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Abstract

In order to circumvent statistical and computational hardness results in sequential decision-
making, recent work has considered smoothed online learning, where the distribution of data
at each time is assumed to have bounded likeliehood ratio with respect to a base measure
when conditioned on the history. While previous works have demonstrated the benefits of
smoothness, they have either assumed that the base measure is known to the learner or have
presented computationally inefficient algorithms applying only in special cases. This work
investigates the more general setting where the base measure is unknown to the learner, focusing
in particular on the performance of Empirical Risk Minimization (ERM) with square loss when
the data are well-specified and smooth. We show that in this setting, ERM is able to achieve
sublinear error whenever a class is learnable with iid data; in particular, ERM achieves error
scaling as Õ(

√
comp(F) · T ), where comp(F) is the statistical complexity of learning F with iid

data. In so doing, we prove a novel norm comparison bound for smoothed data that comprises
the first sharp norm comparison for dependent data applying to arbitrary, nonlinear function
classes. We complement these results with a lower bound indicating that our analysis of ERM
is essentially tight, establishing a separation in the performance of ERM between smoothed
and iid data.

1 Introduction

A natural approach to statistical learning is Empirical Risk Minimization (ERM), which, given a
function class, returns a hypothesis minimizing the empirical loss on collected data. When the
data are independent and identically distributed (iid), strong guarantees for the performance of
ERM are known, and it is statistically optimal in certain cases [Birgé and Massart, 1993, Yang and
Barron, 1999, Kur, 2023]. Unfortunately, many learning applications require weaker assumptions
on the data generation process than independence. For this reason, there has been interest in online
learning (see e.g. [Cesa-Bianchi and Lugosi, 2006]), a setting where data points Xt arrive one at a
time and the learner must predict Ŷt before observing Yt, with the goal of minimizing the regret with
respect to the best hypothesis in hindsight in some class of hypotheses F after T rounds; critically,
in this setting, no assumptions are made on the data. Due to this generality, however, there are
many simple settings where statistical [Littlestone, 1988, Ben-David et al., 2009] or computational
[Hazan and Koren, 2016] lower bounds preclude learning.
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To address these shortcomings, recent work has considered the setting of smoothed online learn-
ing [Rakhlin et al., 2011, Haghtalab et al., 2020, 2022b,a, Block et al., 2022, Bhatt et al., 2023,
Block et al., 2023a,b, Block and Simchowitz, 2022, Block and Polyanskiy, 2023], where the exis-
tence of some base measure µ is posited with the property that, for some parameter σ governing
the difficulty of the data, the law of Xt conditioned on the history has density bounded by σ21 with
respect to µ. In this paper, we consider the performance of ERM when the data are smooth and
well-specified, i.e., there exists some f æ * F such that E [Yt|Xt] = f æ(Xt) for all t. In addition to
being an interesting regime in its own right, the ability to learn well-specified data has immediate
application to contextual and structured bandits [Foster and Rakhlin, 2020, Foster et al., 2021b].
We show that, in contradistinction to the worst-case data regime where even simple function classes
such as thresholds on the unit interval are not learnable [Ben-David et al., 2009], ERM is capable
of learning whenever the covariates are smooth and the outcomes are well-specified.

In more detail, we show that when the data (Xt, Yt) are σ-smooth, E[Yt|Xt] = f æ(Xt), and f̂t is
the ERM on the data collected up to time t2 1, then

E

[
T∑

t=1

(
f̂t(Xt)2 f æ(Xt)

)2
]
. polylog(T ) · σ21 ·

√
comp(F) · T . (1)

The proof of (1) rests on three main ingredients. The first is a decoupling inequality that allows us to
control the error of ERM on the observed data sequence Xt by the error of ERM on a conditionally
independent (tangent) data sequence X 2

t:

E

[
T∑

t=1

(
f̂t(Xt)2 f æ(Xt)

)2
]
. polylog(T ) · σ21 ·

√√√√T · E
[

T∑

t=1

1

t
·
t21∑

s=1

(
f̂t(X 2

s)2 f æ(X 2
s)
)2
]
. (2)

Such an inequality as above is useful because, in contradistinction to the iid setting, the distribution
of the point on which the ERM f̂t is being evaluated can be quite different from the distribution
of the data Xt; (2) replaces this distribution shift with error on the independent sequence X 2

t. The
second ingredient is a novel uniform deviation result that implies sharp control of the population
norm by the empirical norm uniformly over a bounded function class G : X ³ [0, 1] whenever the
data are smooth:

E

[
sup
g*G

T∑

t=1

g(X 2
t)2 2 · g(Xt)

]
. comp(G) · log

(
T

σ

)
. (3)

In the well-studied setting of iid data [Bousquet, 2002, Mendelson, 2015, Rakhlin et al., 2017,
Mendelson, 2021], analogues of (3) allow us to pass from fixed- to random-design regression, con-
trolling

∥∥∥f̂ 2 f æ
∥∥∥
2

L2(P )
.
∥∥∥f̂ 2 f æ

∥∥∥
2

n
+ δ2n

for some small δn > 0, where X1, . . . , Xn > P are iid and ‖·‖n is the L2 norm on the empirical
measure. Thus, our approach can be viewed as a generalization of this technique to smoothed data.
In particular, (3) allows the right hand side of (2) to be replaced with the error of ERM on the
actual data sequence Xt; we conclude by applying a symmetrization technique motivated by the
Will’s functional [Mourtada, 2023] to control error of f̂t on the X1:t21.
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We note that, as the horizon T tends to infinity, the average error of ERM in (1) vanishes
whenever a function class is learnable with iid data. On the other hand, were the data truly iid,
we would expect the cumulative error to grow as O(log(T )) as opposed to the polynomial growth
above. Surprisingly, we find that our analysis is essentially tight, meaning that for a VC class, ERM
must suffer error Ω(

√
vc(F) · T ) in the smoothed setting, even under the stronger assumption of

realizability, presenting a significant gap between smoothed and iid data.
Previous work has established that the difficulty of learning under smoothed data with poten-

tially adversarial labels Yt matches that of iid data, i.e., there exist algorithms whose regret scales

like Õ
(√

comp(F) · T · log(1/σ)
)

[Haghtalab et al., 2022b, Block et al., 2022], where comp(F) is

the statistical complexity of F (such as vc(F) or Rademacher complexity). Furthermore, past work
has introduced algorithms that are efficient with respect to calls to a black-box ERM oracle and

attain regret scaling as Õ
(√

comp(F) · T · σ21/4
)

[Haghtalab et al., 2022a, Block et al., 2022]1.

For both of these results, however, the base measure µ is assumed to be known to the learner in
the sense that the learner may efficiently sample from µ. While this access to µ is reasonable in
many cases (see Block et al. [2023b,a] and references therein), it is desirable to develop algorithms
that do not require any knowledge of the base measure2. As ERM itself does not depend on µ, our
work comprises the first example of an (oracle-)efficient algorithm for learning with smoothed data
when the base measure is unknown.

We now summarize the main contributions of our paper.

1. In Theorem 1, we show that ERM is capable of learning whenever the data are smoothed and
well-specified, further justifying its application even in the absence of the strong assumption of
iid data. In the course of the argument, we state and prove Lemma 2, which is a deterministic
self-bounding result that may see wider use in the future.

2. In Theorem 2, we prove a novel norm comparison result for smoothed data comprising the first
sharp norm comparison for dependent data applying to arbitrary, nonlinear function classes.

3. In Theorem 3, we demonstrate that our analysis of ERM with smoothed data is tight in the
sense that ERM must suffer error Ω(

√
vc(F) · T ) in the smoothed setting, even under the

stronger assumption of realizability, presenting a significant gap between smoothed and iid
data.

Finally, in Appendix G, we present Theorem 4, which is a stronger norm comparison result that can
be proved under a natural anti-concentration condition. In particular, we demonstrate that under
this condition, the population norm according to any smooothed distribution can be bounded in
expectation by the empirical norm on smoothed data.

2 Notation and Preliminaries

In this section we formalize the problem of smoothed online learning with an unknown base measure
as well as introduce the prerequisite notions of function class complexity and assorted analytic
constructions that we use throughout the paper.

1The polynomial separation in σ between inefficient and efficient algorithms is provably necessary for proper
algorithms. For improper algorithms, this remains an interesting open question.

2As first observed in Block et al. [2022] and generalized in Wu et al. [2023], when the base measure µ is unknown,
logarithmic dependence on σ is impossible, even for computationally inefficient algorithms.
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2.1 Problem Formulation and Smoothness

To begin, we define the central condition of our work, smoothness.

Definition 1. Let X be a set and µ * ∆(X ) be a probability distribution over X . We say that

a measure p * ∆(X ) is σ-smooth with respect to µ if
∥∥∥ dpdµ
∥∥∥
>

f σ21, where ‖·‖> is the essential

supremum. Given a sequence of data X1, . . . , XT * X adapted to a filtration (Ht)tg0, we say that
the data are σ-smooth with respect to µ if for all t * [T ], the law of Xt|Ht21 > pt and pt are
σ-smooth with respect to µ almost surely.

We remark that the requirement that the Radon-Nikodim derivative is bounded can be substan-
tially relaxed to an assumption that p lies in an f -divergence ball around µ [Block and Polyanskiy,
2023]; for the sake of simplicity, we consider only the original definition of smoothness.

In this work, we are concerned with the problem of online supervised learning with square loss.
In particular, we let F : X ³ [21, 1] be a function class and suppose that at each time t, the learner
chooses an estimator f̂t * F before seeing an Xt * X and Yt * R. In particular, we are interested
in the well-specified setting, which we now define.

Definition 2. Let (X1, Y1), . . . , (XT , YT ) * X × R be a sequence of data adapted to a filtration
(Ht)tg0. We say that the data are well-specified with respect to a function class F if there exists a
function f æ * F , measurable with respect to H0 such that for all t * [T ], E [Yt|Ht21, Xt] = f æ(Xt).
Furthermore, we say that the data are subGaussian if Yt = f æ(Xt)+ηt where ηt|Ht21 is a mean-zero
subGaussian random variable with variance proxy ν2.

The goal of the learner is to predict f æ as well as possible, i.e. to minimize the estimation error:

ErrT =
T∑

t=1

(f̂t(Xt)2 f æ(Xt))
2.

We remark that in general online learning, where no assumption of well-specification is made, it is
often more common to study regret

∑T
t=1(f̂t(Xt)2Yt)

22 inff*F
∑T

t=1(f(Xt)2Yt)
2. While regret is

a formally stronger guarantee than the estimation error, the latter is a more natural notion in the
well-specified case and is sufficient for applications such as contextual bandits [Foster and Rakhlin,
2020, Foster et al., 2021a] and reinforcement learning [Foster et al., 2021b, 2023]. In the special case
of realizable data, where Yt = f æ(Xt) for all t * [T ], the notions coincide and thus control of error
lead to control of regret. In particular, when F is binary valued and the data are realizable, the
cumulative error is precisely the number of mistakes the learner makes over the course of T rounds.

A natural algorithm to handle well-specified data is Empirical Risk Minimization (ERM), where
at time t, the learner chooses

f̂t * argmin
f*F

t21∑

s=1

(f(Xs)2 Ys)
2 , (4)

the minimizer of the empirical error on the data seen thus far. While for many function classes the
act of finding f̂t can be computationally intractable, motivated by empirical heuristics [Goodfellow
et al., 2016], it is standard in much of online learning to treat the ERM as an oracle that the learner
can call efficiently [Kalai and Vempala, 2005, Hazan and Koren, 2016, Block et al., 2022, Haghtalab
et al., 2022a], as it ensures that the computational difficulty of online learning is not significantly
worse than that of offline learning.
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2.2 Measures of Complexity of a Function Class

Our error bounds are stated in terms of notions of complexity of the function class F . In the course
of the paper, we primarily consider the Will’s functional of F [Mourtada, 2023]:

Definition 3. Let F : X ³ R be a function class, fix Z1, . . . , Zm * X , and let ξ1, . . . , xm be
independent standard Gaussian random variables. Define the Will’s functional of F on Z1, . . . , Zm
to be

Wm(F) = E¿

[
exp

(
sup
f*F

m∑

i=1

ξi · f(Zi)2
1

2
· f(Zi)2

)]
,

where E¿ [·] denotes expectation with respect to the ξi’s, and the dependence on the Zi is implicit.

