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Abstract

In this work, we study the implications of the implicit bias of gradient flow on generalization and
adversarial robustness in ReLU networks. We focus on a setting where the data consists of clusters and
the correlations between cluster means are small, and show that in two-layer ReLU networks gradient
flow is biased towards solutions that generalize well, but are vulnerable to adversarial examples. Our
results hold even in cases where the network is highly overparameterized. Despite the potential for
harmful overfitting in such settings, we prove that the implicit bias of gradient flow prevents it. However,
the implicit bias also leads to non-robust solutions (susceptible to small adversarial ¢s-perturbations),
even though robust networks that fit the data exist.

1 Introduction

A central question in the theory of deep learning is how neural networks can generalize even when trained
without any explicit regularization, and when there are more learnable parameters than training examples.
In such optimization problems there are many solutions that label the training data correctly, and gradient
descent seems to prefer solutions that generalize well [Zha+17]. Thus, it is believed that gradient descent
induces an implicit bias towards solutions which enjoy favorable properties [Ney+17]. Characterizing this
bias in various settings has been a subject of extensive research in recent years, but it is still not well
understood when the implicit bias provably implies generalization in non-linear neural networks.

An additional intriguing phenomenon in deep learning is the abundance of adversarial examples in
trained neural networks. In a seminal paper, Szegedy et al. [Sze+14] observed that deep networks are
extremely vulnerable to adversarial examples, namely, very small perturbations to the inputs can signifi-
cantly change the predictions. This phenomenon has attracted considerable interest, and various attacks
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(e.g., [GSS15; CW17; Pap+17; ACW18; CW18; Wu+20]) and defenses (e.g., [Pap+16; KGB17; Mad+18;
WK18; CH20; WRK20]) were developed. However, the fundamental principles underlying the existence of
adversarial examples are still unclear, and it is believed that for most tasks where trained neural networks
suffer from a vulnerability to adversarial attacks, there should exist other neural networks which can be
robust to such attacks. This is suggestive of the possible role of the optimization algorithms used to train
neural networks in the existence of adversarial examples.

In this work, we study the implications of the implicit bias for generalization and robustness in ReLU
networks, in a setting where the data consists of clusters (i.e., Gaussian mixture model) and the correlations
between cluster means are small. We show that in two-layer ReLU networks trained with the logistic loss
or the exponential loss, gradient flow is biased towards solutions that generalize well, albeit they are non-
robust. Our results are independent of the network width, and hence they hold even where the network
has significantly more parameters than training examples. In such an overparameterized setting, one might
expect harmful overfitting to occur, but we prove that the implicit bias of gradient flow prevents it. On the
flip side, in our setting the distances between clusters are large, and thus one might hope that gradient flow
will converge to a robust network. However, we show that the implicit bias leads to non-robust solutions.

Our results rely on known properties of the implicit bias in two-layer ReLU networks trained with the
logistic or the exponential loss, which were shown by Lyu and Li [LL20] and Ji and Telgarsky [JT20].
They proved that if gradient flow in homogeneous models (which include two-layer ReLU networks) with
such losses reaches a small training loss, then it converges (in direction) to a KKT point of the maximum-
margin problem in parameter space. We show that in clustered data distributions, with high probability
over the training dataset, every network that satisfies the KKT conditions of the maximum-margin problem
generalizes well but is non-robust. Thus, instead of analyzing the trajectory of gradient flow directly in the
complex setting of training two-layer ReLU networks, we demonstrate that investigating the KKT points is
a powerful tool for understanding generalization and robustness. We emphasize that our results hold in the
rich (i.e., feature learning) regime, namely, the neural network training does not lie in the kernel regime,
and thus we provide guarantees which go beyond the analysis achieved using NTK-based results.

In a bit more detail, our main contributions are the following:

* Suppose that the data distribution consists of & clusters, and the training dataset is of size n > Q(k})
We show that with high probability over the size-n dataset, if gradient flow achieves training loss
smaller than % at some time %y, then it converges in direction to a network that generalizes well (i.e.,
has a small test error). Thus, gradient-flow-trained networks cannot harmfully overfit even if the
network is highly overparameterized. The sample complexity Q(k) in this result is optimal (up to log
factors), since we cannot expect to perform well on unseen data using a training dataset that does not
include at least one example from each cluster.

* In the same setting as above, we prove that gradient flow converges in direction to a non-robust
network, even though there exist robust networks that classify the data correctly. Specifically, we
consider data distributions on R? such that the distance between every pair of clusters is 2(v/d), and
we show that there exists a two-layer ReLU network where flipping the output sign of a test example
requires w.h.p. an fs-perturbation of size Q(\/E), but gradient flow converges to a network where
we can flip the output sign of a test example with an /5-perturbation of size much smaller than /d.
Moreover, the adversarial perturbation depends only on the data distribution, and not on the specific
test example or trained neural network. Thus, the perturbation is both universal [Moo+17; Zha+21]
and transferable [Liu+17; AM18]. We argue that clustered data distributions are a natural setting for
analyzing the tendency of gradient methods to converge to non-robust solutions. Indeed, if positive



and negative examples are not well-separated (i.e., the distances between points with opposite labels
are small), then robust solutions do not exist. Thus, in order to understand the role of the optimization
algorithm, we need a setting with sufficient separation between positive and negative examples.

The remainder of this paper is structured as follows: Below we discuss related work. In Section 2 we
provide necessary notations and background, and introduce our setting and assumptions. In Sections 3 and 4
we state our main results on generalization and robustness (respectively), and provide some proof ideas, with
all formal proofs deferred to the appendix. We conclude with a short discussion (Section 5).

Related work

Implicit bias in neural networks. The literature on implicit bias in neural networks has rapidly expanded
in recent years, and cannot be reasonably surveyed here (see Vardi [Var22] for a survey). In what follows,
we discuss results that apply to two-layer ReLLU or leaky-ReLU networks trained with gradient flow in
classification settings.

By Lyu and Li [LL20] and Ji and Telgarsky [JT20], homogeneous neural networks (and specifically
two-layer ReL U networks, which are the focus of this paper) trained with exponentially-tailed classification
losses converge in direction to a KKT point of the maximum-margin problem. Our analysis of the implicit
bias relies on this result. We note that the aforementioned KKT point may not be a global optimum of the
maximum-margin problem [VSS22]. Recently, Kunin et al. [Kun+22] extended this result by showing bias
towards margin maximization in a broader family of networks called quasi-homogeneous.

Lyu et al. [Lyu+21], Sarussi, Brutzkus, and Globerson [SBG21], and Frei et al. [Fre+23b] studied im-
plicit bias in two-layer leaky-ReL.U networks with linearly-separable data, and proved that under some
additional assumptions gradient flow converges to a linear classifier. ~ Chizat and Bach [CB20] studied
the dynamics of gradient flow on infinite-width homogeneous two-layer networks with exponentially-tailed
losses, and showed bias towards margin maximization w.r.t. a certain function norm known as the varia-
tion norm. Phuong and Lampert [PL20] studied the implicit bias in two-layer ReLU networks trained on
orthogonally separable data.

Safran, Vardi, and Lee [SVL22] proved implicit bias towards minimizing the number of linear regions
in univariate two-layer ReLLU networks, and used this result to obtain generalization bounds. Similarly to
our work, they used the KKT conditions of the maximum-margin problem in parameter space to prove
generalization in overparameterized networks. However, our setting is significantly different. Implications
of the bias towards KKT points of the maximum-margin problem were also studied in Haim et al. [Hai+22],
where they showed that this implicit bias can be used for reconstructing training data from trained ReLU
networks.

Theoretical explanations for non-robustness in neural networks. Despite much research, the reasons
for the abundance of adversarial examples in trained networks are still unclear [GSS15; FFF18; Sha+19;
Sch+18; KH18; Bub+19; AL21; Wan+20; Sha+20; SMB21; Sin+21; Wan+22; DB22]. Below we discuss
several prior theoretical works on this question.

In one line of work, it has been shown that small adversarial perturbations can be found for any fixed in-
put in certain neural networks with random weights (drawn from the Gaussian distribution) [DS20; Bub+21;
BBC21; MW22]. These works differ in the assumptions about the width and depth of the networks as well
as the activation functions considered. However, since trained networks are non-random, these works are
unable to capture the existence of adversarial examples in trained networks.



The result closest to ours was shown in Vardi, Yehudai, and Shamir [VYS22]. Similarly to our result,
they used the KKT conditions of the maximum-margin problem in parameter space, in order to prove that
gradient flow converges to non-robust two-layer ReLLU networks under certain assumptions. More precisely,
they considered a setting where the training dataset S consists of nearly-orthogonal points, and proved
that every KKT point is non-robust w.r.t. §. Namely, for every two-layer network that satisfies the KKT
conditions of the maximum-margin problem, and every point x; from S, it is possible to flip the output’s sign
with a small perturbation. Their result has two main limitations: (1) It considers robustness w.r.t. the training
data, while the more common setting in the literature considers robustness w.r.t. test data, as it is often more
crucial to avoid adversarial perturbations in test examples; (2) Since they assume near orthogonality of the
training data, the size of the dataset S must be smaller than the input dimension.! Thus, they considered
a high dimensional setting. We note that high-dimensional settings often have a different generalization
behavior than low-dimensional settings (e.g., overfitting can be benign in the high-dimensional setting, but
harmful in a low-dimensional setting [K'YS23]). Our result does not suffer from these limitations, since we
consider robustness w.r.t. test data, and the size of our training dataset might be very large. In our results, we
essentially require near orthogonality of the cluster means, as opposed to near orthogonality of the training
dataset in their result.

Finally, in Bubeck, Li, and Nagaraj [BLN21] and Bubeck and Sellke [BS21], the authors proved (under
certain assumptions) that overparameterization is necessary if one wants to interpolate training data using a
neural network with a small Lipschitz constant. Namely, neural networks with a small number of parameters
are not expressive enough to interpolate the training data while having a small Lipschitz constant. These
results suggest that overparameterization might be necessary for robustness. In this work, we show that
even if the network is highly overparameterized, the implicit bias of the optimization method can prevent
convergence to robust solutions.

2 Preliminaries

We use bold-face letters to denote vectors, e.g., X = (x1,...,24). For x € R? we denote by ||x|| the
Euclidean norm. We denote by 1[-] the indicator function, for example 1[t > 5] equals 1 if ¢ > 5 and
0 otherwise. We denote sign(z) = 1 if z > 0 and —1 otherwise. For an integer d > 1 we denote

[d] = {1,...,d}. Foraset A we denote by /( A) the uniform distribution over A. We denote by N(y, o) the
normal distribution with mean y € R and variance o2, and by N(gu, ) the multivariate normal distribution
with mean g and covariance matrix . The identity matrix of size d is denoted by I;. We use standard
asymptotic notation O(-) and €2() to hide constant factors, and O(-), () to hide logarithmic factors. We
use log for the logarithm with base 2 and In for the natural logarithm.

