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Abstract

Attention-based neural networks such as transformers have demonstrated a remarkable ability to ex-

hibit in-context learning (ICL): Given a short prompt sequence of tokens from an unseen task, they can

formulate relevant per-token and next-token predictions without any parameter updates. By embedding a

sequence of labeled training data and unlabeled test data as a prompt, this allows for transformers to be-

have like supervised learning algorithms. Indeed, recent work has shown that when training transformer

architectures over random instances of linear regression problems, these models’ predictions mimic those

of ordinary least squares.

Towards understanding the mechanisms underlying this phenomenon, we investigate the dynamics of

ICL in transformers with a single linear self-attention layer trained by gradient flow on linear regression

tasks. We show that despite non-convexity, gradient flow with a suitable random initialization finds a

global minimum of the objective function. At this global minimum, when given a test prompt of labeled

examples from a new prediction task, the transformer achieves prediction error competitive with the

best linear predictor over the test prompt distribution. We additionally characterize the robustness of

the trained transformer to a variety of distribution shifts and show that although a number of shifts are

tolerated, shifts in the covariate distribution of the prompts are not. Motivated by this, we consider

a generalized ICL setting where the covariate distributions can vary across prompts. We show that

although gradient flow succeeds at finding a global minimum in this setting, the trained transformer is

still brittle under mild covariate shifts. We complement this finding with experiments on large, nonlinear

transformer architectures which we show are more robust under covariate shifts.

1 Introduction

Transformer-based neural networks have quickly become the default machine learning model for problems

in natural language processing, forming the basis of chatbots like ChatGPT [Ope23], and are increasingly

popular in computer vision [Dos+21]. These models can take as input sequences of tokens and return

relevant next-token predictions. When trained on sufficiently large and diverse datasets, these models are

often able to perform in-context learning (ICL): when given a short sequence of input-output pairs (called a

prompt) from a particular task as input, the model can formulate predictions on test examples without having

to make any updates to the parameters in the model.
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Recently, Garg et al. [Gar+22] initiated the investigation of ICL from the perspective of learning partic-

ular function classes. At a high-level, this refers to when the model has access to instances of prompts of the

form (x1, h(x1), . . . , xN , h(xN ), xquery) where xi, xquery are sampled i.i.d. from a distribution Dx and h is

sampled independently from a distribution over functions in a function class H. The transformer succeeds

at in-context learning if when given a new prompt (x′1, h
′(x′1), . . . , x

′
N , h′(x′N ), x′query) corresponding to an

independently sampled h′ it is able to formulate a prediction for x′query that is close to h′(x′query) given a

sufficiently large number of examples N . The authors showed that when transformer models are trained

on prompts corresponding to instances of training data from a particular function class (e.g., linear models,

neural networks, or decision trees), they succeed at in-context learning, and moreover the behavior of the

trained transformers can mimic those of familiar learning algorithms like ordinary least squares.

Following this, a number of follow-up works provided constructions of transformer-based neural net-

work architectures which are capable of achieving small prediction error for query examples when the

prompt takes the form (x1, 〈w, x1〉, . . . , xN , 〈w, xN 〉, xquery) where xi, xquery, w
i.i.d.∼ N(0, Id) [Osw+22;

Aky+22]. However, this leaves open the question of how it is that gradient-based optimization algorithms

over transformer architectures produce models which are capable of in-context learning.1

In this work, we investigate the learning dynamics of gradient flow in a simplified transformer archi-

tecture when the training prompts consists of random instances of linear regression datasets. Our main

contributions are as follows.

• We establish that for a class of transformers with a single layer and with a linear self-attention module

(LSAs), gradient flow on the population loss with a suitable random initialization converges to a global

minimum of the population objective, despite the non-convexity of the underlying objective function.

• We characterize the learning algorithm that is encoded by the transformer at convergence, as well

as the prediction error achieved when the model is given a test prompt corresponding to a new (and

possibly nonlinear) prediction task.

• We use this to conclude that transformers trained by gradient flow indeed in-context learn the class

of linear models. Moreover, we characterize the robustness of the trained transformer to a variety of

distribution shifts. We show that although a number of shifts can be tolerated, shifts in the covariate

distribution of the features xi can not.

• Motivated by this failure under covariate shift, we consider a generalized setting of in-context learning

where the covariate distribution can vary across prompts. We provide global convergence guarantees

for LSAs trained by gradient flow in this setting and show that even when trained on a variety of

covariate distributions, LSAs still fail under covariate shift.

• We then empirically investigate the behavior of large, nonlinear transformers when trained on linear

regression prompts. We find that these more complex models are able to generalize better under

covariate shift, especially when trained on prompts with varying covariate distributions.

2 Additional Related Work

The literature on transformers and non-convex optimization in machine learning is vast. In this section, we

will focus on those works most closely related to theoretical understanding of in-context learning of function

1We note a concurrent work also explores the optimization question we consider here [Ahn+23]; we shall provide a more

detailed comparison to this work in Section 2.
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classes.

As mentioned previously, Garg et al. [Gar+22] empirically investigated the ability for transformer archi-

tectures to in-context learn a variety of function classes. They showed that when trained on random instances

of linear regression, the models’ predictions are very similar to those of ordinary least squares. Additionally,

they showed that transformers can in-context learn two-layer ReLU networks and decision trees, showing

that by training on differently-structured data, the transformers learn to implement distinct learning algo-

rithms. A number of works further investigated the types of algorithms implemented by transformers trained

on in-context examples of linear models [APG23; AL23].

Akyürek et al. [Aky+22] and Oswald et al. [Osw+22] examined the behavior of transformers when

trained on random instances of linear regression, as we do in this work. They considered the setting of

isotropic Gaussian data with isotropic Gaussian weight vectors, and showed that the trained transformer’s

predictions mimic those of a single step of gradient descent. They also provided a construction of trans-

formers which implement this single step of gradient descent. By contrast, we explicitly show that gradient

flow provably converges to transformers which learn linear models in-context. Moreover, our analysis holds

when the covariates are anisotropic Gaussians, for which a single step of vanilla gradient descent is unable

to achieve small prediction error.2

Let us briefly mention a number of other works on understanding in-context learning in transform-

ers and other sequence-based models. Han et al. [Han+23] suggests that Bayesian inference on prompts

can be asymptotically interpreted as kernel regression. Dai et al. [Dai+22] interprets ICL as implicit fine-

tuning, viewing large language models as meta-optimizers performing gradient-based optimization. Xie et

al. [Xie+21] regards ICL as implicit Bayesian inference, with transformers learning a shared latent concept

between prompts and test data, and they prove the ICL property when the training distribution is a mixture

of HMMs. Similarly, Wang, Zhu, and Wang [WZW23] perceives ICL as a Bayesian selection process, im-

plicitly inferring information pertinent to the designated tasks. Li et al. [Li+23a] explores the functional

resemblance between a single layer of self-attention and gradient descent on a softmax regression problem,

offering upper bounds on their difference. Min et al. [Min+22] notes that the alteration of label parts in

prompts does not drastically impair the ICL ability. They contend that ICL is invoked when prompts reveal

information about the label space, input distribution, and sequence structure.

Another collection of works have sought to understand transformers from an approximation-theoretic

perspective. Yun et al. [Yun+19; Yun+20] established that transformers can universally approximate any

sequence-to-sequence function under some assumptions. Investigations by Edelman et al. [Ede+22] and

Likhosherstov, Choromanski, and Weller [LCW21] indicate that a single-layer self-attention can learn sparse

functions of the input sequence, where sample complexity and hidden size are only logarithmic relative to the

sequence length. Further studies by Pérez, Marinković, and Barceló [PMB19], Dehghani et al. [Deh+19],

and Bhattamishra, Patel, and Goyal [BPG20] indicate that the vanilla transformer and its variants exhibit

Turing completeness. Liu et al. [Liu+23] showed that transformers can approximate finite-state automata

with few layers. Bai et al. [Bai+23] showed that transformers can implement a variety of statistical machine

learning algorithms as well as model selection procedures. Abernethy et al. [Abe+23] showed that a pre-

trained transformer can be used to define a transformer that segments a prompt into examples and labels and

learns to solve a sparse retrieval task. Zhang et al. [Zha+23] interpreted in-context learning via a Bayesian

model averaging process.

A handful of recent works have developed provable guarantees for transformers trained with gradient-

2To see this, suppose (xi, yi) are i.i.d. with x ∼ N(0,Λ) and y = 〈w, x〉. A single step of gradient descent under the squared

loss from a zero initialization yields the predictor x 7→ x⊤
(

1

n

∑n

i=1
yixi

)

= x⊤
(

1

n

∑n

i=1
xix

⊤
i

)

w ≈ x⊤Λw. Clearly, this is not

close to x⊤w when Λ 6= Id.
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based optimization. Jelassi, Sander, and Li [JSL22] analyzed the dynamics of gradient descent in vision

transformers for data with spatial structure. Li, Li, and Risteski [LLR23] demonstrated that a single-layer

transformer trained by a gradient method could learn a topic model, treating learning semantic structure

as detecting co-occurrence between words and theoretically analyzing the two-stage dynamics during the

training process.

Finally, we note a concurrent work by Ahn et al. [Ahn+23] on the optimization landscape of single

layer transformers with linear self-attention layers as we do in this work. They show that there exist global

minima of the population objective of the transformer that can achieve small prediction error with anisotropic

Gaussian data, and they characterize some critical points of deep linear self-attention networks. In this

work, we show that despite nonconvexity, gradient flow with a suitable random initialization converges to a

global minimum that achieves small prediction error for anistropic Gaussian data. We also characterize the

prediction error when test prompts come from a new (possibly nonlinear) task, when there is distribution

shift, and when transformers are trained on prompts with possibly different covariate distributions across

prompts.

3 Preliminaries

Notation We first describe the notation we use in the paper. We write [n] = {1, 2, ..., n}. We use

⊗ to denote the Kronecker product, and Vec the vectorization operator in column-wise order. For ex-

ample, Vec
(
1 2
3 4

)
= (1, 3, 2, 4)⊤. We write the inner product of two matrices A,B ∈ R

m×n as

〈A,B〉 = tr(AB⊤). We use 0n and 0m×n to denote the zero vector and zero matrix of size n and m × n,
respectively. For a general matrix A, Ak: and A:k denote the k-th row and k-th column, respectively. We de-

note the matrix operator norm and Frobenius norm as ‖·‖op and ‖·‖F . We use Id to denote the d-dimensional

identity matrix and sometimes we also use I when the dimension is clear from the context. For a positive

semi-definite matrix A, we write ‖x‖2A := x⊤Ax. Unless otherwise defined, we use lower case letters for

scalars and vectors, and use upper case letters for matrices.

3.1 In-context learning

We begin by describing a framework for in-context learning of function classes, as initiated by Garg et al.

[Gar+22]. In-context learning refers to the behavior of models that operate on sequences, called prompts,

of input-output pairs (x1, y1, . . . , xN , yN , xquery), where yi = h(xi) for some (unknown) function h and

examples xi and query xquery. The goal for an in-context learner is to use the prompt to form a prediction

ŷ(xquery) for the query such that ŷ(xquery) ≈ h(xquery).
From this high-level description, one can see that at a surface level, the behavior of in-context learning

is no different than that of a standard learning algorithm: the learner takes as input a training dataset and

returns predictions on test examples. For instance, one can view ordinary least squares as an ‘in-context

learner’ for linear models. However, the rather unique feature of in-context learners is that these learning

algorithms can be the solutions to stochastic optimization problems defined over a distribution of prompts.

We formalize this notion in the following definition.

Definition 3.1 (Trained on in-context examples). Let Dx be a distribution over an input space X , H ⊂ YX

a set of functions X → Y , and DH a distribution over functions in H. Let ℓ : Y×Y → R be a loss function.

Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set of finite-length sequences of (x, y) pairs

and let

FΘ = {fθ : S × X → Y, θ ∈ Θ}

4



be a class of functions parameterized by θ in some set Θ. For N > 0, we say that a model f : S × X → Y
is trained on in-context examples of functions in H under loss ℓ w.r.t. (DH,Dx) if f = fθ∗ where θ∗ ∈ Θ
satisfies

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN ),xquery) [ℓ (fθ(P ), h(xquery))] , (3.1)

where xi, xquery
i.i.d.∼ Dx and h ∼ DH are independent. We call N the length of the prompts seen during

training.

As mentioned above, this definition naturally leads to a method for learning a learning algorithm

from data: Sample independent prompts by sampling a random function h ∼ DH and feature vectors

xi, xquery
i.i.d.∼ Dx, and then minimize the objective function appearing in (3.1) using stochastic gradient

descent or other stochastic optimization algorithms. This procedure returns a model that is learned from

in-context examples and can form predictions for test (query) examples given a sequence of training data.

This leads to the following natural definition that quantifies how well such a model performs on in-context

examples corresponding to a particular hypothesis class.

Definition 3.2 (In-context learning of a hypothesis class). Let Dx be a distribution over an input space

X , H ⊂ YX a class of functions X → Y , and DH a distribution over functions in H. Let ℓ : Y ×
Y → R be a loss function. Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set of finite-

length sequences of (x, y) pairs. We say that a model f : S × X → Y defined on prompts of the form

P = (x1, h(x1), . . . , xM , h(xM ), xquery) in-context learns a hypothesis class H under loss ℓ with respect to

(DH,Dx) up to error η ∈ R if there exists a function MDH,Dx
(ε) : (0, 1) → N such that for every ε ∈ (0, 1),

and for every prompt P of length M ≥ MDH,Dx
(ε),

EP=(x1,h(x1),...,xM ,h(xM ),xquery)

[
ℓ
(
f(P ), h (xquery)

)]
≤ η + ε, (3.2)

where the expectation is over the randomness in xi, xquery
i.i.d.∼ Dx and h ∼ DH.

The additive error term η in Definition 3.2 above allows for the possibility that the model does not

achieve arbitrarily small error. This error could come from using a model which is not complex enough

to learn functions in H or from considering a non-realizable setting where it is not possible to achieve

arbitrarily small error.

With these two definitions in hand, we can formulate the following questions: suppose a function class

FΘ is given and DH corresponds to random instances of hypotheses in a hypothesis class H. Can a model

from FΘ that is trained on in-context examples of functions in H w.r.t. (DH,Dx) in-context learn the

hypothesis class H w.r.t. (DH,Dx) with small prediction error? Do standard gradient-based optimization

algorithms suffice for training the model from in-context examples? How long must the contexts be during

training and at test time to achieve small prediction error? In the remaining sections, we shall answer these

questions for the case of one-layer transformers with linear self-attention modules when the hypothesis class

is linear models, the loss of interest is the squared loss, and the marginals are (possibly anisotropic) Gaussian

marginals.

3.2 Linear self-attention networks

Before describing the particular transformer models we analyze in this work, we first recall the definition

of the softmax-based single-head self-attention module [Vas+17]. Let E ∈ R
de×dN be an embedding ma-

trix that is formed using a prompt (x1, y1, . . . , xN , yN , xquery) of length N . The user has the freedom to
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determine how this embedding matrix is formed from the prompt. One natural way to form E is to stack

(xi, yi)
⊤ ∈ R

d+1 as the first N columns of E and to let the final column be (xquery, 0)
⊤; if xi ∈ R

d, yi ∈ R,

we would then have de = d+ 1 and dN = N + 1. Let WK ,WQ ∈ R
dk×de and W V ∈ R

dv×de be the key,

query, and value weight matrices, WP ∈ R
de×dv the projection matrix, and ρ > 0 a normalization factor.

The softmax self-attention module takes as input an embedding matrix E of width dN and outputs a matrix

of the same size,

fAttn(E;WK ,WQ,W V ,WP ) = E +WPW V E · softmax

(
(WKE)⊤WQE

ρ

)
,

where softmax is applied column-wise and, given a vector input of v, the i-th entry of softmax(v) is given

by exp(vi)/
∑

s exp(vs). The dN×dN matrix appearing inside the softmax is referred to as the self-attention

matrix. Note that fAttn can take as its input a sequence of arbitrary length.

In this work, we consider a simplified version of the single-layer self-attention module, which is more

amenable to theoretical analysis and yet is still capable of in-context learning linear models. In particular,

we consider a single-layer linear self-attention (LSA) model, which is a modified version of fAttn where

we remove the softmax nonlinearity, merge the projection and value matrices into a single matrix WPV ∈
R
de×de , and merge the query and key matrices into a single matrix WKQ ∈ R

de×de . We concatenate these

matrices into θ = (WKQ,WPV ) and denote

fLSA(E; θ) = E +WPV E · E
⊤WKQE

ρ
. (3.3)

We note that recent theoretical works on understanding transformers looked at identical models [Osw+22;

Li+23b; Ahn+23]. It is noteworthy that recent empirical work has shown that state-of-the-art trained vision

transformers with standard softmax-based attention modules are such that (WK)⊤WQ and WPW V are

nearly multiples of the identity matrix [TK23], which can be represented under the parameterization we

consider.

The user has the flexibility to determine the method for constructing the embedding matrix from a

prompt P = (x1, y1, . . . , xN , yN , xquery). In this work, for a prompt of length N, we shall use the following

embedding, which stacks (xi, yi)
⊤ ∈ R

d+1 into the first N columns with (xquery, 0)
⊤ ∈ R

d+1 as the last

column:

E = E(P ) =

(
x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R

(d+1)×(N+1). (3.4)

We take the normalization factor ρ to be the width of embedding matrix E minus one, i.e., ρ = dN −1, since

each element in E · E⊤ is a inner product of two vectors of length dN . Under the above token embedding,

we take ρ = N. We note that there are alternative ways to form the embedding matrix with this data, e.g.

by padding all inputs and labels into vectors of equal length and arranging them into a matrix [Aky+22],

or by stacking columns that are linear transformations of the concatenation (xi, yi) [Gar+22], although the

dynamics of in-context learning will differ under alternative parameterizations.

The network’s prediction for the token xquery will be the bottom-right entry of matrix output by fLSA,

namely,

ŷquery = ŷquery(E; θ) = [fLSA(E; θ)](d+1),(N+1).

Here and after, we may occasionally suppress dependence on θ and write ŷquery(E; θ) as ŷquery. Since the

prediction takes only the right-bottom entry of the token matrix output by the LSA layer, actually only part

6



of WPV and WKQ affect the prediction. To see how, let us denote

WPV =


 WPV

11 wPV
12

(wPV
21 )⊤ wPV

22


 ∈ R

(d+1)×(d+1), WKQ =


 WKQ

11 wKQ
12

(wKQ
21 )⊤ wKQ

22


 ∈ R

(d+1)×(d+1), (3.5)

where WPV
11 ∈ R

d×d;wPV
12 , wPV

21 ∈ R
d;wPV

22 ∈ R; and WKQ
11 ∈ R

d×d;wKQ
12 , wKQ

21 ∈ R
d;wKQ

22 ∈ R. Then,

the prediction ŷquery is

ŷquery =
(
(wPV

21 )⊤ wPV
22

)
·
(
EE⊤

N

)
 WKQ

11

(wKQ
21 )⊤


xquery, (3.6)

since only the last row of WPV and the first d columns of WKQ affects the prediction, which means we can

simply take all other entries zero in the following sections.

3.3 Training procedure

In this work, we will consider the task of in-context learning linear predictors. We will assume training

prompts are sampled as follows. Let Λ be a positive definite covariance matrix. Each training prompt,

indexed by τ ∈ N, takes the form of Pτ = (xτ,1, hτ (xτ1), . . . , xτ,N , hτ (xτ,N ), xτ,query), where task weights

wτ
i.i.d.∼ N(0, Id), inputs xτ,i, xτ,query

i.i.d.∼ N(0,Λ), and labels hτ (x) = 〈wτ , x〉.
Each prompt corresponds to an embedding matrix Eτ , formed using the transformation (3.4):

Eτ :=

(
xτ,1 xτ,2 · · · xτ,N xτ,query

〈wτ , xτ,1〉 〈wτ , xτ,2〉 · · · 〈wτ , xτ,N 〉 0

)
∈ R

(d+1)×(N+1).

We denote the prediction of the LSA model on the query label in the task τ as ŷτ,query, which is the bottom-

right element of fLSA(Eτ ), where fLSA is the linear self-attention model defined in (3.3). The empirical risk

over B independent prompts is defined as

L̂(θ) =
1

2B

B∑

τ=1

(
ŷτ,query − 〈wτ , xτ,query〉

)2

. (3.7)

We shall consider the behavior of gradient flow-trained networks over the population loss induced by the

limit of infinite training tasks/prompts B → ∞:

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query − 〈wτ , xτ,query〉)2

]
(3.8)

Above, the expectation is taken w.r.t. the covariates {xτ,i}Ni=1∪{xquery} in the prompt and the weight vector

wτ , i.e. over xτ,i, xquery
i.i.d.∼ N(0,Λ) and wτ ∼ N(0, Id). Gradient flow captures the behavior of gradient

descent with infinitesimal step size and has dynamics given by the following differential equation:

d

dt
θ = −∇L(θ). (3.9)

We will consider gradient flow with an initialization that satisfies the following.

7



Assumption 3.3 (Initialization). Let σ > 0 be a parameter, and let Θ ∈ R
d×d be any matrix satisfying

‖ΘΘ⊤‖F = 1 and ΘΛ 6= 0d×d. We assume

WPV (0) = σ

(
0d×d 0d
0⊤d 1

)
, WKQ(0) = σ

(
ΘΘ⊤ 0d
0⊤d 0

)
. (3.10)

This initialization is satisfied for a particular class of random initialization schemes: if M has i.i.d. en-

tries from a continuous distribution, then by setting ΘΘ⊤ = MM⊤/‖MM⊤‖F , the assumption is satisfied

almost surely. The reason we use this particular initialization scheme will be made more clear in Section 5

when we describe the proof, but at a high-level this is due to the fact that the predictions (3.6) can be viewed

as the output of a two-layer linear network, and initializations satisfying Assumption 3.3 allow for the layers

to be ‘balanced’ throughout the gradient flow trajectory. Random initializations that induce this balancedness

condition have been utilized in a number of theoretical works on deep linear networks [DHL18; ACH18;

Aro+19; Azu+21]. We leave the question of convergence under alternative random initialization schemes

for future work.

4 Main results

In this section, we present the main results of this paper. First, in Section 4.1, we prove the gradient flow

on the population loss will converge to a specific global optimum. We characterize the prediction error

of the trained transformer at this global minimum when given a prompt from a new prediction task. Our

characterization allows for the possibility that this new prompt comes from a nonlinear prediction task.

We then instantiate our results for well-specified linear regression prompts and characterize the number

of samples needed to achieve small prediction error, showing that transformers can in-context learn linear

models when trained on in-context examples of linear models.

Next, in Section 4.2, we analyze the behavior of the trained transformer under a variety of distribution

shifts. We show the transformer is robust to a number of distribution shifts, including task shift (when the

labels in the prompt are not deterministic linear functions of their input) and query shift (when the query

example xquery has a possibly different distribution than the test prompt). On the other hand, we show that

the transformer suffers from covariate distribution shifts, i.e. when the training prompt covariate distribution

differs from the test prompt covariate distribution.

Finally, motivated by the failure of the trained transformer under covariate distribution shift, we con-

sider in Section 4.3 the setting of training on in-context examples with varying covariate distributions across

prompts. We prove that transformers with a single linear self-attention layer trained by gradient flow con-

verge to a global minimum of the population objective, but that the trained transformer still fails to perform

well on new prompts. We complement our proof in the linear self-attention case with experiments on large,

nonlinear transformer architectures which we show are more robust under covariate shifts.

4.1 Convergence of gradient flow and prediction error for new tasks

First, we prove that under suitable initialization, gradient flow will converge to a global optimum.

