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Abstract

We consider the learning–unlearning paradigm defined as follows. First given a dataset, the goal

is to learn a good predictor, such as one minimizing a certain loss. Subsequently, given any subset

of examples that wish to be unlearnt, the goal is to learn, without the knowledge of the original

training dataset, a good predictor that is identical to the predictor that would have been produced

when learning from scratch on the surviving examples.

We propose a new ticketed model for learning–unlearning wherein the learning algorithm can

send back additional information in the form of a small-sized (encrypted) “ticket” to each par-

ticipating training example, in addition to retaining a small amount of “central” information for

later. Subsequently, the examples that wish to be unlearnt present their tickets to the unlearning

algorithm, which additionally uses the central information to return a new predictor. We provide

space-efficient ticketed learning–unlearning schemes for a broad family of concept classes, includ-

ing thresholds, parities, intersection-closed classes, among others.

En route, we introduce the count-to-zero problem, where during unlearning, the goal is to sim-

ply know if there are any examples that survived. We give a ticketed learning–unlearning scheme

for this problem that relies on the construction of Sperner families with certain properties, which

might be of independent interest.

Keywords: Machine unlearning, data deletion, ticket model, space complexity

1. Introduction

Machine learning models trained on user data have become widespread in applications. While these

models have proved to be greatly valuable, there is an increasing demand for ensuring that they

respect the consent of the users and the privacy of their data. One of the simplest and common

challenge is how to update a model when a user wishes to drop out of the training data. Re-learning

the model from scratch without this user’s data is a natural approach, but this can be computationally

prohibitive. Designing alternative approaches which aim to “mimic” this natural approach, without

the computational overhead, has come to be known as the problem of machine “unlearning”, a topic

of growing interest.

Informally, the ideal learning–unlearning (LU) paradigm can be modeled as follows. An agent

gets a sequence of learning and unlearning requests. Each such request is accompanied by a dataset
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of examples. At any point, the agent must be able to produce a predictor, the distribution of which

must be identical to, or at least “close to”, that of the same agent on a single learning request

containing only the surviving examples, namely, all examples in learning requests that have not

been present in any subsequent unlearning request. A naive approach to keep in mind is an agent

that explicitly keeps track of all surviving examples at any point, and returns the predictor obtained

by simulating a single learning request on the surviving examples. However, the space requirement

of such an agent is linear in the number of examples (as it needs to store all the examples to simulate

re-training). The goal in this paper is to understand:

When are space-efficient learning–unlearning schemes possible?

Unlearning has been an active area of research. Cao and Yang (2015) initiated the study through

exact unlearning. Their definition requires an algorithm to have identical outputs on a dataset after

deleting a point, as if that point was never inserted; their algorithms are restricted to very structured

problems. Several later works studied unlearning algorithms for empirical risk minimization (Guo

et al., 2020; Izzo et al., 2021; Neel et al., 2021; Ullah et al., 2021; Thudi et al., 2022; Graves et al.,

2021; Bourtoule et al., 2021). However, these works focus exclusively on the time complexity of

unlearning. However, many of these provably effective unlearning methods have large space re-

quirements to enable deletion, e.g., they store space-intensive check-pointing data structures (Ullah

et al., 2021), large ensembles of models trained on subsets of data (Bourtoule et al., 2021), extensive

statistics about the learning process (Thudi et al., 2022; Neel et al., 2021), or at the very least the

entire (surviving) training dataset. This additional space overhead can be impractical for various

applications. In contrast, the primary focus of our paper is to understand the space complexity of

unlearning and to develop space-efficient learning–unlearning schemes for general function classes.

The model of learning–unlearning that has been considered in the above mentioned prior works

can be deemed as the “central” model, where the agent responsible for unlearning has to remember

all additional information beyond the learnt predictor that might be required for unlearning later.

1.1. Our Contributions

In Section 2, we introduce the notion of a ticketed learning–unlearning (TiLU) scheme, which con-

sists of a learning and an unlearning algorithm. The learning algorithm given a training dataset,

produces a predictor, as well as a “ticket” corresponding to each example and some additional “cen-

tral” information. The unlearning algorithm, given a subset of the training examples accompanied

by their corresponding tickets, and the previously generated central information, produces an up-

dated predictor (that realizes the unlearning guarantee).

In Section 3, we show that certain limitations of the central model of learning–unlearning can

be overcome by the ticketed model. In particular, we provide TiLU schemes for a broad family of

concept classes that includes several commonly studied classes such as one-dimensional thresholds,

product of thresholds, and parities. In Section 4, we provide improved TiLU schemes with even

better space complexity bounds for products of thresholds, as well as for point functions, which are

notably not covered by the techniques in Section 3.

Underlying our improvements in Section 4, is a basic primitive of count-to-zero. The goal in this

problem is simply to determine if the unlearning request contains precisely all the examples in the

original learning request or not. We give a TiLU scheme for this problem with space complexity that

scales as the log of the inverse-Ackermann function (see Definition 9) of the number of examples.
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This relies on a novel construction of size-indexing Sperner families, which we believe to be of

independent interest. We also prove a lower bound on such families in Section 5, and use it to

show that the space complexity of TiLU schemes for any non-trivial concept class must necessarily

increase with the number of examples.

1.2. Other Related Work

For specific learning models like SVMs, various algorithms for exact unlearning have been consid-

ered under the framework of decremental learning (Cauwenberghs and Poggio, 2000; Tveit et al.,

2003; Karasuyama and Takeuchi, 2010; Romero et al., 2007). However, these works do not enjoy

any guarantees on the space requirements for unlearning. The primary motivation in these works is

to use the decremental learning framework to empirically estimate the leave-one-out error in order

to provide generalization guarantees for the learned model.

We also note that beyond exact unlearning, various probabilistic/approximate notions of un-

learning, which are in turn inspired by the notions in differential privacy (Dwork et al., 2006), have

been considered (Ginart et al., 2019; Sekhari et al., 2021; Gupta et al., 2021; Chourasia et al., 2023),

and there has been an extensive effort to develop (approximate) unlearning algorithms for various

problem settings. These include unlearning in deep neural networks (Du et al., 2019; Golatkar et al.,

2020, 2021; Nguyen et al., 2020; Graves et al., 2021), random forests (Brophy and Lowd, 2021),

large-scale language models (Zanella-Béguelin et al., 2020), convex loss functions (Guo et al., 2020;

Sekhari et al., 2021; Neel et al., 2021; Suriyakumar and Wilson, 2022), etc. However, we reiterate

that all these prior works have huge space requirements, especially in high-dimensional settings.

In a related setting, prior works have looked at the problem of constructing history-independent

data structures (Hartline et al., 2005; Naor and Teague, 2001). The key motivation here is to prevent

an adversary from inferring information about the dataset from the memory representation of the

data structure that is not available through its “legitimate” interface. However, no direct application

of history-independent data structures for unlearning is currently known.

The main motivation for unlearning is that a trained model could potentially leak user informa-

tion in various forms such as membership inference attack (Shokri et al., 2017; Carlini et al., 2022a)

or even data extraction attack for text (Carlini et al., 2021, 2023b) or image (Carlini et al., 2023a)

generative models. An unlearning protocol allows users to withdraw their data from the model

training set. The implication of such mechanisms were also studied in the literature. For example,

Ippolito et al. (2022) showed that an inference-time filtering mechanism to prevent the generation

of verbatim training text sequences could be easily bypassed by “style-transfer” like prompting in

large language models. Carlini et al. (2022b) further show a “privacy onion” effect where unlearn-

ing one set of examples could have large impact on the privacy score of a non-overlapping set of

examples in the training set. Furthermore, there have also been works exploring machine unlearning

as a tool to attack an ML system, e.g., Di et al. (2022) recently showed that unlearning can be used

as a trigger for executing data poisoning attacks (on demand).

Finally, there has been a recent line of work on formulating alternative definitions of approxi-

mate (and probabilistic) unlearning to capture the spirit of “right to be forgotten” and “data deletion”

under different circumstances, e.g., (Dukler et al., 2023; Krishna et al., 2023; Cohen et al., 2022;

Eisenhofer et al., 2022; Garg et al., 2020), etc. However, developing space-efficient algorithms for

these definitions is beyond the scope of our paper, and we only consider exact unlearning of ERMs.
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Figure 1: Illustration of the guarantees of LU schemes in central and ticketed models.

2. Learning–Unlearning Schemes

We focus on supervised learning with the binary loss function ℓ(ŷ, y) = 1{ŷ ̸= y}. Each example

(x, y) belongs to Z = X × Y , with the label set Y = {0, 1}. We denote the empirical loss

of a predictor h : X → Y on a dataset S = (z1 = (x1, y1), . . . , zn = (xn, yn)) ∈ Z
n as1

L(h;S) :=
∑

i∈[n] ℓ(h(xi), yi). For any concept class H ¦ (X → Y), we say that a dataset S is

H-realizable if there exists h ∈ H such that L(h;S) = 0. Let ERMH(S) = argminh∈H L(h;S) be

the set of all minimizers inH of the empirical loss over S. For any subset I ¦ [n] of indices, let SI

denote the dataset ((xi, yi))i∈I .

Central Model of Learning–Unlearning. We define the notion of a learning–unlearning (LU)

scheme below, formalizing the standard setting considered in literature, which we will refer to as

the “central” model.

Definition 1 (LU Scheme) A learning–unlearning (LU) scheme for a concept class H consists of

a pair (Learn,Unlearn) of algorithms as follows.

• On input S ∈ Zn, Learn(S) returns a predictor h ∈ ERMH(S) and auxiliary information

aux ∈ {0, 1}C .

• For I ¦ [n], Unlearn(SI , aux) returns a predictor h′ ∈ ERMH(S ∖ SI).

For all S and SI ¦ S, the predictor returned by Unlearn is required to be identical to the predictor

returned by Learn(S ∖ SI). The space complexity of the scheme is C, the bit-complexity of the

auxiliary information aux.

Unless otherwise stated, we will only require the above to hold forH-realizable S.

Informally speaking, in a LU scheme, the central agent on a learning request containing a

dataset, returns a predictor and also retains some auxiliary information for itself. On an unlearning

request (containing a subset of the previous dataset), the agent, using its auxiliary information, re-

turns a new predictor. This new predictor is required to be identical to the predictor that the agent

would have returned on a learning request with only the surviving examples. See Figure 1(a).