In this work, we consider depth-2 ReLU neural networks. The ReLU activation function is de-
fined by ¢(z) = max{0,z}. Formally, a depth-2 network Ny of width m is parameterized by 8 =
[W1,...,Wm,b,v] where w; € R? for all i € [m] and b,v € R™, and for every input x € R? we
have

No(x) =D vjo(wix+1b;).

Jj€lm]

We sometimes view 6 as the vector obtained by concatenating the vectors wy, ..., W,,, b, v. Thus, ||@]|
denotes the {5 norm of the vector 8. We note that in this work we train both layers of the ReLU network.

'They also give a version of their result, where instead of assuming this upper bound on the size of the dataset, they assume an
upper bound on the number of points that attain the margin in the trained network, but it is not clear a priori when this assumption
is likely to hold.



We denote (6;x) := Ng(x). We say that a network is homogeneous if there exists L > 0 such that for
every a > 0 and 6, x we have ®(af;x) = a®(0;x). Note that depth-2 ReLU networks as defined above
are homogeneous (with L = 2).

We next define gradient flow and remind the reader of some recent results on the implicit bias of gradient
flow in two-layer ReLU networks. Let S = {(x;,;)}7; € R%x {1, 1} be a binary classification training
dataset. Let ®(0;-) : R? — R be a neural network parameterized by 6. For a loss function £ : R — R the
empirical loss of ®(0;-) on the dataset S is

n

£(0) = > Uuid(6:x)). m

i=1

We focus on the exponential loss ¢(q) = e~? and the logistic loss ¢(q) = log(1 + e~ 7).

We consider gradient flow on the objective given in Eq. (1). This setting captures the behavior of gradient
descent with an infinitesimally small step size. Let 0(t) be the trajectory of gradient flow. Starting from an
initial point 8(0), the dynamics of 8(t) is given by the differential equation %ﬁt) € —0°L(6(t)). Here, 0°
denotes the Clarke subdifferential [Cla+08], which is a generalization of the derivative for non-differentiable
functions.

We now remind the reader of a recent result concerning the implicit bias of gradient flow over the expo-
nential and logistic losses for homogeneous neural networks. Note that since homogeneous networks satisfy
sign(®(aB;x)) = sign(P®(0;x)) for any o > 0, the sign of the network output of homogeneous networks
depends only on the direction of the parameters 6. The following theorem provides a characterization of the
implicit bias of gradient flow by showing that the trajectory of the weights 0(t) converge in direction to a
first-order stationary point of a particular constrained optimization problem, where 6 converges in direction

to 6 means lim; o0 % = ﬁ. Note that since ReLLU networks are non-smooth, the first-order station-

arity conditions (i.e., the Karush—Kuhn-Tucker conditions, or KKT conditions for short) are defined using
the Clarke subdifferential (see Lyu and Li [LL20] and Dutta et al. [Dut+13] for more details on the KKT
conditions in non-smooth optimization problems).

Theorem 2.1 (Paraphrased from Lyu and Li [LLL20] and Ji and Telgarsky [JT20]). Let ®(0;-) be a homoge-
neous ReLU neural network parameterized by 6. Consider minimizing either the exponential or the logistic
loss over a binary classification dataset {(x;,y;)}i, using gradient flow. Assume that there exists time t
such that L(0(t)) < L (and thus y; ®(8(to); x;) > 0 for every x;). Then, gradient flow converges in direc-
tion to a first-order stationary point (KKT point) of the following maximum margin problem in parameter
space:

1
min - 160> st Vie[n] y:;®(0;x;)>1. 2)
Moreover, L(0(t)) — 0 and ||0(t)|| — 0o ast — .

Theorem 2.1 gives a characterization of the implicit bias of gradient flow with the exponential and the
logistic loss for homogeneous ReLU networks. Note that the theorem makes no assumption on the initial-
ization, training data, or number of parameters in the network; the only requirement is that the network
is homogeneous and that at some time point in the gradient flow trajectory, the network is able to achieve
small training loss. The theorem shows that although there are many ways to configure the network param-
eters to achieve small training loss (via overparameterization), gradient flow only converges (in direction)
to networks which satisfy the KKT conditions of Problem (2). It is important to note that satisfaction of
the KKT conditions is not sufficient for global optimality of the constrained optimization problem [VSS22].



We further note that if the training data are sampled i.i.d. from a distribution with label noise (e.g., a
class-conditional Gaussian mixture model, or a distribution where labels y; are flipped to —y; with some
nonzero probability), networks which have parameters that are feasible w.r.t. the constraints of Problem (2)
have overfit to noise, and understanding the generalization behavior of even globally optimal solutions to
Problem (2) in this setting is the subject of significant research [Mon+19; CL21; Fre+23a].

Finally, we introduce the distributional setting that we consider. We consider a distribution D pysters
on R? x {—1,1} that consists of k clusters with means ,u(l), .. ,,u(k) e R and covariance 021, (i.e., a
Gaussian mixture model), such that the examples in the j-th cluster are labeled by y) e {-1,1}. More
formally, (x,y) ~ Dejusters 1S generated as follows: we draw j ~ U([k]) and x ~ N(u(j),a21d), and set
y = y\9). We assume that there exist 7, j € [k] with y(*) % y(), Moreover, we assume the following:

Assumption 2.2. We have:
\pD| = Vd forall j € [k].

e 0<o <1

K (maxi¢j (@, pO)] + doV/dIn(d) + 1) < dtovdn(@i1
Example 1. Below we provide simple examples of settings that satisfy the assumption:

« Suppose that the cluster means satisfy |(pD, )| = O(\V/d) for every i # j. This condition holds,
e.g., if we choose each cluster mean i.i.d. from the uniform distribution on the sphere \/d - S** (see,
e.g., Vardi, Yehudai, and Shamir [VYS22, Lemma 3.1]). Let ¢ = 1, namely, each cluster has a radius
of roughly \/d. Then, the assumption can be satisfied by choosing k = (5(\/3)

» Suppose that the cluster means are exactly orthogonal (i.e., <u(i) ,Nu(j)> = 0 forall i # j), and
o = 1/V/d. Then, the assumption can be satisfied by choosing k = O(d).

* If the number of clusters is k= (7)(1) then the assumption may hold even where
max; z; (), )| = O(d) (for any 0 < o < 1).

A few remarks are in order. First, the assumption that ||(/)|| is exactly v/d is for convenience, and we
note that it may be relaxed (to have all cluster means approximately of the same norm) without affecting
our results significantly. Note that in the case where o = 1, the radius of each cluster is roughly of the
same magnitude as the cluster mean. Second, we assume for convenience that the noise (i.e., the deviation
from the cluster’s mean) is drawn from a Gaussian distribution with covariance matrix o21;. However, we
note that this assumption can be generalized to any distribution Dyse such that for every unit vector e the
noise & ~ Dyeise satisfies w.h.p. that (£,e) = O(1) and ||| = O(V/d). This property holds, e.g., for a
d-dimensional Gaussian distribution N(0, ¥3), where tr[>] = d and || X||, = O(1) (see Frei et al. [Fre+23b,
Lemma 3.3]), and more generally for a class of sub-Gaussian distributions (see Hu et al. [Hu+20, Claim
3.1]). Third, note that the third part of Assumption 2.2 essentially requires that the number of clusters k
cannot be too large and the correlations between cluster means cannot be too large. Finally, we remark that
when k is small, our results may be extended to the case where ¢ > 1. For example, if & = O(1) and
max;; |(p®, )| = O(Vd), our generalization result (Theorem 3.1) can be extended to the case where
o= @(dl/ 8). We preferred to avoid handling & > 1 in order to simplify the proofs.

Moreover, it is worth noting that Assumption 2.2 implies that the data is w.h.p. linearly separable
(see Lemma 2.1 below, and a proof in Appendix B). However, in this work we consider learning using
overparameterized ReLU networks, and it is not obvious a priori that gradient methods do not harmfully



overfit in this case. Indeed, it has been shown that ReLLU networks trained by gradient descent can interpolate
training data and fail to generalize well in some distributional settings [Kou+23].

Lemma 2.1. Letu = qu[k] YD p\D. Then, with probability at least 1 — 2d'~™®/2 = 1 — 04(1) over

(X, y) ~ Delusters» we have y = SigH(U.T )

3 Generalization

In this section, we show that under our assumptions on the distribution D,jysters, gradient flow does not
harmfully overfit. Namely, even if the learned network is highly overparameterized, the implicit bias of
gradient flow guarantees convergence to a solution that generalizes well. Moreover, we show that the sample
complexity is optimal. The main result of this section is stated in the following theorem:

Theorem 3.1. Let ¢,6 € (0,1). Let S = {(x;,4:)}"; € R? x {—1,1} be a training set drawn i.i.d.
from the distribution D jysers, Wwhere n > k In? (d). Let Ng be a depth-2 ReLU network such that 8 =
[W1, ..., Wm,b,v]isa KKT point of Problem (2). Provided d is sufficiently large such that §* < %dl“(d)*l

and
n < min \ﬁ /32 Vo L go@/4 € gm@)/2 |
— 3 ) 3 74 Y

with probability at least 1 — § over S, we have

Pr Np(x) < 0] <e.
(xvy)NDcluslerx [y 0( ) o ] o

The sample complexity requirement in Theorem 3.1 is n = Q(k) Essentially, it requires that the dataset
S will include at least one example from each cluster. Clearly, any learning algorithm cannot perform well
on unseen clusters. Hence the sample complexity requirement in the theorem is tight (up to log factors).

The assumptions in Theorem 3.1 include upper bounds on 6! and n. Note that the expressions in these
upper bounds are super-polynomial in d, and in particular if n,5 !, e ' = poly(d), then these assumptions
hold for a sufficiently large d. Admittedly, enforcing an upper bound on the training dataset’s size is uncom-
mon in generalization results. However, if n is exponential in d, it is not hard to see that there will be clusters
which have both positive and negative examples within radius o of the cluster center, essentially introducing
a form of label noise to the problem. Since KKT points of Problem (2) interpolate the training data, this
would imply that the network has interpolated training data with label noise—in other words, it has ‘over-
fit’ to noise. Understanding the generalization behavior of interpolating neural networks in the presence of
label noise is a very technically challenging problem for which much is unknown, especially if one seeks
to understand this by only relying upon the properties of KKT conditions for margin maximization. It is
noteworthy that all existing non-vacuous generalization bounds for interpolating nonlinear neural networks
in the presence of label noise require n < d [FCB22; Cao+22; X(G23; Fre+23a; Kou+23].