Comparisons between the Will’s functional and other standard notions of complexity like Rademacher
complexity and covering numbers are well-understood [Mourtada, 2023] and we detail some of these
connections in Appendix A; of particular note is the fact that logWm(F) = o(m) is necessary and
sufficient to ensure statistical learnability with polynomially many samples when the data are iid.
A more standard measure of function class complexity is the Rademacher complexity:

Definition 4. Let F : X ³ [21, 1] denote a function class, µ * ∆(X ) a measure, and Z1, . . . , Zm >
µ be independent samples from µ. We define the Rademacher complexity of F to be

Rm(F) = E

[
sup
f*F

m∑

i=1

εi · f(Zi)
]
,

where the εi are independent Rademacher random variables.

The Rademacher complexity characterizes the difficulty of distribution-free statistical learning
when data are iid and its connections to other standard notions of complexity like the VC dimension
[Vapnik, 1999] are well-known [Van Handel, 2014, Wainwright, 2019]. In particular, Mourtada [2023,
Proposition 3.2] implies3 that logWm(F) . Rm(F) log(m) for all m * N. It is often convenient to
instantiate our bounds in the parametric setting for the sake of concreteness. Thus, we also consider
the notion of VC dimension:

Definition 5. Let F : X ³ {±1} be a function class. We say that F shatters points x1, . . . , xd * X
F if for all ε1:d * {±1}d, there is some f· * F such that f·(xi) = εi for all i * [d]. We define the VC
dimension of F , denoted by vc(F) to be the maximal d such that there exist points x1, . . . , xd * X
shattered by F .

We note that logWm(F) . vc(F) · log(m) for all m * N and if F is finite, then logWm(F) .
log(|F|) (cf. Appendix A).

2.3 Additional Prerequisites

A common technique in our analysis is the following coupling lemma, proved in Haghtalab et al.
[2022b] for discrete X and Block et al. [2022] in general.

3Technically this result uses the related notion of Gaussian complexity as an upper bound; however, Gaussian
complexity is well-known to upper bound Rademacher complexity up to a logarithmic factor [Van Handel, 2014].
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Lemma 1. Let X1, . . . , XT be σ-smooth with respect to µ. Then for all k * N, there exists a coupling
of X1, . . . , XT with random variables {Zt,j |t * [T ], j * [k]} such that the Zt,j > µ are independent
and there is an event E with probability at least 12Te2Ãk on which it holds that Xt * {Zt,j |j * [k]}
for all t * [T ].

This lemma amounts to the key difference between smooth and worst-case data and is one of the
reasons that sample acess to the base measure µ is a central technique in earlier work on smoothed
online learning [Block et al., 2022, Haghtalab et al., 2022a]. We use this result purely for analysis
as we do not assume that µ is known to the learner.

Finally, an essential feature of our analysis is a decoupling inequality that disentangles the
dependence of the ft on the data Xt. To this end, we define the following notion of a tangent
sequence [De la Pena and Giné, 1999]:

Definition 6. Let Xt * X denote a sequence of random variables adapted to a filtration (Ht)tg0.
We say that a sequence X 2

1, . . . , X
2
T * X is a tangent sequence if for all t * [T ], Xt and X 2

t are
independent and identically distributed conditioned on Ht21.

Tangent sequences are in general useful for decoupling arguments and have been used to prove
sequential uniform laws of large numbers [Rakhlin et al., 2015] among many other applications.

Notation. We denote by [T ] the set {1, . . . , T}. We reserve P and E to signify probability and ex-
pectation when the measure is clear from context. We let ∆(X ) denote the space of distributions on
a set X and for a measure µ * ∆(X ), we let ‖·‖µ denote the L2(µ) norm, i.e. ‖f‖µ =

√
EZ>µ[f(Z)2];

in particular, for t * [T ], we let ‖·‖t denote the empirical norm on the data X1, . . . , Xt. We use
O(·) notation to hide universal constants and Õ(·) notation to hide polylogarithmic factors.

3 Main Results

The main result of this paper is the following bound on the performance of f̂t:

Theorem 1. Let F : X ³ [21, 1] be a function class. Suppose that (Xt, Yt)t*[T ] is a sequence of
well-specified data such that the Xt are σ-smooth with respect to some measure µ and suppose that
the Yt are conditionally ν2-subGaussian for some ν g 0. Suppose the learner chooses f̂t as in (4).
Then4,

E [ErrT ] f
20 log3(T )

σ
·
√
T (1 + ν)

(
1 + logEµ

[
W2T log(T )/Ã(256 · F)

])
. (5)

While Theorem 1 applies to arbitrarily complex, even nonparametric function classes, the clear-
est instantiation of the result is for parametric function classes where logWm(F) = O (d · log(m))
for fixed d > 0 and all m, for example when vc(F) f d. In this case, we see that the performance

of f̂t is controlled by Õ
(
σ21

:
d · T

)
. While the

:
T rate is a far cry from the O(log(T )) error

guarantees possible when the data are independent, we will see in Section 5 that such logarithmic
rates are not in general possible to achieve by ERM with smoothed data.

As another example, we oberve that whenever logWT (F) = o(T/polylog(T )), the upper bound
(5) is also o(T ). Due to the fact that sublinear growth in logWm(F) characterizes learnability in

4Note that the lack of a quadratic dependence on ν does not imply a lack of homogeneity, because the scale of
the problem is set by the uniform bound on F .
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the fixed-design setting [Mourtada, 2023], we see that Theorem 1 is essentially qualitatively tight, in
the sense that it implies that f̂t yields vanishing error whenever the function class F is statistically
learnable with polynomial rates. In the special case where the data are realizable, error and the
more typical notion of regret coincide and thus Theorem 1 implies a mistake bound. In particular,
for binary-valued F , we obtain a nontrivial mistake bound for smoothed data simply by playing
ERM, which stands in marked contrast to the case of adversarial data.

Remark 1. One immediate application of Theorem 1 is to contextual bandits [Lattimore and
Szepesvári, 2020], which is a common partial information setting in sequential decision making. In
this regime, the learner receives contexts Xt one at a time before choosing an action At * [K] and
observing the reward Yt depending on the context and action chosen. Critically, the learner does
not observe the counterfactual rewards for actions not chosen. It is often assumed that the average
reward function E [Yt|Xt, At] = f æ(Xt, At) for some f æ * F [Foster and Rakhlin, 2020, Foster et al.,
2021a, Foster and Krishnamurthy, 2021] and the goal of the learner is to minimize the regret with
respect to the policy induced by f æ. By applying the reduction of Foster and Rakhlin [2020], we see
immediately that if the contexts are smooth, then running Foster and Rakhlin [2020, Algorithm 1]
with f̂t from (4) yields a no-regret guarantee for contextual bandits, whenever the function class F
is statistically learnable. For example, if F is parametric in the sense that logWT (F) . d · log(T ),
the resulting regret is Õ

(
σ21/2K3/2d1/4T 3/4

)
, which is the first nontrivial regret bound for an oracle-

efficient algorithm for contextual bandits when the contexts are smooth with respect to an unknown
base measure.

We sketch the proof of Theorem 1 in some detail in the subsequent section, but we highlight
one key step here, which may be of independent interest. In particular, we provide a sharp norm
comparison result for smoothed data, comparing the ‘population norm’ of a function on a tangent
sequence to the ‘empirical norm’ of the function on the actual data. This result is the following:

Theorem 2. Let F : X ³ [21, 1] be a bounded function class and let X1, . . . , XT be a sequence of
data σ-smooth with respect to some base measure µ * ∆(X ). Then it holds for any c > 0 that

E

[
sup
f*F

T∑

t=1

f 2(X 2
t)2 (1 + 2c) · f 2(Xt)

]
f
√
π

2
· (1 + c)2

c
· logEµ

[
W2T log(T )/Ã

(
4c

1 + c
· F
)]

+ 4(1 + c),

where X 2
t is a tangent sequence and Wt is the Will’s functional conditioned on data independently

sampled from µ, defined in Definition 3.

The benefit of Theorem 2 in comparison to a more standard uniform deviations approach is
that it allows for sharper dependence on the horizon by allowing a small constant factor in front of
the empirical norm. Such a tradeoff is common in norm comparison results for iid data [Bousquet,
2002, Mendelson, 2015, 2021] and for linear functions of dependent data [Simchowitz et al., 2018,
Tu et al., 2022, Ziemann and Tu, 2022], but Theorem 2 is the first example for dependent data and
arbitrary function classes in the literature.

To understand the power of the new norm comparison, consider the previously known approach
using uniform deviations. Indeed, by combining Rakhlin et al. [2011, Theorem 3] with Block et al.
[2022, Lemma 17] it is immediate that

E

[
sup
f*F

T∑

t=1

f 2(X 2
t)2 f 2(Xt)

]
. RT log(T )/Ã(F2). (6)
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For the sake of completeness, we prove this result as Lemma 8 in Appendix F. The problem with
applying uniform deviations is that even in the case where F is finite, the best bound that (6)
can hope to yield scales like Õ(

√
log(|F|) · T ); this is because Rm(F2) is not meaningfully smaller

than Rm(F). Letting p̃T = 1
T

∑T
t=1 pt, we see that (6) then implies that for any f * F depending

arbitrarily on the data X1, . . . , XT , we have the bound

E

[
‖f‖2p̃T

]
. E

[
‖f‖2T

]
+

√
log(|F|)

T
.

On the other hand, taking c to be some small constant, Theorem 2 yields a bound

E

[
‖f‖2p̃T

]
. E

[
‖f‖2T

]
+

log(|F|)
T

,

which is a significant improvement. We emphasize that by Mourtada [2023, Proposition 3.2], the
logarithm of the Will’s functional is never more than a logarithmic factor larger than the Rademacher
complexity, and so Theorem 2 always yields at least as strong control as (6) up to a logarithmic
factor.

4 Analysis Techniques

While we defer a detailed proof of Theorems 1 and 2 to Appendices C and D respectively, we
here sketch the main idea of the proofs. In contradistinction to analyzing ERM with iid data,
where it suffices to prove a uniform deviation bound to relate predictions on independent test
samples to those on training data, for smoothed data there is a distribution shift problem where
even the distribution on which f̂t is being evaluated (that of the next point pt) may not match the
distributions of the training data X1, . . . , Xt21. Thus the first step in the proof of Theorem 1 is to
apply a decoupling result, which leverages smoothness of the data to remove this distribution shift.
Unfortunately, upon applying this decoupling, we are left with controlling the performance of ERM
on a tangent sequence. It is here that we apply Theorem 2 to bound this error by the performance
of ERM on the actual data sequence X1, . . . , XT . Finally, we will apply a subtle symmetrization
argument to conclude the proof. We begin this section by presenting a more detailed sketch of the
preceding summarized argument. We then sketch the proof of Theorem 2.

4.1 Proof Sketch of Theorem 1

As described above, the proof of Theorem 1 can be broken into three steps: decoupling, norm
comparison, and symmetrization. The first step is to remove the distribution shift with the following
decoupling inequality:

E

[
T∑

t=1

(
f̂t(Xt)2 f æ(Xt)

)2
]
.

polylog(T )

σ
·

√√√√T · E
[

T∑

t=1

1

t
·
t21∑

s=1

(ft(X 2
s)2 f æ(X 2

s))
2

]
. (7)

The second step is to apply Theorem 2 and reduce the problem to bounding E

[∥∥∥f̂t 2 f æ
∥∥∥
2

t21

]
. The

final step is to show that

E

[∥∥∥f̂t 2 f æ
∥∥∥
2

t21

]
. polylog(T ) · logWT log(T )/Ã(F). (8)
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Combining (7), Theorem 2, and (8) then yields the desired result. We now expand on the first and
third steps of the proof and defer discussion of the proof of Theorem 2 to the sequel.

