BIOLOGY LETTERS

royalsocietypublishing.org/journal/rsbl

Research

Cite this article: Crowell JW, Wible JR, Chester SGB. 2024 Basicranial evidence suggests picrodontid mammals are not stem primates. *Biol. Lett.* **20**: 20230335. https://doi.org/10.1098/rsbl.2023.0335

Received: 31 July 2023 Accepted: 6 December 2023

Subject Category:

Palaeontology

Subject Areas:

palaeontology, evolution, taxonomy and systematics

Keywords:

Picrodontidae, Euarchonta, primates, plesiadapiforms, evolution, Palaeocene

Author for correspondence:

Stephen G. B. Chester e-mail: stephenchester@brooklyn.cuny.edu

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare. c.6984336.

THE ROYAL SOCIETY

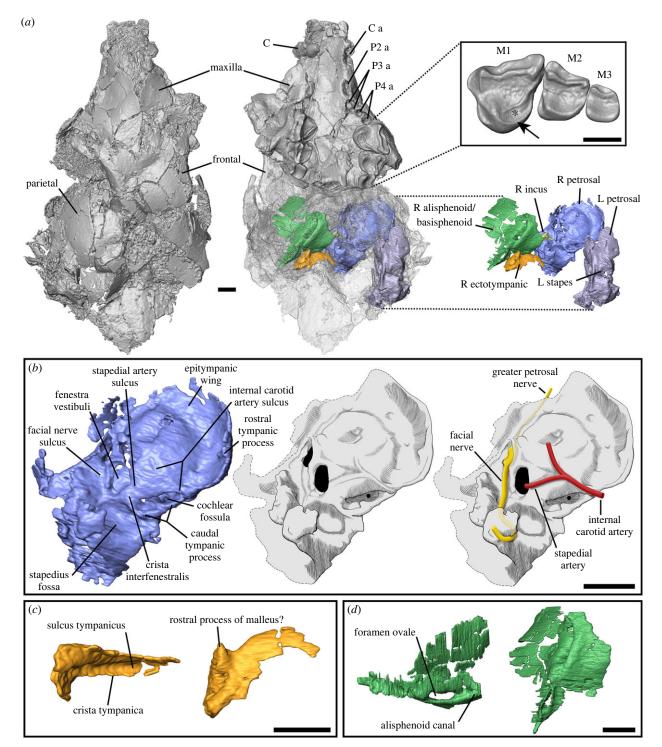
Basicranial evidence suggests picrodontid mammals are not stem primates

Jordan W. Crowell^{1,2}, John R. Wible³ and Stephen G. B. Chester^{1,2,4}

(D) JWC, 0000-0001-6104-5112; JRW, 0000-0002-0721-1228; SGBC, 0000-0002-6479-5741

The Picrodontidae from the middle Palaeocene of North America are enigmatic placental mammals that were allied with various mammalian groups but are generally now considered to have close affinities to paromomyid and palaechthonid plesiadapiforms based on proposed dental synapomorphies. The picrodontid fossil record consists entirely of dental and gnathic remains except for one partial cranium of Zanycteris paleocenus (AMNH 17180). Here, we use µCT technology to unveil previously undocumented morphology in AMNH 17180, describe and compare the basicranial morphology of a picrodontid for the first time, and incorporate these new data into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct from plesiadapiforms and shares similarities with the Palaeogene Apatemyidae and Nyctitheriidae. Results of cladistic analyses incorporating these novel data suggest picrodontids are not stem primates nor euarchontan mammals and that the proposed dental synapomorphies uniting picrodontids with plesiadapiforms and, by extension, primates evolved independently. Results highlight the need to scrutinize proposed synapomorphies of highly autapomorphic taxa with limited fossil records.

1. Background


Plesiadapiforms are a likely non-monophyletic group of placental mammals known from the Palaeocene and Eocene of North America, Europe, and Asia that have been regarded as close fossil relatives of crown clade primates based mostly on aspects of dental morphology [1–5]. Results of recent phylogenetic analyses support plesiadapiforms as euarchontan mammals and either support members of this group as stem primates [6–10], stem colugos or stem primatomorphans (Primates + Dermoptera) [11,12].