1. For ease of notation, we let L denote the sum of losses over the dataset, as opposed to the more conventional average.
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In this work, our focus is on space complexity, namely, we consider a LU scheme as space-

efficient if its space complexity is poly(log n, log |Z|, log |H|). Note that the naive scheme, where

aux contains the entire dataset S and Unlearn simply returns the predictor returned by Learn(S∖SI),
requires C = n · log |Z| bits and hence is not space-efficient. While we do not explicitly discuss

time complexity, all the algorithms that we present are also time-efficient, namely, they run in

poly(n, log |Z|, log |H|) time. Our lower bounds, on the other hand, hold even against computa-

tionally inefficient algorithms. Finally, in this work, we only assume a one-shot setting, i.e., there is

a single learning request with a dataset S, followed by a single unlearning request SI ¦ S.

We show in Appendix B that there exists a space-efficient LU scheme for the class of threshold

functions. Unfortunately, the central model easily runs into barriers and is quite limited: we also

show that any LU scheme for the class of point functions must store Ω(|X |) bits of auxiliary infor-

mation. To circumvent such barriers, we introduce a new ticketed model of learning–unlearning.

Ticketed Model of Learning–Unlearning. The basic idea of the ticketed model is that the central

agent issues “tickets” for each example that is stored by the corresponding user contributing the

example. These tickets have to then be provided as part of the unlearning request (see Figure 1(b)).

Definition 2 (Ticketed LU Scheme) A ticketed learning–unlearning (TiLU) scheme for a concept

classH consists of a pair (Learn,Unlearn) of algorithms such that

• On input S = (z1, . . . , zn) ∈ Z
n, Learn(S) returns (h, aux, (ti)i∈[n]), with a predictor h ∈

ERMH(S), auxiliary information aux ∈ {0, 1}Cs and tickets t1, . . . , tn ∈ {0, 1}
Ct associated

with examples z1, . . . , zn respectively2.

• On input I ¦ [n], Unlearn(SI , aux, (ti)i∈I) returns a predictor h′ ∈ ERMH(S ∖ SI).
For all S and SI ¦ S, the predictor returned by Unlearn above is required to be identical to the

predictor returned by Learn(S ∖ SI). The space complexity of the scheme is (Cs, Ct), where Cs is

the bit-complexity of aux and Ct is the bit-complexity of each ticket ti.
Unless otherwise stated, we will only require the above to hold forH-realizable S.

A TiLU scheme is similar to the central LU scheme, except that during learning, the central

agent issues a “ticket” for each example in the dataset that will be given to the user contributing that

said example; this ticket is required along with the example as part of the unlearning request. As

before, we consider a TiLU scheme to be space-efficient if Cs, Ct = poly(log n, log |Z|, log |H|).
Note that while the space requirement for storing all tickets does grow linearly in n, the main point is

that no single party has to store more than poly-logarithmic amount of information. The challenge in

constructing a TiLU scheme is that only the tickets corresponding to the examples in the unlearning

request are available at the time of unlearning, so the unlearning step has to be performed with

access to a limited amount of information.

Remark 3 For both schemes, our definition is restrictive in the following sense:

• Exact ERM: the learning algorithm is required to output a predictor in ERMH(S).
• Exact unlearning: the predictor after unlearning is required to be identical to the predictor

learned on just the surviving examples.3

• One-shot unlearning: there is a single learning request, followed by a single unlearning request.

2. The tickets are sent back to the users contributing the corresponding examples, and not stored centrally.

3. We could consider a seemingly more relaxed variant where the distribution of the predictor returned by Unlearn

equals the distribution of the predictor returned by Learn on the surviving examples, but given any such scheme, we

could convert it to have a deterministic output by simply choosing a canonical predictor for each distribution.
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While the above restrictions are seemingly limiting, as our results show, they already capture and

highlight many of the key technical challenges. Developing schemes when these restrictions are

suitably relaxed (e.g., when unlearning can be approximate) is an important research direction.

3. Mergeable Concept Classes

We define a mergeability property of concept classes and provide examples of several commonly

studied classes with this property. We then provide space-efficient TiLU schemes for such classes.

Definition 4 (Mergeable Concept Class) A concept class H ¦ (X → Y) is said to be C-bit

mergeable if there exist methods Encode,Merge,Decode such that

• Encode : Z∗ → {0, 1}C is a permutation-invariant encoding of its input into C bits.

• Decode : {0, 1}C → H such that Decode(Encode(S)) ∈ ERMH(S) for all H-realizable

S ∈ Z∗.

• Merge : {0, 1}C × {0, 1}C → {0, 1}C such that for all S1, S2 ∈ Z
∗ such that S1 ∪ S2

4 is

H-realizable, it holds that Encode(S1 ∪ S2) = Merge(Encode(S1),Encode(S2)).

Before we describe TiLU schemes for such classes, we list a few well-studied concept classes that

are efficiently mergeable (details deferred to Appendix A).

• Thresholds. Class Hth consists of all threshold functions over X = {1, . . . , |X |}, namely for

any a ∈ {0, 1, . . . , |X |}, we have h>a(x) = 1{x > a};Hth is O(log |X |)-bit mergeable.

• Product of d thresholds. The class Hd
th over X = [m]d, consists of functions indexed by

a = (a1, . . . , ad) ∈ {0, 1, . . . ,m}
d defined as h>a(x) := 1 [x1 > a1 ' · · · ' xd > ad]; H

d
th is

O(d log |X |)-bit mergeable.

• Parities. The class Hd
· consists of all parity functions, namely for X = Fd

2 and w ∈ Fd
2, we

have hw(x) = ïw, xðF2
;Hd

· is O(d2)-bit mergeable; note that d = log |X |.
• Intersection-Closed Classes. A class H is said to be intersection-closed if for all h, h′ ∈ H,

the function h̃, given by h̃(x) = h(x) ' h′(x), is also in H. Such a class H is d log |X |-bit

mergeable, where d is the VC-dimension ofH. In particular, this includesHd
th (more examples

in Appendix A).

We also consider an example of a simple class that is not efficiently mergeable.

• Point Functions. Class Hpt consists of all point functions over X = {1, . . . , |X |}, namely for

any a ∈ {1, . . . , |X |}, we have ha(x) = 1{x = a};Hpt is not o(|X |)-bit mergeable.

3.1. Ticketed LU Schemes for Mergeable Concept Classes

In this section, we provide a TiLU scheme for mergeable concept classes. The basic idea is to use a

Merkle tree-like data structure to construct tickets for each example.

Theorem 5 For any C-bit mergeable concept class H, there exists a TiLU scheme with space

complexity (Cs = log |H|, Ct = O(C log n)).

Proof For simplicity, we assume that n is a power of 2; the argument generalizes to all n easily.

Consider a full binary tree of depth d = log2 n with leaf i corresponding to example (xi, yi). For

each internal node v, let Sv ≜ {(xi, yi) | v is an ancestor of leaf i} be the dataset consisting of

4. We use S1 ∪ S2 to denote the concatenation of the two datasets.
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S{1,...,8}

S{1,2,3,4}
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Figure 2: Illustration of TiLU scheme underlying the proof of Theorem 5. The ticket t5 for the

example (x5, y5) are the index i and the outputs of Encode applied on S{1,2,3,4}, S{7,8},

and S{6}.

examples corresponding to the leaf nodes in the subtree under v. For any leaf i, let v1, . . . , vd−1 be

the nodes on the path from the root to leaf i, and for each j ∈ {2, . . . , d} let ṽj be the child of vj−1

and sibling of vj . Figure 2 shows an example. Let the ticket corresponding to example i be given as

ti ≜ (i,Encode(Sṽ2), . . . ,Encode(Sṽd)).

It is immediate to see that the number of bits in ti is d + C · (d − 1). Define Learn(S) to return

h = Decode(Encode(S)), aux = h, and tickets ti as specified above.

We define Unlearn as follows. If I is empty, then simply return h. Given a non-empty I ¦
[n], let R be the set of all nodes v such that no leaf in the sub-tree under v belongs to I , but the

same is not true of the parent of v. It is easy to see that S ∖ SI is precisely given as
⋃

v∈R Sv,

and moreover, Sv and Sv′ are disjoint for distinct v, v′ ∈ R. For all v ∈ R, we can recover

Encode(Sv) from ticket ti for any leaf i ∈ I in the subtree under the sibling of v. Thus, by repeated

applications of Merge, we can recover Encode(
⋃

v∈R Sv) = Encode(S ∖ SI). Finally, we can

return h′ = Decode(Encode(S ∖ SI)) as the predictor after unlearning, which is identical to the

predictor returned by Learn(S ∖ SI).

3.2. Improvements with Compressibility

We augment the notion of mergeable concept classes, with an additional notion of existence of

compressions (similar to the notion introduced by Littlestone and Warmuth (1986)), and provide

improved TiLU schemes for such classes. The advantage of this scheme over that in Theorem 5 is

that the space complexity of the ticket depends on n through only an additive log n factor.

Definition 6 (Mergeable Concept Class with Compressions) A concept class H ¦ (X → Y)
is said to be C-bit mergeable with K-compressions if in addition to Encode,Decode,Merge as

in Definition 4, there exists a relation Compress ¦ Z∗ × ZfK , where we say that T ∈ ZfK is a

compression of S if (S, T ) ∈ Compress. For any H-realizable S ∈ Z∗, the following properties

must hold for any valid compression T : (i) T ¦ S, (ii) Encode(S) = Encode(T ), and (iii) for all

z ∈ S ∖ T , T is a compression for S ∖ {z}.

The above notion is related, but incomparable to classes with stable compression schemes (Bous-

quet et al., 2020). A stable compression scheme requires that there exist a unique or canonical

7
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compression set for any realizable dataset, whereas in the above we allow the existence of many

compressions and do not require that there be a canonical one. On the other hand, the above defini-

tion requires the mergeable property, which is not required for stable compression schemes.

It is easy to see that all the examples of mergeable concept classes we considered earlier are in

fact mergeable with compressions (the details are deferred to Appendix A). In particular,

• ThresholdsHth are O(log |X |)-mergeable with 2-compressions.

• ParitiesHd
· are O(d2)-mergeable with d-compressions.

• Intersection-closed classes with VC-dimension d are O(d log |X |)-bit mergeable with

d-compressions.

The following result concerns with TiLU schemes for mergeable concept classes with compressions.

Theorem 7 For any class H that is mergeable with K-compressions, there exists a TiLU scheme

with space complexity (Cs = log |H|, Ct = 2K log |Z|+ log n).