Decoupling. We begin with the following intermediate result applying to deterministic sequences
of bounded real numbers, which we use to prove our decoupling.

Lemma 2. Let (at)t*N denote a sequence of real numbers such that a0 = 1 and 0 f at f 1 for all
t > 0. For K > 0 and t * N, let

Bt(a,K) =

{
s < t

∣∣∣∣as g
K

s
·
∑

u<s

au

}
.

Then for any ε * (0, 1), it holds that |BT (a,K)| f εT for all K g 2 log(T )
·

.

Essentially, the lemma bounds the number of ‘surprises’ a bounded, nonnegative sequence can
have, where a ‘surprise’ is a time where an element is significantly larger than the empirical average
of the sequence up to that point. We observe that Lemma 2 gives more fine-grained control than
the more standard so-called “elliptic potential” results such as Xie et al. [2022, Lemma 4]; indeed,
whereas these results control the average size of a ‘surprise,’ they yield no control on their number.
On the other hand, Xie et al. [2022, Lemma 4] follows readily from Lemma 2. While we defer a
proof of Lemma 2 to Appendix B, we remark that the proof follows by modifying the sequence
(at) to a new sequence (bt) such that |BT (b,K)| g |BT (a,K)| and the new sequence (bt) posesses a
particular structure amenable to analysis.

The relevance of Lemma 2 is that it allows us to decouple the estimates f̂t from the data Xt by
applying the result to the sequence of at = σ · dpt

dµ
(Z) for Z > µ, where Xt|Ht21 > pt. In particular,

we have the following direct corollary:

Lemma 3. Let (Xt) ¢ X be a sequence of random variables and let gt : X ³ [0, 1] be a sequence of
random functions adapted to a filtration (Ht)tg0 such that gt is Ht21-measurable and Xt|(Ht21, gt)
is σ-smooth with respect to some measure µ. Let X 2

s be a tangent sequence as in Definition 6. Then
it holds that

E

[
T∑

t=1

gt(Xt)

]
f log2(T )

σ
·

√√√√2T · E
[

T∑

t=1

1

t
·
t21∑

s=1

gt(X 2
s)

]
. (9)

Lemma 3 is proved by balancing ε in the application of Lemma 2. In the special case that
σ = 1, however, we see that at = 1 for all t and thus |BT (a,K)| = 0 for all K > 1 and
so no balance is needed. In this case we obtain that the left hand side of (9) is bounded by

O
(
log(T ) + E

[∑T
t=1 gt(X

2
t)
])

, which is optimal up to constants and the additional logarithmic

term, because if Xt are iid, then E[gt(Xt)] = E[gt(X
2
t)] for all t. Thus we see that our approach to

analyzing ERM when specialized to iid data recovers the standard rates up to logarithmic terms and
constants. We further note that a similar result could be achieved through applying the techniques
of Xie et al. [2022], although the proof of an analogous statement in that work is significantly more
involved. We apply Lemma 3 by letting gt = (f̂t 2 f æ)2, which yields (7).
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Symmetrization. The final step in the proof of Theorem 1, and the only one which requires f̂t
to be the ERM as opposed to an arbitrary member of F depending on X1, . . . , Xt21, is to apply a
symmetrization argument to control the estimation error of f̂t on the data sequence X1, . . . , Xt21.
We emphasize here that standard symmetrization arguments do not directly apply due to the
dependence between the noise ηt and the data Xt. Instead, we apply a more subtle symmetrization
argument, which takes advantage of the coupling argument of Lemma 1. In particular, we have the
following result:

Lemma 4. Suppose that F : X ³ [21, 1] is a function class, µ * ∆(X ), and X1, . . . , XT are σ-
smooth with respect to µ. Suppose further that Yt are well-specified and ν2-subGaussian with respect
to F . Let f̂T be ERM on F with respect to the data. For any k * N, it holds that

E

[∥∥∥f̂T 2 f æ
∥∥∥
2

T21

]
f 64

T
ν ·
√
log (T ) ·

(
logEZt,j

[
Wk(T21) (256(F 2 f æ))

]
+ Te2Ãk

)
,

Proof sketch. The full proof of Lemma 4 is in Appendix C.2 but we provide a sketch here. By
applying elementary computation, we obtain that

E

[
(T 2 1) ·

∥∥∥f̂T 2 f æ
∥∥∥
2

T21

]
f E

[
sup
f*F

8 ·
T21∑

t=1

ηt · (f(Xt)2 f æ(Xt))2
1

2
· (f(Xt)2 f æ(Xt))

2

]
. (10)

We then apply the coupling argument from Lemma 1 to separate the right hand side of (10)
into a high probability event E where Xt * {Zt,j} for Zt,j > µ independent and the low probability
complement. On the high probability event, we then symmetrize, observe that the η can be dropped
by passing to their worst-case absolute value, and apply Jensen’s inequality to upper bound the
right hand side of (10) by

1

λ
logE

[
exp

(
I[E ] · λ · sup

f*F
8 ·

T21∑

t=1

ξt · (f(Xt)2 f æ(Xt))2
1

2
· (f(Xt)2 f æ(Xt))

2

)]
+

1

T
,

where the ξt are independent standard Gaussians and λ is a carefully chosen constant. Finally, we
conclude the proof by using the coupling as well as the monotonicity of the Will’s functional proved
in Lemma 10 to replace the Xt with Zt,j.

Remark 2. We emphasize that passing to the Will’s functional before applying the coupling is
essential. Indeed, the key fact that we use about the Will’s functional is that Wm(F) f Wm+1(F)
for all m, which allows us to replace Xt (which has a complicated dependence on ξ1, . . . , ξt21) with
the independent Zt,j . This monotonicity property does not hold for the right hand side of (10) and
so we cannot directly apply the coupling to it.

Lemma 4 says that if the data are smooth and the labels are well-specified, then the expected
performance of the ERM f̂t on the historical data X1, . . . , XT is controlled by the Will’s functional,
which is, in turn, well-behaved when F is a simple class. Combining Lemma 4 with the preceding
argument then concludes the proof of Theorem 1.

4.2 Proof Sketch of Theorem 2

While we defer a detailed proof to Appendix D, we provide a brief sketch here. The proof proceeds
by adapting the tree of probabilities construction from Rakhlin et al. [2011] in order to apply
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symmetrization, and then using a variation of the coupling result, Lemma 1 along with Jensen’s
inequality to pass to the Will’s functional on iid data. In more detail, we first observe, as in the
proof of Liang et al. [2015, Lemma 18], that

E

[
sup
f*F

T∑

t=1

f(X 2
t)

2 2 (1 + 2c) · f(Xt)
2

]
= E

[
sup
f*F

T∑

t=1

(1 + c)(f(X 2
t)

2 2 f(Xt)
2)2 cf(X 2

t)
2 2 cf(Xt)

2

]
.

(11)

and note that the first term in the right hand side is anti-symmetric in (Xt, X
2
t) while the second

term is symmetric. We then introduce the tree of probabilities construction from Rakhlin et al.
[2011] and construct a measure ρ on a X -valued complete binary trees x such that the right hand
side of (11) is upper bounded by

2(1 + c) · E
x>Ã

[
sup
f*F

T∑

t=1

ξtf
2(xt(ξ))2

c

1 + c
f 4(xt(ξ))

]
, (12)

where xt(ε) > pt is σ-smooth. We then apply a variant (Lemma 7) of the coupling result Lemma 1
above to introduce an event E with high probability at least 12Te2Ãk such that xt(ε) * {Zt,j |j * [k]}
for all t. As in Remark 2, we cannot directly apply the coupling as (12) is not necessarily monotone
in T . Instead, we apply a similar technique as was done in the proof of Lemma 4 and upper bound
(12) by

2(1 + c)

(
1

λ
logE

[
exp

(
I[E ]λ · sup

f*F

T∑

t=1

ξtf
2(xt(ξ))2

c

1 + c
f 4(xt(ξ))

)]
+ T 2e2Ãk

)
.

Now we may apply the same monotonicity result, Lemma 10 as in that previous proof to pass to
independent data and observe that the resulting expression is just the Will’s functional applied to
the function class F2. The proof concludes by noting that if F is uniformly bounded, then f 7³ f 2 is
uniformly Lipschitz and the Will’s functional satisfies contraction with respect to Lipschitz functions
[Mourtada, 2023, Theorem 4.1].

Remark 3. Note that the term subtracted from (12) contains f 4 instead of f 2; the fact that
this is an upper bound on the same expression with f 2 being subtracted is immediate from the
boundedness of F , but the quartic power is key here in order to pass to the Will’s functional. The
analogous result for iid data, Liang et al. [2015, Lemma 18] does not require this technique because
one can apply a contraction argument that is not available in the more general, smoothed data
regime.

5 Lower Bound for ERM

As we have seen above, for parametric classes ERM is able to achieve Õ
(
σ21

:
dT
)

error whenever

the data are smooth and well-specified. While this results in an asymptotically no-regret guarantee,
the rate is far from the O(d · log(T )) error that is known to be achievable when σ = 1 and the data
are independent and identically distributed [Wainwright, 2019]. In this section we demonstrate the
surprising fact that ERM is unable to obtain these so-called ‘fast rates’ when the data are merely
smooth as opposed to iid. We emphasize that we do not rule out the possibility of oracle-efficient
algorithms achieving these fast rates, but simply demonstrate that the most natural algorithm for
learning with smoothed data is not competitive, even in the realizable setting. This is the content
of the following result.
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Theorem 3. For any d * N there exists a function class F with vc(F) = d such that for any
0 < σ < 1 and any horizon T , there is a σ-smooth adversary realizable with respect to F such that
if Ŷt = f̂t(Xt) is always chosen such that f̂t is an ERM in (4), then

E [ErrT ] g
1

2
·
√
d · T · 12 σ1/d

σ1/d
.

Note that in the special case of σ = 1, when the data are iid, Theorem 3 is vacuous, as expected.
On the other hand, for σ j 1, we see that ERM can never hope to do better than Ω(

:
dT ), which

is significantly worse than the logarithmic-in-T guarantees from statistical learning. The proof of
Theorem 3 is deferred to Appendix E, but we sketch the construction in the d = 1 case here.

Proof sketch. We consider X = [0, 1] the unit interval and F the class of thresholds, with an
adversary that samples Xt > pt, where pt = Unif([jε, jε + σ]), j is the number of mistakes made
up to time t 2 1, and ε > 0 is a tuning parameter; we let the Yt = 0 for all t, making the data
realizable with respect to F . The key observation is that we may choose the ERM to predict 1 as
frequently as posible conditioned on fitting all of the data thus far. Thus, whenever Mt = maxsftXs

increases, this choice of ERM will always predict incorrectly. In this way the adversary can only
force (1 2 σ)/ε mistakes until the unit interval is fully covered, and each mistake happens with
probablity ε/σ at each time step t. In expectation, then, the number of mistakes made is at least
min(ε/σT, (12 σ)/ε). Balancing ε yields the desired result for d = 1; the d > 1 case is then just a
tensorized version of this construciton.

Combining Theorem 3 with Theorem 1 we see our analysis of ERM is tight in its dependence
on complexity and horizon, i.e., ERM achieves Θ̃(

√
vc(F) · T ) error whenever the data are smooth

for σ < 1. We leave the interesting question of whether other oracle-efficient algorithms can achieve
improved error in this setting as an interesting direction for future research.

6 Related Work

In this section, we briefly survey some related work and place our results in the context of recent lit-
erature on oracle efficiency in smoothed online learning and norm comparison bounds for population
and empirical norms.

