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Abstract

We consider Sharpness-Aware Minimization (SAM), a gradient-based optimization method
for deep networks that has exhibited performance improvements on image and language
prediction problems. We show that when SAM is applied with a convex quadratic objective,
for most random initializations it converges to a cycle that oscillates between either side
of the minimum in the direction with the largest curvature, and we provide bounds on the
rate of convergence.

In the non-quadratic case, we show that such oscillations effectively perform gradient
descent, with a smaller step-size, on the spectral norm of the Hessian. In such cases, SAM’s
update may be regarded as a third derivative—the derivative of the Hessian in the leading
eigenvector direction—that encourages drift toward wider minima.

Keywords: Non-convex optimization, wide minima, sharpness-aware minimization.

1. Introduction

The broad practical impact of deep learning has heightened interest in many of its sur-
prising characteristics: simple gradient methods applied to deep neural networks seem to
efficiently optimize nonconvex criteria, reliably giving a near-perfect fit to training data, but
exhibiting good predictive accuracy nonetheless (see Bartlett et al., 2021). Optimization
methodology is widely believed to affect statistical performance by imposing some kind of
implicit regularization, and there has been considerable effort devoted to understanding
the behavior of optimization methods and the nature of solutions that they find. For in-
stance, Barrett and Dherin (2020) and Smith et al. (2020) show that discrete-time gradient
descent and stochastic gradient descent can be viewed as gradient flow methods applied
to penalized losses that encourage smoothness, and Soudry et al. (2018) and Azulay et al.
(2021) identify the implicit regularization imposed by gradient flow in specific examples,
including linear networks.
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We consider Sharpness-Aware Minimization (SAM), a recently introduced (Foret et al.,
2020) gradient optimization method that has exhibited substantial improvements in predic-
tion performance for deep networks applied to image classification (Foret et al., 2020) and
NLP (Bahri et al., 2022) problems.

In introducing SAM, Foret et al motivate it using a minimax optimization problem

min max ¢(w + €), (1)
wlel|<p
where £ : R? — R is an empirical loss defined on the parameter space R?, ||-|| is the Euclidean

norm on the parameter space, and p is a scale parameter. By viewing the difference

max {(w + €) — £(w)
llell<p

as a measure of the sharpness of the empirical loss ¢ at the parameter value w, the criterion
in (1) allows a trade-off between the empirical loss and the sharpness,

max f(w + €) = ¢(w) + max l(w + €) — {(w).
llell<p llell<p

sharpness

In practice, SAM works with a simplification based on gradient measurements, starting
with an initial parameter vector wy € R? and updating the parameters at iteration ¢ via

o w Vi(wy)
W1 = Wy 77V€< t +pHV€(wt)H> ; (2)

where 7 is a step-size parameter. Our goal in this paper is to understand the nature of the
solutions that the SAM updates (2) lead to.

In Sections 3 and 4, we consider SAM with a convex quadratic criterion. The key insight
is that it is equivalent to a gradient descent method for a certain non-convex criterion whose
stationary points correspond to oscillations around the minimum in the directions of the
eigenvectors of the Hessian of the loss. The only stable stationary point corresponds to
the leading eigenvector direction: ‘bouncing across the ravine’. (Notice that this is not the
solution to the motivating minimax optimization problem (1), which is the minimum of the
quadratic criterion.)

In Section 5, we analyze one of SAM’s updates near a smooth minimum of the loss func-
tion £ with a positive semidefinite Hessian. For parameters corresponding to the solutions for
the quadratic case, we see that the SAM updates can be decomposed into two components.
There is a large component in the direction of the oscillation (bouncing across the ravine),
and there is a smaller component in the orthogonal subspace that corresponds to descend-
ing the gradient of the spectral norm of the Hessian. Thus, SAM is able to drift towards
wide minima by exploiting a specific third derivative (the gradient of the second derivative
in the leading eigenvalue direction) with only two gradient computations per iteration. In
Section 7, we present some open problems, the most important of which is elucidating the
relationship between wide minima of empirical loss and statistical performance.
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2. Additional Related Work

Du et al. (2022) proposed a more computationally efficient variant of SAM. Beugnot et al.
(2022) studied the effect of a large learning rate with early stopping on spectrum of the
Hessian in the case of quadratic loss.

Cohen et al. (2020) provided a variety of natural settings where, empirically, when neural
networks are trained with batch gradient descent and a fixed learning rate 7, the spectral
norm of the Hessian tends toward 2/n, the “edge of stability”. Here, if the gradient is aligned
with the principal direction of the Hessian, the solution “bounces across the ravine”, as in
the analysis of this paper. A number of theoretical treatments of this phenomenon have
since been proposed (Ahn et al., 2022; Arora et al., 2022; Damian et al., 2022). The most
closely related of those to this paper is the work of Damian et al. (2022), who also described
conditions under which “bouncing across the ravine” tends to decrease the spectral norm
of the Hessian.

In independent work posted to arXiv after the initial version of this paper, Wen et al.
(2023) performed a variety of analyses of SAM and some related algorithms. Their results
included showing that SAM almost surely converges in the limit in the convex quadratic
case for suitably small values of various problem parameters, along with asymptotic analysis
showing that, under assumptions on the loss function and on the existence of a suitable
manifold of loss minimizers, once SAM gets close enough to this manifold, it approximately
tracks the path on the manifold of gradient flow with respect to the spectral norm of
the Hessian. Our analysis of the convex quadratic case reveals an equivalence to gradient
descent on a non-convex objective and uses it, under explicit conditions on the various
problem parameters, to give explicit convergence rates to a limiting set. And under an
explicit smoothness condition on a non-quadratic loss, we show that the SAM update from
this set corresponds to gradient descent in the spectral norm of the Hessian. Wen et al.
(2023) also extended their asymptotic analysis to a stochastic version of SAM, in which
both gradients at each step are estimated from a single training example, showing that the
approximate gradient flow in this case is with respect to the trace of the Hessian.

3. SAM with Quadratic Loss: Bouncing Across Ravines

We first consider the application of SAM to minimize a convex quadratic objective £. With-
out loss of generality, we assume that the minimum of ¢ is at zero, the eigenvectors of £’s
Hessian are the coordinate axes, and the eigenvalues are sorted by the indices of the eigen-
vectors. Accordingly, for A = diag(Ay,...,Ag) with Ay > -+ > Ay > 0, we consider loss
((w) = 2w Aw. Then V/(w) = Aw and SAM sets

Vi (w
Wt = W Ve (“’t * puwguﬁu)

- <I A — P A2> w. (3)

[[Awwe|

The following is our main result.

Theorem 1 There are polynomials p and p' and an absolute constant ¢ such that the fol-
lowing holds. For any eigenvalues \1 > Xa > ... > Ag > 0, loss {(w) = %wTAw with
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A = diag(A1,...,Aq), any neighborhood size p > 0, any step size 0 < n < ﬁ, and any

§ >0, if wy is sampled from a continuous probability distribution over R?
e whose density is bounded above by A € R, and
e for R > npA1 and q > 0, with probability at least 1 — 9, ||wp|| < R and w(QJ,l > q,
and w1, wy, ... are obtained through the SAM update (2), then, if K = A1 /g, for all
e < p'(1/A1, Ma,m,0,0,1/p,1/A,1/R, q),

with probability 1 — 26, for all

KP 1
t> d log | —
- (nAdmin{nAd,)\%/Ag—l}—i_ )p<0g<€>>

one of the following holds:

o |lw; — Z"_’\%H < e and ||wy1 + Z@%H <€, or

3 A
o llwe+ 35 < € and fwi — 55 < e

Theorem 1 has the following corollary.

