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The Picrodontidae from the middle Palaeocene of North America are enig-
matic placental mammals that were allied with various mammalian groups
but are generally now considered to have close affinities to paromomyid
and palaechthonid plesiadapiforms based on proposed dental synapomor-
phies. The picrodontid fossil record consists entirely of dental and gnathic
remains except for one partial cranium of Zanycteris paleocenus (AMNH
17180). Here, we use µCT technology to unveil previously undocumented
morphology in AMNH 17180, describe and compare the basicranial mor-
phology of a picrodontid for the first time, and incorporate these new data
into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct
from plesiadapiforms and shares similarities with the Palaeogene Apatemyi-
dae and Nyctitheriidae. Results of cladistic analyses incorporating these novel
data suggest picrodontids are not stem primates nor euarchontan mammals
and that the proposed dental synapomorphies uniting picrodontids with
plesiadapiforms and, by extension, primates evolved independently. Results
highlight the need to scrutinize proposed synapomorphies of highly
autapomorphic taxa with limited fossil records.
1. Background
Plesiadapiforms are a likely non-monophyletic group of placental mammals
known from the Palaeocene and Eocene of North America, Europe, and Asia
that have been regarded as close fossil relatives of crown clade primates
based mostly on aspects of dental morphology [1–5]. Results of recent phylo-
genetic analyses support plesiadapiforms as euarchontan mammals and
either support members of this group as stem primates [6–10], stem colugos
or stem primatomorphans (Primates + Dermoptera) [11,12].

The Picrodontidae consists of three genera (Picrodus, Zanycteris, and Dracono-
dus) known from the Torrejonian and Tiffanian North American Land Mammal
Ages (NALMA) of western North America [13–15]. Due to the autapomorphic
dental morphology of picrodontids and the lack of an obvious sister group,
researchers have allied picrodontids with caenolestid marsupials [16], chiropter-
ans [17], insectivorans [18], and most recently primates (sensu lato) [13]. Over the
past half-century, picrodontids have often been viewed as plesiadapiforms and
more recently belonging to the superfamily Paromomyoidea (Paromomyidae +
Palaechthonidae + Picrodontidae) based on the shared presence of dental features
such as a strong postprotocingulum and expanded distolingual basin of the
upper molars (figure 1a) [5,15,19]. However, picrodontid dental morphology dif-
fers significantly from plesiadapiforms (e.g. greatly enlarged M1/m1 with a
decrease in molar area to M3/m3, absence of m3 hypoconulid) [13,15]. Because
the picrodontid fossil record consists only of autapomorphic dentitions, except
for one partial cranium, they are usually excluded from cladistic analyses
aimed at assessing primate supraordinal relationships and/or interrelationships
among plesiadapiforms. Here, we use µCT scanning technology to describe
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Figure 1. Three-dimensional models derived from µCT scan data of Zanycteris paleocenus (AMNH 17180) with descriptions and orientations of skeletal elements
organized from left to right. (a) Cranium in dorsal and ventral views with basicranial region transparent showing original position of digitally extracted bones. Box
illustrates left upper molars rotated into occlusal view with distolingual basin (asterisk) and postprotocingulum (arrow). (b) Three-dimensional model of right pet-
rosal in ventral view, composite line drawing incorporating preserved morphology from right and left petrosal, and composite line drawing with major neurovascular
structures; (c) R partial ectotympanic in oblique posterior and ventral view; (d ) R partial alisphenoid/basisphenoid in lateral and ventral view. Scale bars, 1 mm.
Abbreviations: C = upper canine; C a = upper canine alveolus; M = upper molar; P a = upper premolar alveolus.
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and compare previously undocumented morphology from the
only known partial cranium of a picrodontid and include these
novel data in cladistic analyses to assess the phylogenetic
affinities of the Picrodontidae.
2. Material and methods
The partial cranium of Z. paleocenus (AMNH 17180), from the late
Tiffanian (Ti-4) Mason Pocket locality in the San Juan Basin of
Colorado, includes two separate cranial portions that were sub-
merged in plaster: a rostral portion including the palate and
right C, M1–3 and left M1–3 and a caudal portion that includes
several partial basicranial elements, including left and right pet-
rosals, right ectotympanic, right incus, left stapes, and part of the
right sphenoid complex (figure 1a). Both portions were µCT
scanned at the Microscopy and Imaging Facility of the American
Museum of Natural History (AMNH), and µCT scan data were
manually segmented using the segmentation tool in Avizo
9.0.1. Comparisons were made to plesiadapiforms, other
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Palaeogene mammals, extant euarchontans, and other placental
mammals (electronic supplementary material, SI1).