Smoothed Online Learning. Given the statistical and computational intractibility of learning
with adversarial data, many recent works have investigated the difficulty of online learning with
beyond-worst-case assumptions. In particular, Rakhlin et al. [2011] presented a general framework
for online learning against adversaries that are somehow constrained in each round and character-
ized the minimax regret through a quantity called the distribution-dependent sequential Rademacher
complexity. Following this work, Haghtalab et al. [2022b] considered the smooth setting and demon-
strated that minimax regret of classification can be greatly improved when the data are smooth
with respect to a known base measure; these results were later extended to regression in Block et al.
[2022] and to more general notions of smoothness in Block and Polyanskiy [2023]. More recently,
smoothed online learning has been applied to a variety of settings including sequential probability
assignment [Bhatt et al., 2023], learning in auctions [Durvasula et al., 2023, Cesa-Bianchi et al.,
2023], and robotics [Block et al., 2023a,b]. The case where the base measure is unknown has seen
relatively less attention, with Block et al. [2022] observing that guarantees for smoothed online
learning with an unknown base measure are necessarily worse than those where µ is known and
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Wu et al. [2023] providing statistical bounds in a particular special case. We emphasize that in
all of the above works, the focus has been on general Lipschitz losses, with the squared loss being
treated as a special case. While this suffices for qualitative results with bounded function classes,
it is well-known that the additional curvature of the square loss admits faster statistical rates with
both iid [Birgé and Massart, 1993, Bousquet, 2002, Liang et al., 2015] and adversarial data [Rakhlin
and Sridharan, 2014]. Our work demonstrates that, unlike the case of iid data, ERM itself is unable
to achieve these faster rates in the smoothed setting.

Beyond the setting of full-information online learning, Xie et al. [2022] analyzed the role of
smoothness (termed coverability) in online reinforcement learning. In that work, the authors proved
a decoupling result similar to and motivating our Lemma 3, which forms the starting point of our
analysis. While Xie et al. [2022] go on to apply this decoupling result to prove guarantees for
a computationally inefficient algorithm in RL, we instead focus on its implications to efficient
algorithms for online learning.

Oracle Efficiency in Online Learning. A major problem in the study of computational effi-
ciency in online learning is the provable hardness of many optimization tasks, which are strictly
easier than online learning. Motivated by efficient algorithms in combinatorial optimization and the
empirical success of optimization heuristics in function classes of interest [Goodfellow et al., 2016],
many works have assumed access to an optimization oracle that is efficiently able to minimize an
empirical loss function on data over a function class [Kalai and Vempala, 2005], with Hazan and
Koren [2016] demonstrating the limits thereof. In the context of smoothed online learning, several
works have circumvented the computational lower bounds of Hazan and Koren [2016] with oracle-
efficient algorithms applying in variations on the smoothed setting [Block et al., 2022, Haghtalab
et al., 2022a, Block and Simchowitz, 2022, Block et al., 2023a, Block and Polyanskiy, 2023, Block
et al., 2023b]. To our knowledge, our work is the first to analyze an oracle-efficient algorithm (in
fact, ERM itself) for the smoothed online setting when the base measure is unknown.

Population and Empirical Norm Comparisons. It has long been important in nonparametric
statistics and learning theory to understand comparisons between empirical and population norms
that hold uniformly over function classes [Bousquet, 2002]. Of particular note is the ‘small-ball
method’ of Koltchinskii and Mendelson [2015], Mendelson [2015, 2021], that introduces an ap-
proach to such comparisons relying on anti-concentration that holds for independent data in great
generality. In the case of sequential data, much less is known, with most all work focusing on norm
comparison results holding for linear function classes [Abbasi-Yadkori et al., 2011, Simchowitz et al.,
2018, Ziemann and Tu, 2022, Tu et al., 2022]. In this work, we provide the first sharp norm com-
parison result for general, nonlinear function classes that holds whenever the data are smooth and
a certain small-ball condition is satisfied. Most relevant to our work is the approach of Liang et al.
[2015], which introduces offset Rademacher complexity as a tighter form of control for sharp norm
comparison. While we take inspiration from this approach, a direct application of these techniques
does not work due to the lack of monotonicity of this measure and our resulting inability to apply
the coupling. Instead, we control the relaxed complexity notion fo the Will’s functional, which was
extensively explored in Mourtada [2023].
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A Background on the Will’s Functional

The Will’s functional is a fundamental quantity originally associated to convex bodies in R
m [Wills,

1973, Hadwiger, 1975]. More recently, Mourtada [2023] extended the definition of the Will’s func-
tional to arbitrary subsets of A ¢ R

m by taking advantage of a Gaussian representation due to
Vitale [1996]. In that paper, Mourtada [2023] proves a number of fundamental results about this
complexity measure, including contraction and sharp connections with other standard notions. In
this section, we provide a brief overview of the Will’s functional’s connections to other notions
of complexity in learning theory; we defer to the excellent Mourtada [2023] for a more detailed
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treatment. We recall from Definition 3 that

Wm(F) = E¿

[
exp

(
sup
f*F

m∑

i=1

ξif(Zi)2
1

2
· f 2(Zi)

)]
,

where ξi are independent standard Gaussians. One fundamental property is the invariance under
translation:

Proposition 1 (Proposition 3.1.5 in Mourtada [2023]). Let F be a function class ι : Rm ³ R
m be

an affine isometry in that ι is affine and preserves the Euclidean norm. Then,

Wm(ι(F)) =Wm(F).

A particular case of the above is when ι is a translation, in which case Proposition 1 implies
translation invariance. Another fundamental property is the contraction of the Will’s functional
under composition with Lipschitz functions:

Proposition 2 (Theorem 4.1 from Mourtada [2023]). If ι : R ³ R is a contraction, in that ι is
1-Lipschitz, then Wm(ι ç F) fWm(F).

In particular Proposition 2 implies monotonicity of the Will’s functional, which is a key difference
from the related notion of offset Rademacher complexity introduced by Liang et al. [2015]. While
in our proofs, we require a slightly stronger version of this monotonicity (Lemma 10), this property
of the Will’s functional is what motivates its utility in applying the coupling.

We now recall several results relating the Will’s functional to other standard notions of com-
plexity. The first demonstrates that Wm(F) is not much larger than the Rademacher complexity:

Proposition 3 (Proposition 3.2 from Mourtada [2023]). For any class F , m * N, and dataset
Z1, . . . , Zm, recalling Rm(F) from Definition 4, it holds that

logWm(F) .
√
log(m) ·Rm(F).

Proof. By Mourtada [2023, Proposition 3.2], it holds that

logWm(F) f E¿

[
sup
f*F

m∑

i=1

ξif(Zi)

]
,

where the uppper bound is the Gaussian complexity. It is well known that the Gaussian complexity
is upper bounded by the Rademacher complexity up to a factor logarithmic in m [Van Handel,
2014, Wainwright, 2019], and the result follows immediately.

While Rm(F) presents an upper bound for the Will’s functional, it is not in general tight.
Instead, a lower bound can be found in the offset Rademacher complexity.

Proposition 4. Recall from Liang et al. [2015] that for a function class F and data Z1, . . . , Zm,
the offset Rademacher complexity is defined as

R
off
m (F) = E·

[
sup
f*F

m∑

i=1

εif(Zi)2 cf 2(Zi)

]
,

where εi are independent Rademacher random variables and c > 0. Then it holds for any m that
R

off
m (F) . (2c)21 · logWm(2cF).
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Proof. Letting ξi denote independent standard gaussians, we compute by Jensen’s inequality for
any λ > 0,

R
off
m (F) = E·

[
sup
f*F

m∑

i=1

εif(Zi)2 cf 2(Zi)

]

= E·

[
sup
f*F

m∑

i=1

εi ·
E[|ξi|]
E[|ξi|]

f(Zi)2 cf 2(Zi)

]

f
√
π

2
· E¿

[
sup
f*F

m∑

i=1

ξif(Zi)2 cf 2(Zi)

]

f
√
π

2
· 1
λ
· logE¿

[
exp

(
sup
f*F

m∑

i=1

λξif(Zi)2 λcf 2(Zi)

)]
.

Setting λ = 2c, we see that

R
off
m (F) f

√
π

2
· 1

2c
logWm (2c · F) .

The result follows immediately.

Combining Propositions 3 and 4 yields the fact that sublinearity in m of the Will’s functional
characterizes learnability of a class F with polynomially many samples.

Finally, we recall the relationship between the Will’s funcitonal and the covering number, which
we now define.

Definition 7. Let F : X ³ [21, 1] be a function class and let ‖·‖ denote a norm on F . For
any scale δ > 0, we say that a set f1, . . . , fm of functions is a δ-cover of F with respect to ‖·‖ if
for all f * F , there exists i * [m] such that ‖f 2 fi‖ f δ. We define the covering number of F
with respect to ‖·‖ to be the minimal size of a δ-cover of F with respect to ‖·‖ and denote it by
N (F , δ, ‖·‖).

The covering numbers of many standard function classes are known and this complexity no-
tion and its relationship to Rademacher complexity is well-understood in the context of statis-
tical learning theory [Van Handel, 2014, Wainwright, 2019]. In particular, if vc(F) f d, then
logN (F , δ) . d log

(
1
·

)
as δ ³ 0 [Dudley, 1978, Mendelson and Vershynin, 2003]. The following

fundamental result relates this notion to the Will’s functional:

Proposition 5 (Theorem 4.2 from Mourtada [2023]). Let F be a covering number and define for
r > 0,

Rm(F , r) = sup
f0*F

Rm (F + Br(f0)) ,

where Br(f0) is the ball of radius r around f0. Then it holds that

inf
r>0

{Rm(F , r) + logN (F , r)} . logWm(F) .
√

log(m) · inf
r>0

{Rm(F , r) + logN (F , r)} .

It follows immediately that if F is finite, then logWm(F) . log(|F|) and if F is a VC class,
then logWm(F) . d · log(m).
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B Proof of Lemma 2

In this section, we prove Lemma 2. The proof proceeds by modifying the sequence (at) to a new
sequence (bt) such that |BT (b,K)| g |BT (a,K)| and the new sequence (bt) posesses a particularly
easy to analyze structure.

We first note that it suffices to consider small K.

Lemma 5. Let (at) be a sequence as in Lemma 2. If K > T , then BT (a,K) = '.
Proof. Suppose that BT (a,K) 6= ' and let t1 be the minimal element of BT (a,K), whose existence
is implied by the nonempty assumption. Note that

1 g at1 g
K

t1
g K

T
,

where the first inequality follows by construction and the second follows by the fact that at g 0 and
the definition of BT (a,K). Rearranging concludes the proof.

We are now ready to prove the lemma.

Proof of Lemma 2. By Lemma 5, it suffices to assume that K f T . Furthermore, observing that
|BT (a,K)| is decreasing as K increases, it suffices to prove the claim for K = 2 log(T )

·
. To do this, let

(at) be a fixed sequence as in the statement of the lemma and fixK f T . LetBT (a,K) = {t1, . . . , ti},
i.e., t1, . . . , ti are the set of ‘surprises’ where at is much larger than expected. We define a new
sequence (bt) such that b0 = 1, bt1 = at1 , and for t > 0,

bt =

{
0 t 6* BT (a,K)
K
t
·∑s<t bs t * BT (a,K) \ {t1}

.

We prove in Lemma 6 below that that 0 f bt f at f 1 for all t * [T ] and that |BT (b,K)| g
|BT (a,K)|. Thus it suffices to prove the main claim for (bt) instead of (at).

To prove the claim for (bt), we compute:

btj =
K

tj
·
∑

s<tj

bs

=
K

tj
·

∑

s*Btj (b,K)

bs

=
K

tj
·

û
ý ∑

s*Btj21 (a,K)

bs + btj21

þ
ø

=
K

tj
·
(
tj21

K
· btj21

+ btj21

)

=
K + tj21

tj
· btj21

.

Thus it holds that

1 g ati g bti =
K

ti
·
i21∏

j=1

(
1 +

K

tj21

)
.
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Taking logarithms of both sides and rearranging, we see that

log

(
ti
K

)
g

i21∑

j=1

log

(
1 +

K

tj21

)
g

T∑

s=T2i

log

(
1 +

K

s

)
g i · log

(
1 +

K

T

)
,

where the second inequality follows by the fact that the tj are distinct and all at most T . Now we
note that as K g 1 and ti f T , it holds that

i · log
(
1 +

K

T

)
f log

(
ti
K

)
f log(T ).