Theorem 4.1 (Convergence and limits). Consider gradient flow of the linear self-attention network fLSA
defined in (3.3) over the population loss (3.8). Suppose the initialization satisfies Assumption 3.3 with

initialization scale σ > 0 satisfying σ2‖Γ‖op
√
d < 2 where we have defined

Γ :=

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id ∈ R

d×d.

8



Then gradient flow converges to a global minimum of the population loss (3.8). Moreover, WPV and WKQ

converge to WPV
∗ and WKQ

∗ respectively, where

WKQ
∗ =

[
tr
(
Γ−2

)]− 1

4


Γ−1 0d

0⊤d 0


 , WPV

∗ =
[
tr
(
Γ−2

)] 1
4


0d×d 0d

0⊤d 1


 . (4.1)

The full proof of this theorem appears in Appendix A. We note that if we restrict our setting to Λ = Id,

then the limiting solution described found by gradient flow is quite similar to the construction of Oswald

et al. [Osw+22]. Since the prediction of the transformer is the same if we multiply WPV by a constant c 6= 0
and simultaneously multiply WKQ by c−1, the only difference (up to scaling) is that the top-left entry of

their WKQ matrix is Id rather than the (1 + (d+ 1)/N)−1Id that we find for the case Λ = Id.

Next, we would like to characterize the prediction error of the trained network described above when the

network is given a new prompt. Let us consider a prompt of the form (x1, 〈w, x1〉, . . . , xM , 〈w, xM 〉, xquery)
where w ∈ R

d and xi, xquery
i.i.d.∼ N(0,Λ). A simple calculation shows that the prediction ŷquery at the global

optimum with parameters WKQ
∗ and WPV

∗ is given by

ŷquery =
(
0⊤d 1

)



1
M

∑M
i=1 xix

⊤
i + 1

M xqueryx
⊤
query

1
M

∑M
i=1 xix

⊤
i w

1
M

∑M
i=1w

⊤xix⊤i
1
M

∑M
i=1w

⊤xix⊤i w




Γ−1 0d

0⊤d 0




xquery

0




= x⊤queryΓ
−1

(
1

M

M∑

i=1

xix
⊤
i

)
w. (4.2)

When the length of prompts seen during training N is large, Γ−1 ≈ Λ−1, and when the test prompt length

M is large, 1
M

∑M
i=1 xix

⊤
i ≈ Λ, so that ŷquery ≈ x⊤queryw. Thus, for sufficiently large prompt lengths, the

trained transformer indeed in-context learns the class of linear predictors.

In fact, we can generalize the above calculation for test prompts which could take a significantly different

form than the training prompts. Consider prompts that are of the form (x1, y1, . . . , xn, yn, xquery) where, for

some joint distribution D over (x, y) pairs with marginal distribution x ∼ N(0,Λ), we have (xi, yi)
i.i.d.∼ D

and xquery ∼ N(0,Λ) independently. Note that this allows for a label yi to be a nonlinear function of the

input xi. The prediction of the trained transformer for this prompt is then

ŷquery =
(
0⊤d 1

)



1
M

∑M
i=1 xix

⊤
i + 1

M xqueryx
⊤
query

1
M

∑M
i=1 xiyi

1
M

∑M
i=1 x

⊤
i yi

1
M

∑M
i=1 y

2
i




Γ−1 0d

0⊤d 0




xquery

0




= x⊤queryΓ
−1

(
1

M

M∑

i=1

yixi

)
. (4.3)

Just as before, when N is large we have Γ−1 ≈ Λ−1, and so when M is large as well this implies

ŷquery ≈ x⊤queryΛ
−1

E(x,y)∼D[yx] = x⊤query

(
argmin
w∈Rd

E(x,y)∼D[(y − 〈w, x〉)2]
)
. (4.4)

This suggests that trained transformers in-context learn the best linear predictor over a distribution when the

test prompt consists of i.i.d. samples from a joint distribution over feature-response pairs. In the following

theorem, we formalize the above and characterize the prediction error when prompts take this form.
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Theorem 4.2. Let D be a distribution over (x, y) ∈ R
d × R, whose marginal distribution on x is Dx =

N(0,Λ). Assume ED[y],ED[xy],ED[y2xx⊤] exist and are finite. Assume the test prompt is of the form

P = (x1, y1, . . . , xM , yM , xquery), where (xi, yi), (xquery, yquery)
i.i.d.∼ D. Let f∗

LSA be the LSA model with

parameters WPV
∗ and WKQ

∗ in (4.1), and ŷquery is the prediction for xquery given the prompt. If we define

a := Λ−1
E(x,y)∼D [xy] , Σ := E(x,y)∼D

[(
xy − E (xy)

)(
xy − E (xy)

)⊤]
, (4.5)

then, for Γ = Λ + 1
NΛ + 1

N tr(Λ)Id. we have,

E (ŷquery − yquery)
2 = min

w∈Rd
E (〈w, xquery〉 − yquery)

2

︸ ︷︷ ︸
Error of best linear predictor

+
1

M
tr
[
ΣΓ−2Λ

]
+

1

N2

[
‖a‖2Γ−2Λ3 + 2 tr(Λ) ‖a‖2Γ−2Λ2 + tr(Λ)2 ‖a‖2Γ−2Λ

]
, (4.6)

where the expectation is over (xi, yi), (xquery, yquery)
i.i.d.∼ D.

The full proof is deferred to Appendix B. Let us now make a few remarks on the above theorem before

considering particular instances of D where we may provide more explicit bounds on the prediction error.

First, this theorem shows that, provided the length of prompts seen during training (N ) and the length

of the test prompt (M ) is large enough, a transformer trained by gradient flow from in-context examples

achieves prediction error competitive with the best linear model. Next, our bound shows that the length

of prompts seen during training and the length of prompts seen at test-time have different effects on the

prediction error: ignoring dimension and covariance-dependent factors, the prediction error is at most

O(1/M + 1/N2), decreasing more rapidly as a function of the training prompt length N compared to

the test prompt length M . Additionally, it is worth noting that even if M → ∞, the gap between the predic-

tion error of the transformer with that of the best linear predictor does not vanish unless N → ∞ as well.

Thus, the transformer is inherently limited by training on finite-length prompts.

Let us now consider when D corresponds to noiseless linear models, so that for some w ∈ R
d, we have

(x, y) = (x, 〈w, x〉), in which case the prediction of the trained transformer is given by (4.2). Moreover,

a simple calculation shows that the Σ from Theorem 4.2 takes the form Σ = ‖w‖2ΛΛ + Λww⊤Λ. Hence

Theorem 4.2 implies the prediction error for the prompt P = (x1, 〈w, x1〉, . . . , xM , 〈w, xM 〉, xquery) is

Ex1,...,xM ,xquery (ŷquery − 〈w, xquery〉)2

=
1

M

{
‖w‖2Γ−2Λ3 + tr(Γ−2Λ2) ‖w‖2Λ

}
+

1

N2

{
‖w‖2Γ−2Λ3 + 2 ‖w‖2Γ−2Λ2 tr(Λ) + ‖w‖2Γ−2Λ tr(Λ)2

}

≤ d+ 1

M
‖w‖2Λ +

1

N2

[
‖w‖2Λ + 2 ‖w‖22 tr(Λ) + ‖w‖2Λ−1 tr(Λ)

2
]
,

The inequality above uses that Γ ≻ Λ. Finally, if we assume that w ∼ N(0, Id) and denote κ as the condition

number of Λ, then by taking expectations over w we get the following:

Ex1,...,xM ,xquery,w (ŷquery − 〈w, xquery〉)2 ≤
(d+ 1) tr(Λ)

M
+

1

N2

[
tr(Λ) + 2d tr(Λ) + tr(Λ−1) tr(Λ)2

]

≤ (d+ 1) tr(Λ)

M
+

(1 + 2d+ d2κ) tr(Λ)

N2
,

10



From the upper bound above, we can see the rate w.r.t M and N are still at most O(1/M) and O(1/N2)
respectively. Moreover, the generalization error also scales with dimension d, tr(Λ) and the condition

number κ. This suggests that for in-context examples involving covariates of greater variance, or a more

ill-conditioned covariance matrix, the generalization error will be higher for the same lengths of training and

testing prompts. Putting the above together with Theorem 4.2, Definition 3.1 and Definition 3.2, we get the

following corollary.

Corollary 4.3. The transformer fLSA trained on length-N prompts of in-context examples of functions in

{x 7→ 〈w, x〉} w.r.t. w ∼ N(0, Id) and Dx = N(0,Λ) by gradient flow on the population loss (3.8) for

initializations satisfying Assumption 3.3 converges to the model fLSA(· ;WKQ
∗ ,WPV

∗ ). This model takes a

prompt P = (x1, y1, . . . , xM , yM , xquery) and returns a prediction ŷquery for xquery given by

ŷquery = [fLSA(P ;WKQ
∗ ,WPV

∗ )]d+1,M+1 = x⊤query

(
Λ +

1

N
Λ +

tr(Λ)

N
Id

)−1
(

1

M

M∑

i=1

yixi

)
.

This model in-context learns the class of linear models {x 7→ 〈w, x〉} with respect to w ∼ N(0, Id) and

Dx = N(0,Λ) up to error η := (1+ 2d+ d2κ) tr(Λ)/N2 (where κ is the condition number of Λ): provided

M ≥ (d+ 1) tr(Λ)ε−1, the model achieves prediction error at most η + ε.

It is worth emphasizing that the transformer fLSA(· ;WKQ
∗ ,WPV

∗ ) only learns the function class up to

error η = O(1/N2) in the sense of Definition 3.2. In particular, training on finite-length prompts leads to

prediction error bounded away from zero.

4.2 Behavior of trained transformer under distribution shifts

Using the identity (4.3), it is straightforward to characterize the behavior of the trained transformer under

a variety of distribution shifts. In this section, we shall examine a number of shifts that were first explored

empirically for transformer architectures by Garg et al. [Gar+22]. Although their experiments were for

transformers trained by gradient descent, we find that (in the case of linear models) many of the behaviors

of the trained transformers under distribution shift are identical to those predicted by our theoretical char-

acterizations of the performance of transformers with a single linear self-attention layer trained by gradient

flow on the population.

Following Garg et al. [Gar+22], for training prompts of the form (x1, h(x1), . . . , xN , h(xN ), xquery),

let us assume xi, xquery
i.i.d.∼ Dtrain

x and h ∼ Dtrain
H , while for test prompts let us assume xi

i.i.d.∼ Dtest
x ,

xquery ∼ Dtest
query, and h ∼ Dtest

H . We will consider the following distinct categories of shifts:

• Task shifts: Dtrain
H 6= Dtest

H .

• Query shifts: Dtest
query 6= Dtest

x .

• Covariate shifts: Dtrain
x 6= Dtest

x .

In the following, we shall fix Dtrain
x = N(0,Λ) and vary the other distributions. Recall from (4.3) that

the prediction for a test prompt (x1, y1, . . . , xN , yN , xquery) is given by (for N large),

ŷquery = x⊤queryΓ
−1

(
1

M

M∑

i=1

yixi

)
≈ x⊤queryΛ

−1

(
1

M

M∑

i=1

yixi

)
. (4.7)
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Task shifts. These shifts are tolerated easily by the trained transformer. As Theorem 4.2 shows, the trained

transformer is competitive with the best linear model provided the prompt length during training and at test

time is large enough. In particular, even if the prompt is such that the labels yi are not given by 〈w, xi〉 for

some w ∼ N(0, Id), the trained transformer will compute a prediction which has error competitive with the

best linear model that fits the test prompt.

For example, consider a prompt corresponding to a noisy linear model, so that the prompt consists of

a sequence of (xi, yi) pairs where yi = 〈w, xi〉 + εi for some arbitrary vector w ∈ R
d and independent

sub-Gaussian noise εi. Then from (4.7), the prediction of the transformer on query examples is

ŷquery ≈ x⊤queryΛ
−1

(
1

M

M∑

i=1

yixi

)
= x⊤queryΛ

−1

(
1

M

M∑

i=1

xix
⊤
i

)
w + x⊤queryΛ

−1

(
1

M

M∑

i=1

εixi

)
.