Theorem 2 For any eigenvalues \1 > Ao > ... > A\g > 0, any neighborhood size p > 0, and
any step size 0 < n < ﬁ, if wo is sampled from a continuous probability distribution over

R¢ with E[||lwg||?] < oo, then, almost surely, for all € > 0, for all large enough t, the iterates
of SAM applied to the quadratic loss {(w) = %wTdiag(Al, coy AQ)w satisfy:

o [lwy — 22| < € and |lwir + L2 <, or

™ 2—nA1
3 A
o llwe+ 55 < € and lue — 23 <.

Our analysis shows that, when SAM is initialized far from the optimum, training pro-
ceeds in two stages. Early, the objective function is reduced exponentially fast, with the
most rapid progress made in the directions with highest variance. This can be seen, for
example, in Figure la, which plots the first 30 iterates of SAM initialized at (2,2) in the
case that Ay = 1 and Ao = 1/2, = 1/5 and p = 1. After a certain point, however, SAM’s
iterates “overshoot” in the direction of highest variance, as can be seen in Figure 1b, which
is the same as Figure la, except zoomed in to the region near the origin, where the details
of the later iterates can be seen. During this second phase, the share of the length of the pa-
rameter vector in the first component increases, and the process converges to the oscillation
described in Theorem 2. Note that, as illustrated in Figure la, due to the normalization by
|lwe||, the parameter vector can jump away from a position very close to the origin, with a
correspondingly very small loss. However, as we will see, the training process makes steady
progress with respect to a potential function that we will define in Section 4.3.
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Figure 1: The first 30 iterates of SAM, initialized at (2,2) with A\; = 1 and Ay = 1/2,
n=1/5and p=1.

4. Proof of Theorem 1
In this section, we prove the following theorem, which implies Theorem 1. We denote
max{z,0} by [z]+.

Theorem 3 There is an absolute constant ¢ such that, for any eigenvalues Ay > Ao >
e > Ag >0, loss l(w) = %wTAw with A = diag(A1,...,\q), any neighborhood size p > 0,
any initialization parameters R, A,q > 0, and any step size 0 < n < ﬁ, for all 0 <
€ < min{\/n)\l/Q, 1/(2,0)\1)./77;))\%/2}, for all 6 > 0, if wg is sampled from a continuous

probability distribution over RY
e whose density is bounded above by A € R, and
e with probability at least 1 — ¢, ||lwo|| < R and w(2J,1 >q,

and wi,wa, ... are obtained through the SAM update (2), then, with probability 1 — 25, for
all

63 4
t > . 2 log | —
nAS min {7])\(1, o 1} nA1
2

22 2

+ ! log A0+ npXi)” + log =
A2 A2¢2

min {n)\d, 1 — 1} d€ q

A3
R 9‘6d+3R3
[log <W1 )} | log <(nAd)d+3(npA1)3)

R
2 [log (WI>L
2 log (2A\1R) +
NAg min {n)\d, )\—% — 1} NAd
47Td/2(477p)\2)d 1 [log (n/§\1>]+
1
+log T(d/2)0nMa
2
L6 (20t neA)
N1 Ad€
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one of the following holds:

npAiel npAiel

o ||wy — R | <e and ||wir + R | <e, or
o flw+ 2| < € and [lw1 — L] <e.

The proof of Theorem 3 requires some lemmas, which we prove first. Throughout this
section, we assume that nA; < 1/2 and we highlight where the assumption A\; > Ay is used.

The evolution of the gradient V¢(w;) = Aw; plays a key role in the dynamics of SAM.
To simplify expressions, we refer to it using the shorthand v;. Substituting into the SAM
update (3) for the quadratic loss gives

Vi1 = (I —nA — WAz) U,

[

so, for all i € [d] and all ¢, we have

22
Vi1 = <1 — A — lLical > Ut

o
NpA; ) Ut
=(1-— )\i V|| — L ’
=) (Il = 225 )
Ut,i
= (1 =nX) ([loel] =) 777
el

where 7; 1= npA2/(1 — n\;).
We need the following technical lemma.

Lemma 4 Forz >0,0<a<b, a> >0, and aa > bB3, we have a*(z —a)? > b*(z — 3)?
iff © < (ac +b5)/(a+ ).

Proof Substituting shows that v*(x — 3)? — a®(z — a)? = 0 at x = (aa + bB3)/(a + b) > 0.
Also, b%(z — B)? — a?(x — a)? < 0 at = 0, which shows that the other zero of this convex
quadratic occurs at « < 0. |

4.1 Some properties

The following lemma identifies some properties of SAM with the convex quadratic criterion.
It shows that the magnitudes of the components of the gradient vector v; have fixed points
under SAM’s update when the gradients are in the eigenvector directions and at distance
B; from the minimum, it shows that the norm of v; determines how the magnitudes of its
components grow, both in absolute terms (where the critical values are the ;) and relative
to the first component (where the critical values are the «;), and it shows that, for b = npx\%,
the set {v : ||v]| < b} is absorbing. Recall that we have assumed that nA; < 1/2.
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Lemma 5 Fori=1,...,d, define

o npN

A 1_/’7A17

g= Lo npA;
‘ 2—17>\ 2 —n\;’

A=)+ (3= nAi)v
’ 1—nA+1-n)

b= (1—nA)n = npAl.

We have
) - 2 _ .2 _ _ d 2, .3 _
1. {(81, ceey8q) v, V1 <i < d, Vi1 = Vi = si} = {0} UU;_, co{B7e; : B; = Bi},

where co(S) denotes the convex hull of a set S and e; is the jth basis vector in RY,

2. For1<i<d, vt2+17i < U%i iff vl > Bi.

2 2
3. Suppose A\1 > Ao, v, > 0, and v?; > 0. Then fori € {2,...,d}, thé > iff
) ) t+1,4 t,1
el < ;.
4. g < - <pB1<ag<-rag <ap =7 and f1 < b. Furthermore, if A\q > 0 then
B1 < ag.

5. ||ve|| < b implies ||vegr|| < b.

Proof We have )

2 Ut
Vi = (L= 120)? (loell =) 7
[
and so, for all i, if Ut2+17l- = vf}i, then, either vzi =0 or (|Jue]| — )2 = [Jve]|?/(1 — ).
This quadratic equation has only one non-negative solution, |lv|| = 5; (and for ||v¢|| > B;

vtzﬂyi < Ugi, proving part 2). And so if vy ; # 0 for some 4, then every v, ; with ; # 3; must
have v; ; = 0, and in that case, ||v¢||> = Zjiﬁj:ﬁi vt%j. This proves part 1.
To see why part 5 is true, notice that, if ||v|| < b, we have
2

v,
e =) (1 = ) (ol — %’)QT s
- vl

vZ,

K

<> (@ -nN)? maX{Hthza’Y?}Hvtnz

7

< max {(1 - ) max{uvtrw}}

< max {max{(1 - A2, 71}

= max {max{(L - nA)*(1 = nh)*7. (1= nhi)*27})
= max { (1 —nAi) "7}

= (1 —n\1)?y2 = b2
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2 2 2 2
For part 3, vt+171/vt71 > Ut+1,z'/”t,z‘ iff

(1= nA)*(loell = 71)* > (1 = n2)*(loell = 7)*.