Proof Algorithm Learn works as follows. Given any dataset S, partition S into T1, T2, . . . such that

Ti is a compression of
⋃

jgi Ti (this can be iteratively done by choosing T1 as any compression of

S, T2 as any compression of S∖T1, and so on). The ticket ti for the example (xi, yi) that lies in Tj

is given as (j, Tj ◦ Tj+1). The size of the ticket is 2K log |Z|+ log n, since |Tℓ| f K for all ℓ, and

the number of parts is at most n. The predictor returned is h = Decode(Encode(S)) and aux = h.

Algorithm Unlearn is defined as follows. If I is empty, then simply return h. Otherwise, let ℓ be

the smallest index such that SI ∩ Tℓ = ∅. We can reconstruct Tj for all j f ℓ from the tickets, since

for each j < ℓ there exists some example (xi, yi) ∈ Tj that has been presented for unlearning, and

the ticket ti contains Tj ◦Tj+1. Unlearn simply returns Decode(Encode(T1∪· · ·∪Tℓ∖SI)). Learn
on input S ∖ SI would have returned Decode(Encode(S ∖ SI)). Thus, to be a valid TiLU scheme,

it suffices to show that Encode(T1 ∪ · · · ∪ Tℓ ∖ SI) = Encode(S ∖ SI). This holds because

Encode(T1 ∪ · · · ∪ Tℓ ∖ SI)
(∗)
= Merge(Encode(T1 ∪ · · · ∪ Tℓ−1 ∖ SI),Encode(Tℓ))

(∗∗)
= Merge(Encode(T1 ∪ · · · ∪ Tℓ−1 ∖ SI),Encode(

⋃

jgℓ Tj ∖ SI)) = Encode(S ∖ SI),

where, (∗) follows from the property of Merge and (∗∗) uses that Encode(Tℓ) = Encode(
⋃

jgℓ Tj∖
SI), since Tℓ is a compression of

⋃

jgℓ Tj and hence a compression of
⋃

jgℓ Tj ∖ SI .

4. Sharper Bounds for Specific Classes

While the previous general reductions are applicable to a large number of concept classes, the re-

sulting space complexity bounds can be improved for certain classes by designing more specific

algorithms. In this section, we present TiLU schemes for point functions and (product of d) thresh-

olds, as stated formally below. In the case of product of d thresholds, this significantly improves the

dependency on n from log n to log³−1(n) (inverse-Ackermann function; see Definition 9), and in

case of 1D thresholds, we also improve the dependency on domain size.

Theorem 8 There exist TiLU schemes for

(a) Hpt with space complexity (O(log |X |), O(log³−1(n))).
(b) Hd

th with space complexity (O(log |X |), O(log |X |+ d · log³−1(n))).
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Class H Ct (from Theorem 5) Ct (from Theorem 7) Ct (from Theorem 8)

1D Thresholds O(log |X | · log n) O(log |X |+ log n) O(log³−1(n))

Product of d thresholds O(d log |X | · log n) O(d log |X |+ log n) O(log |X |+ d log³−1(n))

Parities (X = Fd
2) O(d2 log n) O(d2 + log n) —–

Point Functions —– —– O(log³−1(n))

Table 1: The size Ct of tickets, derived as corollaries of Theorem 5 for various concept classes. The

size Cs of aux is O(log |H|) in each case.

(c) Hth with space complexity (O(log |X |), O(log³−1(n))).

Note that Item (c) is an improvement over Item (b) for d = 1, as the ticket size in the former

does not depend on |X | at all. Moreover, Item (a) provides a TiLU scheme for the class of point

functions for which the techniques from Theorems 5 and 7 were not applicable (see Proposition 19).

In Table 1, we summarize the implied bounds of Theorems 5, 7 and 8 for some concrete classes.

At the heart of our improvements is a problem called count-to-zero, which we introduce and

give a TiLU scheme for in Section 4.1. In the subsequent sections, we then use it to give TiLU

schemes for each of the aforementioned class. We only describe high-level overviews and the full

proof of Theorem 8 is deferred to Appendix D.

4.1. Count-to-Zero

We first describe the Count-to-Zero (CtZ) problem. Here there are m examples, where m is un-

known a priori. After receiving an unlearning request, we would like to tell whether there is still

any example left (that is not unlearned). For CtZ, we follow the terminologies of Definition 2 except

that Unlearn returns either § (when SI = S, and thus no example is left) or ¦ (when SI ª S, and

some example is remaining), instead of the hypotheses h, h′.5

We give a TiLU scheme for CtZ with ticket size O(log³−1(m)) bits (and one-bit auxiliary infor-

mation), where ³−1 is the inverse-Ackermann function defined below. Note that a naive algorithm—

writing down m in each ticket—requires ticket size O(logm) bits.

Definition 9 Consider a sequence of functions A1, A2, . . . defined as, Ar(1) = 2 for all r g 1,

and for all t g 2,

• A1(t) = 2t (interpretable as t-fold repeated addition of 2), and

• Ar+1(t) = Ar(Ar+1(t− 1)), i.e., Ar+1(t) = At−1
r (2) = Ar(Ar(· · · (Ar(2))))

︸ ︷︷ ︸

t−1 times

.

The Ackermann function ³(t) is defined as At(t). The inverse-Ackermann function ³−1(n) is

defined as the smallest t such that n f ³(t).

For example, A2(t) = 2t, and A3(t) = 2 ⇈ t, where a ⇈ k denotes the kth tetration of a (i.e.,

aa
··
·a

of order k), etc. The Ackermann function was demonstrated as a function that is recursive,

but not primitive recursive.

5. We note that the outputs § or ¦ can be stored using only one bit.

9
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Theorem 10 There is a TiLU scheme for Count-to-Zero (CtZ) problem with space complexity

(Cs = 1, Ct = O(log³−1(m))).

4.1.1. SMALL-ALPHABET SIZE-INDEXING SPERNER FAMILIES

Recall that a Sperner family is a family Q of multi-sets (Qi)i∈N such that none of them is a sub-

multiset of another (see the book by Engel (1997) for background on Sperner families). We say that

a Sperner family Q is size-indexing if for all m ∈ N, the multiset Qm has m elements (denoted

|Qm| = m). Furthermore, we say that Q is of alphabet size n(m) if for all m ∈ N, each element

of the multiset Qm is from the ordered alphabet [n(m)] = {1, . . . , n(m)}. For ℓ, r ∈ N, ℓ < r, we

define [ℓ, r]-size-indexing Sperner family similar to above, except with Q = {Qℓ, . . . , Qr}.

Lemma 11 For all r, t g 1, there is an [Ar(t), Ar(Ar(t))]-size-indexing Sperner family Qr,t with

alphabet size 2r.

Proof We prove this by induction over r. Consider the base case of r = 1, i.e., we want to construct

a [2t, 4t]-size-indexing Sperner family Q1,t with alphabet {1,2}. For each m ∈ {2t, . . . , 4t}, let

Q1,t
m contain 4t − m copies of 1 and 2m − 4t copies of 2. It is easy to see that |Q1,t

m | = m.

Furthermore, {Q1,t
2t , . . . , Q

1,t
4t } is a Sperner family since none of the multisets is a sub(multi)set of

another multiset (i.e., m ̸= m′ =⇒ Q1,t
m ̸¦ Q1,t

m′).

Next, consider the case of r > 1. Let the alphabet be {1, . . . ,2r}. If t = 1, then note that

Ar(t) = 2 and Ar(Ar(t)) = 4, and thus from above, there exists Qr,t with alphabet size 2. Next,

consider the case of t g 2. For ease of notation, let T = Ar(t). From the inductive hypothesis we

have that there exists an [Ar−1(t
′), Ar−1(Ar−1(t

′))]-size-indexing family Qr−1,t′ for all t′ g 1. Fix

m ∈ [T,Ar(T )] and let jm be the unique value such that Ar(jm) f m − T + 2 < Ar(jm + 1).
Since m f Ar(T ) we have that 1 f jm < T . We construct Qr,t

m as the union of T − jm − 1 copies

of 2r-1 and jm − 1 copies of 2r and Qr−1,jm
m−T+2, where the latter uses symbols {1, . . . ,2r-2}.

Clearly, |Qr,t
m | = m. To see that this is a Sperner family, consider any m < m′. Note that

since |Qm| = m < m′ = |Qm′ | we immediately have Qm′ ª Qm; thus, it suffices to show that

Qm ª Qm′ . Consider two cases:

• jm = jm′ = j: Since Qm ∩ [2r − 2] = Qr−1,j
m−T+1 and Qm′ ∩ [2r − 2] = Qr−1,j

m′−T+2 are two

(different) subsets from the same Sperner family Qr−1,j , and hence Qm ª Qm′ .

• jm < jm′ : Qm contains T − jm−1 copies of 2r-1, whereas Qm′ contains T − jm′−1 copies

of 2r. Since T − jm − 1 > T − jm′ − 1, we have Qm ª Qm′ .

Theorem 12 There is a size-indexing Sperner family with alphabet size O(³−1(m)3).

Proof We first show that there exists a [2, At(t)]-size-indexing Sperner family with alphabet size t2.

From Lemma 11, we have [At(i), At(i + 1)]-size-indexing Sperner families Qt,i using alphabet of

size 2(t− 1) (since At(i) = At−1(At(i− 1)) and At(i+1) = At−1(At−1(At(i− 1)))). Renaming

the symbols to be distinct and setting Q = (Qt,1,Qt,2, . . . ,Qt,t), we get a [2, At(t)]-size-indexing

family. In particular, this implies a [At−1(t− 1), At(t)− 1]-size indexing Sperner family Qt.

Finally, this implies a size-indexing Sperner family (for all sizes) with alphabet size n(m) f
O(m3) as Q = (Qt)tg0, by renaming symbols so that each Qt uses distinct symbols. (We use Q0

to denote the trivial [1, 1]-size-indexing family with alphabet size of 1.)

10
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4.1.2. FROM SIZE-INDEXING SPERNER FAMILIES TO A TILU SCHEME

Next, we show that a size-indexing Sperner family can be used to construct a TiLU scheme for CtZ.

The basic idea is to use elements of Q|S| as the tickets. This is formalized below.