Since εi is mean zero and independent of xi, this is approximately x⊤queryw when M is large. And note that

this calculation holds for an arbitrary vector w, not just those which are sampled from an isotropic Gaussian

or those with a particular norm. This behavior coincides with that of the trained transformers observed

by Garg et al. [Gar+22].

Query shifts. Continuing from (4.7), since yi = 〈w, xi〉,

ŷquery ≈ x⊤queryΛ
−1

(
1

M

M∑

i=1

xix
⊤
i

)
w.

From this we see that whether query shifts can be tolerated hinges upon the distribution of the xi’s. Since

Dtrain
x = Dtest

x , if M is large then

ŷquery ≈ x⊤queryΛ
−1Λw = x⊤queryw. (4.8)

Thus, very general shifts in the query distribution can be tolerated. On the other hand, very different behavior

can be expected if M is not large and the query example depends on the training data. For example, if the

query example is orthogonal to the subspace spanned by the xi’s, the prediction will be zero, as was observed

with transformer architectures by Garg et al. [Gar+22].

Covariate shifts. In contrast to task and query shifts, covariate shifts cannot be fully tolerated in the

transformer. This can be easily seen due to the identity (4.3): when Dtrain
x 6= Dtest

x , then the approximation

in (4.8) does not hold as 1
M

∑M
i=1 xix

⊤
i will not cancel Γ−1 when M and N are large. For instance, if we

consider test prompts where the covariates are scaled by a constant c 6= 1, then

ŷquery ≈ x⊤queryΛ
−1

(
1

M

M∑

i=1

xix
⊤
i

)
≈ x⊤queryΛ

−1c2Λw = c2x⊤queryw 6= x⊤queryw.

This failure mode of the trained transformer with linear self-attention was also observed in the trained trans-

former architectures by Garg et al. [Gar+22]. This suggests that although the predictions of the transformer

may look similar to those of ordinary least squares in some settings, the algorithm implemented by the

transformer is not the same since ordinary least squares is robust to scaling of the features by a constant.

It may seem surprising that a transformer trained on linear regression tasks fails in settings where ordi-

nary least squares performs well. However, both the linear self-attention transformer we consider and the
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transformers considered by Garg et al. [Gar+22] were trained on instances of linear regression when the

covariate distribution Dx over the features was fixed across instances. This leads to the natural question

of what happens if the transformers instead are trained on prompts where the covariate distribution varies

across instances, which we explore in the following section.

4.3 Transformers trained on prompts with random covariate distributions

In this section, we will consider a variant of training on in-context examples (in the sense of Definition 3.1)

where the distibution Dx is itself sampled randomly from a distribution, and training prompts are of the

form (x1, h(x1), . . . , xN , h(xN ), xquery) where xi, xquery
i.i.d.∼ Dx and h ∼ DH. More formally, we can

generalize Definition 3.1 as follows.

Definition 4.4 (Trained on in-context examples with random covariate distributions). Let ∆ be a distribution

over distributions Dx defined on an input space X , H ⊂ YX a set of functions X → Y , and DH a

distribution over functions in H. Let ℓ : Y×Y → R be a loss function. Let S = ∪n∈N{(x1, y1, . . . , xn, yn) :
xi ∈ X , yi ∈ Y} be the set of finite-length sequences of (x, y) pairs and let

FΘ = {fθ : S × X → Y, θ ∈ Θ}

be a class of functions parameterized by some set Θ. We say that a model f : S × X → Y is trained on

in-context examples of functions in H under loss ℓ w.r.t. DH and distribution over covariate distributions ∆
if f = fθ∗ where θ∗ ∈ Θ satisfies

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN ),xquery) [ℓ (fθ(P ), h(xquery))] , (4.9)

where Dx ∼ ∆, xi, xquery
i.i.d.∼ Dx and h ∼ DH.

We recover the previous definition of training on in-context examples by taking ∆ to be concentrated

on a singleton, supp(∆) = {Dx}. The natural question is then, if a model f is trained on in-context

examples from a function class H w.r.t. DH and a distribution ∆ over covariate distributions, and if one

then samples some covariate distribution Dx ∼ ∆, does f in-context learn H w.r.t. (DH,Dx) for that Dx

(cf. Definition 3.2) with small prediction error? Since Dx is random, we can hope that this may hold in

expectation or with high probability over the sampling of the covariate distribution. In the remainder of this

section, we will explore this question for transformers with a linear self-attention layer trained by gradient

flow on the population loss.

We shall again consider the case where the covariates have Gaussian marginals, xi ∼ N(0,Λ), but we

shall now assume that within each prompt we first sample a random covariance matrix Λ. For simplicity, we

will restrict our attention to the case where Λ is diagonal. More formally, we shall assume training prompts

are sampled as follows. For each independent task indexed by τ ∈ [B], we first sample wτ ∼ N(0, Id).
Then, for each task τ and coordinate i ∈ [d], we sample λτ,i independently such that the distribution of each

λτ,i is fixed and has finite third moments and is strictly positive almost surely. We then form a diagonal

matrix

Λτ = diag(λτ,1, . . . , λτ,d).

Thus the diagonal entries of Λτ are independent but could have different distributions, and Λτ is iden-

tically distributed for τ = 1, . . . , B. Then, conditional on Λτ , we sample independent and iden-

tically distributed xτ,1, . . . , xτ,N , xτ,query ∼ N(0,Λτ ). A training prompt is then given by Pτ =
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(xτ,1, 〈wτ , xτ,1〉, . . . , xτ,N , 〈wτ , xτ,N 〉, xτ,query) Notice that here, xτ,i, xτ,query are conditionally indepen-

dent given the covariance matrix Λτ , but not independent in general. We consider the same token embed-

ding matrix as (3.4) and linear self-attention network, which forms the prediction ŷquery,τ as in (3.6). The

empirical risk is the same as before (see (3.7)), and as in (3.8), we then take B → ∞ and consider the

gradient flow on the population loss. The population loss now includes an expectation over the distribution

of the covariance matrices in addition to the task weight wτ and covariate distributions, and is given by

L(θ) =
1

2
Ewτ ,Λτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query − 〈wτ , xτ,query〉)2

]
. (4.10)

In the main result for this section, we show that gradient flow with a suitable initialization converges to

a global minimum, and we characterize the limiting solution. The proof will be deferred to Appendix C.

Theorem 4.5 (Global convergence in random covariance case). Consider gradient flow of the linear self-

attention network fLSA defined in (3.3) over the population loss (4.10), where Λτ are diagonal with indepen-

dent diagonal entries which are strictly positive a.s. and have finite third moments. Suppose the initialization

satisfies Assumption 3.3, ‖EΛτΘ‖F 6= 0, with initialization scale σ > 0 satisfying

σ2 <
2 ‖EΛτΘ‖2F√

d
[
E ‖Γτ‖op ‖Λτ‖2F

] . (4.11)

Then gradient flow converges to a global minimum of the population loss (4.10). Moreover, WPV and WKQ

converge to WPV
∗ and WKQ

∗ respectively, where

WKQ
∗ =

∥∥∥
[
EΓτΛ

2
τ

]−1
E
[
Λ2
τ

]∥∥∥
− 1

2

F
·



[
EΓτΛ

2
τ

]−1 [
EΛ2

τ

]
0d

0⊤d 0


 ,

WPV
∗ =

∥∥∥
[
EΓτΛ

2
τ

]−1
E
[
Λ2
τ

]∥∥∥
1

2

F
·


0d×d 0d

0⊤d 1


 ,

(4.12)

where Γτ = N+1
N Λτ +

1
N tr(Λτ )Id ∈ R

d×d and the expectations above are over the distribution of Λτ .

From this result, we can see why the trained transformer fails in the random covariance case. Suppose

we have a new prompt corresponding to a weight matrix w ∈ R
d and covariance matrix Λnew, sampled

from the same distribution as the covariance matrices for training prompts, so that conditionally on Λnew

we have xi, xquery
i.i.d.∼ N(0,Λnew). The ground-truth labels are given by yi = 〈w, xi〉, i ∈ [M ] and

yquery = 〈w, xquery〉. At convergence, the prediction by the trained transformer on the new task will be

ŷquery =
(
0⊤d 1

)



1
M

∑M
i=1 xix

⊤
i + 1

M xqueryx
⊤
query

1
M

∑M
i=1 xiyi

1
M

∑M
i=1 x

⊤
i yi

1
M

∑M
i=1 y

2
i





[
EΓτΛ

2
τ

]−1 [
EΛ2

τ

]
0d

0⊤d 0




xquery

0




= x⊤query ·
[
EΛ2

τ

] [
EΓτΛ

2
τ

]−1 ·
[
1

M

M∑

i=1

xix
⊤
i

]
w

→ x⊤query ·
[
EΛ2

τ

] [
EΓτΛ

2
τ

]−1 · Λneww almost surely when M → ∞. (4.13)
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The last line comes from the strong law of large numbers. Thus, in order for the prediction on the query

example to be close to the ground-truth x⊤queryw, we need
[
EΛ2

τ

] [
EΓτΛ

2
τ

]−1 ·Λnew to be close to the identity.

When Λτ ≡ Λnew is deterministic, this indeed is the case as we know from Theorem 4.2. However, this

clearly does not hold in general when Λτ is random.

To make things concrete, let us assume for simplicity that M,N → ∞ so that Γτ → Λτ and the

identity (4.13) holds (conditionally on Λnew). Then, taking expectation over Λnew in (4.13), we obtain

E [ ŷquery|xquery, w] → x⊤query ·
[
EΛ2

τ

] [
EΛ3

τ

]−1 · [EΛτ ]w.

If we consider the case λτ,i
i.i.d.∼ Exponential(1), so that E[Λτ ] = Id, E[Λ2

τ ] = 2Id, and E[Λ3
τ ] = 6Id,

we get

Eŷquery →
1

3
〈w, xquery〉.

This shows that for transformers with a single linear self-attention layer, training on in-context examples

with random covariate distributions does not allow for in-context learning of a hypothesis class with varying

covariate distributions.

Experiments with large, nonlinear transformers. We have shown that even when trained on prompts

with random covariance matrices, transformers with a single linear self-attention layer fail to in-context learn

linear models with random covariance matrices. We now investigate the behavior of more complex trans-

former architectures that are trained on in-context examples of linear models, both in the fixed-covariance

case and in the random-covariance case.

We examine the performance of transformers with a GPT2 architecture [Rad+19] that are trained on

linear regression tasks with mean-zero Gaussian features with either a fixed covariance matrix or random

covariance matrices. For the fixed covariance case, the covariance matrix is fixed to the identity matrix

across prompts. For the random covariance case, covariates are drawn from x ∼ N(0, cΛ) where Λ is

diagonal with λi
i.i.d.∼ Exponential(1) and c > 0 is a scaling factor. We set c = 1 during training and

vary this value at test time. The transformer is trained using the procedure of Garg et al. [Gar+22] (see

Appendix E for more details). We consider linear models in d = 20 dimensions and we train on prompt

lengths of N = 40, 70, 100 with either fixed or random covariance matrices. The performance of these

trained models, when tested on new data with fixed covariance or random covariance matrices (c = 1, 4, 9),

is represented in six curves in Figure 1. Using the calculation (4.13), we can compare the prediction error

for the linear self-attention networks in the M → ∞, N → ∞ limit (the black dash line) to those of GPT2

architectures. We additionally compare these models to the ordinary least-squares solution which is optimal

for this task.

From the figure, we can see that the GPT2 model trained on fixed covariance succeeds in the random

covariance setting if the variance is not too large, which shows that the larger nonlinear model is able to

generalize better than the model with a single linear self-attention layer. However, when the variance is large

(c = 4, 9 for the bottom two figures), the GPT2 model trained with fixed covariance is unsuccessful. When

trained on random covariance, the model performs better for test prompts from higher-variance random

covariance matrices, but still fails to match least squares when the scaling is largest (c = 9).