But because 1 —nAi <1 —nXy <1 =1, 71 > 72 > 73, and (1 — A1)y > (1 —nA2)ye >
(1 — nAi)ys, we can apply Lemma 4, which shows that for |[v;]] > 0, this is equivalent to
[og]| < .

To see part 4, first notice that, for f(z) = 22/(2 — nz), f/(z) > 0 for all x € [0,1/n),
which implies that the 3; are non-increasing in i. Also,

(1= + (1 = 1Aa)ya > Sk ) "2 - 77)\171 = b,
1—nh+1-n)\ I—=nA1+1-n)\g 2—-nh

and the last inequality is strict iff A\; > 0. Also, for ¢ < j, 75 > v; and 1 —nX; <1 -1,
hence

_ A=)+ (0 = nAi)v
‘ I—nhi+1-—n\

o A =nd )y + (1 —nki)y

- 1—nM+1-n\

o A=nd)y + 0 =Xy

- 1—nA+1-n);

= Oéj.

Finally, 81 < (1 —nA1)y1 because nA; < 1.

4.2 Early descent

In this section, we show that SAM rapidly descends towards the gradient ball ||v:]| < b and
that under our conditions on the initialization, it reaches this ball with the magnitude of
the first component, |v; 1|, bounded away from zero. We shall see in Section 4.4 that this
ensures SAM, applied to the quadratic loss ¢, converges to the leading eigenvector direction.

The following lemma shows that when the solution is far from the optimum, SAM
rapidly descends toward the optimum and the relative magnitude of the first component of
the gradient does not get too small.

Lemma 6 Suppose that, for R>0, we have ||vg|| < R. For anyt > T := [log(R/b)]+/(n\a),
we have ||vg]| < b.

Furthermore, if, for A >0, ||vi]| — 1] > A for all t, then there is a Ty < T satisfying
lvr, || < b and

d 2 2T \d 2
Do VT < <2R> D ima Vh

- 4

2
V0,1
Thus,
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Proof If R <b, the lemma is an obvious consequence of Part 5 of Lemma 5 ; assume for
the rest of the proof that R > b.
Notice that ||v¢]|> > (|Jve]] — v:)? if and only if 2||v¢]| > 7;. But

b=(1—n\i)m >7/2> /2.

Thus, for any ||v¢|| > b, we have

d 2
Vi -
o> =D (1 = nxa)? (loell = %)* 5
— v
< max(1 = nA;)?[fve ]|
K2
= (1= nAa)*[lue ). (5)

From Lemma 5, part 5, if ||v;|| < b then [|vg|| < b for ¢/ > t. Thus, for all ¢ satisfying
(1 — nAg)t|vo|| < b, we have ||v¢|| < b. This is equivalent to

log([lvoll/b)
~ log(1/(1 —nAa))

Since log(1 — n\g) < —nAg, it suffices if

log(R/5),

t>T =
- NAd

For the second part of the lemma, as long as ||v|| > b we have

Vi (=02 (vl = 7i)?o7,
viaa (U =nA0)2(lvdl — )%,
(1= nx)*[JoelPo;

(1 —nA1)2A%07)

(1 —nXa)*R?v},

(1- n)‘l)ZAQUtQJ.

<

Thus, if Tj is the first iterate for which ||vg,|| < b, we have

2 2T¢ d 2 27 ~d 2
UTy i 2R\ 70 X ia Vg, 2R\ Do Vg,
2. S\A) T2 S\A) e
UTo,1 Yo,1 0,1
completing the proof. |

If [|o¢|| = 71, then vy = 0 for all ¢ > ¢, and, if |Jv;]| is very close to v;, the first
component of v;11 could be small enough that it takes a long time to recover. Lemma 7
establishes that this is unlikely.
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Lemma 7 Fiz a constant A and R > 0. For all § > 0, if vg € R? is chosen randomly from
a distribution such that Pr|||vg]| > R] < d, and whose density is bounded above by A, then,
with probability 1 — 26, for all t, |||lve|| — v1| > A, where

_ T(d/2)8 ()33 "
- 47rd/2(2’yl)d_1T0A 9.6d+3R3

and Ty = [ﬂog(f%/db)h-‘ . Thus,

qd+3 p3
1 [log(R/b)] log (%) log <47rd/2(271)d_1[log(R/b)]+A>

log 3 < ha T(d/2)0nhg

Proof Before delving into the details, here is the outline of the proof. We argue that at
every step when ||v¢]| is bigger than 71, the density is small, and hence ||v¢41]| is unlikely to
fall in the interval [y; — A, v +A]. We consider all steps until ||v;|| < 71 +¢€, where € is larger
than A and is chosen so that, if ||v|| < 71 + €, then ||vi41] drops below y; — e < v — A,
We choose € = nAgy1/(2 — nA\g) for this purpose: the proof of the previous lemma shows
that [|ver1]] < (1 — nAg)||lvt]l, and with our choice of €, ||v¢]| < v1 + € implies ||ve1]] <
(1 =nAg)(7 +¢€) <1 —e. We compute an upper bound on the factor by which the density
increases at each step when ||v;|| > 1 + €. Lemma 6 shows that there cannot be many such
steps.

Let f denote the mapping from v; to v;41 whose domain is {v : ||[v|| > 71 + €}, so that if
we define G = diag(1 —nA1,...,1 —n\g) and H = diag((1 —nAi)y1,- .., (1 —nAg)va), then
we can write

F(v) = Gu+ H-—.
[v]]

If j1 is the density of v; and f is invertible, and we denote the Jacobian of f~! by Vf~!,

then the density py41 of v441 is the pushforward measure

pg1() = e (fH @) (V) ()]

To see that f is indeed invertible, we write v = r9, for r > 0 and ||9|| = 1, and y = f(v).
Then

y=Gv—Hvo=(rG—H)7.

To see that rG — H is invertible, note that

rG — H = diag ((1 — nA1)r — (1 = nA)m, ., (1 = nAa)r — (1 — nAa)va)
=diag (1 —nA)(r — 1)y ooy (L =) (r — va)) ,

and each entry is positive because r = ||v|| > 71 > ;. This means r is the unique solution
toy' (rG—H)2y=1and o= (rG — HY1 y, and then

v=ro=r(rG-H) 'y=(G-H/r) 'y

10
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To compute the Jacobian of f~1, let’s compute dr/dy; by differentiating the equation defin-
ing r. Adopting the shorthand ¢; = G;; and h; = H;;, we have

Zd:d 0
1d ng—h)

2y, dr yigi
& - : =0
(rg; —hy)?  dy; Z 2(rg; — hq)?
- dar_ 2

Tu d y2g:
Yi (rgj —hj)?2 >4 2(rgi—h:)3

1=

Next, we use v; = y;/(g; — h;/r) to obtain the 4, j entry of the Jacobian of f~!:

dv; _ dij n vih; dr
dy; — gi—hi/r (g — hi/r)*r* dy;
0ij n 2yihiy;
9IS gy — hafrr(rg; = 1y iy gy