The Picrodontidae consists of three genera (Picrodus, Zanycteris, and Draconodus) known from the Torrejonian and Tiffanian North American Land Mammal Ages (NALMA) of western North America [13-15]. Due to the autapomorphic dental morphology of picrodontids and the lack of an obvious sister group, researchers have allied picrodontids with caenolestid marsupials [16], chiropterans [17], insectivorans [18], and most recently primates (sensu lato) [13]. Over the past half-century, picrodontids have often been viewed as plesiadapiforms and more recently belonging to the superfamily Paromomyoidea (Paromomyidae + Palaechthonidae + Picrodontidae) based on the shared presence of dental features such as a strong postprotocingulum and expanded distolingual basin of the upper molars (figure 1a) [5,15,19]. However, picrodontid dental morphology differs significantly from plesiadapiforms (e.g. greatly enlarged M1/m1 with a decrease in molar area to M3/m3, absence of m3 hypoconulid) [13,15]. Because the picrodontid fossil record consists only of autapomorphic dentitions, except for one partial cranium, they are usually excluded from cladistic analyses aimed at assessing primate supraordinal relationships and/or interrelationships among plesiadapiforms. Here, we use µCT scanning technology to describe

¹Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016. USA

²New York Consortium in Evolutionary Primatology, New York, NY 10024, USA

³Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA ⁴Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA

Figure 1. Three-dimensional models derived from μ CT scan data of *Zanycteris paleocenus* (AMNH 17180) with descriptions and orientations of skeletal elements organized from left to right. (*a*) Cranium in dorsal and ventral views with basicranial region transparent showing original position of digitally extracted bones. Box illustrates left upper molars rotated into occlusal view with distolingual basin (asterisk) and postprotocingulum (arrow). (*b*) Three-dimensional model of right petrosal in ventral view, composite line drawing incorporating preserved morphology from right and left petrosal, and composite line drawing with major neurovascular structures; (*c*) R partial ectotympanic in oblique posterior and ventral view; (*d*) R partial alisphenoid/basisphenoid in lateral and ventral view. Scale bars, 1 mm. Abbreviations: C = upper canine; C a = upper canine alveolus; M = upper molar; P a = upper premolar alveolus.

and compare previously undocumented morphology from the only known partial cranium of a picrodontid and include these novel data in cladistic analyses to assess the phylogenetic affinities of the Picrodontidae.

2. Material and methods

The partial cranium of *Z. paleocenus* (AMNH 17180), from the late Tiffanian (Ti-4) Mason Pocket locality in the San Juan Basin of

Colorado, includes two separate cranial portions that were submerged in plaster: a rostral portion including the palate and right C, M1–3 and left M1–3 and a caudal portion that includes several partial basicranial elements, including left and right petrosals, right ectotympanic, right incus, left stapes, and part of the right sphenoid complex (figure 1a). Both portions were μ CT scanned at the Microscopy and Imaging Facility of the American Museum of Natural History (AMNH), and μ CT scan data were manually segmented using the segmentation tool in Avizo 9.0.1. Comparisons were made to plesiadapiforms, other

Maximum parsimony analyses were performed in TNT (v. 1.5) [20] using a character–taxon matrix (electronic supplementary material, SI3) that was modified from previously published versions [8,21,22] to include three picrodontids, one palaechthonid, one microsyopid, and one apatemyid (electronic supplementary material, SI2). Unconstrained and constrained analyses were performed generally following previous methods [22] and well-supported supraordinal groups in molecular-based phylogenetic analyses were constrained (Afrotheria, Xenarthra, Laurasiatheria, Euarchontoglires) [23–26].

3. Basicranial descriptions and comparative morphology

(a) Petrosal

The petrosals of *Z. paleocenus* possess a ventrally projecting rostral tympanic process arising from the medial aspect of the rounded promontorium that is confluent with an anteriorly projecting epitympanic wing (figure 1b). The caudal tympanic process is posterior to and roughly level in its ventral extent to the aperture of the cochlear fossula and meets the crista interfenestralis via a curved ridge. Two subequal sulci on the surface of the promontorium correspond to the stapedial and promontory branches of the internal carotid artery, which enters the middle ear in a posteromedial position. There is an open sulcus for the facial nerve, which exits the middle ear space via the stylomastoid notch.