Maximum parsimony analyses were performed in TNT
(v. 1.5) [20] using a character–taxon matrix (electronic supple-
mentary material, SI3) that was modified from previously
published versions [8,21,22] to include three picrodontids, one
palaechthonid, one microsyopid, and one apatemyid (electronic
supplementary material, SI2). Unconstrained and constrained ana-
lyses were performed generally following previous methods [22]
and well-supported supraordinal groups in molecular-based
phylogenetic analyses were constrained (Afrotheria, Xenarthra,
Laurasiatheria, Euarchontoglires) [23–26].
l/rsbl
Biol.Lett.20:20230335
3. Basicranial descriptions and comparative
morphology

(a) Petrosal
The petrosals of Z. paleocenus possess a ventrally projecting
rostral tympanic process arising from the medial aspect of
the rounded promontorium that is confluent with an ante-
riorly projecting epitympanic wing (figure 1b). The caudal
tympanic process is posterior to and roughly level in its ven-
tral extent to the aperture of the cochlear fossula and meets
the crista interfenestralis via a curved ridge. Two subequal
sulci on the surface of the promontorium correspond to the
stapedial and promontory branches of the internal carotid
artery, which enters the middle ear in a posteromedial pos-
ition. There is an open sulcus for the facial nerve, which
exits the middle ear space via the stylomastoid notch.

Unlike Z. paleocenus, all non-microsyopid plesiadapiforms
possess a posterior septum that shields the aperture of the
cochlear fossula in ventral view with additional septa
originating from the promontorium (figure 2, electronic
supplementary material, figure SI4) [9,27–30]. Zanycteris paleo-
cenus is like the carpolestid Carpolestes simpsoni in having an
unreduced internal carotid artery with a posteromedial
entrance into the middle ear [29], but differs from other
non-microsyopid plesiadapiforms, which have a reduced
internal carotid artery that enters the middle ear in a more
posterolateral position [9,27,28,30]. Zanycteris paleocenus is
like micromomyid plesiadapiforms in exhibiting an open
sulcus for the facial nerve [9], but differs from other non-
microsyopid plesiadapiforms, which enclose the facial nerve
within a bony canal [27,28,30,31].

Microsyopids have long been considered distinct from
non-microsyopid plesiadapiforms in their petrosal mor-
phology [32–34]. Overall, microsyopids are like Z. paleocenus
in exhibiting a posteromedial position for the internal carotid
artery in which both the stapedial and promontorial branches
are preserved, an open sulcus for the facial nerve, and the
absence of an auditory bulla derived from the petrosal [7].
However, microsyopids differ from Z. paleocenus in lacking a
well-developed, ventrally projecting rostral tympanic process
that is confluent with an epitympanic wing and a well-
developed caudal tympanic process that forms a complete
rim around the aperture of the cochlear fossula (figure 2).

Outside Euarchonta, Z. paleocenus shares basicranial simi-
larities with Labidolemur kayi, an apatemyid known from the
late Palaeocene of North America that has been interpreted
as a basal member of Euarchontoglires based on cladistic
results [7]. Like Z. paleocenus, L. kayi exhibits an open sulcus
for the internal carotid artery that enters the middle ear in
a posteromedial position, an open sulcus for the facial
nerve, and a caudal tympanic process that forms a rim
around the aperture of the cochlear fossula (figure 2). How-
ever, the rostral tympanic process and epitympanic wing of
L. kayi are much less developed than that of Z. paleocenus.

Zanycteris paleocenus also shares basicranial similarities
with the Nyctitheriidae, a family of small-bodied insectivor-
ous mammals known from the Palaeogene of North
America, Europe, and Asia that has been supported as a
member of Euarchonta [35] or Lipotyphla [22]. Like Z. paleo-
cenus, nyctitheriids have an open sulcus for an unreduced
internal carotid artery that enters the middle ear in a poster-
omedial position, an open sulcus for the facial nerve, and a
prominent caudal tympanic process that forms a rim
around the aperture of the cochlear fossula and meets the
crista interfenestralis via a curved ridge (figure 2) [22]. How-
ever, the rostral tympanic process and epitympanic wing of
nyctitheriids are not as prominent as those of Z. paleocenus.

(b) Ectotympanic
The partial right ectotympanic of Z. paleocenus, which pre-
serves the anterior crus, has the shape of a ring with some
lateral expansion (figure 1c), like that of several groups
including nyctitheriids [22], apatemyids [7], and extant lipo-
typhlans [36,37]. Unlike that of euarchontans, Z. paleocenus
does not exhibit a simple ring-like element (i.e. no lateral
expansion) such as that in lemuriform primates [36], treesh-
rews [38], micromomyids [9], and paromomyids [28] (but
see [27]), it lacks bony struts on the ventral surface to fuse
to the lateral bullar wall as in plesiadapids [30], and it is
not greatly expanded to form a significant component of
the auditory bulla as in colugos [39,40].