Furthermore, we notice some surprising behaviors when the test prompt length exceeds the training

prompt length (i.e., M > N ): there is an evident spike in prediction error, regardless of whether training

and testing were performed on fixed or random covariance, and the spike appears to decrease when evaluated

on prompts with higher variance. Although we are unsure of why the spike should decrease with higher-

variance prompts, the failure of large language models to generalize to larger contexts than they were trained
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5 Proof ideas

In this section, we briefly outline the proof sketch of Theorem 4.1. The full proof of this theorem is left for

Appendix A.

5.1 Equivalence to a quadratic optimization problem

We recall each task τ corresponds to a weight vector wτ ∼ N(0, Id). The prompt inputs for this task are

xτ,j
i.i.d.∼ N(0,Λ), which are also independent of wτ . The corresponding labels are yτ,j = 〈wτ , xτ,j〉. For

each task τ, we can form the prompt into a token matrix Eτ ∈ R
(d+1)×(N+1) as in (3.4), with the right-

bottom entry being zero.

The first key step in our proof is to recognize that the prediction ŷquery(Eτ ; θ) in the linear self-attention

model can be written as the output of a quadratic function u⊤Hτu for some matrix Hτ depending on the

token embedding matrix Eτ and for some vector u depending on θ = (WKQ,WPV ). This is shown in the

following lemma, the proof of which is provided in Appendix A.1.

Lemma 5.1. Let Eτ ∈ R
(d+1)×(N+1) be an embedding matrix corresponding to a prompt of length N

and weight wτ . Then the prediction ŷquery(Eτ ; θ) for the query covariate can be written as the output of a

quadratic function,

ŷquery(Eτ ; θ) = u⊤Hτu,

where the matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R

(d+1)2×(d+1)2 , Xτ =


 0d×d xτ,query

(xτ,query)
⊤ 0


 ∈ R

(d+1)×(d+1) (5.1)

and

u = Vec(U) ∈ R
(d+1)2 , U =


 U11 u12

(u21)
⊤ u−1


 ∈ R

(d+1)×(d+1),

where U11 = WKQ
11 ∈ R

d×d, u12 = wPV
21 ∈ R

d×1, u21 = wKQ
21 ∈ R

d×1, u−1 = wPV
22 ∈ R correspond to

particular components of WPV and WKQ, defined in (3.5).

This implies that we can write the original loss function (3.7) as

L̂ =
1

2B

B∑

τ=1

(
u⊤Hτu− w⊤

τ xτ,query

)2
. (5.2)

Thus, our problem is reduced to understanding the dynamics of an optimization algorithm defined in

terms of a quadratic function. We also note that this quadratic optimization problem is an instance of a rank-

one matrix factorization problem, a problem well-studied in the deep learning theory literature [Gun+17;

Aro+19; LMZ18; CLC19; Bel20; LLL20; Jin+23; SSX23].

Note, however, this quadratic function is non-convex. To see this, we will show that Hτ has negative

eigenvalues. By standard properties of the Kronecker product, the eigenvalues of Hτ = 1
2Xτ ⊗

(
EτE⊤

τ

N

)

are the products of the eigenvalues of 1
2Xτ and the eigenvalues of

EτE⊤
τ

N . Since EτE
⊤
τ is symmetric and
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positive semi-definite, all of its eigenvalues are nonnegative. Since EτE
⊤
τ is nonzero almost surely, it thus

has at least one strictly positive eigenvalue. Thus, if Xτ has any negative eigenvalues, Hτ does as well. The

characteristic polynomial of Xτ is given by,

det(µI −Xτ ) = det


 µId −xτ,query

−x⊤τ,query µ


 = µd−1

(
µ2 − ‖xτ,query‖22

)
.

Therefore, we know almost surely, Xτ has one negative eigenvalue. Thus Hτ has at least d + 1 negative

eigenvalues, and hence the quadratic form u⊤Hτu is non-convex.

5.2 Dynamical system of gradient flow

We now describe the dynamical system for the coordinates of u above. We prove the following lemma in

Appendix A.2.

Lemma 5.2. Let u = Vec (U) := Vec


 U11 u12

(u21)
⊤ u−1


 as in Lemma 5.1. Consider gradient flow over

L :=
1

2
E

(
u⊤Hτu− w⊤

τ xτ,query

)2
(5.3)

with respect to u starting from an initial value satisfying Assumption 3.3. Then the dynamics of U follows

d

dt
U11(t) = −u2−1ΓΛU11Λ + u−1Λ

2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤
]
,

(5.4)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0, where Γ =
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ R
d×d.

We see that the dynamics are governed by a complex system of d2 + 1 coupled differential equations.

Moreover, basic calculus (for details, see Lemma A.1) shows that these dynamics are the same as those of

gradient flow on the following objective function:

ℓ̃ : Rd×d × R → R, ℓ̃ (U11, u−1) = tr

[
1

2
u2−1ΓΛU11Λ(U11)

⊤ − u−1Λ
2(U11)

⊤
]
. (5.5)

Actually, the loss function ℓ̃ is simply the loss function L in (5.3) plus some constants that do not depend on

the parameter u. Therefore our problem is reduced to studying the dynamics of gradient flow on the above

objective function.

Our next key observation is that the set of global minima for ℓ̃ satisfies the condition u−1U11 = Γ−1.

Thus, if we can establish global convergence of gradient flow over the above objective function ℓ̃, then we

have that u−1(t)U11(t) → Γ−1 ≈N→∞ Λ−1.

Lemma 5.3. For any global minimum of ℓ̃, we have

u−1U11 = Γ−1. (5.6)
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Putting this together with Lemma 5.2, we see that at those global minima of the population objective

satisfying U11 = (cΓ)−1, u−1 = c and u12 = u21 = 0d, the transformer’s predictions for a new linear

regression task prompt are given by

ŷquery(E; θ) =
1

M

M∑

i=1

yix
⊤
i Γ

−1xquery = w⊤
(

1

M

M∑

i=1

xix
⊤
i

)
Γ−1xquery ≈ w⊤xquery.

Thus, the only remaining task is to show global convergence when gradient flow has an initialization satis-

fying Assumption 3.3.

5.3 PL inequality and global convergence

We now show that although the optimization problem is non-convex, a Polyak-Łojasiewicz (PL) inequality

holds, which implies that gradient flow converges to a global minimum. Moreover, we can exactly calculate

the limiting value of U11 and u−1.

Lemma 5.4. Suppose the initialization of gradient flow satisfies Assumption 3.3 with initialization scale

satisfying σ2 < 2√
d‖Γ‖op

for Γ = (1 + 1
N )Λ + tr(Λ)

N Id. If we define

µ :=
σ2

√
d ‖Λ‖2op tr (Γ−1Λ−1) tr (Λ−1)

‖ΛΘ‖2F
[
2−

√
dσ2 ‖Γ‖op

]
> 0, (5.7)

then gradient flow on ℓ̃ with respect to U11 and u−1 satisfies, for any t ≥ 0,

∥∥∥∇ℓ̃(U11(t), u−1(t))
∥∥∥
2

2
:=

∥∥∥∥∥
∂ℓ̃

∂U11

∥∥∥∥∥

2

F

+

∣∣∣∣∣
∂ℓ̃

∂u−1

∣∣∣∣∣

2

≥ µ

(
ℓ̃(U11(t), u−1(t))− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
.

(5.8)

Moreover, gradient flow converges to the global minimum of ℓ̃, and U11 and u−1 converge to the following,

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1

2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1. (5.9)

With these observations, proving Theorem 4.1 becomes a direct application of Lemma 5.1, 5.2, 5.3, and

Lemma 5.4. It then only requires translating U11 and u−1 back to the original parameterization using WPV

and WKQ.

6 Conclusion and future work

In this work, we investigated the dynamics of in-context learning of transformers with a single linear self-

attention layer under gradient flow on the population loss. In particular, we analyzed the dynamics of

these transformers when trained on prompts consisting of random instances of noiseless linear models over

anisotropic Gaussian marginals. We showed that despite non-convexity, gradient flow from a suitable ran-

dom initialization converges to a global minimum of the population objective. We characterized the pre-

diction error of the trained transformer when given a new prompt that consists of a training dataset where

the responses are a nonlinear function of the inputs. We showed how the trained transformer is naturally
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robust to shifts in the task and query distributions but is brittle to distribution shifts between the covariates

seen during training and the covariates seen at test time, matching the empirical observations on trained

transformer models of Garg et al. [Gar+22].

There are a number of natural directions for future research. First, our results hold for gradient flow on

the population loss with a particular class of random initialization schemes. It is a natural question if similar

results would hold for stochastic gradient descent with finite step sizes and for more general initializations.

Further, we restricted our attention to transformers with a single linear self-attention layer. Although this

model class is rich enough to allow for in-context learning of linear predictors, we are particularly interested

in understanding the dynamics of in-context learning in nonlinear and deep transformers.

Finally, the framework of in-context learning introduced in prior work was restricted to the setting where

the marginal distribution over the covariates (Dx) was fixed across prompts. This allows for guarantees

akin to distribution-specific PAC learning, where the trained transformer is able to achieve small prediction

error when given a test prompt consisting of linear regression data when the marginals over the covariates

are fixed. However, other learning algorithms (such as ordinary least squares) are able to achieve small

prediction error for prompts corresponding to well-specified linear regression tasks for very general classes

of distributions over the covariates. As we showed in Section 4.3, when transformers with a single linear

self-attention layer are trained on prompts where the covariate distributions are themselves sampled from

a distribution, they do not succeed on test prompts with covariate distributions sampled from the same

distribution. By contrast, we demonstrated with experiments that larger, nonlinear transformer architectures

appear to be more successful in this setting but are still sub-optimal. Developing a better understanding of

the dynamics of in-context learning when the covariate distribution varies across prompts is an intriguing

direction for future research.
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A Proof of Theorem 4.1

In this section, we prove Lemma 5.1, Lemma 5.2, Lemma 5.3 and Lemma 5.4. Theorem 4.1 is a natural

corollary of these four lemmas when we translate u−1 and U11 back to WPV and WKQ.

A.1 Proof of Lemma 5.1

For the reader’s convenience, we restate the lemma below.

Lemma 5.1. Let Eτ ∈ R
(d+1)×(N+1) be an embedding matrix corresponding to a prompt of length N

and weight wτ . Then the prediction ŷquery(Eτ ; θ) for the query covariate can be written as the output of a

quadratic function,

ŷquery(Eτ ; θ) = u⊤Hτu,

where the matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R

(d+1)2×(d+1)2 , Xτ =


 0d×d xτ,query

(xτ,query)
⊤ 0


 ∈ R

(d+1)×(d+1) (5.1)

and

u = Vec(U) ∈ R
(d+1)2 , U =


 U11 u12

(u21)
⊤ u−1


 ∈ R

(d+1)×(d+1),

where U11 = WKQ
11 ∈ R

d×d, u12 = wPV
21 ∈ R

d×1, u21 = wKQ
21 ∈ R

d×1, u−1 = wPV
22 ∈ R correspond to

particular components of WPV and WKQ, defined in (3.5).

Proof. First, we decompose WPV and WKQ in the way above. From the definition, we know ŷτ,query is the

right-bottom entry of fLSA(Eτ ), which is

ŷτ,query =
(
(u12)

⊤ u−1

)(EτE
⊤
τ

N

)
 U11

(u21)
⊤


xτ,query.

We denote ui ∈ R
d+1 as the i-th column of

(
U11

(u21)
⊤
)

and xiτ,query as the i-th entry of xτ,query for i ∈ [d].

Then, we have

ŷτ,query =

d∑

i=1

xiτ,query

(
(u12)

⊤ u−1

)(EτE
⊤
τ

N

)
ui =

d∑

i=1

tr

[
ui

(
(u12)

⊤ u−1

)
· xiτ,query

(
EτE

⊤
τ

N

)]

= tr


Vec




 U11

(u21)
⊤





(
(u12)

⊤ u−1

)
· x⊤τ,query ⊗

(
EτE

⊤
τ

N

)


=
1

2
tr


Vec




 U11 u12

(u21)
⊤ u−1




Vec⊤




 U11 u12

(u21)
⊤ u−1




 ·


 0d(d+1)×d(d+1) xτ,query ⊗

(
EτE⊤

τ

N

)

x⊤τ,query ⊗
(
EτE⊤

τ

N

)
0(d+1)×(d+1)






=
1

2
tr

[
uu⊤ ·Xτ ⊗

(
EτE

⊤
τ

N

)]

22



=
〈
Hτ , uu

⊤
〉
.