Unlike *Z. paleocenus*, all non-microsyopid plesiadapiforms possess a posterior septum that shields the aperture of the cochlear fossula in ventral view with additional septa originating from the promontorium (figure 2, electronic supplementary material, figure SI4) [9,27–30]. *Zanycteris paleocenus* is like the carpolestid *Carpolestes simpsoni* in having an unreduced internal carotid artery with a posteromedial entrance into the middle ear [29], but differs from other non-microsyopid plesiadapiforms, which have a reduced internal carotid artery that enters the middle ear in a more posterolateral position [9,27,28,30]. *Zanycteris paleocenus* is like micromomyid plesiadapiforms in exhibiting an open sulcus for the facial nerve [9], but differs from other non-microsyopid plesiadapiforms, which enclose the facial nerve within a bony canal [27,28,30,31].

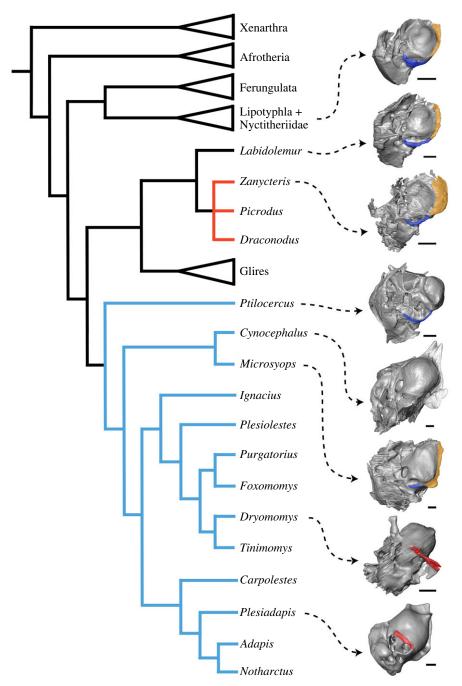
Microsyopids have long been considered distinct from non-microsyopid plesiadapiforms in their petrosal morphology [32–34]. Overall, microsyopids are like *Z. paleocenus* in exhibiting a posteromedial position for the internal carotid artery in which both the stapedial and promontorial branches are preserved, an open sulcus for the facial nerve, and the absence of an auditory bulla derived from the petrosal [7]. However, microsyopids differ from *Z. paleocenus* in lacking a well-developed, ventrally projecting rostral tympanic process that is confluent with an epitympanic wing and a well-developed caudal tympanic process that forms a complete rim around the aperture of the cochlear fossula (figure 2).

Outside Euarchonta, *Z. paleocenus* shares basicranial similarities with *Labidolemur kayi*, an apatemyid known from the late Palaeocene of North America that has been interpreted as a basal member of Euarchontoglires based on cladistic results [7]. Like *Z. paleocenus*, *L. kayi* exhibits an open sulcus for the internal carotid artery that enters the middle ear in

a posteromedial position, an open sulcus for the facial nerve, and a caudal tympanic process that forms a rim around the aperture of the cochlear fossula (figure 2). However, the rostral tympanic process and epitympanic wing of *L. kayi* are much less developed than that of *Z. paleocenus*.

Zanycteris paleocenus also shares basicranial similarities with the Nyctitheriidae, a family of small-bodied insectivorous mammals known from the Palaeogene of North America, Europe, and Asia that has been supported as a member of Euarchonta [35] or Lipotyphla [22]. Like Z. paleocenus, nyctitheriids have an open sulcus for an unreduced internal carotid artery that enters the middle ear in a posteromedial position, an open sulcus for the facial nerve, and a prominent caudal tympanic process that forms a rim around the aperture of the cochlear fossula and meets the crista interfenestralis via a curved ridge (figure 2) [22]. However, the rostral tympanic process and epitympanic wing of nyctitheriids are not as prominent as those of Z. paleocenus.

(b) Ectotympanic


The partial right ectotympanic of *Z. paleocenus*, which preserves the anterior crus, has the shape of a ring with some lateral expansion (figure 1*c*), like that of several groups including nyctitheriids [22], apatemyids [7], and extant lipotyphlans [36,37]. Unlike that of euarchontans, *Z. paleocenus* does not exhibit a simple ring-like element (i.e. no lateral expansion) such as that in lemuriform primates [36], treeshrews [38], micromomyids [9], and paromomyids [28] (but see [27]), it lacks bony struts on the ventral surface to fuse to the lateral bullar wall as in plesiadapids [30], and it is not greatly expanded to form a significant component of the auditory bulla as in colugos [39,40].