Observing that

log

(
1 +

K

T

)
g

K
T

1 + K
T

,

we see that

i f log(T ) · 1 +
K
T

K
T

=
T · log(T )

K

(
1 +

K

T

)
.

Letting K = 2 log(T )
·

, recalling that K f T and thus 1 + K
T

f 2, and plugging in concludes the
proof.

We now prove the previously deferred result above.

Lemma 6. Let (at) be a sequence as in Lemma 2, K > 0 fixed, and

BT (a,K) = {t1, . . . , ti} ¢ [T ].

Let b0 = 1, bt1 = at1, and, for t > 0, let

bt =

{
0 t 6* BT (a,K)
K
t
·∑s<t bs t * BT (a,K) \ {t1}

.

Then |BT (b,K)| g |BT (b,K)|. Furthermore, for all t * [T ], it holds that bt f at f 1.

Proof. To see the first point, observe that by construction, BT (b,K) § BT (a,K) and so this claim
follows immediately. To see the second point, we first note that for t 6* BT (a,K), we have bt = 0 f
at. For t * BT (a,K), we induct on j * [i]. Indeed it is clear that bt1 = at1 and so the claim holds.
Suppose that btk f atk for k < j * [i]. Then we observe that

btj =
K

tj
·
∑

s<tj

bs =
K

tj
·
∑

k<j

btk f K

tj
·
∑

k<j

atk f K

tj
·
∑

s<tj

as f atj ,

where the first two equalities follow by construction, the first inequality follows by the inductive
hypothesis, the second inequality follows by the fact that at g 0 and the final inequality follows by
the fact that tj * BT (a,K). Thus bt f at f 1 for all t * [T ].
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C Proof of Theorem 1

In this appendix we provide the complete proof of Theorem 1. As described in Section 3 the proof is
split into three parts. In this appendix, we begin by proving the decoupling inequality in Lemma 3
and then proceed to prove Lemma 4 before finally concluding the proof of the main result. Although
we use Theorem 2 in the conclusion of the proof of Theorem 1, we defer its proof to Appendix D.

C.1 Proof of Lemma 3

Let the gt be as in the statement of the lemma, pt denote the law of Xt conditioned on the σ-algebra
generated by (Ht21, gt), and p̃t = 1

t
·∑t21

s=1
dps
dµ

. We compute

E

[
T∑

t=1

gt(Xt)

]
= E

[
T∑

t=1

E [gt(Xt)|gt,Ht21]

]

= E

[
T∑

t=1

E

[
dpt
dµ

(Z)gt(Z)|gt,Ht21

]]

= EZEgt

[
T∑

t=1

dpt
dµ

(Z)gt(Z)

]
,

where the Z are independent of the X1, . . . , XT and the gt are measurable with respect to Ht21.
Let at(Z) = σ · dpt

dµ
(Z) be a random sequence and observe that by Lemma 2, |BT (a(Z), K)| f εT

deterministically whenever K g 2 log(T )/ε. Thus, we see for some fixed K large enough,

EZEgt

[
T∑

t=1

dpt
dµ

(Z)gt(Z)

]
= EZEgt

[
T∑

t=1

dpt
dµ

(Z)gt(Z)I [t * BT (a(Z), K)]

]

+ EZEgt

[
T∑

t=1

dpt
dµ

(Z)gt(Z)I [t 6* BT (a(Z), K)]

]

f 1

σ
EZ

[
T∑

t=1

I [t * BT (a(Z), K)]

]
+ EZEgt

[
T∑

t=1

Kp̃t(Z)gt(Z) +
K

σt

]

f εT

σ
+
K log(T )

σ
+K · Egt

[
T∑

t=1

1

t
·
t21∑

s=1

gt(X
2
s)

]
. (13)

The result follows by setting ε =

√
2
T
· E
[∑T

t=1
1
t

∑t21
s=1 gt(X

2
s)
]
.

We remark that as mentioned earlier, in the case that σ = 1, the at(Z) = 1 uniformly over Z
and thus BT (a(Z), K) = ' for all K > 1. In particular, this allows us to take K a constant and

ε ³ 0 in (13) and recover the expected E

[∑T
t=1 gt(Xt)

]
. E

[∑T
t=1 gt(X

2
t)
]

whenever the Xt are iid

C.2 Proof of Lemma 4

For the sake of simplicity, we drop the subscript from the notation for the ERM in this proof. We
begin by observing that because f æ * F , it holds by construction that

0 f ‖f æ 2 Y ‖2T21 2
∥∥∥f̂ 2 Y

∥∥∥
2

T21
.
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Expanding the squares and rearranging then tells us that

0 f 2 ·
〈
Y 2 f æ, f̂ 2 f æ

〉
T21

2
∥∥∥f̂ 2 f æ

∥∥∥
2

T21
,

where 〈·, ·〉T21 denotes the L2 inner product with respect to the empirical measure on X1, . . . , XT21.
Rearranging and observing that Y 2 f æ = η then tells us that

1

2
·
∥∥∥f̂ 2 f æ

∥∥∥
2

T21
f 2 ·

〈
η, f̂ 2 f æ

〉
T21

2 1

2
·
∥∥∥f̂ 2 f æ

∥∥∥
2

T21

and so
∥∥∥f̂ 2 f æ

∥∥∥
2

T21
f 4 ·

〈
η, f̂ 2 f æ

〉
T21

2
∥∥∥f̂ 2 f æ

∥∥∥
2

T21

Letting G = F 2 f æ, we see that

E

[∥∥∥f̂ 2 f æ
∥∥∥
2

T21

]
f E

[
sup
g*G

4 · 〈η, g〉T21 2 ‖g‖2T21

]

f E

[
sup
g*G

4 · 〈η 2 η2, g〉T21 2 ‖g‖2T21

]

= E

[
sup
g*G

4 · 〈ε · |η 2 η2| , g〉T21 2 ‖g‖2T21

]

f E

[
sup
g*G

8 · 〈ε · |η| , g〉T21 2 ‖g‖2T21

]

where ε is a vector of independent standard Rademacher random variables, and the second inequality
follows from Jensens’ and the fact that the η are conditionally mean zero. The final inequality above
follows by the triangle inequality. Now, by Lemma 9, we see that with probability at least 12 δ, it

holds that |ηt| f 2ν ·
√
log
(
T
·

)
. Observing that convex functions are extremized on the boundaries

of convex sets, we see that

E

[
sup
g*G

8 · 〈ε · |η| , g〉T21 2 ‖g‖2T21

]
f 2ν ·

√
log

(
T

δ

)
· E
[
sup
g*G

8 · 〈ε, g〉T21 2 ‖g‖2T21

]
+ 8Tδ.

We now continue by controlling the expectation above. Letting ξ denote a vector of independent
standard normal random variables, we see that

E

[
sup
g*G

8 · 〈ε, g〉T21 2 ‖g‖2T21

]
f E

[
sup
g*G

8 · 〈ξ, g〉T21 2 ‖g‖2T21

]
,

again by Jensens’ inequality and the fact that the sign and magnitude of a standard Gaussian are
independent. Now, let E denote the high probability event from Lemma 1 and observe that

E

[
sup
g*G

8 · 〈ξ, g〉T21 2 ‖g‖2T21

]
= E

[
I[E ] · sup

g*G
8 · 〈ξ, g〉T21 2 ‖g‖2T21

]
+ E

[
I[E c] · sup

g*G
8 · 〈ξ, g〉T21 2 ‖g‖2T21

]

f E

[
I[E ] · sup

g*G
8 · 〈ξ, g〉T21 2 ‖g‖2T21

]
+ 16T · e2Ãk,
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where the inequality follows from the bound on P(E c) from Lemma 1 along with the independence
of ξ from E and the fact that F is uniformly bounded. By Jensen’s inequality, it holds for any λ > 0
that

(T 2 1)·E
[
I[E ] · sup

g*G
8 · 〈ξ, g〉T21 2 ‖g‖2t21

]

f 1

λ
· logE

[
I[E ] · exp

(
λ · sup

g*G
8(T 2 1) · 〈ξ, ·g〉T21 2 (T 2 1) · ‖g‖2T21

)]
.

Observing that λ g 1
32

, we see that by Lemma 10, it holds that

1

λ
· logE

[
I[E ] · exp

(
λ · sup

g*G
8(T 2 1) · 〈ξ, ·g〉T21 2 (T 2 1) · ‖g‖2T21

)]

f 1

λ
· logE

[
I[E ] · exp

(
λ · sup

g*G
8 ·

T21∑

s=1

k∑

j=1

ξs,j · g(Zs,j)2 g(Zs,j)
2

)]

f 1

λ
· logE

[
· exp

(
λ · sup

g*G
8 ·

T21∑

s=1

k∑

j=1

ξs,j · g(Zs,j)2 g(Zs,j)
2

)]
.

Setting λ = 1
32

, now, and dividing by T 2 1, we see that

E

[
I[E ] · sup

g*G
8 · 〈ε, g〉T21 2 ‖g‖2T21

]
f 32

T 2 1
· logEZs,j

[
Wk(T21) (256 · G)

]
.

The result follows immediately.

C.3 Concluding the Proof

Applying Lemma 3 with gt = (f̂t 2 f æ)2, we see that

E

[
T∑

t=1

(ft(Xt)2 f æ(Xt))
2

]
f log2(T )

σ
·

√√√√2T · E
[

T∑

t=1

1

t
·
t21∑

s=1

(
f̂t(X 2

s)2 f æ(X 2
s)
)2
]

=
log2(T )

σ
·

√√√√2T ·
T∑

t=1

1

t
· E
[
·
t21∑

s=1

(
f̂t(X 2

s)2 f æ(X 2
s)
)2
]
. (14)

We now compute for each t * [T ],

1

t
· E
[
t21∑

s=1

(
f̂t(X

2
s)2 f æ(X 2

s)
)2
]
f 2 · E

[
t21∑

s=1

(
f̂t(Xs)2 f æ(Xs)

)2
]

+
1

t
· E
[
sup
f*F

t21∑

s=1

(f(X 2
s)2 f æ(X 2

s))
2 2 2 ·

t21∑

s=1

(f(Xs)2 f æ(Xs))
2

]

f 2 · E
[∥∥∥f̂t 2 f æ

∥∥∥
2

t21

]

+
1

t
·
√
π

2
· 9
2
· logEµ

[
W2(t21) log(t21)/Ã (4 · (F 2 f æ))

]
+

6

t

f 2 · E
[∥∥∥f̂t 2 f æ

∥∥∥
2

t21

]
+

9

t
· logEµ

[
W2T log(T )/Ã(4 · F)

]
+

6

t
,
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where the first inequality follows because f̂t * F , the second inequality is Theorem 2, and the final
inequality follows because Wm(F) is monotone in m and invariant under translation. By Lemma 4,
we have that

E

[∥∥∥f̂t 2 f æ
∥∥∥
2

t21

]
f 64

t
· ν ·

√
log(T )

(
logEµ

[
W2T log(T )/Ã (256 · F)

]
+

1

t

)
.

Combining this with the previous display implies that

1

t
· E
[
t21∑

s=1

(
f̂t(X

2
s)2 f æ(X 2

s)
)2
]
f 150(1 + ν)

t
·
√
log(T )

(
1 + logEµ

[
W2T log(T )/Ã(256 · F)

])

and thus
T∑

t=1

1

t
· E
[
t21∑

s=1

(
f̂t(X

2
s)2 f æ(X 2

s)
)2
]
f 150(1 + ν) log3/2(T )

(
1 + logEµ

[
W2T log(T )/Ã(256 · F)

])
.

Plugging this into (14) concludes the proof.

D Proof of Theorem 2

This appendix is devoted ot the proof of the sharp norm comparison result, Theorem 2. We begin
by rearranging the sum to observe that

E

[
sup
f*F

T∑

t=1

f(X 2
t)2 (1 + 2c) · f(Xt)

2

]
= E

[
sup
f*F

T∑

t=1

(1 + c)(f(X 2
t)

2 2 f(Xt)
2)2 cf(X 2

t)
2 2 cf(Xt)

2

]
.