Here, we use some algebraic facts about matrix vectorization, Kronecker product and trace. For reference,

we refer to [PP+08].

A.2 Proof of Lemma 5.2

For the reader’s convenience, we restate the lemma below.

Lemma 5.2. Let u = Vec (U) := Vec


 U11 u12

(u21)
⊤ u−1


 as in Lemma 5.1. Consider gradient flow over

L :=
1

2
E

(
u⊤Hτu− w⊤

τ xτ,query

)2
(5.3)

with respect to u starting from an initial value satisfying Assumption 3.3. Then the dynamics of U follows

d

dt
U11(t) = −u2−1ΓΛU11Λ + u−1Λ

2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤
]
,

(5.4)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0, where Γ =
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ R
d×d.

Proof. From the definition of L in (5.3) and the dynamics of gradient flow, we calculate the derivatives of

u. Here, we use the chain rule and some facts about matrix derivatives. See Lemma D.1 for reference.

du

dt
= −2E

(
〈Hτ , uu

⊤〉Hτ

)
u+ 2E

(
w⊤
τ xτ,queryHτ

)
u. (A.1)

Step One: Calculate the Second Term We first calculate the second term. From the definition of Hτ , we

have

E

[
w⊤
τ xτ,queryHτ

]
=

1

2

d∑

i=1

E

[(
xiτ,queryXτ

)
⊗
(
wi
τ

EτE
⊤
τ

N

)]
.

For ease of notation, we denote

Λ̂τ :=
1

N

N∑

i=1

xτ,ix
⊤
τ,i. (A.2)

Then, from the definition of
EτE⊤

τ

N , we know

EτE
⊤
τ

N
=


Λ̂τ +

1
N xτ,query · x⊤τ,query Λ̂τwτ

wτ Λ̂τ w⊤
τ Λ̂τwτ


 .

Since wτ ∼ N(0, Id) is independent of all prompt inputs and query input, we have

1

2

d∑

i=1

E

[(
xiτ,queryXτ

)
⊗
(
wi
τ

N

(
xτ,query · x⊤τ,query 0

0 0

))]
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=
1

2

d∑

i=1

E

[
E

[(
xiτ,queryXτ

)
⊗
(
wi
τ

N

(
xτ,query · x⊤τ,query 0

0 0

))] ∣∣∣∣xτ,query
]

=
1

2

d∑

i=1

E

[
(
xiτ,queryXτ

)
⊗
(
E
[
wi
τ | xτ,query

]

N

(
xτ,query · x⊤τ,query 0

0 0

))]
= 0.

Therefore, we have

E

[
w⊤
τ xτ,queryHτ

]
=

1

2

d∑

i=1

E


(xiτ,queryXτ

)
⊗


wi

τ


 Λ̂τ Λ̂τwτ

w⊤
τ Λ̂τ w⊤

τ Λ̂τwτ .






 .

Since Xτ only depends on xτ,query by definition, and xτ,query is independent of wτ and xτ,i, i = 1, 2, ..., N,
we have

E

[
w⊤
τ xτ,queryHτ

]
=

1

2

d∑

i=1


E
(
xiτ,queryXτ

)
⊗ E


wi

τ


 Λ̂τ Λ̂τwτ

w⊤
τ Λ̂τ w⊤

τ Λ̂τwτ .








=
1

2

d∑

i=1




0d×d Λi

Λ⊤
i 0


⊗


 E(wi

τ )Λ ΛE(wi
τwτ )

E(wi
τw

⊤
τ )Λ E

(
wi
τw

⊤
τ Λwτ

)






=
1

2

d∑

i=1


0d×d Λi

Λ⊤
i 0


⊗


0d×d Λi

Λ⊤
i 0


 ,

where Λi denotes Λ:i. Here, the second line comes from the fact that EΛ̂τ = Λ, and that wτ is independent

of all prompt input and query input. The last line comes from the fact that wτ ∼ N(0, Id). Therefore, simple

computation shows that

E

[
w⊤
τ xτ,queryHτ

]
u =

1

2


0d(d+1)×d(d+1) A

A⊤
0(d+1)×(d+1)


 · u, (A.3)

where

A =




V1 + V ⊤
1

V2 + V ⊤
2

...

Vd + V ⊤
d




∈ R
d(d+1)×(d+1), Vj =


0d×d

∑d
i=1 ΛijΛi

0 0


 =


0d×d ΛΛj

0 0


 ∈ R

(d+1)×(d+1).

(A.4)

Step Two: Calculate the First Term Next, we compute the first term in (A.1), namely

D := 2E
(
〈Hτ , uu

⊤〉Hτu
)
.
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For simplicity, we denote Zτ := 1
NEτE

⊤
τ . Using the definition of Hτ in (5.1) and Lemma D.1, we have

D = 2E
(
〈Hτ , uu

⊤〉Hτu
)

(definition)

=
1

2
E

[
tr
(
Xτ ⊗ Zτ Vec (U)Vec (U)⊤

)
(Xτ ⊗ Zτ )Vec (U)

]

(definition of Hτ in (5.1) and u = Vec(U))

=
1

2
E

[
tr
(
Vec (ZτUXτ )Vec (U)⊤

)
Vec (ZτUXτ )

]

(Vec(AXB) = (B⊤ ⊗A)Vec(X) in Lemma D.1)

=
1

2
E

[
Vec (U)⊤ ·Vec (ZτUXτ ) ·Vec (ZτUXτ )

]

(property of trace operator)

=
1

2
E




d+1∑

i,j=1

(
(ZτUXτ )ij Uij

)
Vec (ZτUXτ )


 .

Step Three: u12 and u21 Vanish We first prove that if u12 = u21 = 0d, then d
dtu12 = 0d and d

dtu21 = 0d.
If this is true, then these two blocks will be zero all the time since we assume they are zero at initial time in

Assumption 3.3. We denote Ak: and A:k as the k-th row and k-th column of matrix A, respectively.

Under the assumption that u12 = u21 = 0d, we first compute

(ZτUXτ ) =


 Λ̂τwτu−1x

⊤
τ,query

(
Λ̂τ +

1
N xτ,query · x⊤τ,query

)
U11xτ,query

w⊤
τ

(
Λ̂τ

)
wτu−1x

⊤
τ,query w⊤

τ

(
Λ̂τ

)
U11xτ,query


 .

Written in an entry-wise manner, it will be

(ZτUXτ )kl =





(
Λ̂τ

)
k:
wτu−1x

l
τ,query k, l ∈ [d](

Λ̂τ +
1
N xτ,query · x⊤τ,query

)
k:
U11xτ,query k ∈ [d], l = d+ 1

w⊤
τ

(
Λ̂τ

)
wτu−1x

l
τ,query l ∈ [d], k = d+ 1

w⊤
τ

(
Λ̂τ

)
U11xτ,query k = l = d+ 1

. (A.5)

We use Dij to denote the (i, j)-th entry of the (d+1)× (d+1) matrix D̄ such that Vec(D̄) = D. Now

we fix a k ∈ [d], then

Dk,d+1 =
1

2
E




d+1∑

i,j=1

(
(ZτUXτ )ij Uij

)
(ZτUXτ )k,d+1




=
1

2
E




d∑

i,j=1

(
(ZτUXτ )ij Uij

)
(ZτUXτ )k,d+1


+

1

2
E

[(
(ZτUXτ )d+1,d+1 u−1

)
(ZτUXτ )k,d+1

]
,

(A.6)

since Ui,d+1 = Ud+1,i = 0 for any i ∈ [d]. For the first term in the right hand side of last equation, we fix

i, j ∈ [d] and have

E

(
(ZτUXτ )ij Uij

)
(ZτUXτ )k,d+1
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=E

(
Uij

(
Λ̂τ

)
i:
wτu−1x

j
τ,query ·

(
Λ̂τ +

1

N
xτ,query · x⊤τ,query

)

k:

U11xτ,query

)
= 0,

since wτ is independent with all prompt input and query input, namely all xτ,i for i ∈ [query], and wτ is

mean zero. Similarly, for the second term of (A.6), we have

E

(
(ZτUXτ )d+1,d+1 u−1

)
(ZτUXτ )k,d+1

=E

(
u−1w

⊤
τ

(
Λ̂τ

)
U11xτ,query ·

(
Λ̂τ +

1

N
xτ,query · xτ,query

)

k:

U11xτ,query

)
= 0

since E
(
w⊤
τ

)
= 0 and wτ is independent of all xτ,i for i ∈ [query]. Therefore, we have Dk,d+1 = 0 for

k ∈ [d]. Similar calculation shows that Dd+1,k = 0 for k ∈ [d].

For k ∈ [d], to calculate the derivative of Uk,d+1, it suffices to further calculate the inner product of the

d(d+ 1) + k th row of E
[
w⊤
τ xτ,queryHτ

]
and u. From (A.3), we know this is

1

2

d∑

j=1

Λ⊤
k ΛjUd+1,j = 0

given that u12 = u21 = 0d. Therefore, we conclude that the derivative of Uk,d+1 will vanish given u12 =
u21 = 0d. Similarly, we conclude the same result for Ud+1,k for k ∈ [d]. Therefore, we know u12 = 0d and

u21 = 0d for all time t ≥ 0.

Step Four: Dynamics of U11 Next, we calculate the derivatives of U11 given u12 = u21 = 0d. For a fixed

pair of k, l ∈ [d], we have

Dkl =
1

2
E




d∑

i,j=1

(
(ZτUXτ )ij Uij

)
(ZτUXτ )kl


+

1

2
E

[(
(ZτUXτ )d+1,d+1 u−1

)
(ZτUXτ )kl

]
.

For fixed i, j ∈ [d], we have

E

[(
(ZτUXτ )ij Uij

)
(ZτUXτ )kl

]
= Uiju

2
−1E

[(
Λ̂τ

)
i:
wτx

j
τ,queryx

l
τ,queryw

⊤
τ

(
Λ̂τ

)
:k

]

= Uiju
2
−1E

[
xjτ,queryx

l
τ,query

]
· E
[(

Λ̂τ

)
i:

(
Λ̂τ

)
:k

]

= Uiju
2
−1Λτ,jlE

[(
Λ̂τ

)
i:

(
Λ̂τ

)
:k

]
.

Therefore, we sum over i, j ∈ [d] to get

1

2
E




d∑

i,j=1

(
(ZτUXτ )ij Uij

)
(ZτUXτ )kl


 =

1

2
u2−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl

For the last term, we have

1

2
E

[(
(ZτUXτ )d+1,d+1 u−1

)
(ZτUXτ )kl

]
=

1

2
u2−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl.
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So we have

Dkl = u2−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl.

Additionally, we have

2
[
E

(
w⊤
τ xτ,queryHτ

)
u
]
(l−1)(d+1)+k

=




0d(d+1)×d(d+1) A

A⊤
0(d+1)×(d+1)


 · u




(l−1)(d+1)+k

(definition)

=
(
0(d+1)×d(d+1) Vl + V ⊤

l

)
k:
· U (definition of A in (A.4))

= Λ⊤
k Λlu−1. (definition of Vi in (A.4))

Therefore, we have that for k, l ∈ [d], the dynamics of Ukl is

d

dt
Ukl = −u2−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl + u−1Λ

⊤
k Λl,

which implies
d

dt
U11 = −u2−1E

((
Λ̂τ

)2)
U11Λ + u−1Λ

2.