(c) Auditory bulla composition
Current evidence suggests a limited contribution of the petro-
sal, either from the rostral or caudal tympanic processes in
the tympanic floor of Z. paleocenus. Therefore, Z. paleocenus is
distinct from that of crown primates and that which has been
inferred for micromomyid, carpolestid, and plesiadapid plesia-
dapiforms [9,29,30] in lacking a complete bulla derived from
the petrosal. The absence of a large entotympanic element
and associated articular surfaces on the petrosal makes Z. paleo-
cenus distinct from that of treeshrews [38] and paromomyid
plesiadapiforms [27,28], which possess an entotympanic
bulla. The ectotympanic does not expand medial to the crista
tympanica, suggesting that the ectotympanic did not entirely
floor the middle ear space like the condition found in lipotyph-
lans [36,37], apatemyids [7], and nyctitheriids [22]. Given the
lack of evidence for other bullar elements, the ectotympanic
of Z. paleocenus appears to retain the reconstructed primitive
condition for Eutheria of not being covered by an auditory
bulla [41,42]. See the electronic supplementary material for
more details of the basicranium.
4. Phylogenetic results
Phylogenetic results do not support Picrodontidae within
Euarchonta and instead support Picrodontidae as the sister
taxon to the apatemyid L. kayi (figure 2). The strict consensus
of the unconstrained cladistic analysis recovers a monophy-
letic Euarchonta that is sister to a broad clade containing
lipotyphlans, afrosoricids, nyctitheriids, and picrodontids as
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sister to L. kayi (electronic supplementary material, figure
SI1). In contrast, the strict consensus of the constrained cladis-
tic analysis forcing Afrotheria, Xenarthra, Laurasiatheria, and
Euarchontoglires supports a monophyletic Euarchonta that is
sister to a clade comprised of Glires and picrodontids as sister
to L. kayi (figure 2). Nyctitheriids and extant lipotyphlans are
recovered in a clade within Laurasiatheria.
5. Discussion
Over the past half a century, picrodontids have been hypo-
thesized to be early primates [13] and supported as stem
primates based on results of phylogenetic analyses [19].
These views have been mostly due to picrodontids exhibiting
several dental features that are like those of plesiadapiforms,
but their uniquely derived dentitions lack common features
found in all plesiadapiform families [5,13,15]. Our obser-
vations of the basicranial morphology of Z. paleocenus
indicate that it is distinct from that of all plesiadapiforms
and is more like that of nyctitheriids and apatemyids,
which likely retain the primitive condition of Placentalia [41].

Given our results that Z. paleocenus is not a stem primate,
proposed dental similarities between picrodontids and pri-
mates (sensu lato) are most likely independently evolved.
This conclusion might not be that surprising given the
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numerous dental and basicranial differences between Z.
paleocenus and that of plesiadapiforms. In each basicranial
bone examined, Z. paleocenus lacks any clear synapomorphies
linking it with plesiadapiforms and instead resembles nyc-
titheriids, some extant lipotyphlans, and apatemyids. While
many of these similarities among these taxa are likely sym-
plesiomorphies for placental mammals, it might be worth
further investigating our recovered dental synapomorphies
uniting picrodontids and apatemyids (e.g. a parastylar lobe
anterior to the paracone on M1). Also, Z. paleocenus exhibits
a caudal tympanic process that meets the crista interfenestra-
lis via a curved ridge, which was recovered as a lipotyphlan
synapomorphy in previous cladistic results and is found in
nyctitheriids [21,22]. This character is recovered as a synapo-
morphy of the broader clade including extant lipotyphlans,
nyctitheriids, and picrodontids in our unconstrained analysis
(electronic supplementary material, SI1) and of the clade
including lipotyphlans and nyctitheriids in our constrained
analysis (figure 2; electronic supplementary material, SI2).

Although unlikely, if Z. paleocenus is a stem primate as pre-
viously proposed [13,19], the primitive primate (sensu lato)
and, by extension, primatomorphan and euarchontan basicra-
nial morphology would likely be indistinguishable from that
of a primitive placental mammal. A similar conclusion was
reached regarding microsyopids [34], which retain basicranial
morphology like that which has been reconstructed for the
ancestral placental [41]. Unfortunately, the ancestral primate
morphotype is difficult to reconstruct in part because cranial
remains of Palaeocene representatives of non-plesiadapiform
euarchontans and of Purgatorius, the oldest and likely most
basal plesiadapiform [43], are not yet known.

The results of our phylogenetic analyses generally
support our morphology-based interpretations that Z. paleo-
cenus and other picrodontids are not stem primates,
primatomorphans, or even euarchontan mammals. Our
chosen character–taxon matrix provides a robust test of the
evolutionary relationships of picrodontids among eutherian
mammals given the elements preserved in AMNH 17180,
the character sampling of the cranial partition, and the
taxon sampling of eutherian mammals. This character–
taxon matrix was not designed specifically to elucidate
plesiadapiform interrelationships, which likely led to some
differences in the resulting topologies for plesiadapiforms
compared to those that are generally recovered [7,8,9]. How-
ever, Z. paleocenus was never recovered as a stem primate or
euarchontan in any of our results. Provided the likely inde-
pendent evolution of plesiadapiform and/or primate-like
dental features in picrodontids, our results indicate a need
to better scrutinize proposed synapomorphies, especially
when evaluating poorly known, uniquely derived fossil taxa.
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