Combining Theorem 3.1 with Theorem 2.1, we conclude that w.h.p. over a training dataset of size
n > kIn?(d) (and under some additional mild requirements), if gradient flow reaches empirical loss smaller
than %, then it converges in direction to a neural network that generalizes well. This result is width-
independent, thus, it holds irrespective of the network width. Specifically, even if the network is highly
overparameterized, the implicit bias of gradient flow prevents harmful overfitting. Moreover, the result does
not depend directly on the initialization of gradient flow. That is, it holds whenever gradient flow reaches
small empirical loss after some finite time. Thus, by relying on the KKT conditions of the max-margin



problem instead of analyzing the full gradient flow trajectory, we can prove generalization without the need
to prove convergence.

3.1 Proofidea

The proof of Theorem 3.1 is given in Appendix A. Here we discuss the high-level approach. Let 8 =
[W1,...,Wm,b,v] be a KKT point of Problem (2). Thus, we have Ny(x) = > jepm] ngb(w;rx + b;).
Since 0 satisfies the KKT conditions of Problem (2), then there are Ay, ..., A, such that for every j € [m]
we have

Z AiVw yzNﬂ Xz Z )‘zyzvﬂbz GXi (3)

i€[n] i€[n]

where qﬁ is a subgradient of ¢ atw x; + bj, i.e., 1fw x; + bj # 0 then qb L= ]l[w x; + b; > 0], and
0therw1se gb - is some value in [0, 1]. Also we have \; > 0 for all 7, and \; = 0 if y; Ng (XZ) = 1. Likewise,
we have

b = Z Y vb yzNO Xz Z Azyzvquzj “4)

ze[n] ZE[?’L

In the proof, using a careful analysis of Eq. (3) and (4) we show that w.h.p. Ny classifies correctly a
fresh example. Note that by Eq. (3), each neuron j € [m] is a linear combination of the inputs x1,...,x,
with coefficients )\iyivjqﬁ;’ ;- Letr € [k] be a cluster with y( =1 (the argument for y(") = —1 is similar).
Intuitively, we show that the sum of the aforementioned coefficients over all inputs in cluster 7 and over all
positive neurons (i.e., neurons with v; > 0) is large. Namely, the positive neurons have a large component
in the direction of cluster . Then, using the near-orthogonality of the clusters, we show that given a fresh
example from cluster r, the positive contribution of the component in the direction of cluster 7 is sufficiently
large, such that the output of Ny is positive.

More precisely, the main argument can be described as follows. We denote J := [m], J; := {j € J :
v; > 0}, and J_ := {j € J : v; < 0}. Moreover, we denote / := [n] and Q) := [k]. For ¢ € Q we denote
I9 = {i € I : x;is in cluster ¢}. Consider the network’s output for an input x from cluster r € @ with
y() = 1. We have

No(x) = Z quﬁ(Wij—i-bj) + Z vjqb(ijx—i-bj) > Z vj(ijx—i-bj) + Z ngb(ijx—l—bj), (5)
jedy jed_ jedy jed_

where we used ¢(z) > z for all z € R. This suggests the following possibility: if we can ensure that
> e, vj(ijx + b;) is large and positive while > c; vjqﬁ(Wij + bj;) is not too negative, then the
network will accurately classify the example x. Using Eq. (3) and (4) and that y") =1 (soy; = 1 for
i € I("), the first term in the above decomposition is equal to

Z vj(w;-rx +bj) = Z v} Z)\iyivjd);j(xz—x +1)

JjeJ+ jeJ+ iel
T T
=0 D0 avfel x|+ DD D A (x x + 1)
J€J+ | \iel™ 9€Q\{r} ic1@
T T
> | D0 Do Awiolblx 1) | = >0 Y0 Y Al x+ 1]
i€l jET 4 a€Q\{r} icI(®) j€J+



Since x comes from cluster 7 and the clusters are nearly orthogonal, the pairwise correlations xiTx will be

large and positive when i € 1(") but will be small in magnitude when i € I(9) for ¢ # r. Thus, we can hope
that this term will be large and positive if we can show that the quantity » ;) > jeg+ )\iv? (;5;7 ; 1s not too
small relative to the quantity » 4€Q\{r} Dicr@ 2 jeds )\ivf- gbg’ ;- By similar arguments, in order to show the
second term in Eq. (5) is not too negative, we need to understand how the quantity > ;) jed_ /\ivjz-qb; j
varies across different clusters ¢ € ). Hence, in the proof we analyze how the quantities

DD oM Do D Nl

icl(a) jeJ iel(a) jeJ_

relate to each other for different clusters ¢ € @, and show that these quantities are all of the same order.
Then, we conclude that w.h.p. x is classified correctly.

4 Robustness

We begin by introducing the definition of R(-)-robustness.

Definition 4.1. Given some function R(-), we say that a neural network Ny is R(d)-robust w.r.t. a distribu-
tion Dy over R? if for every r = o(R(d)), with probability 1 — 04(1) over x ~ Dy, for every x' € R? with
|x — x'|| <7 we have sign(Ng(x')) = sign(Ng(x)).

Thus, a neural net Ny is R(d)-robust if changing the label of an example cannot be done with a pertur-
bation of size o(R(d)). Note that we consider here /5 perturbations.

For the distribution Djysters Under consideration, it is straightforward to show that classifiers cannot be
R(d)-robust if R(d) = w(\/d): since the distance between examples in different clusters is w.h.p. O(v/d),
it is clearly possible to flip the sign of an example with a perturbation of size (’)(\/E) In particular, the
best we can hope for is v/d-robustness. In the following theorem, we show that there exist two-layer ReLU
networks which can both achieve small test error and the optimal level of v/d-robustness.

Theorem 4.1. For every r > k, there exists a depth-2 ReLU network N : RY — R of width r such that for
(x,Y) ~ Deiusterss with probability at least 1 — d=“11) ywe have yN (x) > 1, and flipping the sign of the
output requires a perturbation of size larger than @ (for a sufficiently large d). Thus, N classifies the data
correctly w.h.p., and it is \/d-robust w.r.t. Dx.

Thus, we see that v/d-robust networks exist. In the following theorem, we show that the implicit bias
of gradient flow constrains the level of robustness of trained networks whenever the number of clusters £ is
large.

Theorem 4.2. Let¢,6 € (0,1). Let S = {(xi,y:)}1; € R? x {—1,1} be a training set drawn i.i.d. from
the distribution Dejysers, where n > k1n*(d). We denote Q = {q € [k] : 49 = 1} and Q_ = {q € [k] :
y@ = —1}, and assume that min {%, %} > c for some ¢ > 0. Let Nyg be a depth-2 ReLU network

such that @ = [w1, ..., Wy, b,v] is a KKT point of Problem (2). Provided d is sufficiently large such that

6t < %dln(d)_l and
n < min \/E . /32 ﬁ Cgm@/a € @2\
>~ 3 ) 3 y 1 ,



with probability at least 1 — & over S, there is a vector z = 1 - Zje[k} y D) with n > 0 and ||z| <

O (\ / ﬁ) such that

Pr [sign(Ng(x)) # sign(Np(x —yz))] > 1 —e€.

(X 3 y) ~Dielusters

Note that the expressions in the upper bounds on n and § ! are super-polynomial in d, and hence
these requirements are mild (e.g., they hold for a sufficiently large d when n,6~ !, ¢! = poly(d)). As
we mentioned in the discussion following Theorem 3.1, we believe removing the requirement for an upper
bound on n would be highly nontrivial.

Theorem 4.2 implies that if ¢?k = wy(1), then w.h.p. over the training dataset, every KKT point of
Problem (2) is not v/d-robust. Specifically, if ¢ is constant, namely, at least a constant fraction of the clusters
have positive labels and a constant fraction of the clusters have negative labels, then the network is not
Vd-robust if k = wq(1). Recall that by Theorem 3.1, we also have w.h.p. that every KKT point generalizes
well. Overall, combining Theorems 2.1, 3.1, 4.1, and 4.2, we conclude that for 2k = wy(1), w.h.p. over a
training dataset of size n > k In?(d), if gradient flow reaches empirical loss smaller than %, then it converges
in direction to a neural network that generalizes well but is not v/d-robust, even though there exist v/d-robust
networks that generalize well. Thus, in our setting, there is bias towards solutions that generalize well but
are non-robust.

Example 2. Consider the setting from the first item of Example 1. Thus, the cluster means satisfy
(D, uOY| = O(Vd) for every i # j, and we have ¢ = 1 and k = ©(\/d). Suppose that ¢ = O(1),
namely, there is at least a constant fraction of clusters with each label {—1,1}. Then, the adversarial
perturbation z from Theorem 4.2 satisfies

Iz = O < %) = O () = o)

Similarly to our discussion after Theorem 3.1, we note that Theorem 4.2 is width-independent, i.e., it
holds irrespective of the network width. It implies that we cannot hope to obtain a robust solution by choos-
ing an appropriate width for the trained network. As we discussed in the related work section, Bubeck, Li,
and Nagaraj [BLN21] and Bubeck and Sellke [BS21] considered the expressive power of neural networks,
and showed that overparameterization might be necessary for robustness. By Theorem 4.2, even when
the network is overparameterized, the implicit bias of the optimization method can prevent convergence to
robust solutions.

Moreover, our result does not depend directly on the initialization of gradient flow. Recall that by
Theorem 2.1 if gradient flow reaches small empirical loss then it converges in direction to a KKT point of
Problem (2). Hence our result holds whenever gradient flow reaches a small empirical loss.

Note that in Theorem 4.2, the adversarial perturbation does not depend on the input (up to sign). It
corresponds to the well-known empirical phenomenon of universal adversarial perturbations, where one
can find a single perturbation that simultaneously flips the label of many inputs (cf. [Moo+17; Zha+21]).
Moreover, the same perturbation applies to all depth-2 networks to which gradient flow might converge (i.e.,
all KKT points). It corresponds to the well-known empirical phenomenon of transferability in adversarial
examples, where one can find perturbations that simultaneously flip the labels of many different trained
networks (cf. [Liu+17; AMI18]).
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It is worth noting that Theorems 3.1 and 4.2 demonstrate that trained neural networks exhibit different
properties than the 1-nearest-neighbour learning rule, irrespective of the number of parameters in the net-
work. For example, consider the case where o = %, namely, the examples of each cluster are concentrated

within a ball of radius O(1) around its mean. Then, the distance between every pair of points from the same
cluster is O(1), and the distance between points from different clusters is (v/d). In this setting, both the
1-nearest-neighbour classifier and the trained neural network will classify a fresh example correctly w.h.p.,
but in the 1-nearest-neighbour classifier flipping the output’s sign will require a perturbation of size Q(v/d),
while in the neural network a much smaller perturbation will suffice.

