
retical Computer Science, pages 161-175, 1990.

R. A. Rossi and N. K. Ahmed. The network
data repository with interactive graph analytics
and visualization. In AAAI 2015.

P. Rozenshtein, N. Tatti, and A. Gionis. Discover-
ing dynamic communities in interaction networks.
In Machine Learning and Knowledge Discovery in

Databases, pages 678-693, 2014.

S. Solomon and N. Wein. Improved dynamic graph
coloring. ACM Trans. Algorithms, 16(3), June
2020.

H.-H. Su and H. T. Vu. Distributed Dense Sub-
graph Detection and Low Outdegree Orientation.
In International Symposium on Distributed Com-
puting, pages 15:1-15:18, 2020.

Copyright (© 2024
Copyright for this paper is retained by authors



Downloaded 01/21/24 to 73.69.254.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[45]

[48]

T. Swarnkar, S. N. Simoes, A. Anurak, H. Brentani,
J. Chatterjee, R. F. Hashimoto, D. C. Martins, and
P. Mitra. Identifying dense subgraphs in protein-
protein interaction network for gene selection from
microarray data. Netw. Model. Anal. Health Infor-
matics Bioinform., 4(1):33, 2015.

N. Tatti and A. Gionis. Density-friendly graph
decomposition. In Proceedings of the International
Conference on World Wide Web, page 1089-1099,
2015.

U. Vishkin. Thinking in parallel: Some basic
data-parallel algorithms and techniques. Parallel
Algorithms, 2010.

Y. Xu, C. Ma, Y. Fang, and Z. Bao. Efficient
and effective algorithms for generalized densest
subgraph discovery. Proceedings of the ACM on
Management of Data, 1(2):1-27, 2023.

73

Copyright (© 2024
Copyright for this paper is retained by authors



	Introduction
	Preliminaries
	Pruning with Cores

	Pruning-and-Refining Framework
	Framework Overview
	Refinement Algorithms
	Parallel Implementation

	Experiments
	Core-Based Pruning
	Number of Iterations Versus Density
	Approximation Ratio
	Empirical Widths
	Scalability
	Comparing the Total Running Time

	Conclusion