(c) Auditory bulla composition

Current evidence suggests a limited contribution of the petrosal, either from the rostral or caudal tympanic processes in the tympanic floor of Z. paleocenus. Therefore, Z. paleocenus is distinct from that of crown primates and that which has been inferred for micromomyid, carpolestid, and plesiadapid plesiadapiforms [9,29,30] in lacking a complete bulla derived from the petrosal. The absence of a large entotympanic element and associated articular surfaces on the petrosal makes Z. paleocenus distinct from that of treeshrews [38] and paromomyid plesiadapiforms [27,28], which possess an entotympanic bulla. The ectotympanic does not expand medial to the crista tympanica, suggesting that the ectotympanic did not entirely floor the middle ear space like the condition found in lipotyphlans [36,37], apatemyids [7], and nyctitheriids [22]. Given the lack of evidence for other bullar elements, the ectotympanic of Z. paleocenus appears to retain the reconstructed primitive condition for Eutheria of not being covered by an auditory bulla [41,42]. See the electronic supplementary material for more details of the basicranium.

4. Phylogenetic results

Phylogenetic results do not support Picrodontidae within Euarchonta and instead support Picrodontidae as the sister taxon to the apatemyid *L. kayi* (figure 2). The strict consensus of the unconstrained cladistic analysis recovers a monophyletic Euarchonta that is sister to a broad clade containing lipotyphlans, afrosoricids, nyctitheriids, and picrodontids as

Figure 2. Hypothesis of evolutionary relationships of *Zanycteris paleocenus* and other picrodontids among eutherian mammals. Simplified strict consensus resulting from cladistic analysis forcing the monophyly of Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. See electronic supplementary material for full strict consensus tree. Three-dimensional models of petrosals illustrated to the right are, from top to bottom, Nyctitheriidae sp. (UM 85176), *Labidolemur kayi* (USNM 530208), *Zanycteris paleocenus* (AMNH 17180), *Ptilocercus lowii* (USNM 481107), *Cynocephalus volans* (FMNH 56521), *Microsyops annectens* (UW 12362), *Dryomomys szalayi* (UM 41870), *Plesiadapis tricuspidens* (MNRH BR 17418). *Zanycteris paleocenus* and other picrodontids (red) are not recovered within a monophyletic Euarchonta (blue) which includes all plesiadapiforms. Highlighted features of petrosals illustrate comparisons among taxa including a caudal tympanic process (blue), rostral tympanic process (orange), and posterior septum (red). Note that the plesiadapiforms *Dryomomys* and *Plesiadapis* have posterior septa which are absent in *Z. paleocenus*. Scale bars, 1 mm.

sister to *L. kayi* (electronic supplementary material, figure SI1). In contrast, the strict consensus of the constrained cladistic analysis forcing Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires supports a monophyletic Euarchonta that is sister to a clade comprised of Glires and picrodontids as sister to *L. kayi* (figure 2). Nyctitheriids and extant lipotyphlans are recovered in a clade within Laurasiatheria.

5. Discussion

Over the past half a century, picrodontids have been hypothesized to be early primates [13] and supported as stem

primates based on results of phylogenetic analyses [19]. These views have been mostly due to picrodontids exhibiting several dental features that are like those of plesiadapiforms, but their uniquely derived dentitions lack common features found in all plesiadapiform families [5,13,15]. Our observations of the basicranial morphology of *Z. paleocenus* indicate that it is distinct from that of all plesiadapiforms and is more like that of nyctitheriids and apatemyids, which likely retain the primitive condition of Placentalia [41].

Given our results that *Z. paleocenus* is not a stem primate, proposed dental similarities between picrodontids and primates (*sensu lato*) are most likely independently evolved. This conclusion might not be that surprising given the

numerous dental and basicranial differences between Z. paleocenus and that of plesiadapiforms. In each basicranial bone examined, Z. paleocenus lacks any clear synapomorphies linking it with plesiadapiforms and instead resembles nyctitheriids, some extant lipotyphlans, and apatemyids. While many of these similarities among these taxa are likely symplesiomorphies for placental mammals, it might be worth further investigating our recovered dental synapomorphies uniting picrodontids and apatemyids (e.g. a parastylar lobe anterior to the paracone on M1). Also, Z. paleocenus exhibits a caudal tympanic process that meets the crista interfenestralis via a curved ridge, which was recovered as a lipotyphlan synapomorphy in previous cladistic results and is found in nyctitheriids [21,22]. This character is recovered as a synapomorphy of the broader clade including extant lipotyphlans, nyctitheriids, and picrodontids in our unconstrained analysis (electronic supplementary material, SI1) and of the clade including lipotyphlans and nyctitheriids in our constrained analysis (figure 2; electronic supplementary material, SI2).