Finally, we remark that in the limit ¢ — 0, we get a distribution supported on p(V), ..., u*®). Then, a
training dataset of size n > k In? (d) will contain w.h.p. all examples in the support, and hence robustness
w.r.t. test data is equivalent to robustness w.r.t. the training data. In this case, we recover the results of Vardi,
Yehudai, and Shamir [VYS22] which characterized the non-robustness of KKT points of ReLU networks
trained on nearly orthogonal training data. In particular, our Theorem 4.2 is a strict generalization of their
Theorem 4.1.

4.1 Proof ideas

Here we discuss the main ideas in the proofs of Theorems 4.1 and 4.2. See Appendices C and D for the
formal proofs.

4.1.1 Theorem 4.1

The proof follows by the following simple construction. The robust network includes k neurons, each
corresponding to a single cluster. That is, we have NV (x) = Zle vio(w'x + b;), where v; = y\9),
w; = 4“;]), and b; = —2. Note that the j-th neuron points at the direction of the j-th cluster and has
a negative bias term, such that the neuron is active on points from the j-th cluster, and inactive on points
from the other clusters. Then, given a fresh example (x,y) ~ Delusters» We show that the network classifies
it correctly w.h.p. with margin at least 1. Also, there is w.h.p exactly one neuron that is active on x, and
hence the gradient of the network w.r.t. the input is affected only by this neuron and is of size O(1/v/d).

Therefore, we need a perturbation of size Q(\/E) in order to flip the output’s sign.

4.1.2 Theorem 4.2

While the proof of Theorem 4.1 follows by a simple construction, the proof of Theorem 4.2 is more chal-
lenging. The intuition for this result can be described as follows. Recall that in our construction of a robust
network in the previous subsection, an example (X, y) ~ Dejysters s W.h.p. in an active region of exactly one
neuron, and hence in the neighborhood of x the output of the network is sensitive only to perturbations in
the direction of that neuron. Now, consider the linear model x — w ' x, where w = 22:1 éy@u@. Itis
not hard to verify that for (x,y) ~ Delusters We have w.h.p. that 0 < yw ' x < O(1). Moreover, the gradient
of this linear predictor is of size |w|| = (1/k/d). Hence, we can flip the output’s sign with a perturbation
of size O(y/d/k). Thus, the linear classifier is non-robust if k& = wy(1). Intuitively, the difference between
our robust ReLU network and the non-robust linear classifier is the fact that in the neighborhood of x the
robust network is sensitive only to perturbations in the direction of one cluster, while the linear classifier is
sensitive to perturbations in the directions of all £ clusters. In the proof, we analyze ReLU networks which
are KKT points of Problem (2), and show that although these ReLLU networks are non-linear, they are still
sensitive to perturbations in the directions of all & clusters, similarly to the aforementioned linear classifier.
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The formal proof follows by a careful analysis of the KKT conditions of Problem (2), given in Eq. (3)
and (4). We show that for every solution @ of these equations, we have w.h.p. over (x,y) ~ Dejusters
that |[NMg(x)| = O(1), and that a perturbation in the direction of z and size s changes the output by

Q <s <4/ C%’“) . Recall that in Section 3.1, we mentioned that Eq. (3) and (4) imply that the positive (respec-

tively, negative) neurons have “large” components in the directions of all positive (respectively, negative)
clusters. In the proof, we use this property in order to show that perturbations in the direction of z, which
has components in the directions of all k clusters, change the network’s output sufficiently fast.

We remark that in the proof of Theorem 4.2 we use some technical ideas from Vardi, Yehudai, and
Shamir [VYS22]. However, there are significant differences between the two settings. For example, they
assume that the training data are nearly orthogonal, which only holds when the dimension is large relative
to the number of samples; thus, it is unclear whether the existence of small adversarial perturbations in their
setting is due to the high-dimensionality of the data or if a similar phenomenon exists in the more common
n > d setting. At a more technical level, their proof relies on showing that in a KKT point all inputs must
lie exactly on the margin, while in our setting they are not guaranteed to lie exactly on the margin.

5 Discussion

In this paper, we considered clustered data, and showed that gradient flow in two-layer ReLLU networks does
not harmfully overfit, but also hinders robustness. Our results follow by analyzing the KKT points of the
max-margin problem in parameter space. In our distributional setting, the clusters are well-separated, and
hence there exist robust classifiers, which allows us to consider the effect of the implicit bias of gradient
flow on both generalization and robustness. Understanding generalization and robustness in additional data
distributions and neural network architectures is a challenging but important question. As a possible next
step, it would be interesting to study whether the approach used in this paper can be extended to the following
data distributions:

First, our assumption on the data distribution (Assumption 2.2) implies that the number of clusters
cannot be too large, and as a result the data is linearly separable (Lemma 2.1). We conjecture that our results
hold even for a significantly larger number of clusters, such that the data is not linearly separable.

Second, it would be interesting to understand whether our generalization result holds for linearly sep-
arable data distributions that are not clustered. That is, given a distribution that is linearly separable with
some margin v > 0 and a training dataset that is large enough to allow learning with a max-margin linear
classifier, are there KKT points of the max-margin problem for two-layer ReL.U networks that do not gen-
eralize well? In other words, do ReL.U networks that satisfy the KKT conditions generalize at least as well
as max-margin linear classifiers?
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A Proof of Theorem 3.1

We will prove the following theorem:

Theorem A.l. Let S = {(x;,9;)}"; C R x {—1,1} be a training set drawn i.i.d. from the distribution
D tusierss Where n > kIn? (d). Let Ng be a depth-2 ReLU network such that @ = [w1,...,wy,,b,v] is a
KKT point of Problem (2). Then, with probability at least

1-— <3n2d_1ngd) +n2emd16 dl_ln(d)>

over S, we have
In(d)
Pr  [yNp(x)) <0] <4nd "2
(X ) y) ND(‘[u.m'r.v

It is easy to verify that Theorem A.1 implies Theorem 3.1. Indeed, if % < %dln(d)*l and

n < min {\/g_ed/w’ g . dn@)/4, i ‘dln(d)/Q} ’

then we have:

1.
2
a2 g VO n@ya\ - mm@@yz _ 5.0 jn@/2g- @2 _ 0
- 3 9 3
2.
2
n2e=d/16 < [ [0 ass2) —djie _ 0
<\V3 3
3.
i@ < O
-3
4,

In(d)

And="3 < 4- i @2 @2 —

Hence, under the above assumptions on d and n, Theorem A.l implies that with probability at least 1 — ¢
over S, we have Pr(y ) s WNo(X)) < 0] < e

We now turn to prove Theorem A.l. The high-level idea for the proof is as follows. First, we show
that the training dataset is sufficiently “nice” with high probability, in the sense that samples within each
cluster are highly correlated while samples in orthogonal clusters are nearly orthogonal (see properties (P1)
through (P6) below). This analysis appears in Section A.1. We then show that datasets with “nice” properties
impose a number of structural constraints on the properties of KKT points of the margin maximization
problem for ReLLU nets; this appears in Section A.2. We conclude in Section A.3 by showing how these
structural conditions allow for generalization on fresh test data.
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A.1 Training dataset properties

We denote No(x) = > icpm) vj(b(w;rx + b;). Thus, Ny is a network of width m, where the weights
in the first layer are wy, ..., wW,,, the bias terms are by, ..., b,,, and the weights in the second layer are
Vi,...,Up. Wedenote J := [m|, Jy :={j € J:v; >0}, and J_ := {j € J : v; < 0}. Moreover, we
denote I := [n], [y :={i €I :y; =1}, and I_ := {i € I : y; = —1}. Finally, we denote Q) := [k],
Qy={qeQ:y 9 =1} and Q_:={geQ:y9 = -1},

We denote p := max,.q |(u(?, p(?))|. The distribution Dejugers is such that each example (x;, ;) in
S is generated as follows: we draw ¢; ~ U(Q) and &; ~ N(0,0%1;) and set x; = (%) + €, and y; = y(%).
We denote cluster(i) = ¢;. For ¢ € Q we denote I(9) = {i € I : cluster(i) = q}. We also denote
A = 40/ d1n(d).

Our goal in this section will be to show that with high probability, the dataset S satisfies the following
properties.

(P1) Forevery i € I we have ||&;|| < ov/2d.

(P2) Forevery i # i’ in I we have |(&;,£,/)| < 0%v/2dIn(d).

(P3) Foreveryi € I and q € Q we have |(u(?,¢,)| < ov/dIn(d).

(P4) Forevery i,i’ € I with cluster(i) # cluster (') we have |(x;,x;)| < p + A.

(P5) Forevery i,i' € I with cluster(:) = cluster(:') we have d — A < (x;, %) < 3d + A.
(P6) For every ¢q € @ there exists i € I with cluster(i) = ¢ (i.e., 1@ £ @),

More formally, in the remainder of this section we shall show the following proposition.

In(d)
Proposition A.1. With probability at least 1 — (3n2d*T +n2ed/16 4 dl_ln(d)>, the dataset S satisfies
the properties (P1) through (P6).
We start with some auxiliary lemmas. The first bounds the norm of &.

Lemma A.1. Let &€ ~ N(0,0%1,). Then,
Pr [||g|\ > o\/Qd] < e~4/16

2

Proof. Note that % has the Chi-squared distribution. A concentration bound by Laurent and Massart

[LMOO, Lemma 1] implies that for all ¢ > 0 we have

2

Pr[é —d>2Vat+2t| <et.
o
Plugging-in t = 1%, we get
2 2
Pr[ 3 > 2d gmlHﬁ —d>d/2+d/8| < e 16
o o

Thus, we have

Pr [||g|\ > a\/ﬁ] < e~/
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Our next lemma bounds the projection of a Gaussian &’ onto a fixed vector &.

Lemma A.2. Let £ € R% and let £ ~ N(0,0%1;). Then,

In(d)
2 .

Pr[[(€,&)] > [|§]l o In(d)] <

Proof. Note that (% ¢') has the distribution N(0, o). By a standard tail bound, we have for every t > 0
that Pr H HEI|’£ > ] 2exp( ) Hence,
2In*(d n
Pr i,.ﬁ/ > oln(d)| < 2exp —w = 2d_# .
€]l 20
The lemma now follows immediately. U

We can utilize the two preceding lemmas to show that the pairwise correlations between independent
Gaussians is small relative to the norms of the Gaussians.