Proof of Theorem 10 For each m ∈ N, let Qm be the multiset from the size-indexing Sperner

family from Theorem 12; recall |Qm| = m. Finally, for each m ∈ N and i ∈ [m], we let qmi denote

the i-th element in Qm (where the elements of Qm are ordered arbitrarily). Recall also that S is our

original training set. Our algorithm is as follows:

Learn(S) =

{

(§,§, ∅) if S = ∅

(¦,¦, (q
|S|
i )i∈[|S|]) if S ̸= ∅,

where the auxiliary information (¦ or§) can be written in one bit of aux. For unlearning, we define

Unlearn(SI , aux, (ti)i∈I) =







aux if SI = ∅

§ if SI ̸= ∅ and {ti}i∈I = Q|SI |

¦ if SI ̸= ∅ and {ti}i∈I ̸= Q|SI |,

where the expression {ti}i∈I is interpreted as a multiset.

The correctness is obvious in the cases SI = ∅ and SI = S. We next show correctness when

∅ ª SI ª S. Since Q is a Sperner family, we have Q|SI | ª Q|S|. However, {ti}i∈I ¦ Q|SI | and

thus Unlearn will return ¦—which is the correct answer—in this case.

Finally, the space complexity claim follows from the fact that q
|S|
i ¦ [O(³−1(|S|)3)] since the

Sperner family has alphabet size O(³−1(m)3). Each ticket only stores a single character from an

alphabet of size O(³−1(m)3) and hence the ticket size is O(log³−1(m)).

4.2. Point Functions

We can use CtZ scheme to get a TiLU scheme for Hpt, the class of point function. First, we

need to define the predictor h output by Learn(S). If (a, 1) appears in S for some a ∈ X , then

we must output ha. Otherwise, we can output hb for any b ∈ X such that (b, 0) is not in S;

for tie-breaking, we choose the smallest such b. The first case is easy to check: we can just use

CtZ to determine whether there is still any (a, 1) left after unlearning. This only requires O(1)-
size auxiliary information and O(log³−1(n))-size tickets as desired. Now, suppose we are in the

second case, and that we start off with b∗ being the smallest such that (b∗, 0) is not in S. The idea

here is to use the CtZ scheme to check whether, after unlearning, any (b, 0) remains in the set for

each b < b∗. Note that each example (x, y) is only a part of one such subscheme (for b = x)

and therefore the ticket size remains O(log³−1(n)). However, there seems to be an issue: since

we run this subscheme for all b < b∗, we may require O(b∗) f O(|X |) bits to keep the auxiliary

information. Fortunately, this turns out to be unnecessary: Observe that our CtZ scheme never uses

the auxiliary information except for the case where the surviving set is empty. On the other hand,

if the unlearning request does not contain (b, 0) for b < b∗, we know that S must contain (b, 0)
for each b < b∗ (due to minimality b∗). Thus, we do not require storing any additional auxiliary

information. This gives the final Cs = O(log |X |) and Ct = O(log³−1(n)) bound. A formal proof

is given in Appendix D.
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4.3. Product of d Thresholds

In the case of product of d thresholds Hd
th, we start by deriving a primitive for computing the

minimum value of the dataset. In the MINimum VALue (MINVAL) problem, we are given a set

S ¦ X where X ¦ R is the domain and the goal is to output min(S) if S ̸= ∅ and § if S = ∅.
We first give a TiLU scheme for MINVAL with space complexity (O(log |X |), O(log |X | +

log³−1(n))). To understand the high-level idea, let us consider the case where the input contains

only distinct values from X . In this case, the algorithm is simple: let aux = min(S) and the ticket

to each x be its successor (i.e., the smallest element in S greater than x). When the minimum is

unlearned, we update the minimum to its successor. The actual scheme for MINVAL is more subtle,

since we need to handle repeated elements. Nonetheless, the general idea is that we additionally use

the CtZ scheme to help determine whether all copies of the minimum have been unlearned.

To derive a TiLU scheme for Hd
th, we use the following learning algorithm for Hd

th: Output

h>a where, for j ∈ [d], aj is the minimum value among all jth coordinate of the 1-labeled samples,

minus one. To compute this minimum value, we simply use the TiLU scheme for MINVAL.

4.4. Further Improvements for 1D Thresholds

Our improvement for Hth is based on an insight from the following (central) LU scheme. First,

use binary search to find the threshold. Namely, we start with a0 = +|X |/2,. If h>a0 agrees with

all the examples, then output ha0 . Otherwise, we determine whether a0 is too large or too small,

and then adjust the search range and recurse. Suppose that on the original dataset the search path

is a0, . . . , ai. Observe that, after unlearning, the output predictor must be one of h>a0 , . . . , h>ai .

Thus, we record (in aux) the empirical loss of each h>aj . We can then update this after seeing the

unlearning set. This allows us to determine where in the binary search we stop, and thus the predictor

to output. Since binary search examines O(log |X |) hypotheses and recording each empirical loss

uses O(log n) bits, the space complexity of this LU scheme, without tickets, is O((log |X |)·(log n)).
Now, to reduce the dependency on n, we can apply our CtZ scheme. The most natural attempt

would be to apply the CtZ scheme on the sets of examples that each h>aj errs on. However, since

each example can be wrong on all of h>a0 , . . . , h>ai−1
, an example can receive as many as i− 1 =

O(log |X |) different tickets from the CtZ scheme. This results in Ct = O((log |X |) · (log³−1(n))).
To reduce the ticket size further, observe that whether the empirical error of h>aj is zero is

actually just whether there is an example left between ai and aj . With this in mind, we partition

the domain X at points a1, . . . , aj and then use the CtZ scheme for each partition. Since we can

determine whether each partition is empty, we can determine whether each h>aj has zero empirical

error after unlearning. Furthermore, since each training example belongs to just a single partition,

it receives a single ticket of size O(log³−1(n)). This concludes our high-level overview.

5. Lower Bounds

Given the mild dependence on n in the above schemes’ space complexity (O(log³−1(n)) bits), it

is natural to ask whether this can be removed altogether. The main result of this section is that it

cannot be removed. (In other words, at least one of Cs or Ct must grow with n.) Recall that a

concept class is non-trivial if it contains at least two concepts.

Theorem 13 For any non-trivial H, there does not exist any TiLU scheme for H with space com-

plexity (Cs = O(1), Ct = O(1)).
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Once again, our key ingredient is a lower bound on size-indexing Sperner family, which we

prove in Section 5.1. We then turn this into a space complexity lower bound for CtZ (Section 5.2),

before finally reducing from this to space complexity of learning any concept class (Section 5.3).

5.1. Lower Bounds for Sperner Family

We first derive lower bounds for Sperner families that are more general than size-indexing, as de-

fined below.

Let a = (ai)i∈N be any infinite (not necessarily strictly) increasing sequence of integers. We

say that a Sperner family Q = (Qi)i∈N is a-size-indexing if |Qi| = ai for all i ∈ N. (Note that,

for the sequence ai = i, this coincides with the size-indexing family from Section 4.1.1.) The main

result of this subsection is that any a-size-indexing family must have alphabet size that grows to

infinity:

Theorem 14 For any constant Ã ∈ N and any increasing sequence a, there is no a-size-indexing

Sperner family with alphabet size Ã.

To prove Theorem 14, we need the following well-known result , which is a simple consequence

of the so-called “infinite Ramsey theorem”. Recall that a subset of elements of a partially ordered

set (poset) is said to be a chain if each element in the subset is comparable to all other elements in

the subset. A subset is an antichain if no two pair of elements in the subset are comparable.

Lemma 15 (e.g., Tachtsis (2016)) Any infinite poset either contains an infinite chain or an infinite

anti-chain.

Proof of Theorem 14. For convenience, we view each multiset Qi as a vector in NÃ, and let Qi,j

denote the number of times j appears in Qi. We will prove the main statement by induction on Ã.

Base Case. The case Ã = 1 is trivial, as for any i < j we have Qi ¦ Qj . We next focus on Ã = 2.

Suppose for the sake of contradiction that there is an a-size-indexing family Q with alphabet size

2. Since |Q1| = a1, we have Q1,1, Q1,2 f a1. Since Q1 is not a subset of any Qi for i > 1, it must

be the case that either Qi,1 < a1 or Qi,2 < a1. Thus, by the pigeonhole principle, there must exist

some indices i1 < i2 (with i1, i2 f 2a1) such that either Qi1,1 = Qi2,1 or Qi1,2 = Qi2,2. However,

this is a contradiction since it implies that Qi1 ¦ Qi2 .

Inductive Step. Suppose that the statement holds for all Ã < m for some positive integer m g 3.

Furthermore, suppose for the sake of contradiction that there exists an a-size-indexing family Q
with alphabet size m. For every i ∈ N, let bi = (Qi,1, Qi,2 + · · · + Qi,m), and define the natural

(partial) order bi f bi′ iff (bi)1 f (bi′)1 and (bi)2 f (bi′)2. Applying Lemma 15, this poset must

contain an infinite chain or an infinite anti-chain. We consider these two cases separately:

• Case I: It contains an infinite anti-chain (bij )j∈N. Consider the family S := (Sj)j∈N where Sj

has elements 1, 2 defined by letting Sj,1 = Qij ,1 and Sj,2 = Qij ,2 + · · · + Qij ,m. Notice that

S is an (aij )j∈N-size indexing family. Furthermore, since bij is an anti-chain, this is a Sperner

family. This contradicts our inductive hypothesis for Ã = 2.

• Case II: It contains an infinite chain (bij )j∈N, i.e., where bi1 < bi2 < · · · . Consider S :=
(Sj)j∈N where Sj results from throwing away all ones from Qij . S is an ((bij )2)j∈N-size

indexing family, and ((bij )2)j∈N is a increasing sequence (because (bij )j∈N forms a chain).
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Finally, since Qi1,1 f Qi2,1 f · · · , S must form a Sperner family6. Since this collection only

uses alphabet 2, . . . ,m, this contradicts our inductive hypothesis for Ã = m− 1.

In both cases, we arrive at a contradiction, concluding the proof. ■

5.2. From Sperner Family to CtZ

Next, we observe that the lower bound on the alphabet size for Sperner Family translates to a lower

bound for CtZ. This is the “reverse reduction” of Theorem 10, but this direction requires more care

as we have to handle the auxiliary information aux as well.

Lemma 16 There is no TiLU scheme for CtZ with space complexity (Cs = O(1), Ct = O(1)).

5.3. From Learning any Classes to CtZ

Finally, we observe that any TiLU scheme for the learning/unlearning problem can be converted

into a TiLU scheme for CtZ with the same complexity, formalized below in Theorem 17. This,

together with Lemma 16, yields Theorem 13.