(15)

We now take inspiration from Rakhlin et al. [2011] and consider the following tree of probabilities
construction. For t * [T ], let pt(·|x1, . . . , xt21) be the distribution of Xt conditioned on the history
that Xs = xs for s < t. For x, x2 * X and ε * {±1}, define the selector function

χ(x, x2, ε) =

{
x ε = 21

x2 ε = 1
(16)

and write χt(ε) for the t-th selector when xt, x2t are clear from context. We form the following tree
of probabilities ρ, where we associate for each path ε * {±1}T , the measure ρt(ε1:t21) on pairs
(Xt, X

2
t) conditional on (X1:t21, X

2
1:t21) such that

ρt(ε1:t21)((X1, X
2
1), . . . , (Xt21, X

2
t21)) = (pt(·|χ1(ε1), . . . , χt21(εt21)), pt(·|χ1(ε1), . . . , χt21(εt21))).

(17)

In words, ρt on a fixed path ε is a conditional measure that samples (Xt, X
2
t) inependently from pt

conditioned on an ε-dependent history. In this way, if we let ρ = (ρ1, . . . , ρT ), we have a measure
on two coupled X -valued complete binary trees of depth T . For more exposition on such trees of
probabilities, we refer the reader to Rakhlin et al. [2011, §3].

Continuing in the proof, we now write for simplicity for all 1 f s f s2 f T ,

Ss:s2(f) =
s2∑

t=s

f(Xt)
2 and S 2

s:s2(f) =
s2∑

t=s

f(X 2
t)

2.
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Writing out the expectations in the right hand side of (15), we observe that it is equal to

EX1,X2

1>p1
EX2,X2

2>p2(·|X1) · · ·EXT ,X2

T>pT (·|X1:T21)

[
sup
f*F

(1 + c)(S 2
1:T (f)2 S1:T (f))2 c(S 2

1:T (f) + S1:T (f))

]
.

We now observe that if we switch the role of X1 and X 2
1, then we have by symmetry that the above

expectation is equal to

EX2

1,X1>p1EX2,X2

2>p2(·|X
2

1)
· · · (18)

· · ·EXT ,X
2

T>pT (·|X2

1,X2:T )

[
sup
f*F

(1 + c)(2(f 2(X 2
1)2 f 2(X1)) + S 2

2:T (f)2 S2:T (f))2 c(S 2
1:T (f) + S1:T (f))

]
,

where we emphasize that the subtracted term is symmetric with respect to exchanging Xt for X 2
t

as opposed to antisymmetric. In particular, if we define

χ(x, x2, ε) =

{
x2 ε = 21

x ε = 1
,

the opposite of the χ in (16) and we use a similar abbreviation χt(ε) for the t-th selector, then we
may continue in the same way as (18) and observe that for any ε1:T * {±1}T , that the expectation
in the right hand side of (15) is equal to

EX1,X2

1>p1
EX2,X2

2>p2(·|Ç1(·1)) · · ·

· · ·EXT ,X
2

T>pT (·|Ç1(·1),...,ÇT21(·T21))

[
sup
f*F

T∑

t=1

εt(1 + c)
(
f 2(χt(ε))2 f 2(χt(ε))

)
2 c

(
f 2(χt(ε)) + f 2(χt(ε))

)
]
.

Because this equality holds true for all choices of signs ε, we may take an expectation over the
distribution that is uniform on the signs and observe that the preceding display is equal to

EX1,X2

1>p1
E·1EX2,X2

2>p2(·|Ç1(·1))E·2 · · ·

· · ·EXT ,X
2

T>pT (·|Ç1(·1),...ÇT21(·T21))E·T

[
sup
f*F

T∑

t=1

εt(1 + c)
(
f 2(χt(ε))2 f 2(χt(ε))

)
2 c

(
f 2(χt(ε)) + f 2(χt(ε))

)
]

= E(x,x2)>ÃE·

[
sup
f*F

T∑

t=1

(1 + c)εt
(
f 2(xt(ε))2 f 2(x2

t(ε))
)
2 c

(
f 2(xt(ε)) + f 2(x2

t(ε))
)
]
,

where the ρ is from (17), which forms a measure on coupled X -valued complete binary trees of depth
T . Now we may split the supremum in two and use the symmetry of the Rademacher distribution
to conclude that

E(x,x2)>ÃE·

[
sup
f*F

T∑

t=1

(1 + c)εt
(
f 2(xt(ε))2 f 2(x2

t(ε))
)
2 c

(
f 2(xt(ε)) + f 2(x2

t(ε))
)
]

f E(x,x2)>ÃE·

[
sup
f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]

+ E(x,x2)>ÃE·

[
sup
f*F

T∑

t=1

2(1 + c)εtf
2(x2

t(ε))2 cf 2(x2
t(ε))

]

f 2 · E(x,x2)>ÃE·

[
sup
f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]
. (19)
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Above, the first inequality follows by Jensens’ and the second follows by symmetry. More precisely,
for the second inequality, we observe that

E

[
sup
f*F

T∑

t=1

2(1 + c)εtf
2(x2

t(ε))2 cf 2(x2
t(ε))

]
= E

[
sup
f*F

T∑

t=1

(1 + c)εtf
2(x2

t(2ε))2 cf 2(x2
t(2ε))

]

= E

[
sup
f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]
,

with the second equality following because χ(2εt) = χ(εt), the Rademacher distribution is sym-
metric, and x

2
t(ε),xt(ε) are identically distributed.

We now proceed to bound the right hand side of (19). Noting that xt(ε) is σ-smooth with
respect to µ conditioned on the history for all t * [T ], we may apply Lemma 7 and observe that for
fixed k, there is some event E under which we may sample Zt,j , Z 2

t,j > µ independent for 1 f j f k
and it holds that xt(ε) * {Zt,j|j * [k]} for all t * [T ] and similarly for Zt,j2 and x

2
t(ε); furthermore

P (E c) f 2Te2Ãk. Thus we observe that under this coupling Π,

2·E(x,x2)>ÃE·

[
sup
f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]

= 2 · E(x,x2),Zt,j ,·>Π

[
I[E ] · sup

f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]

+ 2 · E(x,x2),Zt,j ,·>Π

[
I[E c] · sup

f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]

f 2 · E(x,x2),Zt,j ,·>Π

[
I[E ] · sup

f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]
+ 4(1 + c)T 2e2Ãk.

Letting ξt be a standard Gaussian, we may apply Jensen’s inequality to conclude that

E(x,x2),Zt,j ,·>Π

[
I[E ] · sup

f*F

T∑

t=1

(1 + c)εtf
2(xt(ε))2 cf 2(xt(ε))

]

= E(x,x2),Zt,j ,·>Π

[
I[E ] · sup

f*F

T∑

t=1

(1 + c)εt
E [|ξt|]
E [|ξt|]

f 2(xt(ε))2 cf 2(xt(ε))

]

f
√
π

2
· E(x,x2),Zt,j ,¿>Π2

[
I[E ] · sup

f*F

T∑

t=1

(1 + c)ξtf
2(xt(ξ))2 cf 2(xt(ξ))

]
,

where Π2 is the coupling Π, but replacing εt with ξt = εt · |ξ2t| for ξ2t independent standard Gaussians.
Above, we we used the fact that a Gaussian’s norm and sign are independent and we abused notation
by letting xt(ξ) = xt(sign(ξ)). Combining the results thus far and observing that f 4(x) f f 2(x) for
all x * X , we have shown that for any k * N and c > 0,

E(x,x2),Zt,j ,¿>Π2

[
sup
f*F

T∑

t=1

f(X 2
t)2 (1 + 2c) · f(Xt)

2

]

f
:
2π · (1 + c) · E(x,x2),Zt,j ,¿>Π2

[
I[E ] · sup

f*F

T∑

t=1

ξtf
2(xt(ξ))2

c

1 + c
f 4(xt(ξ))

]
+ 4T 2 · e2Ãk.
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To conclude the proof, we apply Jensen’s inequality and observe that for any λ > 0, it holds that

E(x,x2),Zt,j ,¿>Π2

[
I[E ] · sup

f*F

T∑

t=1

ξtf
2(xt(ξ))2

c

1 + c
f 4(xt(ξ))

]

f 1

λ
· logE(x,x2),Zt,j ,¿>Π2

[
exp

(
I[E ] · sup

f*F

T∑

t=1

ξtλf
2(xt(ξ))2

cλ

1 + c
f 4(xt(ξ))

)]
.

Setting λ = 2c
1+c

and applying Lemma 10 then implies that

1

λ
· logE(x,x2),Zt,j ,¿>Π2

[
exp

(
I[E ] · sup

f*F

T∑

t=1

ξtλf
2(xt(ξ))2

cλ

1 + c
f 4(xt(ξ))

)]

f 1 + c

2c
· logE(x,x2),Zt,j ,¿>Π2

þ
øexp

û
ýsup
f*F

T∑

t=1

k∑

j=1

ξt,j

(√
2c

1 + c
· f(Zt,j)

)2

2 1

2
·
(√

2c

1 + c
f(Zt,j)

)4
þ
ø
ù
û

=
1 + c

2c
· logEZt,j>µE¿

þ
øexp

û
ýsup
f*F

T∑

t=1

k∑

j=1

ξt,j

(√
2c

1 + c
· f(Zt,j)

)2

2 1

2
·
(√

2c

1 + c
f(Zt,j)

)4
þ
ø
ù
û

=
1 + c

2c
· logEZt,j>µWkT

(
2c

1 + c
· F2

)
,

where WkT is the Will’s functional defined in Definition 3. We now note that because F is uniformly
bounded, it holds that f 7³ f 2 is 2-Lipschitz and we may apply Mourtada [2023, Theorem 4.1] to
yield that WkT

(
2c
1+c

· F2
)
fWkT

(
4c
1+c

· F
)
. Putting everything together yields

E

[
sup
f*F

T∑

t=1

f 2(X 2
t)2 (1 + 2c) · f 2(Xt)

]
f
√
π

2
· (1 + c)2

c
· logEZt,j>µWkT

(
2c

1 + c
· F2

)
+ 4(1 + c)T 2e2Ãk.

Setting k = 2 log(T )/σ concludes the proof.
Finally, we state the form of the coupling result (Lemma 1) that we require in the above proof.

Lemma 7 (Lemma 24 from Block et al. [2022]). Let pt(·|x1:t21) denote the conditional distribution
of Xt given the history and let ρ be the measure on the pair (x,x2) of X -labelled-complete binary trees
defined in (17). If pt is σ-smooth with respect to µ for all t * [T ], then for all k * N, there exists
a coupling Π among ε1:T , (x,x2), and

{
Zt,j , Z

2
t,j|t * [T ], j * [k]

}
such that the following properties

hold:

1. The ε1:T are independent Rademacher random variables.

2. The Zt,j, Z
2
t,j > µ are independent samples from µ.

3. The (x,x2) > ρ.

4. ε1:T is independent of {Zt,j, Zt,j2}.

5. There is an event E with probability at least 12 2Te2Ãk such that on E , xt(ε) * {Zt,j |j * [k]}
and x

2
t(ε) * {Zt,j|j * [k]} for all t * [T ].
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E Proof of Theorem 3

In this appendix, we prove the lower bound of Theorem 3. Fix d * N and let X = [0, 1]d ¢ R
d. We

let

F =
{
x 7³ min (I[xi g θi]) |θi * [0, 1]d

}

be the class of d-dimensional axis-aligned thresholds. It is classical that vc(F) = 2d [Van Handel,
2014, Mohri et al., 2018] and thus Rm(F) .