Assembling these partial derivatives into the Jacobian V f~! yields the sum of an invertible

diagonal matrix and a rank one matrix. We can use the fact that det(A-+ab") = det(A)(1+
bT A~'a) to get an explicit expression:

d

1+ 2y;h

I (g0 hafr)r2rg — )2 Yy g B
i . (6)
Hi:1(9z’ — hi/7)

Since r > 1 + €, r < ||lvg]| and with probability at least 1 — ¢, ||vg|| < R, we have

det (Vf71) =

l9i — hi/7| = (1 —n\)

Recalling that n\g < nA\; < 1/2, this gives

77)\d
— h; > =
|9i — hi/7| 5

11



BARTLETT, LONG AND BOUSQUET

Defining B = %, substituting into (6), we get

lyl*2(1 = nA)m
d Y29k
BBriB*} 1 55gy e
1 p
T B Bt ming gty
1 4r3(1 — nAg)?
< —
~ B B (1 - )
1 SR>
= pd + Bd+3’7%
IR3
T By

|det (V71| +

= pd

Since the density of the initial vy is upper bounded by A and Lemma 6 shows that |jvr, || <
b < v +e for all t < Ty (with Ty as defined in that lemma), the density in the ring
{vim —A<|v|| <y + A} is no more than

o ( 9.64+3R3 )TOA
© \(pAag)®H33

Priyi — A <|lvo]] <+ A] <2AS3_1(m +A)A
od/2 -
=2A— A4
4ﬂ.d/2
I'(d/2)
0

< —
_TO

This implies that for all ¢,

<A (2y1)%7 14

where Sy_1(r) is the surface area of the (d — 1)-sphere of radius r in R%. Since there are at
most T iterations for which ||v|| > b, there are at most Ty steps for which ||v|| > 71 + €.
Clearly, Ty < Ty, which completes the proof. |

4.3 SAM as gradient descent

The analysis of SAM is complicated by the presence of the ||Awy|| term, which couples all d
components of the recurrence. Lemma 10 below shows that if we incorporate an alternating
sign, we can view SAM as a gradient descent update based on a non-convex objective
function J, defined in the following proposition.

Proposition 8 The function

d
1 1 Mq2
J(u) = §uTCu = [lAul = 5 > 7 -
i=1 "

12
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with ) 2
1 A
C =—(2I —nA) = diag (1,...,d)
np( ) b1 Ba
has derivatives
A2y
VJ(u) =Cu— —,
HA |
V3J(u) =C — ——AP A
HA |

where Py = I — Auu' A/||Aul||? is the projection on to the subspace orthogonal to Au.
Further, VJ(u) = 0 iff for some 1 <i <d, ||u|| = Bi/Xi and u € span{e; : A\j = \;}.

Also, for unit norm 4 satisfying V.J %A =0,
{2

2 &A> 9 (1 1> 1 e7
V<z M2 g g )ea taee |

J:Bi#Bi

which has |{j : B; < Bi}| + 1 positive eigenvalues, |{j : B; > Bi}| negative eigenvalues, and
{j: Bj = Bi}| — 1 zero eigenvalues.

Remark 9 Although J is not conver, it is well-behaved (see Figure 2). In particular, the
set of all stationary points with only non-negative eigenvalues is

M = {ueRd llu|| = i, u € span{e; : \; :)\1}},

and this is the set of global minima. There are no other local minima, since at all other
stationary points the Hessian has a negative eigenvalue. It is easy to see that all u € M

have J(u) = —p1/2. And, for example, if \1 > A2, then M = {—&el,flel}, and at
all other stationary points the Hessian has at least one negative eigenvalue no larger than

1/B1 = 1/B2 < 0.

Proof We have

VJ(u) =V <“T(I_”A/2)“ — m)

npe
2l - 77Au B A%y
np [ Aul|’
and
21 — nA A? A2y T A2
V2(u) = -1 o
np llAull T [[A]
_ T
_ 2 nA 1 A<[_Auu ;X)
np [[Aul| ([ Aull

13
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0.10
0.05
S 0.00
—-0.05
-0.10
-0.2 -0.1 0.0 0.1 0.2
ux

Figure 2: A heat map of the function J defined in Proposition 8 in the case that d = 2,
n=1/5p=1, A1 =1 and A2 = 1/5, along with the iterates ug, uy, ..., ugs from Lemma 10
when wy = (0.244,0.0224). The black pluses mark the stationary points.

Now, if u satisfies V.J(u) = 0, then
(2 —nAu A%y

|
( AL ) (21 —nA)u Au
= = >
[|A] np [ Aull
N ( A1 > (21 —nA)AAu Au
[| Al np [ Au]|?
N (A_2(2I - nA)) Au Au
np [Aull - [|Au]?’

that is, Au/||Au| is an eigenvector of w = diag(1/p1,...,1/Bq4) with eigenvalue

1/||Au||. Consider one such stationary point: (;e;, for some i € [d] and (; € R. We have

(2—nX)G _ MG
np AilGil

which implies
npXi B

14
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Nearly exactly the same reasoning implies that ||u|| = ’% for all stationary points u whose
eigenvalues are the same as e;. For such a stationary point,

2 —nA 1
2 _ _ —eel
VeI (u) = ” BiA (I eie; ) A

= 8 (ding(1/p1..1/80) - 5 (1 exel))
= A? Z (1 - 1) eie] + ieie;
siae N BT

The counts of eigenvalues of different signs follow from this and the ordering 51 > --- > (4
(Lemma 5, part 4). [ |

The following lemma shows that SAM can be viewed as gradient descent on the objective
J. Note that the lemma does not require that Ay > As.

Lemma 10 For ug := (—1)'wy, if |Jwe|| > 0 for all t, the iteration

2 Wt 4
" Aw

Wit1, = —NPA + (1 = nAi)wy

fori=1,...,d is equivalent to
U1 = ug — npVJ (wr),

where J is defined in Proposition 8. Furthermore,

d 2
1 Bi
J —J(u) < ==Y g, (11— 2 — )2\
(ut+1) (ut) = 2)0 pa Ug i ( HAUH> ( n )

Proof From (3),

w1 = (1) wi

— _1 t+1 <I— A— 77p A2>w
1) " TR ™)

U

21 — nA U
np [| Ay |
u (21 — nA)u
B ( (@1 = nhju HAutu)

2np
= uy —npVJ(ug).

15
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Applying the fundamental theorem of calculus twice and using the fact that V2J(u) <
(21 =nA)/(np),

J(uey1) — J(ur)
1
0

(e — )T /O 1 <VJ(ut) +h < /0 "2+ wh(ugr — ) dm) (1 — ut)) dh
2l — A

1
< VJ(ur) " (g1 — ue) + E(ut+1 — ut) (wpr1 — ug)

= —npVJ(uy) VI (ug) +npVJ (u) " <1 ’72A) VJ (ur)

(21 nA A )2
= —npu u
! np [Aul )

N <2I nA A? > <I 77A> <2[—77A A? >
npu - = - u
¢ np [[Aul| 2 np [[Aul|

— _npul <2[—77A_ A? 77A<2[—77A_ A? )
! np [Aul ) 2 np [[Aul
A

2 —n\; 22 )2 n\i
= —np Uy 4
Z b ( np (A} 2

i=1
d 2
1 2 < 77P)\2 > 2
TP e RN DY
2p; A\ o) @7
d

1 B \?
- 27 Z’U, t,i <1 - ||A’ZL||> (2 - 77)\2')2)\2'7

=1

where £; = npA?/(2 — n)\;) as before. [ |

The following lemma shows that SAM cannot spend too much time with ||v|| large,
because J is non-increasing and it decreases a lot when ||v¢]| is large. Lemma 5 part 2 shows
that the norm of v; decreases when the norm is larger than 1, and the lemma shows in
particular that the norm cannot stay much larger than j;.