From the definition of Λ̂τ (equation (A.2)), the independence and Gaussianity of xτ,i and Lemma D.2,

we compute

E

((
Λ̂τ

)2)
= E



(

1

N

N∑

i=1

xτ,ix
⊤
τ,i

)2

 (definition (A.2))

=
N − 1

N

[
E

(
xτ,1x

⊤
τ,1

)]2
+

1

N
E

(
xτ,1x

⊤
τ,1xτ,1x

⊤
τ,1

)

(independence between prompt input)

=
N + 1

N
Λ2 +

1

N
tr(Λ)Λ. (Lemma D.2)

We define

Γ :=
N + 1

N
Λ +

1

N
tr(Λ)Id. (A.7)

Then, from (A.1), we know the dynamics of U11 is

d

dt
U11 = −u2−1ΓΛU11Λ + u−1Λ

2. (A.8)

Step Five: Dynamics of u−1 Finally, we compute the dynamics of u−1. We have

Dd+1,d+1 =
1

2
E




d∑

i,j=1

(
(ZτUXτ )ij Uij

)
(ZτUXτ )d+1,d+1


+

1

2
E

[(
(ZτUXτ )d+1,d+1 u−1

)
(ZτUXτ )d+1,d+1

]
.

(A.9)
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For the first term above, we have

E




d∑

i,j=1

(
(ZτUXτ )ij Uij

)
(ZτUXτ )d+1,d+1




=u−1

d∑

i,j=1

UijE

[(
Λ̂τ

)
i:
· wτw

⊤
τ ·
(
Λ̂τ

)
· U11xτ,queryx

j
τ,query

]
(from (A.5))

=u−1

d∑

i,j=1

UijE

[(
Λ̂τ

)
i:
·
(
Λ̂τ

)
· U11xτ,queryx

j
τ,query

]
(independence and distribution of wτ )

=u−1

d∑

i,j=1

UijE

[(
Λ̂τ

)
i:
·
(
Λ̂τ

)
· U11Λj

]
(independence between prompt covariates)

=u−1E tr




d∑

i,j=1

ΛjUij

(
Λ̂τ

)
i:
·
(
Λ̂τ

)
U11


 = u−1E tr

[
Λ(U11)

⊤
(
Λ̂τ

)2
U11

]

=u−1 tr

[
E

(
Λ̂τ

)2
U11Λ(U11)

⊤
]
.

For the second term in (A.9), we have

E

[(
(ZτUXτ )d+1,d+1 u−1

)
(ZτUXτ )d+1,d+1

]
= u−1E

[
w⊤
τ

(
Λ̂τ

)
U11xτ,queryx

⊤
τ,query(U11)

⊤
(
Λ̂τ

)
wτ

]

(from (A.5))

= u−1E tr
[
wτw

⊤
τ

(
Λ̂τ

)
U11xτ,queryx

⊤
τ,query(U11)

⊤
(
Λ̂τ

)]

= u−1E tr
[(

Λ̂τ

)
U11Λ(U11)

⊤
(
Λ̂τ

)]

= u−1 tr

[
E

(
Λ̂τ

)2
U11Λ(U11)

⊤
]
.

Therefore, we know

Dd+1,d+1 = u−1 tr

[
E

(
Λ̂τ

)2
U11Λ(U11)

⊤
]
.

Additionally, we have

2
[
E

(
w⊤
τ xτ,queryHτ

)
u
]
(d+1)2

=




0d(d+1)×d(d+1) A

A⊤
0(d+1)×(d+1)


 · u




(d+1)2

(from (A.3))

=
(
V1 + V ⊤

1 ... Vd + V ⊤
d 0(d+1)×(d+1)

)
d+1:

· U
(definition of A in (A.4))

=

d∑

i,j=1

Λ⊤
i ΛjUji = tr

(
Λ(U11)

⊤Λ
)
.
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Then, from (A.1), we have the dynamics of u−1 is

d

dt
u−1 = − tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤
]
. (A.10)

A.3 Proof of Lemma 5.3

Lemma 5.3 gives the form of global minima of an equivalent loss function. First, we prove that gradient

flow on L defined in (3.8) from the initial values satisfying Assumption 3.3 is equivalent to gradient flow

on another loss function ℓ̃ defined below. Then, we derive an expression for the global minima of this loss

function.

First, from the dynamics of gradient flow, we can actually recover the loss function up to a constant. We

have the following lemma.

Lemma A.1 (Loss Function). Consider gradient flow over L in (5.3) with respect to u starting from an

initial value satisfying Assumption 3.3. This is equivalent to doing gradient flow with respect to U11 and

u−1 on the loss function

ℓ̃ (U11, u−1) = tr

[
1

2
u2−1ΓΛU11Λ(U11)

⊤ − u−1Λ
2(U11)

⊤
]
. (A.11)

Proof. The proof is simply by taking gradient of the loss function in (A.11). For techniques in matrix

derivatives, see Lemma D.1. We take the gradient of ℓ̃ on U11 to obtain

∂ℓ̃

∂U11
=

1

2
u2−1Λ

⊤Γ⊤U11Λ
⊤ +

1

2
u2−1ΓΛU11Λ− u−1Λ

2 = u2−1ΓΛU11Λ− u−1Λ
2,

since Γ and Λ are commutable. We take derivatives w.r.t. u−1 to get

∂ℓ̃

∂u−1
= tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤
]
.

Combining this with Lemma 5.2, we have

d

dt
U11(t) = − ∂ℓ̃

∂U11
,

d

dt
u−1(t) = − ∂ℓ̃

∂u−1
.

We remark that actually this is the loss function L up to some constant. This loss function ℓ̃ can be

negative. But we can still compute its global minima as follows.

Corollary A.2 (Minimum of Loss Function). The loss function ℓ̃ in Lemma A.1 satisfies

min
U11∈Rd×d,u−1∈R

ℓ̃ (U11, u−1) = −1

2
tr
[
Λ2Γ−1

]

and

ℓ̃ (U11, u−1)− min
U11∈Rd×d,u−1∈R

ℓ̃ (U11, u−1) =
1

2

∥∥∥Γ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)∥∥∥

2

F
.
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Proof. First, we claim that

ℓ̃ (U11, u−1) =
1

2
tr

[
Γ ·
(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)(

u−1Λ
1

2U11Λ
1

2 − ΛΓ−1
)⊤]

− 1

2
tr
[
Λ2Γ−1

]
.

To calculate this, we just need to expand the terms in the brackets and notice that Γ and Λ are commutable:

tr

[
Γ ·
(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)(

u−1Λ
1

2U11Λ
1

2 − ΛΓ−1
)⊤]

− tr
[
Λ2Γ−1

]

(i)
= tr

[
Γ ·
(
u2−1Λ

1

2U11Λ(U11)
⊤Λ1/2 − u−1ΛΓ

−1Λ
1

2U11Λ
1

2 − u−1Λ
1

2U11Λ
3

2Γ−1 + Γ−2Λ2
)]

− tr[Λ2Γ−1]

= tr
[
Γ ·
(
u2−1Λ

1

2U11Λ(U11)
⊤Λ1/2 − u−1ΛΓ

−1Λ
1

2U11Λ
1

2 − u−1Λ
1

2U11Λ
3

2Γ−1
)]

= u2−1 tr
[
ΓΛ

1

2U11Λ(U11)
⊤Λ

1

2

]
− u−1 tr

[
ΓΛΓ−1Λ

1

2U11Λ
1

2 − ΓΛ
1

2U11Λ
3

2Γ−1
]

(ii)
= u2−1 tr

[
ΓΛU11Λ(U11)

⊤
]
− 2u−1 tr

[
Λ2U11Λ

1

2

]

= 2ℓ̃ (U11, u−1) .

Equations (i) and (ii) use that Γ and Λ commute.

Since Γ � 0 and
(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)(

u−1Λ
1

2U11Λ
1

2 − ΛΓ−1
)⊤

� 0, we know from Lemma

D.4 that
1

2
tr

[
Γ ·
(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)(

u−1Λ
1

2U11Λ
1

2 − ΛΓ−1
)⊤]

≥ 0,

which implies

ℓ̃ (U11, u−1) ≥ −1

2
tr
[
Λ2Γ−1

]
.

Equality holds when

U11 = Γ−1, u−1 = 1,

so the minimum of ℓ̃ must be −1
2 tr

[
Λ2Γ−1

]
. The expression for ℓ̃ (U11, u−1) − min ℓ̃ (U11, u−1) comes

from the fact that tr(A⊤A) = ‖A‖2F for any matrix A.

Lemma 5.3 is an immediate consequence of CorollaryA.2, since the loss will keep the same when we

replace (U11, u−1) by (cU11, c
−1u−1) for any non-zero constant c.

A.4 Proof of Lemma 5.4

In this section, we prove that the dynamical system in Lemma 5.2 satisfies a PL inequality. Then, the PL

inequality naturally leads to the global convergence of this dynamical system. First, we prove a simple

lemma, which says the parameters in the LSA model will keep ’balanced’ in the whole trajectory. From the

proof of this lemma, we can understand why we assume a balanced parameter at the initial time.

Lemma A.3 (Balanced Parameters). Consider gradient flow over L in (5.3) with respect to u starting from

an initial value satisfying Assumption 3.3. For any t ≥ 0, it holds that

u2−1 = tr
[
U11(U11)

⊤
]
. (A.12)
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Proof. From Lemma 5.2, we multiply the first equation in (5.4) by (U11)
⊤ from the right to get

(
d

dt
U11(t)

)
(U11(t))

⊤ = −u2−1ΓΛU11Λ(U11)
⊤ + u−1Λ

2(U11)
⊤.

Also we multiply the second equation in Lemma 5.2 by u−1 to obtain

(
d

dt
u−1(t)

)
u−1(t) = tr

[
−u2−1ΓΛU11Λ(U11)

⊤ + u−1Λ
2(U11)

⊤
]
.

Therefore, we have

tr

[(
d

dt
U11(t)

)
(U11(t))

⊤
]
=

(
d

dt
u−1(t)

)
u−1(t).

Taking the transpose of the equation above and adding to itself gives

d

dt
tr
[
U11(t)(U11(t))

⊤
]
=

d

dt

(
u−1(t)

2
)
.

Notice that from Assumption 3.3, we know that at t = 0,

u−1(0)
2 = σ2 = σ2 tr

[
ΘΘ⊤ΘΘ⊤

]
= tr

[
U11(0)(U11(0))

⊤
]
.

So for any time t ≥ 0, the equation holds.

In order to prove the PL inequality, we first prove an important property which says the trajectories of

u−1(t) stay away from saddle point at origin. First, we prove that u−1(t) will stay positive along the whole

trajectory.

Lemma A.4. Consider gradient flow over L in (5.3) with respect to u starting from an initial value satisfying

Assumption 3.3. If the initial scale satisfies

0 < σ <

√
2√

d ‖Γ‖op
, (A.13)

then, for any t ≥ 0, it holds that

u−1 > 0.

Proof. From Lemma A.1, we are actually doing gradient flow on the loss ℓ̃. The loss function is non-

increasing, because

dℓ̃

dt
=

〈
dU11

dt
,

∂ℓ̃

∂U11

〉
+

〈
du−1

dt
,

∂ℓ̃

∂u−1

〉
= −

∥∥∥∥
dU11

dt

∥∥∥∥
2

F

−
∥∥∥∥
du−1

dt

∥∥∥∥
2

F

≤ 0.

We notice that when u−1 = 0, the loss function ℓ̃ = 0. Therefore, as long as ℓ̃(U11(0), u−1(0)) < 0, then for

any time, u−1 will be non-zero. Further, since u−1(0) > 0 and the trajectory of u−1(t) must be continuous,

we know u−1(t) > 0 for any t ≥ 0.
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Then, it suffices to prove when 0 < σ <
√

2√
d‖Γ‖op

, it holds that ℓ̃(U11(0), u−1(0)) < 0. From As-

sumption 3.3, we can calculate the loss function at the initial time:

ℓ̃(U11(0), u−1(0)) =
σ4

2
tr
[
ΓΛΘΘ⊤ΛΘΘ⊤

]
− σ2 tr

[
Λ2ΘΘ⊤

]
.

From the property of trace, we know

tr
[
Λ2ΘΘ⊤

]
= tr

[
ΛΘΘ⊤Λ⊤

]
= ‖ΛΘ‖2F .