:
dm for all m. Let f æ = 0 and define the ERM as

follows. Given a data set of (X1, Y1), . . . , (Xt, Yt), let

F(X1:t,Y1:t) =

{
f * F| ‖f(X)2 Y ‖t = min

f 2*F
‖f 2(X)2 Y ‖t

}

be the set of minimizers of the empirical risk. Note that this set is always nonempty due to the
compactness of F and the continuity of the norm. For each t, and each coordinate i, we will let
θt,i = inf»*F(X1:t21,Y1:t21)

θi denote the minimal threshold in the i-th coordinate that still minimizes
the empirical risk. We let the data be realizable and thus Yt = 0 for all t * [T ]. We claim that for
any ε > 0 there exists an adversary forcing the above defined ERM to get

E [RegT ] g
1

2
·min

(
12 σ1/d

ε
· d, εT

σ1/d

)
.

We construct the adversary as follows. We introduce the sequence of stopping times τi,j for i * [d]
and j * N as follows. Let τ1,0 = 0 and for i, j > 0, let

τi,j = inf

{
t > 0|max

sft
Xs,i g 12 σ1/d + (j 2 1)ε

}
.

For i > 1, let τi,0 = τi21,+(12Ã1/d)/·+. In words, τi,j is the first time that the i-th coordinate of the
data exceeds 12 σ1/d + (j 2 1)ε and τi,0 is the first time that the (i2 1)st coordinate has exceeded
12 ε. For any t, let τ(t) = τit,jt , where it = argmaxi*[d] τi,0 f t and jt = argmaxj*N τit,j f t.

We now define the distributions of the Xt. Let pj be a distribution on [0, 1] such that pj =

Unif
([
jε, σ1/d + jε

])
for j f 12Ã1/d

·
. Finally, we let

Pt =

(
it2121⊗

i=1

p0

)
· pjt21 ·

û
ý

d⊗

i=it21+1

p0

þ
ø .

In words, if Xt > Pt, then the coordinates of Xt are independent and distributed uniformly in
[0, σ1/d] except for the it21-th coordinate, which is distributed uniformly in [jt21ε, jt21ε+ σ1/d]. We
reiterate that Yt = 0 uniformly.

We observe that Pt is σ-smooth with respect to Unif
(
[0, 1]d

)
; indeed, for any t, it holds that Pt

is uniform on a body of volume σ contained in [0, 1]d. Thus it suffices to show that the expected
number of times that f̂t(Xt) = 1 is large. Observe that by construction of the ERM, it holds that
f̂t(Xt) = 1 if and only if at least one coordinate of Xt is strictly larger than the previous largest
observed data point in that coordinate, i.e., if there exists some i * [d] such that Xt,i > maxs<tXs,i.
By construction of Pt, then, it holds that

E [RegT ] = E

[
T∑

t=1

max
i*[d]

I

[
Xt,i > max

s<t
Xs,i

]]
g E

[
T∑

t=1

I[τ(t) 6= τ(t2 1)]

]
.
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We now observe that as long as τ(t2 1) < τd,+(12Ã1/d)/·+, it holds by construction that

P(τ(t) 6= τ(t2 1)|τ(t2 1)) =

{
·

Ã1/d
it21 f d or jt21 <

12Ã1/d

·

0 otherwise.

Thus by by the tower law of conditional expectation, it holds that

E

[
T∑

t=1

I[τ(t) 6= τ(t2 1)]

]
=

εT

σ1/d
· P
(
τ(T ) < τd,+(12Ã1/d)/·+

)
+ d ·

⌊
12 σ1/d

ε

⌋
· P
(
τ(T ) = τd,+(12Ã1/d)/·+

)

g 1

2
min

(
12 σ1/d

ε
· d, εT

σ1/d

)
.

Taking a maximum over ε concludes the proof.

F Miscellaneous Lemmata

Lemma 8. Let F : X ³ [21, 1] be a function class and Xt a sequence of σ-smoothed data with
respect to µ. Then for any k * N, it holds that

E

[
sup
f*F

T∑

t=1

f(Xt)2 f(X 2
t)

]
f 2RkT (F) + 2T 2e2Ãk.

Proof. By Rakhlin et al. [2011, Theorem 3], it holds that

E

[
sup
f*F

T∑

t=1

f(Xt)2 f(X 2
t)

]
f 2 · sup

Ã
EÃ

[
sup
f*F

T∑

t=1

εtf(Xt(ε))

]
,

where Xt(ε) is a path of a X -valued binary tree distributed according to ρ, as defined in Rakhlin
et al. [2011]. By Block et al. [2022, Lemma 17], however, it holds that for any k * N,

sup
Ã

EÃ

[
sup
f*F

T∑

t=1

εtf(Xt(ε))

]
f RkT (F) + T 2e2Ãk.

The result follows immediately.

Lemma 9 (Lemma 5.2 in Van Handel [2014]). Let η1, . . . , ηT denote a collection of possibly de-
pendent random variables such that all ηt are ν2-subGaussian. Then for any δ > 0, it holds with
probability at least 12 δ that

max
t*[T ]

|ηt| f ν ·
√
2 log

(
2T

δ

)
.

Lemma 10. Suppose that Ψ, ψ : G ³ R are two functionals and B, λ > 0 are two constants such
that λ g 2

B2 . Let E be an event independent of ξ > N (0, 1). Then it holds that

E

[
I[E ] · exp

(
sup
g*G

Ψ(g)

)]
f E

[
I[E ] · exp

(
sup
g*G

Ψ(g) +Bλξψ(g)2 λψ2(g)

)]

Proof. Note that

E¿

[
eB»¿Ë(g)2»Ë

2(g)|E
]
= e

(
B2λ2

2
2»

)
Ë2(g) g 1,

where the equality follows from the independence of E and ξ as well as the Gaussianity of the latter
and the inequality follows from the assumption on λ. The result follows immediately.
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G Stronger Norm Comparison Using the Small Ball Method

We showed in Theorem 2 that whenever a function class F is bounded and the data X1, . . . , XT

are smooth, a sharp norm comparison holds, i.e.,

E

[
sup
f*F

‖f‖2p̃T 2 (1 + c) ‖f‖2T
]
.

comp(F) log
(
T
Ã

)

T
, (20)

where p̃T = 1
T

∑T
t=1 pt and pt is the law of Xt. In this appendix, we show that under a certain

anti-concentration condition, a stronger norm comparison holds. In particular, by definition of
smoothness, if pt is smooth with respect to µ then for all functions f , it holds that ‖f‖2T . ‖f‖2µ. In
general, the reverse inequality does not hold, however, as witnessed by pt having support on some
strict subset of X and f being the indicator of the complement. We show that under a ‘small-
ball’ type condition, the reverse inequality does hold and, in fact, the norm ‖·‖2p̃T in (20) can be

replaced by ‖·‖2¿ for any smooth measure ν. This result amounts to a smoothed-data analogue
of the celebrated small-ball argument of Koltchinskii and Mendelson [2015], Mendelson [2015]. We
begin by stating the main result of this section.

Theorem 4. Suppose that F : X ³ R is a function class, µ * ∆(X ) and Xt > pt are σ-smooth
with respect to µ for t * [T ]. Suppose further that there are constants 1 > c, c2 > 0 such that

sup
f*F

µ

(
|f(Z)| <

√
2c

σ
· ‖f‖µ

)
f σ(12 c2). (21)

Let N (F , ε) denote the covering number of F with respect to ‖·‖µ and suppose that for some constant
C > 0,

T g C

σ
· log

∣∣∣∣∣N
(
F , σ

2δ̃2cc2

C

)∣∣∣∣∣ · log
3

(
C

σδ̃cc2

)
.

Then for any measure ν that is σ-smooth with respect to µ, it holds for all δ̃ > 0 that

E

[
sup
f*F

‖f‖2¿ 2
2

cc2
· ‖f‖2T

]
f δ̃2 +

∣∣∣∣∣N
(
F , σ2cc2δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
2(c2

:
T )2

72

)
+

2

T
. (22)

As an example, if F is parametric in the sense that N (F , ε) . ε2d for some d (e.g. when
vc(F) f d), Theorem 4 implies that the decoupled ‘population’ norm of any data-dependent f̂ can
be bounded in expectation by a multiple of the empirical norm, up to a Õ (T21) term, as long as
T = Ω̃

(
dσ21 log

(
1
Ã

))
. In contradistinction, applying Lemma 8 directly only allows control up to

an additive Õ
(
T21/2

)
error, which results in much weaker bounds.

By the above reasoning, Theorem 4 is a major improvement over uniform deviations style bounds,
but one might naturally wonder how limiting (21) is as an assumption. Note that the small-ball
condition reflects the interaction between the measure µ and the function class F , and is motivated
by that in Mendelson [2015]. Unlike in that earlier work, however, simple hypercontractivity ar-
guments coupled with the lemma of Paley-Zygmund do not suffice to ensure (21) due to the fact
that the small ball probability must be much smaller (certainly bounded by O(σ)) than is required
in the standard small-ball argument. Two cases where (21) does hold, however, may illuminate
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the generality of Theorem 4. First, if F : X ³ {±1, 0} is a class of differences of binary-valued
functions, and γ = inff*F µ (f(Z) = 0)5, then as long as σ = Ω(γ), it is immediate that (21) holds
with c = Ã

4
and c2 = Ω(1). Second, if X ¢ R

d, µ has bounded density with respect to the Lebesgue
measure and F satisfies the condition that f(Z) has bounded density with respect to Lebesgue, as
is common if f is continuous [Rudin et al., 1976], then taking c = Θ(σ) and c2 = Ω(1) suffices to
ensure (21). We remark that an extension of this example is implied by the trajectory small-ball
condition of Tu et al. [2022], which was used to prove similar norm comparison guarantees for lin-
ear classes. In Tu et al. [2022, Section 4.1] the authors provide many examples of data sequences
satisfying this condition. Thus, Theorem 4 can be seen as a nonlinear generalization of the linear
norm comparison results for sequential data found in earlier work [Simchowitz et al., 2018, Tu et al.,
2022].

In both of the above cases, we note that the pre-factor 2/(cc2) in front of the expected empirical
norm contains a polynomial dependence on σ21 which is otherwise absent from (22); we observe that
this dependence is generic. Indeed, because f is assumed bounded, if ck σ, then, deterministically,

|f(Z)| . 1 j
√

2c
Ã
· ‖f‖µ for all ‖f‖µ &

:
σ. Thus, in any nontrivial application, the prefactor in

(22) should be understood to scale polynomially in σ21.
Finally, we remark that Theorem 4 intuitively captures a ‘reverse inequality’ for smoothed data

under the small-ball condition (21). Indeed, smoothness of a measure p implies that for any f ,
we may bound ‖f‖p . ‖f‖µ, uniformly over functions f . Because Theorem 4 applies to arbitrary
smooth measures, the conclusion yields the reverse inequality, suggesting that ‖f‖µ . ‖f‖T as long
as F is not too complicated. This reverse bound is a consequence of the fact that (21) is stronger
than standard small ball assumptions in that the small ball probability must tend toward zero
with σ as opposed to remaining constant, which suffices in the easier, iid setting [Koltchinskii and
Mendelson, 2015, Mendelson, 2015].

G.1 Proof of Theorem 4

We now prove Theorem 4. The proof begins by applying an argument similar to Mendelson [2015],
which applies to independent data. This argument uses the small ball assumption (21) to reduce
the proof to controlling the uniform deviations of a function class related to F in high probability.
We accomplish this high probability control through a discretization argument and reliance on the
smoothness of the data.

Fix f * F and let ν be σ-smooth with respect to µ. Fix δ̃ > 0 and compute pointwise for c, c2

as in (21),

‖f‖2¿ f δ̃2 + ‖f‖2¿ · I
[
‖f‖2¿ g δ̃2

]

f δ̃2 + ‖f‖2¿ · I

þ
ÿø inf

f*F

‖f‖νg·̃

1

T
·

T∑

t=1

I
[
|f(Xt)| g

:
c · ‖f‖¿

]
g c2

2

ù
úû

+ ‖f‖2¿ · I

þ
ÿø inf

f*F

‖f‖νg·̃

1

T
·

T∑

t=1

I
[
|f(Xt)| g

:
c · ‖f‖¿

]
<
c2

2

ù
úû .