Lemma 17 For any non-trivial H, if there exists a TiLU scheme for H with space complexity

(Cs, Ct), then there also exists a TiLU scheme for CtZ with the same space complexity (Cs, Ct).

6. Future Directions

In this paper, we introduce and study the ticketed model of unlearning and obtain several results.

Perhaps the most basic unresolved question is to characterize the classes for which space-efficient

TiLU schemes exist. For example, can we get TILU schemes for all concept classes with VC-

dimension d, whose space complexity scales as poly(d, log(n), log(|X |))? Note that we do not

know the answer to this question even for some basic classes such as linear separators.

Another tantalizing open question is to make the lower bound for CtZ (Theorem 17) quantita-

tive. Related to this, it would also be interesting to understand whether subpolylogarithmic in n
dependency is always possible for all space-efficient TiLU schemes.

We already pointed out several limitations of our model in Remark 3. Extending the TiLU

model to overcome these limitations, e.g., allowing approximate ERM, seems like an interesting

research direction. Another intriguing direction is to study unlearning in the agnostic setting where

the dataset is not assumed to beH-realizable. It is unclear how to obtain generic space-efficient LU

schemes, such as ones in Theorem 5 and Theorem 7, in the agnostic setting; as a preliminary result,

we give a TiLU scheme for agnostic 1D thresholds in Appendix C.2. Finally, it is also interesting

to study the ticketed model for simpler tasks such as realizability, testing, etc; Appendix F contains

initial results for agnostic 1D thresholds.
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Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.

arXiv preprint arXiv:2301.13188, 2023a.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan

Zhang. Quantifying memorization across neural language models. In ICLR, 2023b.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine

learning. NIPS, 2000.

Rishav Chourasia, Neil Shah, and Reza Shokri. Forget unlearning: Towards true data-deletion in

machine learning. In ICML, 2023.

Aloni Cohen, Adam Smith, Marika Swanberg, and Prashant Nalini Vasudevan. Control, confiden-

tiality, and the right to be forgotten. In TPDP, 2022.

Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden poison:

Machine unlearning enables camouflaged poisoning attacks. In NeurIPS ML Safety Workshop,

2022.

Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. Lifelong anomaly detection

through unlearning. In CCS, pages 1283–1297, 2019.

15



GHAZI KAMATH KUMAR MANURANGSI SEKHARI ZHANG

Yonatan Dukler, Benjamin Bowman, Alessandro Achille, Aditya Golatkar, Ashwin Swami-

nathan, and Stefano Soatto. SAFE: Machine unlearning with shard graphs. arXiv preprint

arXiv:2304.13169, 2023.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity

in private data analysis. In TCC, pages 265–284, 2006.

Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga Ohrimenko,

and Nicolas Papernot. Verifiable and provably secure machine unlearning. arXiv preprint

arXiv:2210.09126, 2022.

Konrad Engel. Sperner Theory. Cambridge University Press, 1997.

Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion in the

context of the right to be forgotten. In EUROCRYPT, pages 373–402, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making AI forget you: Data

deletion in machine learning. In NeurIPS, pages 3518–3531, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:

Selective forgetting in deep networks. In CVPR, 2020.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.

Mixed-privacy forgetting in deep networks. In CVPR, pages 792–801, 2021.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In AAAI, pages

11516–11524, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal

from machine learning models. In ICML, pages 3832–3842, 2020.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.

Adaptive machine unlearning. In NeurIPS, pages 16319–16330, 2021.

Jason D Hartline, Edwin S Hong, Alexander E Mohr, William R Pentney, and Emily C Rocke.

Characterizing history independent data structures. Algorithmica, 42:57–74, 2005.
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Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to

natural language models. In CCS, pages 363–375, 2020.

17



GHAZI KAMATH KUMAR MANURANGSI SEKHARI ZHANG

Appendix A. Examples of Mergeable Concept Classes with Compression

We recall the function classes defined in Section 3 and show that they are mergeable concept classes

with compressions (as in Definition 6).

1D Thresholds. The classHth consists of all threshold functions over X = {1, . . . , |X |}, namely

for any a ∈ {0, 1, . . . , |X |}, we have h>a(x) = 1{x > a}. The class Hth is O(log |X |)-bit

mergeable with 1-compressions, as witnessed by the following methods:

• For any Hth-realizable dataset S, we set Encode(S) = x−, where x− is the largest xi with

corresponding yi = 0 or 0 if no such xi exists.

• Decode(x−) = h>x− .

• Merge(x1−, x
2
−) = max(x1−, x

2
−).

• Compress: If x− ̸= 0 for S, then (S, T ) ∈ Compress iff T = {(x−, 0)}. Otherwise, if x− = 0
for S, then (S, T ) ∈ Compress iff T = ∅.

Parities. The classHd
· consists of all parity functions, namely, for X = Fd

2 and w ∈ Fd
2, we have

hw(x) = ïw, xð. The classHd
· is O(d2)-bit mergeable with d-compressions, where d = log |X |.

• For any Hd
·-realizable dataset S, we set Encode(S) = W , where W is a representation of the

set of all w such that ïw, xið = yi for all (xi, yi) ∈ S. Note that this set corresponds to an affine

subspace in Fd
2 and thus, can be represented using O(d2) bits.

• Decode(W ) = hw where w is the lexicographically smallest vector in W .

• Merge(W1,W2) is simply a representation of W1 ∩W2, which is also an affine subspace.

• Compress consists of all (S, T ) such that T is a minimal subsequence of S that generates the

same hw. By standard linear algebra, it follows that there are at most d such examples.

Intersection-Closed Classes. A class H is said to be intersection-closed if for all h, h′ ∈ H, the

“intersection” h̃, given by h̃(x) = h(x) ' h′(x), is also in H. Any intersection-closed class H is

d log |Z|-bit mergeable with d-compressions, where d is the VC-dimension ofH. The key property

we use to show this is Lemma 18.

Lemma 18 (Auer and Ortner (2007)) For any intersection-closed classH with VC-dimension d,

for all H-realizable S, there exists a unique hS ∈ H such that for all h ∈ ERMH(S), it holds for

all x ∈ X that hS(x) = 1 =⇒ h(x) = 1. Moreover, there exists T ¦ S such that |T | f d and

yi = 1 for all (xi, yi) ∈ T and hT = hS .

For any intersection-closed class H with VC-dimension d, we can consider Encode, Decode,

and Merge as follows:

• For any H-realizable dataset S, we set Encode(S) = hT , where hT is as given by Lemma 18.

It is easy to see that hT can be represented using only d log |X | bits.

• Decode(h̃) = h̃.

• Merge(h̃1, h̃2) is simply the representation of h̃1 ' h̃2.

• Compress consists of all (S, T ) such that T is the minimal subsequence of S, as guaranteed to

exist by Lemma 18.

We now mention some examples of intersection closed classes with VC-dimension d.

• Product of d thresholdsHd
th, defined in Section 3.

• Product of d thresholds in n dimensions over X = {1, . . . ,m}n given as

Hd,n
th :=

{

h>a(x) = 1

[
∧

i∈[n] xi > ai

]

: a ∈ {0, . . . ,m}n, |{i : ai ̸= 0}| f d
}

.
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• Intersection of half-spaces from a fixed set of possible orientations V = {v1, . . . , vd} ∈ Rn:

HV := {hB(x) =
⋂

v∈B 1 [ïx, vð f 1] | B ¦ V}.

While this involves a domain of infinite size, one could consider a finite (discretized) version of

the same.

• d-point functions: Hd
pt := {hA(x) = 1 [x ∈ A] : A ¦ X , |A| f d}.

A.1. Lower Bounds for Mergeable Concept Classes

Recall that the class Hpt consists of all point functions over X = {1, . . . , |X |}, namely for any

a ∈ X , we have ha(x) = 1{x = a}. In contrast to the concept classes above, we show that Hpt is

not efficiently mergeable, as stated below. Note that this lower bound is nearly tight, since recording

the entire input dataset requires only O(|X | log n) bits.

Proposition 19 Hpt is not o(|X |)-bit mergeable.

We prove Proposition 19 using a lower bound on one-way communication complexity of the Indexm
problem.

Definition 20 The Indexm problem is given as: Alice gets an input X ∈ {0, 1}m, Bob gets an input

i ∈ [m], and the goal is for Bob to output Xi with probability at least 3/4, where Alice and Bob

have access to shared randomness.

Lemma 21 (Kremer et al. (1999)) Any one-way (Alice→ Bob) protocol for Indexm has commu-

nication Ω(m).

Proof of Proposition 19 Let X = {1, . . . ,m + 1}. Suppose that Hpt is C-bit mergeable. We

show that this implies a C-bit protocol for Indexm. Consider the following one-way communication

protocol for Indexm using a shared random permutation Ã : X → X .

Alice: On input X ∈ {0, 1}m:

• Let S1 be a dataset containing Xj copies of (Ã(j), 0) for all j ∈ [m].
• Send Encode(S1) to Bob.

Bob: On input i ∈ [m] and message E = Encode(S1) from Alice:

• Let S2 be the dataset containing one copy of (Ã(j), 0) for all j ∈ [m]∖ {i}.
• If Decode(Merge(E,Encode(S2))) = hÃ(i), return Yi = 0. Otherwise, return Yi = 1.

Note that S1 ∪ S2 is always realizable since hÃ(m+1) ∈ ERMHpt
(S1 ∪ S2). To show that this

communication protocol solves Indexm, we show the following:

Claim: Pr[Yi = 1 | Xi = 1] = 1.

When Xi = 1, (Ã(j), 0) appears at least once in S1 ∪ S2 for all j ∈ [m]. Therefore, the unique

ERM for S1 ∪ S2 is hÃ(m+1) and not hÃ(i).
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Claim: Pr[Yi = 1 | Xi = 0] = 1/2.

It suffices to prove the statement for Ã that is fixed on all coordinates except for Ã(i) and Ã(m+1).
Let x1, x2 denote the remaining elements of X (to be assigned to Ã(i), Ã(m + 1)). Once the rest

of Ã is fixed and Xi = 0, Decode(Encode(S1 ∪ S2)) is one of hx1
or hx2

, since S ∖ SI contains

(x, 0) for all x ∈ X ∖ {x1, x2} and so hx /∈ ERMHpt
(S ∖ SI). Without loss of generality, suppose

Decode(Encode(S1 ∪ S2)) = hx1
. Thus, we have Pr[Yi = 1 | Xi = 1, Ã−{i,m+1}] = Pr[Ã(i) =

x1 | Ã−{i,m+1}] = 1/2.