Lemma 11 Fore >0, and |lvg,| <,

2

—_— < max Sﬂl
ne2Af1 \|Aw||<b,se{~1,1}

ne2\iBa’

{t=To: o] > 1+ e)B1}| < J(sw)—m&nJ(u)) <

16



THE DYNAMICS OF SHARPNESS-AWARE MINIMIZATION

Proof From Lemma 5 part 4, 3; < /31, and the definition of 5; implies that A;/3; > A\1/f1.
Thus, whenever ||v|| > (1 + €)f1, recalling that nA; < 1, Lemma 10 implies

1 i 2
J(ut+1) — J(ut) < —— Zu?ﬂ <1 — ”AﬁutH) (2 — 77)\1)2)\1

2p 2« \ M, Jor] 1A

Bi >2 (2 =nAi) A\
Bi

Bi >2 Ai
1— i
vl ) Bi

IA IA IN
| | |
o3 IS IS
M=~ IM=~ L]
=
S S S
Q:w q:w q:w
+ = T T
| |
—
tlw
o | S
S~—
=
=
N———
(Y]
SNl

and since J is always nonincreasing, this means there can be no more than

2

— max J(sw) — min J(u
ne2\1 B <weRd,se{—1,1}:Aw||gb (sw) u ()>

iterations like this.

17
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For the last inequality, we have

1
max J(sw) = max max | -w'Cw — z
[[Aw||<b,s 0<2<b ||Aw||=2

I 21y )‘% )‘?l -1
= max max [ v A "diag | —,...,=¢ | A" v —z
0<z<b [|v]|=2 2 ﬁl ﬁd
max ma <1v dia, (1 1>v z)
= X x| = —
0<2<b ju]|=2 \ 2 S\B B

52
= — — Z
0<z<b 284

b2
=——b
284
<2
Ba
since b < 20.
Since min,, J(u) = —f1/2, we have
288 B _ 36%
max J min J <—4+ =< —,
[[ull<b (u) = min () Ba 2 T 284
since By < B1. |

4.4 Avoiding non-minimal stationary points

Lemma 10 shows that the set of global minima of J is a sphere of radius £;/\; in the
subspace spanned by the e; with A; = A;. To simplify notation, we assume that Ay > Ag,
so that this subspace is in the e; direction. Then to ensure that J decreases to a global
minimum, it suffices to keep |[Ajwy 1| = |vg,1] away from zero and ||v¢|| # B1. The following
quantity measures the extent to which v; still has “energy” in components other than the
first.

Definition 12 Define §; = 1 — ‘|7521|||'

Lemma 13 We have

whenever this bound is most 1/2.

18
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Proof We have

v
[|ve]

S =1-
1
1= d
\/1 + D i UtQ,i/th,I

d 2
< 1 D io Ut i

= 2
2 Vi

since, for all 0 < a < 1, we have 1 — 1/y/1 + a < /2. Indeed, this inequality is equivalent
to

2
2
a2 ol
— 11—+ 1+
a+4+4
_1q a?(3 —a)
4

Lemma 5 part 3 shows that the first component increases relative to the other compo-
nents when ||v¢|| < ag. But as long as Ay > 0, part 5 shows that oy > 1, and in that case
Lemma 11 implies that ||v;|| does not spend too much time above ay4. Our assumption that
A1 > Ao ensures that the first component of v; increases in magnitude relative to all the
other components; otherwise, the equations describing the evolution of the first and second

components are identical. The key constant depends on both \; and the gap between \;
and Asg.

Lemma 14 Define

)\2
/= min {n)\d,)\% — 1}.
2

If 1)15271 > 0, the following two statements are equivalent:
vt2+1,i 1 vy
vty (L4 p)?e?
[[ve 2—1n\ < 3)
< 1+(1+pu)—5 |-
B 2=nA = (nAa — p) — nAap ( )A?

Thus, if vzl >0 for all t,

Vi1 1 v
t: ||ve]] < b and for somei € {2,...,d}, > ’ <T,

Ut2+1,1 (1 +p)? Utz,l

19
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where
36103

nBaNy
Furthermore, if Ty is such that ||vg,|| < b, then

5 1< 1 >2(T‘T1)< 2 )QTI S a3
T4+1 < T — —

2\1+pu N1 L

T =

provided that T is large enough that this upper bound is less than 1/2.
Thus, for all € < 1/2, 0741 < € provided

2 4 1 S 3
T>—[Ty1 — —1 .
_u< 10g<ﬁ)\1>+20g< 2ev7, |

Proof For the equivalence, notice that the evolution of v; implies that

2 2
Vit I v,

Vi (L+p)?of

if and only if
(L =m0 ([Joell = 71)? > (L4 @) (1 =20 ([[el| = 7)*. (7)
We can apply Lemma 4, because 0 < 1 —nA; < (1 + p)(1 —n\;), 71 > v, and

(I=nA)m = (L+ )1 =nXi)v

& A= (14 p)A

2
<~ )\7%_12,“7

)

which follows from the definition of . Lemma 4 implies that when ||v¢]| > 0, (7) is equivalent
to
(1 =nA)yn + A+ p) A =nXi)v
L—=nA1+ (14 p)(1=nAi)
Because the right hand side is a convex combination of v; and ~;, because v4 < - -+ < 79, and

because the convex coefficients are also ordered (1 —nAy < --- < 1—n)\;), these inequalities
for all 7 are implied by the corresponding inequality for ¢ = d, which is

(1 =n )y + (1 + p)(1 —nAa)va

L—nA+ (14 p)(1 —nAqg)
[ | o 2= nA1 ((1 —nA)m + (1 +p)(1 - U)\d)’Yd)
B (I—nA)m L—nA1+ (1 +p)(1—nlg)

[oel <

_ 2—nhi < 1+m( —nM)%;)
2 —nhi — (nAg — 1) — nAap (1 —=nA)m
2 — 77)\1

)\2
— 1+ (1+
2 — A1 — (NAg — 1) — nAap ( ( mX“)

20
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This proves the first part of the lemma.
Hence, for each iteration when, for some 2 < i < d,

2
Uiy, S 1 Uti

vty (L )Py

we must have

[[vell 2 —n\ ( A§> A
> T+ (1+p)22 ) > 1+ (1+p)=d,
Bi T 2—n i — (g — p) — nAap (1+8) AT (144 A

where the inequality follows from 0 < p < nAg and n < 1/A;. Lemma 11 implies that the
number of these iterations for which we also have ||v¢]| < b is no more than

361 _ 36
2\ 2 — )\4 -
n ((1 +M)%) 184 nPada
1

1.