Lemma A.3. Let &, &' drawn i.i.d. from N(0, 0%1,). Then,

ln(d)

(16,601 > VEIn(@o?] < e 19 120
Proof. Note that if |(€,£')| > v/2dIn(d)o? then we have at least one of the following: (1) ||€] > ov/2d;

(2) |<%, ¢')| > o ln(d). We will bound the probability of these events.
First, by Lemma A.1 we have

(gl > ov2d| < e .

r H<ﬁ,§'>‘ > aln(d)] < 24-"5" |

Combining the above displayed equations we conclude that

Next, by Lemma A.2 we have

ln(d)

Pr {|<€,§/>| > V2dIn(d)o ] <e 16 4 og-

O
Our next lemma bounds the projection of the noise vectors onto any cluster mean.
Lemma A.4. Leti € [k] and let & ~ N(0,0%1,). Then
r[[(n,8)] > oVdin(d)] < 24775
Proof. Follows immediately from Lemma A.2. U

The following lemmas use bounds on the pairwise interactions between noise vectors and cluster means
to bound the correlations between the sums of noises and cluster means.
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Lemma A.5. Let i # j be indices in [k]. Let €, &' such that the following hold:
¢ (1, €)] < ov/dIn(d).
o« (uV),€)| < ov/dIn(d).
* [(¢.€)] < ov2dIn(d).

Then, . A . _
(D + & ) + &) < doVdIn(d) + [(p?, uP)| .

Proof. We have

< [(u, p9)| + 40VdIn(d) .
O
Lemma A.6. Let i € [k], and let €, &' such that the following hold:
¢ [(pD,8)] < oVdIn(d).
* [(u®,€")| < oVdin(d).
. [(€.¢)] < ov2dIn(d).
Then,
(8D + &1 + ) — d| < 40VdIn(d) .
Proof. We have
(1D + & 1D + &) — d| = | (D, €) + (€.n) + (£.€)
< oVdIn(d) + oVdIn(d) + ov2d n(d)
< 4oVdIn(d) .
O

The next lemma uses bounds on the projection of the noise vector onto cluster means and the norms of
the cluster means to derive bounds on the norm of the sum p(® + £.

Lemma A.7. Let i € [k], and let & such that the following hold:
* [(p@,8)] < oVdIn(d).
* €l < 20%d.

Then,
d — 20/d1n(d) < H“@ n 5H2 < 3d+20VdIn(d) .
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Proof. We have

Hu(") +£H2 = Hu(i) S e+ 2u, 8) > Hum o ‘(u(i),@‘ > d - 20VdIn(d)

and

, 2 2 .
Hu(’) + EH = Hu(l) +1€17 +2(uD, &) < d+ 20%d + 20V d1n(d) < 3d + 20V dIn(d) .

O

Our final lemma in this section shows that each cluster contains some examples with high probability.

Lemma A.8. With probability at least 1 — d* ™% the dataset S contains at least one example from each
cluster in [k].

Proof. Note that this problem corresponds to the “coupons collector’s problem”. The probability that S
does not contain points from cluster j is at most

" n n
(1 — E) < exp (_E> < exp (—lnz(d)) =g~ () |

where in the second inequality we used n > kIn?(d). By the union bound, the probability that there is a
cluster that does not appear in S is at most & - d~™@_ Since k < d this probability is at most d* (4 O

The proof of Proposition A.1 now follows by putting together Lemmas A.1, A.3, A.4, A.5, A.6, A.7,and
A.8, and using o < 1.

A.2 Structural implications of the KKT conditions

In this section we show that if the dataset S satisfies Properties (P1) through (P6), then the KKT conditions
impose a number of constraints on the behavior of the neural network. We shall show that these constraints
imply that the network will generalize well to unseen test data. The reader may find it useful to refer back
to the beginning of Section A.1 before proceeding.

We first outline what types of structural conditions on the KKT points would be useful for understanding
generalization. Suppose that x is a test example coming from cluster » € Q4. Our hope is that Np(x) >
0 for such an example. Recall that since 0 satisfies the KKT conditions of Problem (2), then there are
AL, - - -, Ap such that for every j € J we have

Wi =Y AV, WiNo(x:)) = Y Nivivé} % , (6)
iel i€l
where (;5;’]. is a subgradient of ¢ at ijxi +bj, ie., if ijxi + b; # 0 then ¢;7j = ]l[ijxi +b; > 0], and

otherwise ¢/ ; is some value in [0, 1]. Also we have A; > 0 for all 7, and \; = 0 if y;Np(x;) # 1. Likewise,
we have

bj =Y AV, (iNo(x:)) =D Aiyiv;dh ;- (7
i€l iel
Now, consider the network output for an input x,

No(x) = Z Uj¢(ijx+bj) + Z vjqb(ijx—i—bj) > Z vj(ijx—i—bj) + Z ngb(ijx—i—bj), ®)

jedy jeg_ = jeJ_
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where we have used ¢(z) > z for all z € R. This suggests the following possibility: if we can ensure
that >, ;. vj(ijx + b;) is large and positive while >, ;- vde(w;rx + b;) is not too negative, then the
network will accurately classify the example x. Using the KKT conditions and that r € Q4 (so y; = 1 for
i € I("), the first term in the above decomposition is equal to

Z ”J(WJ'TX+ bj) = Z Uj Z)\iyingé;j(xgrx +1)

jedy N icl
=D || o A x|+ YD D Awioid x4+ 1)
J€J+ L \iel™ 4€Q\{r} i@
> D0 D N x| = Y DY Al ki x 1]
i€l jEJ4 q€Q\{r} icI(@ je s

Since x comes from cluster  and the clusters are nearly orthogonal, the pairwise correlations xiTx will be

large and positive when i € 1(") but will be small in magnitude when i € I(@ for ¢ # r. Thus, we can hope
that this term will be large and positive if we can show that the quantity > ;) > jegt )\iv? gbg’ ; 1s not too

small relative to the quantity Y- o\ (1} Doiert 2 je s, )\iv]z ¢; ;- By similar arguments, in order to show the
second term in Eq. (8) is not too negative, we need to understand how the quantity > . ;@) > jed_ )\ivjz- ; j
varies across different clusters ¢ € Q.

The above sketch motivates a characterization of how the quantities

DD A o D Awidl

icI(@) jeJ+ iel(@) jeJ—

relate to each other for different clusters ¢ € ). We will obtain upper and lower bounds for these quantities
in Lemmas A.10 and A.11 below. We now proceed with the proof.

Recall that A = 40\/3111((1). Since by Assumption 2.2 we have k& < %, we let ¢ < % be

such that k = ¢ - ﬁ;ﬁﬁ. Note that d > A, and more precisely, the following holds

Lemma A.9. We have A < %.

Proof. Recall that k (p+ A+ 1) < %OH. Since £ > 2 and p > 0 it implies that 2(A 4+ 1) < d%‘oﬂ.
Hence, A < % < %. O

2

We now show that the sums of the form ;. ;o) D_jc . ¥

Ai¢) j, for o € {4, —}, are never too large.

Lemma A.10. If S satisfies the properties (P1) through (P6), then for all ¢ € QQ we have

1
max Z Z v]2-/\i¢;7j, Z Z v]z)\iqbgd < 02— A+ 1) .

icl(@) jeJ+ icl(a) jeJ_

2 2
Proof. Let ay = maxgeq (Zid(q) > e, V) )\iqﬁg’j), and let o = maxge (Zid(q) djes U )\igbg’j).
Assume w.l.o.g. that a; > a_ (the proof for the case oy < «_ is similar). Let @« = a4 and r €

argmax e (ZZE @ Yjes, ViNidh, j>. Assume towards contradiction that o > m. Note that
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we have Zie 7 Ai > 0, since otherwise v = 0. Hence, there exists i’ € I") with Ay > 0, and thus
yi/Ng(Xi/) = 1
By Eq. (6) and (7) for every j € J we have

Wi X+ by = Ayividh X X+ Y Nitiv; 0}

i€l iel
= Z Aiyividh (] xir + 1)
i€l

= Z Z Aiyividy j (x{ xy + 1) | + Z Aiyividh (%) i + 1) . €)

q€Q\{r} ie1(®) iel()

We consider two cases:
Case 1: Assume that » € (). We have

1 = yyNo(xi)
=1- Zvjqﬁ(w;-rxi/ + bj)

jed
> > ui(wxp b))+ D> vig(w] xy +b) . (10)
JjEJ+ jeJ_

By the case assumption r € ()4, Eq. (9) and our assumptions on the dataset S, we have

> viwixi +bj) = DD i (xixe + 1) | + Y Nwividl (%] xi + 1)}

JjEJ+ JeJ+ | \e€Q\{r}ier@ ieI(m)
>3 = D0 DY A+ A+D) |+ ) il (d—A+1)
JeJ+ | q€Q\{r} icI1(® ieI(r)
S EUET SIS DD S SPYL Y ERUAVNSID B pp¥i Yy
qeQ\{r} ic1(@ jeJy+ iel(m) jedy
> —(p+A+1Dka+(d—A+1)a. (11)

In the last line we have used the definition o = maxgeg (Zze 1@ > jedy v]2-/\,~¢;7 j) and that the cluster
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with index 7 achieves this maximum. Moreover, using Eq. (9) again we have

Z ?)j(b(WjTXi/ + bj) = Z ?)j(b Z Z )\iyingﬁ;’j(x;xi/ + 1) + Z )\iyivj¢;7j(x;xi/ + 1)
jeJ_ JeJ- q€Q\{r} ier@ ieI(m)
> > o SN Nuldi e+ A+ |+ Y Nvsd(d— A+ 1)
JEJ- q€Q\{r} ie1(@ i€l
> e D0 D Ayl e+ A+1)
JeJ- q€Q\{r} ieI(@)
=Y o[ D0 D Nlule e+ A+1)
jeJ— qeQ\{r}ier(@

=—(p+A+1) Z Z Z A5 5

qeQ\{r} ier(a) jeJ—
> —(p+ A+ 1ka. 1)

The first inequality above uses the properties of the dataset S, that j € J_ and ¢ is non-decreasing, as well
as the case assumption that € (). The last inequality uses the definition of c. Combining Eq. (10), (11),
and (12) we get

1>—-(p+A+Dka+(d—A+1)a—(p+ A+ 1)ka
=a((d-—A+1)—2k(p+A+1))
dd—A+1)
p+A+1
a((d—=A+1)—2d(d—A+1))
ald—A+1)(1 -2
1
’)(d—A+1)(

(d-—A+1)—-2-

o

/\

(p+A—|—1)>

( d—A+1)(1-2)
1,

where in the last inequality we used our assumption on o. We have thus reached a contradiction following
our assumption on « in the case where r € (..
Case 2: Assume that r € Q_. Fix some j € Jy. If ¢} ;=0 for every i € 1) then

oAt d—A+1)=0< > Y Nvdp+A+1). (13)

iel() q€Q\{r} i1

Otherwise, i.e., if there is s € (") such that (;5 > 0, then by the definition of (;5 - we have w X, +b; >0,
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and hence by Eq. (9) we have

-
OSijs—{—bj

= Z Z )\iyivj(ﬁ;j (XZTXS +1) | + Z )\Z’yivjqﬁ;’j (X;FXS +1)

q€Q\{r} ic1(@ ieI()

IN

YD Al e A+ | = > A (d—A+1)

q€Q\{r} ic1(@ ieI(™)

Hence, we get again an expression similar to Eq. (13). Thus for any j € J we have,

A+1
S e, < AL S,

ieI() q€Q\{r} ic1(@

Since this holds for every j € J,, we get

DDA = D v Y Awidh

ieI(r) jEJ 4+ Jjedy el
p+A+1
S ovii | 2L Dl Awidy
: d—A+1
JEJ+ q€Q\{r} i@

+A+1
=iTATT L X X

qeQ\{r} icI(®) j€J+

p+A+1 d(d—A+1) 2 .