We can solve Indexm with probability 3/4 by repeating the above protocol twice, returning 1 if each

step returns 1. This ensures correctness with probability 3/4. Thus, we get that C = Ω(m) =
Ω(|X |).

Appendix B. LU Schemes and Lower Bounds in the Central Model

In this section we discuss LU schemes and lower bounds (in the central model) for simple function

classes of 1D thresholdsHth and point functionsHpt (see Appendix A for definitions).

B.1. LU Scheme for 1D Thresholds

Theorem 22 There exists a LU scheme for Hth with space complexity C = O((log |X |)(log n)),
that is valid forHth-realizable datasets.

Proof We describe the methods Learn and Unlearn, given aHth-realizable dataset S and unlearning

request SI . For simplicity, we will assume that X = {1, . . . , 2d−2}, i.e., |Hth| = |X |+1 = 2d−1
for some integer d.

Learn. Since S is Hth-realizable, it follows that ERMHth
(S) is an “interval” {h>p, . . . , h>q},

where p is the largest xi in S with yi = 0 (or 0 if none exists) and q + 1 is the smallest xi in S with

yi = 1 (or 2d if none exists). On input S, let h>a0 , h>a1 , . . . be the sequence of predictors obtained

when performing a binary search. Such a sequence can be obtained using the following procedure.

• i← 0 and a0 ← 2d−1 − 1
• while ai < p or ai > q

▷ ai+1 ←

{

ai + 2d−i−2 if ai < p

ai − 2d−i−2 if ai > q
▷ i← i+ 1

• return h>a0 , h>a1 , . . . , h>ai

We define Learn(S) to return the predictor h>ai (last one in the sequence), and auxiliary infor-

mation aux = (ai, err0, err1, . . . , erri), where errj := L(h>aj ;S). Since i f d, we have that the

bit representation of aux is at most O(d · log n).

Unlearn. For any SI ¦ S, we have that ERMHth
(S∖SI) § ERMHth

(S). Thus, ERMHth
(S∖SI)

is given by the interval {h>p′ , . . . , h>q′} for p′ f p f q f q′. The sequence generated by binary

search on S ∖ SI would be the same as h>a0 , h>a1 , . . . except it might stop earlier.

We define Unlearn(SI , aux) as follows. First, using ai, it is simple to see that we can recover

a0, . . . , ai−1, as there is a unique binary search path to reach ai. Then, for j = 0, . . . , i, compute
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L(h>aj ;S ∖ SI) = errj − L(h>aj ;SI), and return the predictor hj , where j is the smallest index

with L(h>aj ;S ∖ SI) = 0.

We note that the unlearning algorithm in the proof of Theorem 22 even allows for multi-shot

unlearning (which is not the focus of this paper).

B.2. Lower Bounds on LU Schemes for Point Functions

While we showed that the class Hth admits a space-efficient LU scheme, the same is not the case

for the class Hpt of point functions: we show that any LU scheme must have space complexity at

least linear in the number of examples. We, however, also show two ways to circumvent this barrier.

First, if we augment the class Hpt to Hpt to also include the zero function, then we can obtain a

space-efficient LU scheme. Alternatively, if we only restrict to datasets without any repetitions, then

again there exists a space-efficient LU scheme.

Theorem 23 For the classHpt of point functions,

(a) Any LU scheme for Hpt, even those valid only for Hpt-realizable datasets, must have space

complexity Ω(|X |) when n g Ω(|X |).
(b) There exists an LU scheme for Hpt with space complexity C = O(log |X | + log n), that is

valid forHpt-realizable datasets.

(c) There exists an LU scheme for Hpt with space complexity C = O(log |X |), that is valid for

Hpt-realizable datasets without repetitions.

We note that part-(a) and part-(b), taken together, imply a separation between proper and im-

proper learning in terms of the storage needed for LU schemes. While proper learning requires

Ω(n ' |X |) bits in the central memory, improper learning can be done with logarithmically many

bits.

B.2.1. LOWER BOUNDS ON SPACE-COMPLEXITY OF LU SCHEMES FOR Hpt

We prove Theorem 23(a), using the lower bound on one-way communication complexity of the

Indexm problem (Lemma 21).

Proof of Theorem 23(a). Consider an LU scheme for Hpt with Learn and Unlearn methods. Let

X = {1, . . . ,m+ 1}. Consider the following one-way communication protocol for Indexm using a

shared random permutation Ã : X → X .

Alice: On input X ∈ {0, 1}m:

• Let S be a dataset containing Xi + 1 copies of (Ã(i), 0) for all i ∈ [m].
• Let (h, aux)← Learn(S)
• Send aux to Bob.

Bob: On input i ∈ [m] and message aux from Alice:

• Let h← Unlearn(SI , aux) for SI := {(Ã(i), 0)}.
• If h = hÃ(i), return Yi = 0. Otherwise, return Yi = 1.

To show that this communication protocol solves Indexm, we show the following:
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Claim: Pr[Yi = 1 | Xi = 1] = 1.

When Xi = 1, (Ã(i), 0) appears twice in S. Therefore, even after unlearning SI , a copy of (Ã(i), 0)
remains in S \ SIn . Thus, hÃ(i) cannot be the ERM and therefore, Yi = 1.

Claim: Pr[Yi = 1 | Xi = 0] = 1/2.

It suffices to prove the statement for Ã that is fixed on all coordinates except for Ã(i) and Ã(m+1).
Let x1, x2 denote the remaining elements of X (to be assigned to Ã(i), Ã(m+ 1)). Once the rest of

Ã is fixed and Xi = 0, the predictor returned by Learn(S \ SI) is one of hx1
or hx2

, since S ∖ SI

contains (x, 0) for all x ∈ X ∖ {x1, x2} and so hx /∈ ERMHpt
(S ∖ SI). Without loss of generality,

suppose the predictor is hx1
. Thus, we have Pr[Yi = 1 | Xi = 1, Ã−{i,m+1}] = Pr[Ã(i) = x1 |

Ã−{i,m+1}] = 1/2.

We can solve Indexm with probability 3/4 by repeating the above protocol twice, returning 1 if each

step returns 1. This ensures correctness with probability 3/4. Thus, we get that the bit complexity

of aux must be Ω(m) = Ω(|X |).

B.2.2. LU SCHEME FOR POINT FUNCTIONS AUGMENTED WITH ZERO

Proof of Theorem 23(b). Recall thatHpt consists of functions ha(x) = 1{x = a} for all a ∈ X ,

as well as, h0(x) = 0 for all x ∈ X . The key idea is that on input S, the learning algorithm returns

a predictor ha if the example (a, 1) appears in the dataset, else returns the predictor h0.

Learn. On the input S, let h = ha if example (a, 1) appears in S for some a, otherwise if all the

labels are 0, let h = h0. Note that there can be at most one such a since S isHpt-realizable.

When h = ha, the example (a, 1) can appear more than once. So we set aux = (h, c), where

c is the number of times (a, 1) appears in S, or 0 if h = h0. Thus, the bit representation of aux is

log |H|+ log n.

Unlearn. On input SI ¦ S, and aux = (h, c) if h = h0 return h0. Else, if h = ha and the number

of times (a, 1) appears in SI is equal to c, then return h0, else return h0. Basically, using aux, we

are able to verify if S ∖ SI contains any example with label 1 or not.

B.2.3. LU SCHEME FOR DATASETS WITHOUT REPETITIONS

Proof of Theorem 23(c). The key idea is that on input S, the learning algorithm returns the

predictor ha where either (a, 1) appears in S or a is the smallest value such that (a, 0) does not

appear in S. With that in mind, we define Learn and Unlearn as follows.

Learn. On input S,

• If (a, 1) appears in S for some a, then return the predictor ha and aux = (a, b), where b is the

smallest value such that (b, 0) does not appear in S.

• If all labels in S are 0, then let a be the smallest value such that (a, 0) does not appear in S, and

return the predictor ha and aux = (a, a).

It is easy to see that the bit complexity of aux is 2 log |X |.
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Unlearn. On input SI and aux = (a, b), return ha if SI is empty. Otherwise,

• if a ̸= b and (a, 1) /∈ SI , then return ha.

• else, let c be the smallest value such that (c, 0) ∈ SI return hmin{b,c}.

Appendix C. Separation between Central and Ticketed LU Models: Agnostic Case

Note that Theorem 8 and Theorem 23 show that the class of point functions do not have space-

efficient LU schemes, but do have space-efficient TiLU schemes. In this section, we provide yet

another example for which there is a space-efficient TiLU scheme, but there does not exist any

space-efficient LU scheme. In particular, this example holds for the class of 1D thresholds in the

agnostic setting. We show the following:

Theorem 24 For the classHth of 1D thresholds,

(a) Any LU scheme that is valid for all (even unrealizable) datasets must have space complexity

Ω(min{n, |X |}).
(b) There exists a TiLU scheme valid for all (even unrealizable) datasets with space complexity

(Cs = log |X |, Ct = log |X |(log |X |+ log n)).

In contrast, if S isHth-realizable, then Theorem 22 shows a space-efficient LU scheme in the central

model.

C.1. Lower Bounds for Central LU Schemes

Suppose for contradiction we have an LU scheme forHth, consisting of Learn and Unlearn methods,

that is valid even in the agnostic setting. Suppose |X | g 4m + 4. We will construct a two-party

one-way communication protocol, with communication complexity being the space complexity of

the LU scheme, and where Bob can entirely reconstruct Alice’s input X ∈ {0, 1}m (with probability

1).

Alice: On input X ∈ {0, 1}m

• Construct a dataset S as follows:

– For each i ∈ [m],

* if Xi = 0 include examples (4i+ 1, 1), (4i+ 2, 0), (4i+ 3, 1), (4i+ 4, 0).

* if Xi = 1 include examples (4i+ 1, 1), (4i+ 2, 1), (4i+ 3, 0), (4i+ 4, 0).
• Let (h, aux)← Learn(S) and send aux to Bob.

Bob: On receiving aux from Alice, construct Y ∈ {0, 1}m as follows:

• For each i ∈ [m]:
– Let h(i) ← Unlearn(SIi , aux) for SIi := ((4i+ 1, 1), (4i+ 4, 0)).
– If h(i) = h>4i+2, set Yi = 0. Otherwise, set Yi = 1.