5If F = G 2 G, then γ is the minimal probability that any two functions agree and thus γ > 0 amounts to a gap
condition on G that intuitively characterizes the instance-dependent difficulty of identifying a given g * G from data.

33



For the second term above, we note that

‖f‖2¿ · I

þ
ÿø inf

f*F

‖f‖νg·̃

1

T
·

T∑

t=1

I
[
|f(Xt)| g

:
c · ‖f‖¿

]
g c2

2

ù
úû f 2

cc2
· ‖f‖2T .

Rearranging and taking expectations, we see that

E

[
sup
f*F

‖f‖2¿ 2
2

cc2
· ‖f‖2T

]
f δ̃2 + P

û
üý inf

f*F

‖f‖νg·̃

1

T
·

T∑

t=1

I
[
|f(Xt)| g

:
c · ‖f‖¿

]
<
c2

2

þ
ÿø .

Thus we must bound the final term above. To do this, we compute

inf
f*F

‖f‖νg·̃

1

T
·

T∑

t=1

I
[
|f(Xt)| g

:
c · ‖f‖¿

]
g inf

f*F

‖f‖νg·̃

T∑

t=1

Pt21

(
|f(Xt)| g 2

:
c · ‖f‖¿

)
(23)

2 sup
f*F

‖f‖νg·̃

1

T
·

T∑

t=1

Pt21

(
|f(Xt)| g 2

:
c · ‖f‖¿

)
2 I
[
|f(Xt)| g

:
c · ‖f‖¿

]
.

By Lemma 11, and the assumption that (21) applies, it holds that for any t,

inf
f*F

‖f‖νg·̃

Pt21

(
|f(Xt)| g 2

:
c · ‖f‖¿

)
g c2

and so the first term in (23) is at least c2. Thus we focus on bounding the second term in (23). To
do this, define the function

φc(u) =

ù
üú
üû

0 |u| f :
c

u/
:
c2 1

:
c f |u| f 2

:
c

1 |u| g 2
:
c

and observe that

sup
f*F

‖f‖νg·̃

1

T
·

T∑

t=1

Pt21

(
|f(Xt)| g 2

:
c · ‖f‖¿

)
2 I
[
|f(Xt)| g

:
c · ‖f‖¿

]

f sup
f*F

‖f‖νg·̃

1

T
·

T∑

t=1

Et21

[
φc

(
f(Xt)

‖f‖¿

)]
2 φc

(
f(Xt)

‖f‖¿

)
. (24)

In order to bound this last expression with high probability6, we will apply Lemma 12 to the
function class

G·̃ =
{
φc

(
f

‖f‖¿

) ∣∣∣∣f * F and ‖f‖¿ g δ̃

}
. (25)

6In Mendelson [2015], the conclusion of the proof is simpler, as concentration and contraction can directly be
applied to (24). Unfortunately, neither concentration nor contraction directly apply in the smoothed data setting,
requiring alternative techniques.
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Observing that G·̃ is bounded, we may apply Lemma 12 to see that

P

(
sup
g*G

δ̃

1

T
·

T∑

t=1

Et21[g(Xt)]2 g(Xt) > v

)
f
∣∣N (G·̃, ε)

∣∣ · exp
(
2Tv

2

18

)
+ Te2Ãk + δ,

as long as σk g 1 and

v g 6kε+ 6 ·
√
k

T

(
log

(N (G, ε)
δ

))
.

Taking

δ =
1

T
, k =

3 log(T )

σ
, ε =

c2

24k
, and v =

c2

2
,

we see that whenever

T

log2(T ) · logN
(
G, Ãc2

72 log(T )

) g 576

σ
,

it holds that

P

(
sup
g*G

δ̃

1

T
·

T∑

t=1

Et21[g(Xt)]2 g(Xt) >
c2

2

)
f
∣∣∣∣N
(
G·̃,

σc2

72 log(T )

)∣∣∣∣ · exp
(
2(

:
Tc2)2

72

)
+

2

T

By Lemma 13, then, it holds that

P

(
sup
g*G

δ̃

1

T
·

T∑

t=1

Et21[g(Xt)]2 g(Xt) >
c2

2

)
f
∣∣∣∣∣N
(
F , σ2cc2δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
2(

:
Tc2)2

72

)
+

2

T
.

Thus,

P

û
üý sup

f*F

‖f‖νg·̃

1

T
·

T∑

t=1

P
(
|f(Xt)| g 2

:
c · ‖f‖¿

)
2 I
[
|f(Xt)| g

:
c · ‖f‖¿

]
>
c2

2

þ
ÿø

f
∣∣∣∣∣N
(
F , σ2cc2δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
2(

:
Tc2)2

72

)
+

2

T
.

Plugging this into (23), we see that

P

û
üý inf

f*F

‖f‖νg·̃

1

T
·

T∑

t=1

I
[
|f(Xt)| f

:
c · ‖f‖¿

]
f c2

2

þ
ÿø f

∣∣∣∣∣N
(
F , σ2cc2δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
2(c2

:
T )2

72

)
+

2

T
.

The result follows.
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G.2 Auxiliary Lemmata

In this section we prove a number of auxiliary results that are used in the proof of Theorem 4.
We begin with a lemma that ensures that (21) implies a small-ball like condition for all smooth
measures.

Lemma 11. Suppose that F : X ³ [21, 1] is a function class and µ * ∆(X ). Suppose that (21)
holds for c, c2 > 0. Then it holds for any ν, p * ∆(X ) such that p and ν are σ-smooth with respect
to µ that

inf
f*F

ν
(
|f(Z)| g 2

:
c · ‖f‖p

)
g c2.

Proof. Note that by definition of the Radon-Nikodym derivative, it holds that ‖f‖p f σ21/2 · ‖f‖µ.
Thus we may compute that

ν
(
|f(Z)| < 2

:
c · ‖f‖p

)
f 1

σ
· µ
(
|f(Z)| < 2

√
c

σ
· ‖f‖µ

)
f 1

σ
σ(12 c2) = 12 c2,

where the second inequality follows by the definition of smoothness and the last inequality follows
by (21). The result follows.

We now prove a uniform deviations result akin to Lemma 8 below, except that it holds in high
probability instead of in expectation. For this to work, we modify the notion of complexity to
covering number from Rademacher complexity.

Lemma 12. Let G : X ³ [21, 1] be a function class, µ * ∆(X ) a measure, and suppose that
X1, . . . , XT are σ-smooth with respect to µ. Fix k * N and suppose that N (G, ε) denote the covering
number of G at scale ε with respect to ‖·‖ = ‖·‖µ. Suppose that k, σ, ε > 0 such that kσ g 1 and

v > 6kε+ 6 ·
√
k

T

(
log

(N (G, ε)
δ

))
.

Then it holds that

P

(
sup
g*G

1

T

T∑

t=1

Et21[g(Xt)]2 g(XT ) > v

)
f |N (G, ε)| · exp

(
2Tv

2

18

)
+ Te2Ãk + δ.

Proof. We prove this result by discretizing to the cover and then applying a standard concentra-
tion bound to bounded martingale difference sequences. To do this, let π : G ³ N (G, ε) denote
projection onto the cover. Then by a union bound, we see that for any v > 0,

P

(
sup
g*G

1

T
·

T∑

t=1

Et21[g(Xt)]2 g(XT ) > v

)
f P

(
max

g*N (G,·)

1

T
·

T∑

t=1

Et21[g(Xt)]2 g(XT ) >
v

3

)

+ P

(
sup
g*G

1

T
·

T∑

t=1

|Et21[g(Xt)]2 Et21[π(g(Xt))]| >
v

3

)

+ P

(
sup
g*G

1

T
·

T∑

t=1

|g(Xt)2 π(g(Xt))| >
v

3

)
.
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For the first term, note that by Azumas’s inequaltiy [Azuma, 1967], it holds for any fixed g * G
that

P

(
T∑

t=1

Et21 [g(Xt)]2 g(Xt) > u

)
f exp

(
2 u2

2T

)
.

Thus by a union bound, it holds that

P

(
max

g*N (G,·)

1

T
·

T∑

t=1

Et21[g(Xt)]2 g(XT ) >
v

3

)
f |N (G, ε)| · exp

(
2Tv

2

18

)
.

For the second term, we see that by smoothness, for all t,

|Et21[g(Xt)]2 Et21[π(g(Xt))]| f σ21/2 · ‖g 2 π(g)‖µ f ε:
σ
.

Thus the second term vanishes as long as v g 3ε/
:
σ.

Finally, for the third term, let E denote the event from Lemma 1 and observe that

P

(
sup
g*G

1

T
·

T∑

T=1

|g(Xt)2 π ç g(Xt)| >
v

3

)
= P

({
sup
g*G

1

T
·

T∑

t=1

|g(Xt)2 π ç g(Xt)| >
v

3

}
+ E
)

+ P

({
sup
g*G

1

T
·

T∑

t=1

|g(Xt)2 π ç g(Xt)| >
v

3

}
+ E c

)

f P

(
sup
g*G

1

T
·

T∑

t=1

k∑

j=1

|g(Zt,j)2 π ç g(Zt,j)| >
v

3

)

+ Te2Ãk

f P

(
sup
g*G

1

kT
·

T∑

t=1

k∑

j=1

|g(Zt,j)2 π ç g(Zt,j)| >
v

3k

)
+ Te2Ãk.

Noting now that the Zt,j are independent and identically distributed, and applying standard high
probability uniform concentration (e.g., Wainwright [2019, Theorem 4.10]), we have that with prob-
ability at least 12 δ,

sup
g*G

1

kT
·

T∑

t=1

k∑

j=1

|g(Zt,j)2 π ç g(Zt,j)| f ε+ 2 · RkT (G)
kT

+ 2 ·

√
log
(
1
·

)

kT

f 2ε+ 2 ·

√
log (N (G, ε)) + log

(
1
·

)

kT
,

where the second inequality follows by standard bounds on Rademacher complexity by covering
numbers (e.g. Van Handel [2014, Corollary 5.25]). Thus, as long as

v > 6kε+ 6 ·
√
k

T

(
log

(N (G, ε)
δ

))
,

the third term is bounded by δ. The result follows.
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Finally, we prove a result akin to contraction, showing that if G·̃ is as in (25), then the covering
number of G·̃ is upper bounded by the covering number of F .

Lemma 13. Let F : X ³ [21, 1] be a function class with ‖·‖¿ and ‖·‖kT as in Definition 7. For

δ̃ > 0, let G·̃ be as in (25). Let N (F , ε) denote the covering number of F at scale ε with respect to

‖·‖µ. Then for any 1 g c, δ̃ > 0, it holds that

N
(
G·̃, ε

)
f N

(
F , cσδ̃

2

8
· ε
)
.

Proof. We compute for any X * X , and any f, f 2 * F ,
∣∣∣∣
f(X)

‖f‖¿
2 f 2(X)

‖f 2‖¿

∣∣∣∣ f
|f(X)2 f 2(X)|

‖f‖¿
+ |f 2(X)| ·

∣∣∣∣
1

‖f‖¿
2 1

‖f 2‖¿

∣∣∣∣

f |f(X)2 f 2(X)|
‖f‖¿

+
‖f 2 f 2‖¿
‖f‖¿ · ‖f 2‖¿

,

where the second inequality follows by the boundedness of F and the triangle inequality. If ‖f‖¿ g δ̃,
then, we have that

∣∣∣∣
f(X)

‖f‖¿
2 f 2(X)

‖f 2‖¿

∣∣∣∣ f
1

δ̃
· |f(X)2 f 2(X)|+ 1

δ̃2
· ‖f 2 f 2‖¿ .

Noting that φc is 1
c
-Lipschitz, we see that

∥∥∥∥φc
(

f

‖f‖¿

)
2 φc

(
f 2

‖f 2‖¿

)∥∥∥∥
µ

f 1

c
·
(
1

δ̃
· ‖f 2 f 2‖µ +

1

δ̃2
· ‖f 2 f 2‖¿

)

f 2

cσδ̃2
· ‖f 2 f 2‖µ ,

where we used the fact that δ̃ f 1. The result follows immediately.
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