— . . Nv2dh .

d-A+1 ptA+1 o Z 2 Mt
iel(@ jeJy

<max | > > Nvidl

ieI(@) jeJ+

Since r € argmax,¢q (Zze 1@ 2jeg, v ] ) we have reached a contradiction following our assump-

tion on « for the case r € (). This completes the proof that we must have o < m. O

We next show that the relevant sums of the form » ;o) 2 e, vJQ- il

.0 for o € {+, —}, are never too
small.

Lemma A.11. If S satisfies the properties (P1) through (P6), then for all ¢ € Q)+ we have

/
2\ c 1
Z Z?}in¢i,jZ<1_12C/> 3d+A+1°

ieI(@) jeJ+
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and for all ¢ € (Q— we have

/
Y c 1
2\ > (11— :
ZZUJ Z¢7’7‘7_< 12C/>3d+A+1

iel(a) jej_

Proof. Letr € Q. and let s € 1("). We have

1 < Np(xs) = Zvjqﬁ(w;-—xs +b;) < Z vjqb(wg—xs +b;) < Z v, ‘W]sz + bj‘ :

JjeJ JEJ 4 JeEJ 4

By Eq. (6) and (7), since r € () the above equals

LIPS

j Z < zyzvy¢z ]Xz Xs + /\zyivjd);j) ’Lylvjd)z] X X5+ 1)‘

jeEJ+ i€l j€J+  q€Qier(a)
= Z v Z AiviB; ; xisz—i—l‘ Z Z Aividi ; |X; xs—i—l‘
jedy ieI(") 9€Q\{r}ie1(@
ol DIDIR AR B DD DI SRV P
iel(r) jedy qeQ\{r}icI(@) j€J4
foisse0 Y S, | rorarn XX 3w,
ieI(r) jEJ 4+ qeQ\{r} ier(a) jeJ+

The final inequality uses the properties of the dataset S. Combining the above with Lemma A.10 we get

1
1<|@Bd+A \;jv? A+ 1Dk -
<|GaratD D D Awidi; |+t A+ Dk momE Ry
iel(r) jeJ4
(d— A+ 1) 1
= [ @Bd+A A2 A1) L :
FAED) 3 > el | + o+ A+ prA+1T  (I—2)d=A+1)
ieI(r) jeJ 4
/
2 C
= (3d+A+1) Z Z )\inQ%J' +m
iel(r) je€J4

Therefore,

/
1
Y ( p— .
Z Z ZUJqsl’J_( 12C/> 3d+A+1

ieI(r) jeJ ¢

By similar arguments with » € ()_ we also get

/
: 1
Aotah o> (1- = .
2. 2 “ﬂ‘bw—( 1—2c’>3d—|—A—|—1

iel(r) jeJ_
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Recall that test examples will come from one of the £ nearly-orthogonal clusters. Since the clusters
are nearly-orthogonal, the pairwise correlations between the test example and training data from the same
cluster will be much larger than the pairwise correlations between the test example and training data from
the other (nearly-orthogonal) clusters. To characterize the decision boundary of the neural network on test
data it therefore suffices to characterize the decision boundary for an example x that is (1) highly correlated
to examples from a given cluster and (2) nearly-orthogonal to samples from other clusters. The next lemma
leverages the structural conditions provided in Lemmas A.10 and A.11 to show exactly this.

Lemma A.12. Suppose S satisfies the properties (P1) through (P6). Let x € R® and v € Q be such
that for all i € I") we have (x,x;) € [d—A,d+ A, and for all ¢ € Q \ {r} and i € 19 we have
|(x,%;)| < p+ A. Then, sign (Np(x)) = 3.

Proof. We prove the claim for r € ). The proof for r € (_ is similar. By Eq. (6) and (7), for every j € J
we have

W, X +b; = (Z )\iyivj¢;,inTx> + Z Aiyivi b j

icl icl
= Niviv;¢)(x{ x + 1)

i€l
= | D vl x+1) |+ > D Ny (x x+ 1) (14)
ier() a€Q\{r} iel(@)
Now,
Np(x) = Zvjd)(w;-rx + b;) > Z vj(w;rx +b;) + Z 'Ujg/)(w;rx + b)) . (15)
JjeJ JjeJ4 jeJ_

By Eq. (14) we have

Z vj(Wij—i- bj) = Z Z Aivf¢;7j(xjx+ )]+ Z Z )\iyivjz-(;ﬁ;’j(x;x—ir 1)}

Jje€J+ j€Jy | \ier™ 2€Q\{r} icI1(@
> D adgd-Aarn | = Y > )\ivf¢§’j(p+A+1)-|
JeJ+ L icl(r) qeQ\{r}icr(@ J

=d-Aa+1) )" > Avigl;

iel(r) jeJ 4+

~le+a+1 > >3 Al

qeQ\{r} icr(a) jeJ4
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By Lemma A.10 and Lemma A.11 the above is at least

c 1 1
d—A+1)[1—- — A+1Dk-
( +)( 1%J3d+A+1 P+A+ Dk T T AT D

(¢ Y AZAHL A gy AL 1
- 1-2¢)3d+Aa+1 P CPTATL I _2)d—A+ D)
c d—A+1 c
=11- — . 16
( 1—26’>3d+A+1 1—-2¢ (16)

Likewise, we have

Doodwix+b) = g | | D vl x 1) [+ Y Y Ny (x{ x+ 1)
JEJ- JjeJ- iel() a€Q\{r} ic1(@
>3 e | | Y Awisd—A+D) |+ > Nlylel 0+ A+1)
JEJ- iel(™) qa€Q\{r} ie1(@
> el DD Mluldlp+A+1)
JjeJ- a€Q\{r} ic1(@

RPN M ST TFIVERS

JeJ- qeQ\{r} ic1(@

—(pHA+D) D DD Nl

q€Q\{r}iel(a) jeJ_

By Lemma A.10 the above is at least

1 d—A+1 1
= — A+ 1) - .
A2d—a+D)  PHAtUe T A @—at)

S (17)

—-p+A+1)k-

Combining Eq. (15), (16), and (17), we get

d d—A+1 d d
>(1-— — — .
NH(X)-( 1—20’) B3d+A+1 1-20 1-2
Using ¢ < % and A < d (which holds by Lemma A.9), the above is at least
7T d-A+1 2 S 7T d-A 2
8 3d+A+1 88 3d+A 8
By Lemma A.9, the displayed equation is at least
7 d—-d/21 2 7 5 2 -0
8 3d+d/21 8 8 16 8 '
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A.3 Generalization from KKT conditions

Lemma A.12 shows that in order to show generalization, it suffices to show that with high probability, a test
example is highly correlated to one cluster and nearly-orthogonal to all other clusters. In this section we
prove that this is the case. We shall re-apply many of the concentration bounds provided in Section A.1 to
do so.

Lemma A.13. Suppose S satisfies Properties (P1) through (P6). Letr € Q and let x = p(") + & where
&€ ~ N(0,0%1,). With probability at least 1 — 4nd~ g over X the following hold for all i € I:

* (€, 8 < A
10,8 <A
« Ifi & I") then |(x;,x)| < p+ A.
« Ifi € 1) then |(x;,x) — d| < A.

Proof. By our assumption on the dataset S, for all i € [ and ¢ € Q we have ||€;|| < ov/2d and (u(9,€,) <
oV/dIn(d). By Lemma A.2 and since o < 1, for i € I we have

u(d)

r[1(€,€0] > 20VdIn()] < Pr[|(6,€)] = 0v2d- o In(d)| < Pril(€,&)] > €] o In(a)] < 2d°

and by Lemma A.4 for ¢ € () we have

Pr [|(u,€)| > oVidln(d)| <

In(d)
2

Fix some ¢ € Q and 7 € 19, With probability at least 1 — 14d="5" over €, we have |(€,&,)| < 20vdIn(d)
and |(u@), £)] < ov/dln(d).
Then, the following hold:

(€, 8] < A
* We have
[(xi )] < (19, )] + [(€:,€)| < 0VdIn(d) + 20VdIn(d) < A
o If ¢ # r, then
(%, %) = |(pe (T)Jr& p@ + &)l
< [, 1)+ (1, €] + (€, nlD)| + |(€, &)
< p+oVdin(d) + oVdln(d) + 20V dIn(d)
=p+A.
o If g =, then
[, x5) = d] = () + € u(’")+€> d
= |(u® 1)+ (6.€)
< [{n (T,£>|+|<Eu )+ 1(€, €5
< oVdIn(d) + oVdIn(d) + 20V dIn(d)

A
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Overall, by the union bound, with probability at least 1 — 4nd™ the requirements hold for all ¢ €
1. O

Theorem A.1 now follows immediately from Proposition A.1 and Lemmas A.12 and A.13.

B Proof of Lemma 2.1

Let x = p) + ¢ where & ~ N(0,02%1,),and y = y). Then,

. - q 2
yuTx _ y(]) Z y(q)(”(q))T(u(]) + &) > H”(J)H —k (T;?‘f('( (q))T (])| +m?1§](|( (Q))Tﬂ) .
q€(K] .