If Xi = 0, then after unlearning SIi , the only h ∈ ERMHth
(S ∖ SIi) is h>4i+2. On the other hand,

if Xi = 1, then after unlearning SIi , h>4i+2 /∈ ERMHth
(S ∖ SIi). This reduction is visualized in

Figure 3.

Thus, Bob can perfectly recover Alice’s input X . Hence, we require that aux contains at least

m bits.
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Dataset S constructed by Alice:

X1 = 0 X2 = 1 X3 = 0

Dataset S ∖ SI1 :

X2 = 1 X3 = 0

ERMHth
(S ∖ SI1)

Dataset S ∖ SI2 :

X1 = 0 X3 = 0

ERMHth
(S ∖ SI2)

Figure 3: Illustration of lower bound reduction in Theorem 24, with red circles for label 1 and green

squares for label 0.

C.2. Upper Bounds for TiLU Schemes

We now describe a TiLU scheme forHth with space complexity (Cs = log |X |, Ct = poly(log n, log |X |))
that is valid for all distributions. We first describe the key ideas before delving into the finer details.

We will construct a Learn algorithm that would return the predictor h>a ∈ ERMHth
(S) with the

smallest possible a (hence forth referred to as the “minimal ERM”).

For simplicity we assume that |X | = D = 2d is a power of 2 (the proof can easily be generalized

to other values). We use the following notation below for all p, q ∈ X = {1, . . . , D} with p < q:

• Sp,q denotes dataset within S with x-values in {p, . . . , q}.
• Let ap,q be the smallest value such that h>ap,q ∈ ERMHth

(Sp,q) and p− 1 f ap,q f q; note that

such a value exists because all examples in Sp,q have x values between p and q due to which

L(h>a;Sp,q) is same for all a f p− 1 and similarly, the same for all a g q.

• errp,q := L(h>ap,q ;S). Intuitively speaking, errp,q is the smallest loss incurred by any function

h>a over S subject to p− 1 f a f q.

Consider an interval [p, q] such that no example in SI has x-value in [p, q]. Now, if the minimal

ERM of S ∖ SI happens to be of the form h>a for p − 1 f a f q, then, the minimal ERM has to

be h>ap,q . Moreover, we have L(h>ap,q ;S ∖ SI) = errp,q − L(h>ap,q ;SI).

Learn. Consider a full binary tree of depth d with leaf x corresponding to a possible input value

x ∈ X . For each internal node v, let pv be the smallest leaf index under v, and similarly let qv be

the largest leaf index under v. For each example (xi, yi), let v1, . . . , vd−1 be the nodes on the path

from the root to leaf xi, and for each j ∈ {2, . . . , d} let ṽj be the child of vj−1 and sibling of vj .
Figure 4 shows an example. Let the ticket corresponding to example (xi, yi) be given as

ti ≜ ((apv2 ,qv2 , errpv2 ,qv2 ), . . . , (apvd ,qvd , errpvd ,qvd ))
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S1,8

S1,4

S1,2

1 2

S3,4

3 4

S5,8

S5,6

5 6

S7,8

7 8

Figure 4: Illustration of TiLU scheme underlying the proof of Theorem 24(b) for |X | = 8. The

ticket ti for all examples of the form (xi = 5, yi) are the predictors h>a6 , h>a7,8 , h>a1,4

as well as err6, err7,8 and err1,4.

It is immediate to see that the number of bits in ti is d(d + log n). Define Learn(S) to return

h = h>a1,D , aux = h, and tickets ti as specified above.

Unlearn. If SI is empty, then simply return h (present in aux). Given a non-empty dataset SI

indexed by I ¦ [n], we can use the tickets to construct a partition of [1, D] into disjoint intervals

such that either each interval is a singleton {p} such that some example in SI has x-value equal

to p, or is of the form [p, q] such that no example in SI has an x-value in [p, q]. As argued above,

we know that the minimal ERM for S ∖ SI must be of the form h>ap,q for one of these parts as

recovered above. Moreover, it is possible to compute the loss of each such predictor over S as

L(h>ap,q ;S ∖ SI) = errp,q − L(h>ap,q ;SI). Thus, we can choose the minimal ERM for S ∖ SI

by choosing the predictor h>a with smallest empirical loss over S ∖ SI and the smallest possible

value of a among the candidates above.

Appendix D. Missing Proofs from Section 4

D.1. Point Functions

Proof of Theorem 8(a) In the following, we provide the methods Learn and Unlearn. Our algo-

rithm will use the TiLU scheme (L̃earn, Ũnlearn) for CtZ from Theorem 10. One specific property

of this scheme we will use is that Ũnlearn does not need aux in the case where the unlearning set is

non-empty.

Learn. We will separately define the hypothesis h, the auxiliary information aux, and the ticket

(ti)i∈[n]. Recall that S is the input set of training examples.

• The hypothesis h is defined as follows:

h =

{

ha if ∃a ∈ X , (a, 1) ∈ S,

hmin{b | (b,0)/∈S} otherwise.

• The auxiliary information aux consists of three parts aux1, aux2, aux3. The first part aux1 is

simply h. The second part aux2 is one bit and records which of the two cases we are in for h,

i.e., aux2 := 1{∃a ∈ X , (a, 1) ∈ S}. The last part aux3 records min{b | (b, 0) /∈ S}.
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• As for the tickets, for every a ∈ X , let S(a) denote {(xi, yi) | i ∈ [n], xi = a}. For every

a ∈ X , we run L̃earn on S(a) and let the tickets for the examples in S(a) be as the output of

L̃earn.

Unlearn. Unlearn proceeds as follows, based on if aux2 = 1. Here, for every a ∈ X , let S
(a)
I

denote {(xi, yi) | i ∈ I, xi = a}.

• Case I: aux2 = 1. Let aux1 = ha. In this case, start by checking if S
(a)
I = ∅.

– If S
(a)
I = ∅, then output ha.

– If S
(a)
I ̸= ∅, then run Ũnlearn on the tickets corresponding to S

(a)
I to determine if S

(a)
I =

S(a).

* If S
(a)
I ̸= S(a) (i.e., Ũnlearn outputs ¦), then output ha.

* If S
(a)
I = S(a) (i.e., Ũnlearn outputs §), then proceed to Case II.

• Case II: aux2 = 0. In this case, start with b = aux3. Then, for j = b−1, . . . , 1, do the following:

– If S
(j)
I = ∅, then skip to the next j.

– Otherwise, if S
(j)
I ̸= ∅ , then run Ũnlearn on the tickets corresponding to S

(j)
I to determine

if S
(j)
I = S(j). If S

(j)
I = S(j), then update b← j.

Finally, output hb.

To verify that this is a valid learning scheme, note that for a and j’s used in the algorithm, we

know that S(a) and S(j) are not empty. Therefore, by considering the case S
(a)
I , S

(j)
I ̸= ∅ and uses

Ũnlearn, we can determine whether S(a) = S
(a)
I or S(j) = S

(j)
I . Due to this, our procedure correctly

updates (i) if there is any 1-labeled example remaining and (ii) the minimum b whose (b, 0) does

not appear in the dataset. From this, it is not hard to see that (Learn,Unlearn) is a valid ticketed LU

scheme. The claimed space complexity the follows immediately from that of Theorem 10.

D.2. Product of d Thresholds

D.2.1. MINIMUM VALUE PRIMITIVE

Theorem 25 There is a TiLU scheme for MINVAL with space complexity (O(log |X |), O(log |X |+
log³−1(n))).

Proof For each a ∈ X , we write succS(a) to denote the maximum value in S that is larger than

a; if such a value does not exist, then let succS(a) = §. Similarly, we use the convention that

min(∅) = §. Similar to before, we use S(a) (resp. S
(a)
I ) to denote {xi | i ∈ [n], xi = a} (resp.

{xi | i ∈ I, xi = a}), and let (L̃earn, Ũnlearn) be the ticketed LU scheme for CtZ from Theorem 10.

We now describe our algorithms.

Learn. First, we let h = aux = min(S). Each ticket ti consists of two components t
(1)
i , t

(2)
i . The

second component t
(2)
i is simply set to succS(xi). As for the first component, it is computed as

follows: for every a ∈ X , we run L̃earn(S(a)) and assign the tickets back to samples in S(a) as a

first component.

Unlearn. The algorithm works as follows. Start by letting b be such that aux = hb. Then, do the

following:
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• If b = § or S
(b)
I = ∅, then output b and stop.

• Otherwise, if S
(b)
I ̸= ∅, then run Ũnlearn on the second component of the tickets corresponding

to S
(b)
I to determine whether S

(b)
I = S(b). If S

(b)
I ̸= S(b), then output b and stop. Otherwise, if

S
(b)
I = S(b), then update b← succS(b) where succS(b) is taken from the first component of the

tickets, and repeat this step.

To see the correctness, once again note that we are simply checking in each iteration whether

b still belong to S \ SI and otherwise we let b ← succS(b). The correctness of the check follows

similar to the previous proof. Moreover, given the check is correct, it is clear that the entire algorithm

is correct.

D.2.2. FROM MINIMUM VALUE TO PRODUCT OF d THRESHOLDS

Proof of Theorem 8(b) Let (L̃earn, Ũnlearn) denote the TiLU scheme for MINVAL from Theo-

rem 25. The algorithms work as follows.

Learn. Let S(+) denote the set {(xi, yi) | i ∈ [n], yi = 1} and for each j ∈ [d], let S
(+)
j denote

{(xi)j | (xi, yi) ∈ S(+)}. The output hypothesis is ha where

aj =

{

mj if S(+) = ∅,

min(S
(+)
j )− 1 otherwise.

As for the ticket, if yi = 0, then the ticket ti is empty. For the 1-labeled samples, their ticket

ti is the concatenation of the corresponding tickets from Ũnlearn(S
(+)
1 ), . . . , Ũnlearn(S

(+)
d ). Simi-

larly, the auxiliary information is the concatenation of the auxiliary information from these Ũnlearn

executions.

Unlearn. We use Ũnlearn to find bj = min(S
(+)
j \ (SI)

(+)
j ). We then let

aj =

{

mj if bj = §,

bj − 1 otherwise.

Finally, output h>a.

It is simple to see that the learning algorithm is correct: by definition, all 1-labeled examples

are correctly labeled by h>a. Furthermore, if the input training set is realizable by h>a∗ , then we

must have a∗j f aj for all j ∈ [d]; this implies that h>a also label all 0-labeled examples cor-

rectly. The correctness of the unlearning algorithm then immediately follows from the correctness

of (L̃earn, Ũnlearn) for MINVAL.