For the third part, consider the sequence of steps from ¢t = Ty to t =1 > Ty. There are

at least T'— T} steps when
Vi 1 Uiz
vty (L4 p)? Ut2,1 ’

and no more than 77 steps when this fails, and for those steps we have

”§+1,z‘ (- ) (lvell = i

”1:2+1,1 B (1 —=nA1)2([vell =7
(1 —nXa)*3 ”f,z‘
T (L=nA)2(b—m)?vf,
o (—ma)? v
(1= nA)?n2A o7y

2
Ut
2

Vi1

)2
)2

(We used the fact that 0 < |lv¢|| < b < 41, and so (v; — ||v¢]])? < ~2.) So we have

i, VEy1i < 1 —h (1 —nXg)? nyd, Uy
— (1 +p)? ( '

’U%_H’l +u 1 —nA1)2n2\2 v%ml

Applying Lemma 13

1 <1)2>T‘T1 <( (1 —nXa)? )Tl Y, vk,

5 < = :
S22 \(1+u 1—nAp)2n2A2 vF, 1

if this bound is at most 1/2. Solving for T', for all 0 < € < 1/2, for all

d 2
1 1 1—nA 1 i
log(1 + p) (1 —nA1)nA 2 2ev, 4
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2

we have §; < e. Noting that u = min{n)\d, % — 1} < g < A\ < 1/2 completes the
2

proof. |

Once the first component of v; dominates, the recurrence becomes essentially one-
dimensional, and its convergence is easier to analyze, as the following lemma shows.

Definition 15 Let s; = sign(ve1).
Lemma 16 If |jv]| > 0,
Vir1,1 — (—=stb1) = —(1 = A1) (ve1 — seB1 + s¢710¢) -
If 0 < ||lop]| < b and for allt > T, § < %, then for allt > T,
lvepra — (1) TspBr| < (1= nA1) (Jors — (=1 TspBi| + 1) -

Proof From the recurrence for v;, we have
1
Vi1 = (1 — 1) (1 - 'y) Vg1
[[oe]
|vea|

[[ve]
v 1]

= (1 =nA)ve1 — s¢br <1 —(2—=1n\1) (1 " ol >> +st81(1 = (2 —nA1))
= (1 =nA1) (vt — se61) — se81 (1 — (2= nA1)6y) -

=1 =n\)ve1 — (2—=nA\)seSr

So

V11 — (=8t81) = —(1 = A1) (ve1 — s¢B1) + 8¢61(2 — nA1)dy
= —(1 = A1) (ve,1 — 8¢61) + se71 (1 — nA1)éy
= —(1 —nA1) (ve,1 — seB1 + 5e716¢) (8)

which is the equality in the lemma.

Since ||vr|| < b, Part 5 of Lemma 5 implies that for all ¢ > T, ||| < b, which in turn
implies 0 < spvy1 < b. Since 0 < b/2 < f1, and |ve1 — s¢01| = |s¢ve,1 — Bi], this implies, for
allt > T,

v — seBe] < b— B = (1 —nii)p. 9)

By the triangle inequality for the absolute difference, since d; > 0,

[ver1,1 = (=seB1)| < (1 —nA1) (Jogr — seBr| +716¢)

which in turn implies

min {|vip11 — Bil s [vee1 + Bil} < (1 —nA1) (g — sebi] + 710e) -

22
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Because g1 > 0,

[Vir1,1 — Se1 81| = min {{ver11 — Bal s [veg1,1 + Bil}

SO
i1, — s 61 < (1= A1) (Joea — seBa| + 1de) - (10)
It remains to show that, for all ¢ > T, if §; < %, then s¢y1 = —s4.
To see this, assume as a first case that s, = 1. Then (8) implies
vir1,1 = —B1 — (1 = nA1) (ve,1 — Br + 716¢)
< =B+ (1 —nh) (logg — Bl +716)
< =B+ (1 —ni) (1 —nA1)B1 +né) (by (9))
<0,
since §; < ")‘éﬁl, SO si41 = —1.
Similarly, if s; = —1, then
V1,1 = B — (1= nA1) (ven — B+ 116e)
> B — (1 =nA1) (Jogg = (=) +7161)
> 0,
80 Si+1 = 1. The last inequality of the lemma then follows by induction. |

Lemma 17 If Ty is the first iteration where ||vy, || < b, then, for all

. [nA1B1 nA 1 By
0 S - =
<€<mln{ 2/}/1 72’}/1,b, 2 )
d 2
2 (3613 ( 4 ) 1 Y o VT, 6 <1>
T, == log [ —— ) + =log [ =220 ) ) 4 2 (=),
S <nﬂd)\3 & N\ 9 8 2e20%, N\ €

for all t > 15, we have

e — (=1 257, 81| < € and 6 < €%

Proof The last inequality of Lemma 14 implies that, for

o |2 A3 4 1 42
pedef | 2 (301 1 og <> + L og 21522 T ’
po\ nBaAg nA1 2 2e“v, 4
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we have
Vit > t* 0 < €2 (11)

For all t > t*, since §; < €2 < %, by Lemma 16, we have

)Ut+1,1 - (_1)t+1_t*3t*51‘ < (1-n\) ‘Ut,l - (—1)t_t*5t*ﬁ1‘ + 7162

If ‘”t,l — (—1)t_t*st*ﬁ1‘ > €, this implies

V1,1 — (—1)”1%*3“51‘ < (I =Xt + 7€)

V1 — (—1)t7t* St*ﬂl‘ .

Since € < %, this yields

¥ )\ 4%k
}Ut+1,1 - (—1)t+1 K St*ﬁl‘ < <1 - 77;) )Ut,l - (—1)t K St*ﬁl)o

Since |lvg|| < b, |vg=1| < b, which, since 1 < b, implies |vg 1 — s¢<51| < b. Thus, by
induction, for all ¢ > t*, we have

77>\1 t—t*
’th,l — (—1)t+17t St*ﬁl‘ S <1 — > b.

2
Thus, if ¢t > To = t* + % In (%), we get }th,l — (—1)t+1_t*st*,81| < 'e. Since € < (3/2, this
implies s;41 = sign(vey11) = (—1)+17 5. Since, € < 1/b, this completes the proof. [ |

Lemma 18 For all 0 < e <1, if |vg1 — (1) s, 81| < € and §; < €2, then
lvr — (1) s, Brer|| < 2(1 + Br)e.

Proof If §; < €2, then

e 2 17" (12

We have
loe = (=1)" " 57, Brea ||?
= (v = (=) 51,87 + > v
1>2
<&+ Zv?l
i>2
=&+ [lul® = vf
<é+ (u_lez)g — 1) viy  (by (12))
<1+ 31}21) (since 0 < e<1)
< E(1+3(e+5)?)
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since |vg1 — (—=1)1" 257, 81| < €. Since /1 +3(1 + x)2) < 2(1 + =) for all z > 0, this com-
pletes the proof. |

Lemma 19 If Ty is the first iteration where |vg,|| < b, and Ty is defined as in Lemma 17,

then, for all 0 < e < min{,/zniiiﬁl, %, %,/31, 1} for any

9 A3 4 1 21+ B1)2 4, 02 21
1> 2 361 L log () + Lhog ( ﬁ12) Zzz_z ). 61n< (1+ 51))
o\ nBary nA1 2 V7, 4 ni €

we have

vy — (1) s, Brea|| < e

Proof Combine Lemmas 17 and 18. [ |

Lemma 20 For any s € {—1,1}, and any t,

< HUt - 35161\\‘
< by

spiel
Wt — )\1

Proof Since w; = A~ vy, we have

sprer
A1

= HA_lvt — A_lsﬂlelH

Wt —
< (1A lllve — sprea

1
= )Td”vt — spie|

4.5 Putting it together

In this subsection, we combine the lemmas proved in earlier subsections to prove Theorem 3.
For A = diag(\y, ..., Ag), our analysis tracks the evolution of vy = Ve(w;) = Awy.