By Lemma A.4 we have Pr [| (D ¢)| > ov/dIn(d )] < 2d "2 . Hence, by the union bound with proba-

bility at least 1 — 2kd~"(@/2 > 1 — 24'~1n(d)/2 we have maxge|k] |(uD)T¢| < ov/dIn(d). Note that by
Assumption 2.2 we must have £ < d. Using Assumption 2.2 again, we conclude that with probability at
least 1 — 2d'~*(4)/2 we have

d—40vdIn(d) + 1 L 9d-1

0.
10 - 10 ”

yu'x>d— k<m7zzx|( T pD| 4 ov/dIn(d ))zd—
q

C Proof of Theorem 4.1

We prove the theorem for » = k. The proof for r > k follows immediately by adding zero-weight neurons.
Consider the network N (x) = ;?:1 vjqﬁ(w;—x + b;) such that for every j € [k] we have v; = yU),

w; =27 and b; = —2. Let ¢ ~ U([k]), let x = pl® + € where & ~ N(0, 52I,), and let y = 5@ Thus
(x,y) is drawn from Delusters- We have,

W) (@D +8) , Ad+ (p9,8)
T )
w, X+ b= 7 —2:f—2.
By Lemma A .4, we have Pr ||(u?, £€)| > 0v/dIn(d)| < 2d~ "2 . Hence, with probability at least 1 —
2d~ =g over &, for large enough d we have
4(d — ov/dIn(d)) 4(d — v/dIn(d)) 41n(d)
-
W, X+ by > y -2> 7 —-2=2- Nz >1. (18)
For j # q we have
AN (@ 4 . () @ A(ONT
wlx b= (W) WP+, maxnéqfi L0l (ud) €

and thus with probability at least 1 — 2d™ = over £ we have

4 :
ijx—f— bj < -2+ p <m7§x(u(3),u(q)> —i—a\/gln(d)) i
74
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Since by Assumption 2.2 we have k (max#q (D), Y| + 40+/dIn(d) + 1) < %, then the
displayed equation is at most

245t 5yt He g (19)

Overall, by the union bound, with probability at least 1 — 2kd_# >1- 2d1_1n§d) =1 —04(1) we have

N(x) = Z?:l ”j¢(WjTX +b;) = Uq(WqTX +by) + 0, and

sign(N (x)) = sign(vq) = Y@ =y

We now prove that A" is v/d-robust w.r.t. Dy. Thus, we show that with probability at least 1 — 04(1)
over x, for every x’ € R? such that ||x — x| < @ we have sign(N(x)) = sign(N(x’)). Note that with
probability 1 — o4(1), Eq. (18) holds, and Eq. (19) holds for all j # ¢, and hence

4 1
T T T
wqx'+bq:wq(x'7x)—|—(wqx—{—bq) 2f||wq||-Hx/fx“—l—lzfﬁ-?—l—lzg,
and for all j # g we have
4 1
W]Tx’+bj:w;r(x/—x)+(ijx—l—bj) < lwill - |Ix x| 1< 7.?71:75'

Therefore, sign(N (x')) = sign(v,) = y'? = sign(NV(x)).

D Proof of Theorem 4.2

We will prove the following theorem:

Theorem D.1. Let S = {(x;,4:)}", € R? x {—1,1} be a training set drawn i.i.d. from the distribution
Detusters, where n > k1n?(d). We denote Q4 = {q € [k] : y9 = 1} and Q_ = {q € [k] : y9 = -1},
and assume that min {%, %} > ¢ for some ¢ > 0. Let Ny be a depth-2 ReLU network such that
0 = [wy,...,wWn,b,v]isa KKT point of Problem (2). Then, with probability at least

1_ (3n2d7¥ 1 p2ed/16 dlfln(d))

over S, there is a vector z. =1 -3 _ e y D uO) withn > 0and ||z| < O <\ / ﬁ), such that

( )Pl‘f) [sign(Ng(x)) # sign(Ng(x — yz))] > 1 — 4nd ln;d) ‘
X,Y)~ Lelusters

It is easy to verify that Theorem D.1 implies Theorem 4.2. Indeed, if % < %dln(d)_l and

< min \/E o2 VO @ € gm@ya |
— 3 ) 3 74 I

then we showed in Appendix A that
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e dnd T2 <e.

Hence, under the above assumptions on § and n, Theorem D.1 implies that with probability at least 1 — §
over S, we have Pr(y ) D, [5180(Np(X)) # sign(Ng(x —yz))] > 1 — e

We now turn to prove Theorem D.1. The reader may find it useful to refer back to the notations from
the proof of Theorem 3.1 in Section A. We shall show that when the dataset S satisfies the “nice” properties
outlined in Properties (P1) through (P6), then every KKT point of Problem (2) is non-robust in the sense

stated in the theorem. By Proposition A.1, the dataset S satisfies these “nice” properties with probability at
In(d)

least 1 — <3n2d*T + n2ed/16 dlfln(d))‘
In the following lemma, we state several “nice” properties that are satisfied w.h.p. in a test example.

Lemma D.1. Suppose S satisfies Properties (P1) through (P6). With probability at least 1 — 4nd*#
over x ~ Dy there exists v € Q such that the following hold: x = p(") + & where for all i € I we have
|(xi,€)] < A and |(&;,€)| < A. Also, |(x;,x) —d| < A foralli € I'") and |(x;,x)| < p+ A for all
i 1),

Proof. The lemma follows immediately from Lemma A.13. O

We next show that if the training data and test data are “nice”, then KKT points have network outputs
that are not too far from the margin.

Lemma D.2. Suppose S satisfies Properties (P1) through (P6). Let x € R and r € Q such that for all
i€ 1) we have (x,%;) € [d — A,d + Al, and forall g € Q\ {r} and i € I'D we have |(x,x;)| < p+ A.
Then, [Np(x)| < 2.

Proof. We prove the claim for » € @)4. The proof for » € ()_ is similar. By Lemma A.12 we have
Ng(x) > 0. We now show that Np(x) < 2.
By Eq. (6) and (7), for every j € J we have

WX+ b= (Z Aiyivdf X X) + D Aiyividl

el el

= z Aiyividy (x| x + 1)

il
= Z Avjdh (] x+1) | + Z Z Aiyivj @ 5 (x] x +1) . (20)
i€1(r) qeQ\{r}icr(@

Now,

Np(x) = Zvjd)(w;-rx +b;) < Z v |W;I—X—{—bj‘ .

jeJ JjeJ4
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By Eq. (20) the above is at most

Do || YD g d+ A+ |+ Y DT Mgl o+ A+ 1)

jeJy iel(™) q€Q\{r}ic1(a)
=D 1D Al d+Aa+n) |+ Y D il o+ A+1)
VIS iel() q€Q\{r} i1

—{CHAJF > Z,\u@]} {(p+A+1) >y ZAWJ%QJ}

iel(r) jedy qeQ\{r}ic1(@ jej4
1 1
<|(d+A+1)- A+1)k-
= [( A+ (1—20’)(d—A+1)} " {(“ 1 (1—20’)(d—A+1)] ’
where in the last inequality we used Lemma A.10. Plugging in k = ¢’ - ;llﬁﬁ, the above equals

d+A+1 L d—A+1 p+A+1
{(1—20’)(d—A+1)} [ 'p+A+1'(1—2d)(d—A+1J
_ d+A+1 d
T A 2h)d-ATD)  (1-20)

Using ¢ < %0, the above is at most

5d+A+1) 1 _5d+A) 1
L R g il R
Ad—A+1) "8~ 4d-A) " 8

By Lemma A.9, the displayed equation is at most

5(22d/21) Ll 522 13
4(20d/21) = 8 4-20 8 2

Next, we show that the inputs to the neurons are not too negative for nice test examples.

Lemma D.3. Suppose S satisfies Properties (P1) through (P6). Let v € Q and let x = p\") + & such that
foralli € I we have |(x;,€)| < A and |(§;,€)| < A. Also, assume that (x;,x) € [d— A,d + Al for all
i€ I and |(x;,x)| < p+ A foralli & I"). Then, for all j € .J we have

wix+bi>—> Alvjl¢ ;A +p+1).
el

Proof. Suppose towards contradiction that there exists j € .J such that

W X+b < — Z/\|U]|¢”(2A+p+1 22)\ \vﬂqﬁu (21)
i€l i€l
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Suppose first that y(r)vj < 0. By Eq. (6) for all i’ € I") we have
ijva +b; = w;-rx +b; + w;r(xi/ — X)
<- Zm \vms”A +> Azyzvm] (& =8

i€l el
= - Z2Ai‘vj|¢;7jA - <Z Aiylv‘]qbz.} i S) Z )\zyzvj¢z] i 51’ + A yllvjd)z X 51’
iel iel eI\ {i'}

IN

—22)\1‘?}3|¢;7]A+ (Z Al|v]|¢{t7]A> + Z )\zyzU]@] 1 &7/ +)‘Zy v]¢z ] 7, 6
iel iel eI\ {i'}
(22)

Recall that by our assumption on S, for every i € I and ¢ € Q we have |(u(9),€,)| < ov/dIn(d), and for
every s # 5" in I we have |(€,,£./)| < 02v/2dIn(d). Thus, for ¢ € Q and i € I'? such that i # i’ we have

%] €] < () &s| + 1€ €| < 0VdIn(d) + 0?V2dIn(d) < A

Moreover,

X & = (N(T))Tﬁi’ + ﬁz‘Tfﬁz" 2 (N(T))Tﬁi’ 2 —a\/&ln(d) > —A.
Using the above displayed equations and the assumption y(’“)vj < 0, the RHS in Eq. (22) is at most

—szivmg,jM(ZAi|vj|¢;,jA>+ D Ailvilgh A |+ Aol A

iel icl iel\{i'}

- _ Z 2)\i|vj|¢g’jA + 2 (Z >\i|vj|¢§,jA>

i€l el
=0.

Hence, y™v; < 0 implies that O ;= ]l[ijxix +b; > 0] =0foralli € I,
By Eq. (6) and (7) we have

wix+b =Y Nyividiix x4+ Ay

icl iel
= Niviv;dj(x{ x + 1)
iel

ieI1() a€Q\{r} ie1(@)

- [Z A,-y(r)ngé;j(xijrl)} + [ DD Niwiid(x x+ 1)} . (@3

We now analyze both terms in the above RHS.
Note that if y(r)vj > 0 then

S Ay viglxx+1) > 3 Ay (d—A+1) >0,
ielI(r) ieI(™)
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and if y(r)vj < 0 then we have

D iy (xx+1) =0
iel(r)

since ¢, ; = 0 forall i’ € I ("), Moreover,

Z Z Aiyivj o (x{ x +1) > — Z Z Ailvildf ;(p+ A+ 1)

2€Q\{r} ieI(@) a€Q\{r} iel(a)

=2 Ailulo(p+ A +1).
i€l

v

Plugging the above equations into Eq. (23) we get
Wix+Hb; > Y Nluild o+ A+ 1) > ) Ailujleh 0+ 28+ 1),
i€l icl
in contradiction to Eq. (21). |

We now obtain a lower bound for the rate that perturbations in the directionu =} _ 0 v (") change
the inputs to the neurons.

Lemma D.4. Suppose S satisfies Properties (P1) through (P6). Let u = ZreQ yM ). Forevery j € Ji
we have
wiu> > A\widh i (d—A—kp—kA) .
el
For every j € J_ we have
T /
wiu <> Awidh; (d—A—kp—kA) .
i€l

Proof. Let j € J. Using Eq. (6) we have
W]T Z y M) = Z )\iyivj@’jxj Z y " )

reQ i€l re@

— Z Z Aiy(q)vjqﬁ;,inT Y@ (0 4 Z y) )
9€Q ic1(@) reQ\{q}

= D> x| WO @ Yy Dy pl)
q€Q i@ reQ\{q}

— Z Z )\ingb;’j (#(q))Tu(q) + E;,r“(q) + Z <y(t1)y(7’) (M(Q))TM(T) + y(Q)y(T)EiTM(T)>
9€Q je1(@) i reQ\{q}

24

For j € J4 the above is at least

DY dwgi [d—A= D (p+A) | =) gl (d—A—k(p+A)) .