Although unlikely, if *Z. paleocenus* is a stem primate as previously proposed [13,19], the primitive primate (*sensu lato*) and, by extension, primatomorphan and euarchontan basicranial morphology would likely be indistinguishable from that of a primitive placental mammal. A similar conclusion was reached regarding microsyopids [34], which retain basicranial morphology like that which has been reconstructed for the ancestral placental [41]. Unfortunately, the ancestral primate morphotype is difficult to reconstruct in part because cranial remains of Palaeocene representatives of non-plesiadapiform euarchontans and of *Purgatorius*, the oldest and likely most basal plesiadapiform [43], are not yet known.

The results of our phylogenetic analyses generally support our morphology-based interpretations that *Z. paleocenus* and other picrodontids are not stem primates, primatomorphans, or even euarchontan mammals. Our chosen character–taxon matrix provides a robust test of the evolutionary relationships of picrodontids among eutherian mammals given the elements preserved in AMNH 17180, the character sampling of the cranial partition, and the taxon sampling of eutherian mammals. This character–taxon matrix was not designed specifically to elucidate

plesiadapiform interrelationships, which likely led to some differences in the resulting topologies for plesiadapiforms compared to those that are generally recovered [7,8,9]. However, *Z. paleocenus* was never recovered as a stem primate or euarchontan in any of our results. Provided the likely independent evolution of plesiadapiform and/or primate-like dental features in picrodontids, our results indicate a need to better scrutinize proposed synapomorphies, especially when evaluating poorly known, uniquely derived fossil taxa.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.

Data accessibility. Associated data are available in the electronic supplementary material. µCT tiff stacks are available via Morphosource (www.morphosource.org) [44]. The character–taxon matrix is available via https://morphobank.org/ [45].

The data are provided in the electronic supplementary material [46].

Declaration of Al use. We have not used AI-assisted technologies in creating this article.

Authors' contributions. J.W.C.: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft, writing—review and editing; J.R.W.: formal analysis, investigation, writing—review and editing; S.G.B.C.: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, supervision, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare no competing interests.

Funding. This work was supported by grants from the National Science Foundation (grant nos SBE 2216582 to S.G.B.C. and J.W.C., DEB 1456826 to Luke T. Holbrook and S.G.B.C., DEB 1654949 to J.R.W.); the Leakey Foundation (J.W.C. and S.G.B.C.); and a PSC CUNY Award, jointly funded by The Professional Staff Congress and the City University of New York (S.G.B.C.).

Acknowledgments. We thank M. Hill Chase for assistance in μ CT scanning AMNH 17180 at the Microscopy and Imaging Facility, AMNH; J. Bloch, E. Delson, D. Field, C. Gilbert, P. Holroyd, M. Silcox, A. Rosenberger for helpful discussions; four anonymous reviewers that improved the quality of this manuscript; P. Bowden, Carnegie Museum of Natural History, for help with figures and illustrations; many colleagues for access to specimens (see electronic supplementary material); and the Willi Hennig Society for supporting TNT.

References

- Gidley JW. 1923 Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. *Proc. US Natl Mus. USA* 63, 1–38. (doi:10. 5479/si.00963801.63-2469.1)
- 2. Simpson GG. 1940 Studies on the earliest primates. Bull. Am. Mus. Nat. Hist. 77, 185–212.
- Szalay FS. 1968 The beginnings of primates.
 Evolution 22, 19–36. (doi:10.2307/2406646)
- 4. Szalay FS, Delson E. 1979 *Evolutionary history of the primates*. New York, NY: Academic Press.
- Silcox MT, Bloch JI, Boyer DM, Chester SGB, López-Torres S. 2017 The evolutionary radiation of plesiadapiforms. *Evol. Anthropol.: Issues News Rev.* 26, 74–94. (doi:10.1002/evan.21526)
- Bloch JI, Silcox MT, Boyer DM, Sargis EJ. 2007 New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. *Proc. Natl*