By assumption, with probability 1 — §, ||wp|| < R and w(2),1 > ¢q. Let us assume from
here on that this is the case. This implies |lvg|| < A1 R and val > \2q.

Let Ty be the index of the first iteration that ||v.|| < b holds.

Lemmas 6 and 7 imply that, with probability 1 — 29, for A defined as in Lemma 7, we

have
S0 2 [ (AlRﬂ (2)\1R> A2R?
log [ =22 200 | < = g | &= lo +1o L
g( U%O’l NAd & b n & A & Ual

L) () o (E) s

25
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Let us assume for the rest of this proof that this is the case.
Combining (13) with Lemma 19, for all

3 4
¢ Z 661A14 log <>
nuBarg nA1
1 2(1+ B1)? 2 MR 20 R R?
— (log | =—+-2 — |log | = 1 log [ —
—I—'u<0g< )\362 +77)‘d og b +og A + log .

6 214 /1)
+ Wh’l <)\d6 >

we have

loe = (1) sp,fren|| < Age. (14)

Applying Lemma 7 to bound log %, we get that
65123 4
t> b1 14 log ()
nuBary nA1

1 2(1 4 B1)? R?
o () (7))

9-69+3A3R3
[log (AlR/b)L— log (W)

2 MR
" NAdp [log <b>]+ <log (@hF)+ nAd
+loe [ T2 (2y) " log (M /b)) A
© T(d/2)6n)a

6 2(1+ p)
+ W In (Adﬁ )

suffices for (14). Substituting the values of u, 51, B4, 71 and b, simplifying and overapprox-
imating, we get that
63

4
t> log <>
nAS min {n)‘d’% — 1} n\i

1 4(1 +npA%)2> <R2>>
+ lo < +lo —

min {nAd, /\—% -

dfes(e)], (o es(at)], e (itit)

I\ _1}<10g( 1 )+ Y

2
21
2

NAq min {n)\d, v

+
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suffices.
Applying Lemma 20 completes the proof.

5. Drifting Towards Wide Minima

We have seen that when SAM is applied to a convex quadratic objective, it converges to an
oscillation that bounces across the minimum in the direction of greatest curvature. In this
section, we consider the behavior of SAM when it is applied to a smooth objective ¢ whose
Hessian may vary. Consider a point w, € R? in a d-dimensional parameter space that is a
local minimum of ¢, V{(w,) = 0. For notational convenience, we assume that

H := V*(w,) = diag(A1, ..., A\q).

In the neighborhood of w,, the smooth objective £ can be approximated locally by the
quadratic objective

1
ly(w) = l(w;) + §(w —w,) H(w—w,).
We are particularly interested in the overparameterized setting typical of deep learning,

that is, where the dimension of the parameter space exceeds the sample size so that there
are many directions in parameter space that do not affect the training objective. Suppose,

in particular, that A\;y > Ag > -+ > A > Agg1 = -+ = Ag = 0 for k£ > 1. Then since this
quadratic objective does not vary in the ex11,...,eq directions, for a point wy satisfying
e] (wo—w,) =0fori=k+1,...,d, if we initialize SAM at wy and apply it to the quadratic

objective £;, then it is clear that the condition e; (w; — w,) = 0 for i > k continues to hold

for all t. Thus, the result above shows that SAM converges to the set

{wz + f\iel} .

The following theorem considers SAM’s behavior on the smooth objective ¢ at these points.
It shows that SAM’s gradient steps have a component that maintains the oscillation in
the ey direction, a second-order component in the downhill direction of the spectral norm
of the Hessian, and a third-order component that is small if the third derivative changes
slowly. For a symmetric matrix M, Apmax(M) denotes the maximum eigenvalue of M. In
this section, we write D? as the symmetric, multilinear, ith-derivative operator and V! and
V? as the vector and matrix representations of the operators D' and D? in the canonical
basis eq,...,eq4.

Theorem 21 Suppose that £ is in C3, that D3¢ is B-Lipschitz with respect to the Euclidean
norm and the operator morm, and that w, € R? satisfies Ve(w,) = 0 and V/(w,) =
2?21 Aie; ® e;. For sy € {—1,1}, consider the point

stB1 NPA15¢

wt:wz‘f‘Tlel:wz"f'mel-
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Then, if Bnp <1, SAM’s update on ¢ gives

npA1St np° o\ >
- = -2 -— |1 >\max 14 z
G 2 a2 ( e —n>\1> Y Ama(VEL(2))

14 nA)3
+ np? (<g1>p +2(2\1 + Bp)n) B,

where ||C|| < 1.
Thus, if we define € := wy — w,, then for any p < ¢ and n < cp for some constant c,
there are constants c1 and co that depend on ¢, B and A1 so that

Wit — wy = —2¢ + ||e]|p (01V Amax (V20(w)) + CQpC) )

Proof Let
Vﬂ(wt)
Wy, = Wi + Pt
[VE(wy)]|
so that
Wi — wy = —nVL(wy,).
Let

Wy = Wi + sepey = w, + ¢(B1/ M1 + p)er.

(It may be helpful to think of @&, as what w, would have been, if SAM used ¢, instead of
¢.) We have

W1 — wy = —NVL(Wy,) + n(VL(wy,) — VE(wy)). (15)

First, we analyze V/{(i0,).
The fundamental theorem of calculus implies

sz(wz +eer)(- )
1
= D*(w.)(-,-) —I—/O D30(w, + zeey)(eeq, -, ) dx
1
= D20(w.) () + /0 (D30(w,) + € (D¥(w, + zeer) — D3(ws))) da (er, -, )
1
= D¥(w.)(-,-) + D3(w,)(eeq, -, -) + 6/0 (D3£(wz + xeey) — Dgﬁ(wz)) dz (e1,-,")
2B

= D2£(wz)('7 ) + D3£<wz)(6617 ) ) + TE(7 ')7
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where the linear operator E satisfies ||E|| < 1. Hence (using E to also denote the corre-
sponding matrix),

2
B
V2(w; + eer) = V2U(w:) + Y D*e(w:)(eer, eiej)ei @ ej + %E
i,j
= Z Aie; @ e; + Dgé(wz)(eel, e1, 61)61 ® eq

7

+ Z D3€(wz)(eel, er,ei)e1 ®e; +e;®eq)

i>1
3 2B
+ | Z D l(w;)(eeq, ei,ej)e; ® ej + TE.
i>1,7>1

Integrating from x = 0 to z = €, we have

Vi (w, + eeq)

= Vil(w;) + / V*(w, + we1)er dx
0

€
:/ (E )\iei®ei—|—D3f(wz)(SL’€1,€1,€1)€1 ® e1
0 i

+)  D¥(w.)(wer, e1, ) (e1 ® € + € @ ex)

i>1
3 ’B
+ Z Dol(w,)(xe1, e, ej)e; ®ej + TE e1dx
i>1,j>1

1>1

€ 2B
= / ()\161 + D?’E(wz)(wel, er,e1)er + ZD3€(wz)(acel, e1,e;)e; + 302E61> dzx
0

€2 3 B
= eler + 5 ;D E(wz)(el, e, 62')61' + ?Eel.