Since the ticket is a concatenation of the d tickets for MINVAL, we can use the bound in The-

orem 25. This implies that the total ticket size is O
(
d ·

(
logm+ log³−1(n)

))
= O(log |X | +

d · log³−1(n))) as desired. A similar calculation shows that the auxiliary information has size

O(log |X |).
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D.3. Thresholds

Proof of Theorem 8(c) Let (L̃earn, Ũnlearn) be the TiLU scheme for CtZ from Theorem 10.

For any interval [ℓ, r], we write S[ℓ,r] (resp. S
[ℓ,r]
I ) to denote {(xi, yi) ∈ S | xi ∈ [ℓ, r]} (resp.

{(xi, yi) ∈ SI | xi ∈ [ℓ, r]}).

Learn. Let a0, . . . , ai be the same as in the proof of Theorem 22. Let j0, . . . , ji be such that

aj0 < · · · < aji Then, for each k = 0, . . . , i − 1, we run L̃earn(S[ajk+1,ajk+1
]) to get auxk and the

tickets, which we assign to the corresponding examples. The final auxiliary information is then the

concatenation of aux1, . . . , auxi−1.

Unlearn. Similar to the proof of Theorem 22, the only task for us is to determine whetherL(h>aj ;S∖
SI) = 0 for each j = 0, . . . , i − 1. To do this, observe that L(h>aj ;S ∖ SI) = 0 iff S ∖ SI con-

tains no point in [aj + 1, ai] ∪ [ai + 1, aj ]. We can check this by first running Ũnlearn on each

of U [ajk+1,ajk+1
]

with auxiliary information auxk to check whether S ∖ SI contains any point in

[ajk + 1, ajk+1
]. This information is sufficient to determine whether S ∖ SI contains any point in

[aj + 1, ai] ∪ [ai + 1, aj ].

Appendix E. Missing Proofs from Section 5

Proof of Lemma 16 Suppose for the sake of contradiction that there is a TiLU scheme (Learn,Unlearn)
for CtZ with space complexity (Cs = cs, Ct = ct) where both cs, ct ∈ N are absolute constants.

For every p ∈ {0, 1}cs , let Ap denote the set of a ∈ N such that, if we feed in a elements to

Learn as input, the returned aux is equal to p. Since
⋃

p∈{0,1}cs A
p = N ∪ {0}, there must exist p∗

such that Ap∗ is infinite. Let a1 < a2 < · · · be the elements of Ap∗ sorted in increasing order.

Next, for every i ∈ N, let Qi denote the set of all ai tickets produced by Learn when the input

contains ai elements. Since {Qi}i∈N is an a-size-indexing family with alphabet size Ã = 2ct ,
Theorem 14 implies that it cannot be a Sperner family. In other words, there must exists k < ℓ such

that Qk ¦ Qℓ. Now, consider the Unlearn algorithm when it receives aux = p∗ and tickets being

Qk. If it answers §, then this is incorrect for the case where we start with aℓ elements and removes

ak elements with the tickets corresponding to Qk. However, if it answers ¦, then it is also incorrect

for the case where we start with ak elements and remove everything. This is a contradiction.

Proof of Theorem 17 Let (Learn,Unlearn) be any TiLU scheme forH. Let h1 denote the predictor

output by Learn(∅) and h2 denote any other hypothesis inH, and let x be such that h1(x) ̸= h2(x).

Our TiLU scheme for CtZ (L̃earn, Ũnlearn) works as follows. L̃earn(S) returns the same auxil-

iary information and tickets as Learn((x, h2(x)), . . . , (x, h2(x))), where (x, h2(x)) is repeated |S|

times. Ũnlearn(SI , aux, (ti)i∈I) first runs Unlearn(((x, h2(x)), . . . , (x, h2(x))), aux, (ti)i∈I) where

(x, h2(x)) is repeated |SI | times, to get a predictor h′. Then, it outputs ¦ iff h′(x) = h2(x).

It is obvious that the space complexity of (L̃earn, Ũnlearn) is the same as (Learn,Unlearn). For

the correctness, note that if SI = S, then Unlearn outputs h1 (by our choice of h1) and thus Ũnlearn

correctly outputs §. On the other hand, if SI ̸= S, then at least one copy of (x, h2(x)) remains and

therefore we must have h′(x) = h2(x). Hence, in this case, Ũnlearn outputs ¦ as desired.
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Appendix F. Realizability Testing

In this section, we describe the realizability testing problem, where the goal is to test whether a

given dataset S is H-realizable, i.e., there exists h⋆ ∈ H s.t. h⋆(x) = y for all (x, y) ∈ S. We

extend the terminologies of Definition 2 except that Learn and Unlearn now return § (when S is

realizable), or ¦ (when S is not realizable byH), instead of the hypotheses h, h′.
The easier scenario is when S is H-realizable, in which case, for any SI ¦ S, the remaining

dataset S \ SI is also H-realizable. However, when S is not H-realizable, removing SI may make

S \ SI to beH-realizable, and this is the challenging scenario for realizability testing.

Similar to the rest of the results in the paper, we show a separation between central LU and

TiLU schemes for realizability testing, by considering the class of 1D thresholds.

Theorem 26 For realizability testing for the classHth of 1D thresholds,

(a) Any LU scheme that is valid for all datasets must have space complexity Ω(min{n, |X |}).
(b) There exists a TiLU scheme valid for all datasets with space complexity (Cs = O(log |X |), Ct =

O(log |X |+ log³−1(n))).

Before presenting the proof of Theorem 26, we first describe a TiLU scheme for MAXimum

VALue (MAXVAL) problem, which will be a useful primitive for developing TiLU schemes for

realizability testing in 1D-thresholds. In the MAXVAL problem, we are given a set S ¦ X where

X ¦ R is the domain and the goal is to output max(S) if S ̸= ∅ and § if S = ∅.

Theorem 27 There is a TiLU scheme for MAXVAL with space complexity (O(log |X |), O(log |X |+
log³−1(n))).

Proof The scheme follows similar to the TiLU scheme for MINVAL problem given in Theorem 25,

and is skipped for conciseness.

Proof of Theorem 26. (a) Suppose for contradiction, we have a LU scheme in the central model

for Hth-realizability testing, consisting of Learn and Unlearn methods, that is valid for all datasets.

Suppose |X | g n, and let m = n/2. We will construct a two-party one-way communication

protocol, with communication complexity being the space complexity of the LU scheme, and where

Bob can entirely reconstruct Alice’s input X ∈ {0, 1}m (with probability 1).

Alice: On input X ∈ {0, 1}m,

• Construct a dataset S as follows: For each i ∈ [m], include examples (2i + 1, 0) and

(2i+Xi + 1, 1)
• Let (h, aux)← Learn(S) and send aux to Bob.

Bob: On receiving aux from Alice, construct Y ∈ {0, 1}m as follows:

• For each i ∈ [m]:
– Let v(i) ← Unlearn(SIi , aux) for SIi := {(2i + 1, 0)}i∈[2m]\{i} ∪ {(2j + Yj +
1, 1)}j∈[i−1].

– If v(i) = ¦ (non-realizable), set Yi = 0. Else if v(i) =§ (realizable), set Yi = 1.

• Return Y .

The proof proceeds by arguing that Bob can successfully recover Y = X , which implies that aux

must contain at least m bits. To prove the correctness of the construction of Y , we can use induction

on i. Suppose that we have constructed Y1, . . . , Yi−1 correctly. Then, in iteration i, Bob makes an
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unlearning request SIi to remove all 0-labeled samples except (2i+1, 0), and all 1-labeled samples

with x values smaller than 2i+ 1 There are two cases:

• Xi = 0: In this case, S \ SIi contains (2i+ 1, 1) and is not Hth-realizable, meaning that we

set Yi = 0.

• Xi = 1: In this case, S \ SIi does not contain (2i+ 1, 1) and thus is Hth-realizable, leading

to Yi = 1.

Therefore, Yi = Xi in both cases as desired. The lower bound follows since n = 2m.

(b) To obtain a TiLU scheme, the key idea is that in order to check whether S is realizable via a

threshold, we only need to verify if the largest 0-labeled sample is strictly smaller than the smallest

1-labeled sample. The smallest 1-labeled sample can be computed using the MINVAL primitive in

Theorem 25, and the largest 0-labeled sample can be computed using the MAXVAL primitive in

Theorem 27, both of which have a TiLU scheme with space complexity (O(log |X |), O(log |X | +
log³−1(n))).

With that in mind, we define Learn and Unlearn as follows.

Learn. On input S,

• Compute S0 as the set of all 0-labeled samples in S, and S1 = S \ S0.

• Implement MAXVAL on S0, let x0 = max(S0) and compute the corresponding tickets for

samples in S0.

• Implement MINVAL on S1, let x1 = min(S1) and compute the corresponding tickets for sam-

ples in S1.

• If either x0 or x1 is §, or if x0 < x1, set aux = (§, x0, x1), and return.

• Else, set aux = (¦, x0, x1) and return.

Learn. On input aux = (a, x0, x1), unlearning requests SI and the corresponding tickets {tz}z∈SI
,

return a if SI is empty. Otherwise,

• If a = §, return §.

• Else, compute S0
I and S1

I as the set of 0-labeled and 1-labeled delete requests respectively.

Similarly, define the tickets T 0
I and T 1

I as the tickets for the 0-labeled and 1-labeled samples in

I respectively.

• Compute the max 0-labeled sample in remaining dataset via x0 = MAXVAL.Unlearn(S0
I , x

0, T 0
I ).

• Compute the min1-labeled sample in remaining dataset via x1 = MINVAL.Unlearn(S1
I , x

1, T 1
I ).

• If x0 = § or x1 = §, return §.

• Else if x0 < x1, return §. Else, return ¦.

Since, the MINVAL and MAXVAL primitives compute the minimum 1-labeled x1, and the

maximum 0-labeled samples x0. Additionally, since realizability testing w.r.t. Hth is equivalent

to checking whether x0 < x1, one can verify that the above algorithm is correct. Since the

MINVAL and MAXVAL primitives can be executed using a TiLU scheme with space complexity

(O(log |X |), O(log |X | + log³−1(n))), the above TiLu scheme for realizability testing also has

space complexity (O(log |X |), O(log |X |+ log³−1(n))).
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