- *Acad. Sci. USA* **104**, 1159–1164. (doi:10.1073/pnas. 0610579104)
- Silcox MT, Bloch JI, Boyer DM, Houde P. 2010
 Cranial anatomy of Paleocene and Eocene
 Labidolemur kayi (Mammalia: Apatotheria), and the
 relationships of the Apatemyidae to other
 mammals. Zool. J. Linn. Soc. 160, 773–825. (doi:10.
 1111/j.1096-3642.2009.00614.x)
- 8. Chester SGB, Bloch JI, Boyer DM, Clemens WA. 2015 Oldest known euarchontan tarsals and affinities of Paleocene *Purgatorius* to Primates. *Proc. Natl Acad. Sci. USA* **112**, 1487–1492. (doi:10.1073/pnas. 1421707112)
- Bloch JI, Chester SGB, Silcox MT. 2016 Cranial anatomy of Paleogene Micromomyidae and implications for early primate evolution. *J. Hum.* Evol. 96, 58–81. (doi:10.1016/j.jhevol.2016.04.001)

- Chester SGB, Williamson TE, Bloch JI, Silcox MT, Sargis EJ. 2017 Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene. R. Soc. Open Sci. 4, 170329. (doi:10. 1098/rsos.170329)
- Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P, Flynn JJ, Beard KC. 2013 The oldest known primate skeleton and early haplorhine evolution. *Nature* 498, 60–64. (doi:10.1038/ nature12200)
- Ni X, Li Q, Li L, Beard KC. 2016 Oligocene primates from China reveal divergence between African and Asian primate evolution. *Science* 352, 673–677. (doi:10.1126/science.aaf2107)
- 13. Szalay FS. 1968b The Picrodontidae, a family of early primates. *Am. Mus. Novitates* **2329**, 1–55.

- 14. Tomida Y. 1982 A new genus of picrodontid primate from the Paleocene of Utah. Folia Primatol. 37, 37-43. (doi:10.1159/000156019)
- 15. Scott CS, Fox RC. 2005 Windows on the evolution of Picrodus (Plesiadapiformes: Primates): morphology and relationships of a species complex from the Paleocene of Alberta. J. Paleontol. 79, 635-657. (doi:10.1666/0022-3360(2005)079[0635:W0TEOP]2. 0.C0;2)
- 16. Douglass E. 1908 Vertebrate fossils from the Fort Union beds. *Ann. Carnegie Museum* **5**, 11–26. (doi:10.5962/p.78066)
- 17. Matthew WD. 1917 A Paleocene bat. Bull. Am. Mus. Nat. Hist. 37, 569-571.
- 18. McGrew PO, Patterson B. 1962 A picrodontid insectivore (?) from the Paleocene of Wyoming. Breviora 175, 1-9.
- 19. Silcox MT. 2001 A phylogenetic analysis of the Plesiadapiformes and their relationship to Euprimates and other archontans. PhD thesis, Johns Hopkins University, Baltimore, MD.
- 20. Goloboff PA, Farris JS, Nixon KC. 2008 TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786. (doi:10.1111/j.1096-0031. 2008.00217.x)
- 21. Wible JR, Rougier GW, Novacek MJ, Asher RJ. 2009 The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull. Am. Mus. Nat. Hist. 327, 1-123. (doi:10.1206/623.1)
- 22. Manz CL, Chester SGB, Bloch JI, Silcox MT, Sargis EJ. 2015 New partial skeletons of Palaeocene Nyctitheriidae and evaluation of proposed euarchontan affinities. Biol. Lett. 11, 20140911. (doi:10.1098/rsbl.2014.0911)
- 23. Tarver JE, Dos Reis M, Mirarab S, Moran RJ, Parker S, O'Reilly JE, Pisani D. 2016 The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8, 330-344. (doi:10. 1093/gbe/evv261)
- 24. Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. 2017 Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol. Evol. 9, 2308-2321. (doi:10.1093/gbe/evx168)
- 25. Upham NS, Esselstyn JA, Jetz W. 2019 Inferring the mammal tree: species-level sets of phylogenies for

- questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494. (doi:10.1371/journal.pbio. 3000494)
- 26. Foley NM, Mason VC, Harris AJ, Bredemeyer KR, Damas J, Lewin HA, Murphy WJ. 2023 A genomic timescale for placental mammal evolution. Science **380**, eabl8189. (doi:10.1126/science.abl8189)
- 27. Kay RF, Thewissen JGM, Yoder AD. 1992 Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Am. J. Phys. Anthropol. 89, 477-498. (doi:10.1002/ajpa. 1330890409)
- 28. Bloch JI, Silcox MT. 2001 New basicrania of Paleocene–Eocene *Ignacius*: re-evaluation of the plesiadapiform-dermopteran link. Am. J. Phys. Anthropol. 116, 184-198. (doi:10.1002/ ajpa.1114)
- 29. Bloch JI, Silcox MT. 2006 Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. *J. Hum. Evol.* **50**, 1–35. (doi:10.1016/j.jhevol. 2005.06.009)
- 30. Boyer DM, Gingerich PD. 2019 Skeleton of late Paleocene Plesiadapis cookei (Mammalia, Euarchonta): life history, locomotion, and phylogenetic relationships. Univ. Mich. Pap. Paleontol. 38, 1-263.
- 31. Silcox MT. 2003 New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. J. Hum. Evol. 44, 73-86. (doi:10.1016/S0047-2484(02)0195-1)
- 32. Szalay FS. 1975 Phylogeny of primate higher taxa. In Phylogeny of the primates: a multidisciplinary approach (eds WP Luckett, FS Szalay), pp. 91-125. New York, NY: Plenum Press.
- 33. MacPhee RDE, Novacek MJ, Storch G. 1988 Basicranial morphology of early Tertiary erinaceomorphs and the origin of primates. Am. Mus. Novitates 2921, 1-42.
- 34. Silcox MT, Gunnell GF, Bloch JI. 2020 Cranial anatomy of Microsyops annectens (Microsyopidae, Euarchonta, Mammalia) from the middle Eocene of northwestern Wyoming. J. Paleontol. 94, 979-1006. (doi:10.1017/jpa.2020.24)
- 35. Hooker JJ. 2014 New postcranial bones of the extinct mammalian family Nyctitheriidae

scansorial locomotion. Palaeontol. Electron. 17, 47A. 36. MacPhee RDE. 1981 Auditory regions of primates

(Paleogene, UK): primitive euarchontans with

- and eutherian insectivores. Morphology, ontogeny and character analysis. In Contributions to primatology (ed. FS Szalay), pp. 1-270. New York, NY: Karger.
- 37. Wible JR. 2008 On the cranial osteology of the Hispaniolan solenodon, Solenodon paradoxus Brandt, 1833 (Mammalia, Lipotyphla, Solenodontidae). Ann. Carnegie Museum 77, 321-402. (doi:10.2992/0097-4463-77.3.321)
- 38. Wible JR. 2011 On the treeshrew skull (Mammalia, Placentalia, Scandentia). Ann. Carnegie Mus. 79, 149-230. (doi:10.2992/007.079.0301)
- 39. Wible JR, Martin JR. 1993 Ontogeny of the tympanic floor and roof in archontans. In Primates and their relatives in phylogenetic perspective (ed. RDE MacPhee), pp. 111–148. Boston, MA: Springer.
- 40. Wible JR. 2023 The ear region of the Philippine flying lemur Cynocephalus volans (Placentalia, Dermoptera). Anat. Rec. 306, 2853-2871. (doi:10. 1002/ar.25174)
- 41. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J et al. 2013 The placental mammal ancestor and the post-K-Pg radiation of placentals. Science **339**, 662–667. (doi:10.1126/ science.1229237)
- 42. Novacek MJ. 1977 Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mamm. Rev. 7, 131-150. (doi:10. 1111/j.1365-2907.1977.tb00366.x)
- 43. Wilson Mantilla GP, Chester SG, Clemens WA, Moore JR, Sprain CJ, Hovatter BT, Renne PR. 2021 Earliest Palaeocene purgatoriids and the initial radiation of stem primates. R. Soc. Open Sci. 8, 210050. (doi:10. 1098/rsos.210050)
- 44. Crowell JW, Wible JR, Chester SGC. 2023 µCT scan data of the Zanycteris paleocenus (AMNH 17180) basicranium. (ark:/87602/m4/575062).
- 45. Crowell JW, Wible JR, Chester SGC. 2023 Character taxon matrix for cladistic analysis of Zanycteris paleocenus. See http://morphobank.org/permalink/?
- 46. Crowell JW, Wible JR, Chester SGB. 2024 Basicranial evidence suggests picrodontid mammals are not stem primates. Figshare. (doi:10.6084/m9.figshare.c. 6984336)