9€Q icI(@ reQ\{q} i€l
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Similarly, for j € J_, Eq. (24) is at most

Do dwdi [ d=A= Y (A | <Y Nvidi; ([d—A—k(p+A) .

q€Q ieI(@) reQ\{q} i€l
O
We next show that the quantity d — A — kp — kA appearing in the lemma above is strictly positive.
Lemma D.5. We have d — A — k(p + A) > 0.
Proof. By Assumption 2.2 and Lemma A.9, we have
Fp+A) <k(p+A+1) <~ (d—A+1) = (d—A) - P(d_m_i]
10 10 10
<(d-A)- {%%-1—10} <(d—A)- {%—H <d—A.
O

Using the above lemmas, we show that a small perturbation to nice inputs suffices for obtaining positive
inputs to all hidden neurons.

Lemma D.6. Suppose S satisfies Properties (P1) through (P6). Let z = anEQ yDulD for n >
ﬁ%. Letr € Q and letx = p\") € such that for all i € T we have |(x;,€)| < A and |(§;,€)| < A.
Also, assume that (x;,x) € [d — A,d + Al forall i € I") and |(x;,x)| < p+ Aforalli ¢ I\"). Then, we
have for all j € J_ that WjT (x —2z)+b; >0, and for all j € Jy that w;r (x+2z)+0b;>0.

Proof. Let j € J_. By Lemma D.3, we have
wix+b; > Nvigi (20 +p+1).
iel
By Lemma D.4, we have
—w}—z > —nz Aivjds i (d— A —kp —kA) .
i€l
Combining the last two displayed equations, we get

w]-T(x—z) +b; :w;rx—f—bj —ijz

> Awidh A +p+1) =) Awidh; (d— A —kp—kA)

el el
=> Avidi; 2A+p+1—n(d—A—kp—kA)) .
i€l

N)ote that by Lemma D.5 we have d — A — kp — kA > 0. Hence, for n > Cﬁ% we have ij (x —
VA -%ZU > 0.
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The proof for j € J; is similar. Namely, by Lemmas D.3 and D.4, we have
W]T(X +2z)+b; = Wij—i- b; +W]~TZ
> = M\l A +p+ 1)+ Awidh, (d— A —kp—kA)
iel i€l
= Avidi (28 —p—1+4n(d— A~ kp— kD)),
il
and hence for n > d_QAA_JrikI;:lkA we get w;r (x+2z)+0b; >0. O

_ 2A4ptl _ 3(3d+A+1)(1-2c)
Let now 11 = G=a—g,—5R a0 12 = (AT kA A3 )ck
are positive. We denote z = (11 +72) >_ < Y@ p (@),
In the next lemma, we show that perturbing nice test examples from positive clusters with the vector —z

changes the sign of the network output.

Note that by Lemma D.5 both n; and 7

Lemma D.7. Suppose S satisfies Properties (P1) through (P6). Let r € Q1 and let x = u(r) + & such that
foralli € I we have |(x;,€)| < A and |(§;,&)| < A. Also, assume that (x;,x) € [d— A,d + Al for all
i€ I and |(x;,x)| < p+ Aforalli & I7). Then, Ng(x —z) < —1.

Proof. We denote x' = x — z. By Lemma D.4, for every j € .J; we have

wix by =wlx+bj—w](m+mn) Y y@p?

q€Q
< W;rx'i'bj —(m +772)Z)\ivj¢;7j (d—A—kp—FEkA) .
i€l
By Lemma D.5 we get
wyx b Swix+b. (25)

Thus, in the neurons .J the input does not increase when moving from x to x’.
Considernow j € J_. Letx =x — 11 quQ YD p (), By Lemma D.6, we have w;rfc +b; > 0. Also,
by Lemma D.4, we have

W]—i +bj = w;—X +bj — W_;'T771 Z y(q)ﬂ(q)
q€Q
> w;rx +b;—m ZAiUﬂbg,j (d—A—kp—kA),
i€l

and by Lemma D.5 the above is at least ijx + ;. Thus, when moving from x to x the input to the neurons
J_ can only increase, and at X it is non-negative.
Next, we move from X to x’. We have

w]-TX’ +b; = ijfc +b; — ngw;— Z v D (9 > max {0, w]-Tx + bj} — 772W;r Z yDp(0)
q€Q q€@

By Lemma D.4, the above is at least

max {0, WjTX + bj} — 19 Z )\ivj¢;7j (d—A—kp—EkEA)>0, (26)
i€l
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where in the last inequality we use Lemma D.5.
Overall, we have

No(x') = Z vip(w] X +b;)| + Z vjp(w; X' + b))
| JE€J+ [ jes-

Z v]d)(w;-rx' +0b5)| + Z vj(w;-rx' + b))

e jes-

(? {Z vjd)(w;-rx—i—bj) +

JeJ4

jed_ iel

{Z v (max {O,W;FX + bj} — 1o Z )\Z-vjd);j (d—A—kp— kA))} ,

where in (i) we used Eq. (26), and in (ii) we used both Eq. (25) and Eq. (26). Now, the above equals

jeJ jEJ_ i€l

{Z Ujgzﬁ(w;—x + bj)} — {Z V12 Z /\ingb;j (d—A—kp— k:A)}

= No(x) —m2(d— A — kp— kA) Z Z Z A3

7€Q 1) jEI -

Combining the above with Lemma D.2, Lemma A.11, and Lemma D.5, we get

No() S2=m(d=A—kp—kA)| > >, D hvjdl

Q'EQ_ jecrd) jeJ-

d 1
<2 m(d—A—kp—kA)|Q_| (1
s2-m(d hp = kA)|Q |< 1—2c’>3d+A+l

1-3c 1
<2—772(d—A—k:p—kA)ck< C)

1-2¢)3d+A+1"
For
B 33d+A+1)(1—2¢)
T A=A —kp— kA1 - 3d)ck
we conclude that NVg(x') is at most —1. O

Next, we show that perturbing nice test examples from negative clusters with the vector z changes the
sign of the network output.

Lemma D.8. Suppose S satisfies Properties (P1) through (P6). Let r € Q_ and let x = p\") + & such that
foralli € I we have |(x;,€)| < A and |(§;,€)| < A. Also, assume that (x;,x) € [d— A,d + Al for all
i eI and |(x;,x)| < p+ Aforalli & I"). Then, No(x +z) > 1.
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Proof. The proof follows similar arguments to the proof of Lemma D.7. We provide it here for complete-
ness.

We denote x’ = x + z. By Lemma D.4, for every j € .J_ we have

ijx' +bj = Wij +bj + ij(m +12) Z y D (@)
qe@
< w4 b+ (i +m2) Y Nwidh; (d— A —kp— kA) .
el
By Lemma D.5 we get
w;rx/ +b; < ijX + b;. 27)
Thus, in the neurons .J_ the input does not increase when moving from x to x’.

Consider now j € J;. Letx =x+ 1 quQ y@ (9. By Lemma D.6, we have w;rfc +b; > 0. Also,
by Lemma D.4, we have

W;—)N( +b; = W;—X +b; + W;-rm Z 3@ (@)
qe@
>wx+bi+m Y Al (d—A—kp—kA),
i€l
and by Lemma D.5 the above is at least w;—x + bj. Thus, when moving from x to x the input to the neurons

J4 can only increase, and at X it is non-negative.
Next, we move from X to x’. We have

ijx' +b; = w;ri +b; + ngij Z y(q)u(Q) > max {0, Wij + bj} + ngw;r Z y(Q)u(q) .
q€Q q€Q
By Lemma D.4, the above is at least
max {0, wlx + b} +1m > Njél; (d— A—kp— kA) >0, (28)
il

where in the last inequality we use Lemma D.5.
Overall, we have

No(x') = Z vjqﬁ(ijx' +0b;)| + Z Uj<b(ijx' +bj)

_jEJ, i _j€J+

DS wyotw)x +b)| + | 3 ww) = +1y)

| jeJ— | | jeds

(? Z vjqﬁ(ijx +0b)| +
JjeJ_ ]
{Z on (max {O,W;-rx + bj} + 12 Z /\ingbg’j (d—A—kp— kA))-| ,
|j€J+ el J
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where in (i) we used Eq. (28), and in (ii) we used both Eq. (27) and Eq. (28). Now, the above equals

JjEJ+ i€l

{Z V(W] X + bj)} + {Z vime Y Aivjdh; (d— A —kp — kA)}

jeJ

= No(x) +1m2(d—A—kp—kA) | D > > Awidl;

qEQ icr(d) jei+

Combining the above with Lemma D.2, Lemma A.11, and Lemma D.5, we get

No(x') > =24 ma2 (d — A — kp — kA) { Z Z Z P

J
7'€Q jerld) jel+ J
1

/
> 2 (- A== k) Q] (1-

12cf> 3d+A+1

> o (d— A kp— kA) ek (L1230 !
= 2 p C\T=2d ) 3d+r A+

Plugging-in 77, we conclude that Ng(x') is at least 1.

Finally, we show that the scale of the perturbation z is small when k is large.

Lemma D.9. We have ||z|| = O (H%)-

Proof. We have

2
z)|* = (m +m)? || >y @ p@

q€Q
Now,
) 2A +p+1 3(3d + A+ 1)(1 —2¢) 2
(m +m2)” = ;
d—A—kp—kA (d—A—kp—kA)(1—3)ck
_ 20p+A+1) N 33d+A+1)(1—2¢) 2
T \d—A—-k(p+A+1) (d—A—-k(p+A+1))(1—-3d)ck
@ ([ 2¢(d—A+1)/k 3(3d + A+ 1)(1 —2¢) 2
S \d-A—-dd-A+1) (d—A—-cd(d—A+1))(1—3c)ck
, 2
) (1. 2(d+1) e 33d+ L +1)(1—3) )
T \k d-£-L@+1) ck d-L-Ld+1)(1-2)
2
_(L.0@ 1 0@
=k Q@ ek Q@)
1
where in (i) we used k = ¢ - i;ﬁﬂ, and in (77) we used Lemma A.9.
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Moreover,

2

Z y D@ = Z Z y My @ () @)

q€eqQ T€Q q€Q
2

=3 H pO| 37y y@ (u), @)

reQ qFT
< kd + k*p

, p—

= kd + k2 (W_A_Q
<kd+kd(d—A+1)
< O(kd)

Overall, we get

d
2
P <0 (%) -

The theorem now follows immediately from Lemmas D.1, D.7, D.8, and D.9.
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