Substituting € = s:(81/\1 + p), the first term is

6)\161 = St (lBl + p> )\161
A1

2
=5 <277_P;1>\1 + p)\1> el
_ 2pAis
N 2 — T})\l
_ 2518t61
nA1

€1
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Thus,
nVAL(Wy)
e (B1/A1 + p)? 3 (B1/A1 + p)*B
el e; + Ny ZD l(wy)(e1,e1,€;)e; + nsy e Eeq
2 A A 3B
_ W, BNE NG () + WO B (16)
A1 2 6
where ||| < 1.

Now, we turn to bounding ||V{(w,) — V{(w,)||. (We will show that @, and w, are both
close to w,, so that the operator norm of the Hessian is not too big between them, and then
we will show that they are close to one another.) First, by the triangle inequality,

max{||w, — w;|], [Jwy, —w.[|} < B/ + p.

Since D3/ is B-Lipschitz, this implies that, for every w on the path from w, to w,,

IV2(w)]| < M+ B(B1/M\ + p). (17)
Furthermore, we have
Vé wt
o= inll = s = Tttt | (18)
TV w)l

Next,

Vi(w) = w( + fl 1)

ZW(wz)+/ v <wz+x< fl >> (Sfl ) da
0
= V20(w,) (Sz\ﬂlel)

1

—I—/Ol (Vzﬁ (wz +x( fl >> — V2€(wz)> <8§f1€1> dx

B B}
= s¢B1e1 + 222 §
for ¢ € R? with [|£]] < 1.

2
This implies ||Vl(wy)|| > 81 — 551 which in turn implies

2)2 7
Bp?
H v R H(HW (wo)] 1) et m%uw<wt>r§H
BpB1/(2)3) Bp,
S 1-BA/(2N)  2X3(1 - BB/(2X))
_ 2BB
202 -Bj;
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Recalling (18),
lhow = il < 52l
222 — Bp,
and by (17), this implies

2BB1p (M + BB/ + Bp)‘

_ U <
IVl(wy) — V()] < 22 _ Bp;

Putting this together with (16) and (15), there is a ¢ with ||¢|| < 1 for which

2815 n(Bu/Ai+p)?

Wi —wy = —T—e 5 V Amax (V2 (w.))
N n(B1/\ + p)>B . 2BnpBip (A1 + BfSi/A1 + Bp) ¢
6 222 — Bp,

which, substituting the value of 8; and applying Bnp < 1 and nA; < 1, implies

2
npAL5 n({ npM 2
- = -2 -3 >\maX l z
W1 — W 2_17)\161 2<2_77)\1+,0> A\ (Vl(w,))
14+ nX)3

+77p2 (( nA1)°p

G +2(2)\; —i—Bp)n) BC.

6. Additional Simulations

Figure 3 compares the trajectories of SAM (in blue) and batch gradient descent (in green)
1+Izuul§ /2
of the quadratic objective w% + w% /2, that has the same minimum, but, as wy moves away
from zero, is less sharp, in the sense that its Hessian has a smaller operator norm. When
SAM and GD are both started (0.1,0.1), with n = 1/5 and p = 1, GD dives toward the
minimum of 0, where SAM’s oscillation drives it toward less sharp solutions with larger
objective values.

Figure 4 compares the trajectories of SAM and GD in the same setting, except from
the initial solution (1,1). SAM behaves similarly to GD until they get close to the origin,
where SAM’s oscillations carry it to a less sharp minimum with a larger objective value.

Figure 5 compares the trajectories of SAM and SGD, where each stochastic gradient
is obtained by perturbing the gradient by a sample from N(0,0%1), for o = p/(2 — 7).
The perturbed gradients make the iterates of SGD sample a mix of solutions with varying
smoothness, where SAM systematically drifts toward less sharp solutions.

applied to + w% /2. It may be helpful to think of this objective as a perturbation

7. Conclusions and Open Problems

Our main result, Theorem 1, shows that SAM with a convex quadratic objective converges
to a cycle that bounces across the minimum in the direction with the largest curvature.
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Figure 3: SAM (in blue) and gradient descent (in green) applied to Hleg/Q + w3 /2 from an
2

initial solution of (0.1,0.1) with n =1/5 and p = 1.

-0.25 0.00 0.25 0.50 0.75 1.00 1.25
w1

Figure 4: SAM (in blue) and gradient descent (in green) applied to H-WT%Q + w3 /2 from an
2
initial solution of (1,1) with n =1/5 and p = 1.
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—-0.25 0.00 0.25 0.50 0.75 1.00 1.25
wi

Figure 5: SAM (in blue) and SGD (in green) applied to
solution of (1,1) withn=1/5, p=1and o = p/(2 — 7).

2
_ W 2 ...
Ful/2 + w5 /2 from an initial

Theorem 21 shows that for a locally quadratic loss, these oscillations allow gradient descent
on the spectral norm of the Hessian of the loss. SAM uses one additional gradient mea-
surement per iteration to compute a specific third derivative: the gradient of the second
derivative in the leading eigenvector direction.

Without the assumption that A; > Ay, Theorem 1 would necessarily be more complex,
since, informally, if A; = Ao, all solutions in the span of e; and ey are equivalent. It should
not be hard to remove this assumption while complicating some of the proofs, but without
significant changes to the main ideas.

This work raises several natural questions. First, how is the generalization behavior
affected by drifting towards wide minima? There have been several empirical studies of
stochastic gradient methods for deep networks that suggest favorable generalization per-
formance of wide minima (Keskar et al., 2016; Chaudhari et al., 2019). There have been
some analyses aimed at understanding this phenomenon based on information theoretic
arguments (Hinton and van Camp, 1993; Hochreiter and Schmidhuber, 1997; Negrea et al.,
2019) and PAC-Bayes arguments (Langford and Caruana, 2001; Dziugaite and Roy, 2017).
It is clear that any argument about generalization properties must take account of how
an algorithm solves an optimization problem over a parameterized class of functions, since
wide minima are a property of a parameterization (Dinh et al., 2017).

Second, how does gradient descent on the spectral norm of the Hessian behave, partic-
ularly in the highly overparameterized setting of deep networks? When other optimization
tools, such as momentum, are incorporated, how does this affect the behavior of SAM?
What is the nature of SAM’s solutions for losses, like the logistic loss, that are minimized
at infinity?
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On the technical side, it is straightforward to extend Lemma 10 to a local version, show-
ing that SAM with a locally quadratic loss converges to a neighborhood of the stationary
points of a function J defined in terms of the Hessian. It is less straightforward to show
that SAM avoids the suboptimal stationary points of J. It seems likely that this is true for
a stochastic version of the SAM updates, and the techniques developed by Ge et al. (2015);
Fang et al. (2019) should be useful here, which could lead to a nonasymptotic counterpart
of results of Wen et al. (2023) for a stochastic (batch-size 1) version of SAM.

Finally, can other higher derivatives be computed in the same parsimonious way as SAM?
Are there related minimization methods that target other kinds of minima, for instance, by
optimizing other measures of width of a minimum?
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