From Von-Neumann’s trace inequality (Lemma D.3) and the fact that
∥∥ΘΘ⊤∥∥

F
= 1, we know

tr
[
ΓΛΘΘ⊤ΛΘΘ⊤

]
≤

√
d
∥∥∥ΛΘΘ⊤ΛΘΘ⊤

∥∥∥
F
·‖Γ‖op ≤

√
d ‖ΛΘ‖2F

∥∥∥ΘΘ⊤
∥∥∥
F
‖Γ‖op =

√
d ‖ΛΘ‖2F ‖Γ‖op .

Therefore, we have

ℓ̃(U11(0), u−1(0)) ≤
√
dσ4

2
‖ΛΘ‖2F ‖Γ‖op − σ2 ‖ΛΘ‖2F

=
σ2

2
‖ΛΘ‖2F

[√
dσ2 ‖Γ‖op − 2

]
.

From Assumption 3.3, we know ‖ΛΘ‖F 6= 0. From (A.7), we know ‖Γ‖op > 0. Therefore, when

0 < σ <

√
2√

d ‖Γ‖op
,

we have

ℓ̃(U11(0), u−1(0)) < 0.

From the lemma above, we can actually further prove that the u−1(t) can be lower bounded by a positive

constant for any t ≥ 0. This will be a critical property to prove the PL inequality. We have the following

lemma.

Lemma A.5. Consider gradient flow over L in (5.3) with respect to u starting from an initial value satisfying

Assumption 3.3 with initial scale 0 < σ <
√

2√
d‖Γ‖op

. For any t ≥ 0, it holds that

u−1 ≥
√

σ2

2
√
d ‖Λ‖2op

‖ΛΘ‖2F
[
2−

√
dσ2 ‖Γ‖op

]
> 0. (A.14)

Proof. We prove by contradiction. Suppose the claim does not hold. From Lemma A.3, we know u2−1 =

tr
[
U11(U11)

⊤] = ‖U11‖2F . From Lemma A.4, we know u−1 = ‖U11‖F . Recall the definition of loss

function:

ℓ̃(U11, u−1) = tr

[
1

2
u2−1ΓΛU11Λ(U11)

⊤ − u−1Λ
2(U11)

⊤
]
.
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Since Γ � 0,Λ � 0, and they commute, we know from Lemma D.4 that ΓΛ � 0. Again, since

U11Λ(U11)
⊤ =

(
U11Λ

1

2

)(
U11Λ

1

2

)⊤
� 0, from Lemma D.4 we have tr

[
1
2u

2
−1ΓΛU11Λ(U11)

⊤] ≥ 0.

So

ℓ̃(U11, u−1) ≥ − tr
[
u−1Λ

2(U11)
⊤
]
.

From Von-Neumann’s trace inequality, we know for any t ≥ 0,

− tr
[
u−1Λ

2(U11)
⊤
]
≥ −

√
du−1

∥∥Λ2
∥∥
op
‖U11‖F = −

√
du2−1 ‖Λ‖2op .

Therefore, under our assumption that the claim does not hold, we have

ℓ̃(U11, u−1) ≥ −
√
du2−1 ‖Λ‖2op > −σ2

2
‖ΛΘ‖2F

[
2−

√
dσ2 ‖Γ‖op

]
≥ ℓ̃(U11(0), u−1(0)).

Here, the last inequality comes from the proof of Lemma A.4. This contradicts the non-increasing property

of the loss function in gradient flow.

Finally, let’s prove the PL inequality and further, the global convergence of gradent flow on the loss

function ℓ̃. We recall the stated lemma from the main text.

Lemma 5.4. Suppose the initialization of gradient flow satisfies Assumption 3.3 with initialization scale

satisfying σ2 < 2√
d‖Γ‖op

for Γ = (1 + 1
N )Λ + tr(Λ)

N Id. If we define

µ :=
σ2

√
d ‖Λ‖2op tr (Γ−1Λ−1) tr (Λ−1)

‖ΛΘ‖2F
[
2−

√
dσ2 ‖Γ‖op

]
> 0, (5.7)

then gradient flow on ℓ̃ with respect to U11 and u−1 satisfies, for any t ≥ 0,

∥∥∥∇ℓ̃(U11(t), u−1(t))
∥∥∥
2

2
:=

∥∥∥∥∥
∂ℓ̃

∂U11

∥∥∥∥∥

2

F

+

∣∣∣∣∣
∂ℓ̃

∂u−1

∣∣∣∣∣

2

≥ µ

(
ℓ̃(U11(t), u−1(t))− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
.

(5.8)

Moreover, gradient flow converges to the global minimum of ℓ̃, and U11 and u−1 converge to the following,

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1

2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1. (5.9)

Proof. From the definition and Lemma A.5, we have

‖∇ℓ(U11, u−1)‖22 ≥
∥∥∥∥

∂ℓ

∂U11

∥∥∥∥
2

F

=
∥∥u2−1ΓΛU11Λ− u−1Λ

2
∥∥2
F

= u2−1

∥∥∥ΓΛ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)
Λ

1

2

∥∥∥
2

F

≥ σ2

2
√
d ‖Λ‖2op

‖ΛΘ‖2F
[
2−

√
dσ2 ‖Γ‖op

] ∥∥∥ΓΛ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)
Λ

1

2

∥∥∥
2

F
.

(A.15)
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To see why the second line is true, recall that u−1 ∈ R and Γ and Λ commute. The last line comes from the

lower bound of u−1 in Lemma A.5. From Corollary A.2, we know

ℓ− min
U11∈Rd×d,u−1∈R

ℓ(U11, u−1) =
1

2
tr

[
Γ
(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)(

u−1Λ
1

2U11Λ
1

2 − ΛΓ−1
)⊤]

=
1

2

∥∥∥Γ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)∥∥∥

2

F
.

Therefore, we know that

ℓ− min
U11∈Rd×d,u−1∈R

ℓ(U11, u−1) ≤
1

2

∥∥∥ΓΛ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)
Λ

1

2

∥∥∥
2

F
·
∥∥∥Γ− 1

2Λ− 1

2

∥∥∥
2

F

∥∥∥Λ− 1

2

∥∥∥
2

F

=
1

2

∥∥∥ΓΛ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)
Λ

1

2

∥∥∥
2

F
· tr
(
Γ−1Λ−1

)
tr
(
Λ−1

)

(A.16)

We compare (A.15) and (A.16) to obtain that in order to make the PL condition hold, one needs to let

µ :=
σ2

√
d ‖Λ‖2op tr (Γ−1Λ−1) tr (Λ−1)

‖ΛΘ‖2F
[
2−

√
dσ2 ‖Γ‖op

]
> 0.

Once we set this µ, we get the PL inequality. The µ is positive due to the assumption for σ in the lemma.

From the dynamics of gradient flow and the PL condition, we know

d

dt

(
ℓ̃− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
=

〈
dU11

dt
,

∂ℓ̃

∂U11

〉
+

〈
du−1

dt
,

∂ℓ̃

∂u−1

〉
= −

∥∥∥∥
dU11

dt

∥∥∥∥
2

F

−
∣∣∣∣
du−1

dt

∣∣∣∣
2

≤ −µ

(
ℓ̃− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
.

Therefore, we have when t → ∞,

0 ≤ ℓ̃− min
U11∈Rd×d,u−1∈R

ℓ̃(U11, u−1) ≤ exp (−µt)

[
ℓ̃(U11(0), u−1(0))− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

]
→ 0,

which implies

lim
t→∞

[
ℓ̃− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

]
= 0.

From Corollary A.2, we know this is
∥∥∥Γ

1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)∥∥∥

2

F
→ 0.

Since Γ and Λ are non-singular and positive definite, and they commute, we know

∥∥u−1U11 − Γ−1
∥∥2
F
≤
∥∥∥Γ− 1

2Λ− 1

2

∥∥∥
2

F

∥∥∥Γ
1

2

(
u−1Λ

1

2U11Λ
1

2 − ΛΓ−1
)∥∥∥

2

F

∥∥∥Λ− 1

2

∥∥∥
2

F
→ 0.

This implies u−1U11 − Γ−1 → 0d×d entry-wise. Since u−1 = ‖U11‖F , we know

u2−1 = ‖u−1U11‖F →
∥∥Γ−1

∥∥
F
.

Therefore, we know

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1

2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1.
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B Proof of Theorem 4.2

In this section, we prove Theorem 4.2, which characterizes the excess risk of the prediction of a trained LSA

layer with respect to the risk of best linear predictor, on a new task which is possibly non-linear. First, we

restate the theorem.

Theorem 4.2. Let D be a distribution over (x, y) ∈ R
d × R, whose marginal distribution on x is Dx =

N(0,Λ). Assume ED[y],ED[xy],ED[y2xx⊤] exist and are finite. Assume the test prompt is of the form

P = (x1, y1, . . . , xM , yM , xquery), where (xi, yi), (xquery, yquery)
i.i.d.∼ D. Let f∗

LSA be the LSA model with

parameters WPV
∗ and WKQ

∗ in (4.1), and ŷquery is the prediction for xquery given the prompt. If we define

a := Λ−1
E(x,y)∼D [xy] , Σ := E(x,y)∼D

[(
xy − E (xy)

)(
xy − E (xy)

)⊤]
, (4.5)

then, for Γ = Λ + 1
NΛ + 1

N tr(Λ)Id. we have,

E (ŷquery − yquery)
2 = min

w∈Rd
E (〈w, xquery〉 − yquery)

2

︸ ︷︷ ︸
Error of best linear predictor

+
1

M
tr
[
ΣΓ−2Λ

]
+

1

N2

[
‖a‖2Γ−2Λ3 + 2 tr(Λ) ‖a‖2Γ−2Λ2 + tr(Λ)2 ‖a‖2Γ−2Λ

]
, (4.6)

where the expectation is over (xi, yi), (xquery, yquery)
i.i.d.∼ D.

Proof. Unless otherwise specified, we denote E as the expectation over (xi, yi), (xquery, yquery)
i.i.d.∼

D. Since when (x, y) ∼ D, we assume E[x],E[y],E[xy],E[xx⊤],E[y2xx⊤] exist, we know that

E (〈w, xquery〉 − yquery)
2

exists for each w ∈ R
d. We denote

a := argmin
w∈Rd

E (〈w, xquery〉 − yquery)
2

as the weight of the best linear approximator. Actually, if we denote the function inside the minimum above

as R(w), we can write it as

R(w) = w⊤Λw − 2E
(
yquery · x⊤query

)
w + Ey2query.

Since the Hessian matrix ∂2

∂w∂w⊤R(w) is Λ, which is positive definitive, we know that this function is strictly

convex and hence, the global minimum can be achieved at the unique first-order stationary point. This is

a = Λ−1
E (yquery · xquery) . (B.1)

We also define a similar vector for ease of computation:

b = Γ−1
E (yquery · xquery) . (B.2)

Therefore, we can decompose the error as

E (ŷquery − yquery)
2 = E (〈a, xquery〉 − yquery)

2

︸ ︷︷ ︸
I

+E (ŷquery − 〈b, xquery〉)2︸ ︷︷ ︸
II

35



+ E (〈b, xquery〉 − 〈a, xquery〉)2︸ ︷︷ ︸
III

+2E (ŷquery − 〈b, xquery〉) (〈a, xquery〉 − yquery)︸ ︷︷ ︸
IV

+ 2E (ŷquery − 〈b, xquery〉) (〈b, xquery〉 − 〈a, xquery〉)︸ ︷︷ ︸
V

+2E (〈b, xquery〉 − 〈a, xquery〉) (〈a, xquery〉 − yquery)︸ ︷︷ ︸
VI

The term I is the first term on the right hand side of (4.6). So it suffices to calculate II to VI.

First, from the tower property of conditional expectation, we have

V = 2E

[
E

(
(ŷquery − 〈b, xquery〉) (〈b, xquery〉 − 〈a, xquery〉)

∣∣∣∣xquery
)]

= 2E

[
E

(
ŷquery − 〈b, xquery〉

∣∣∣∣xquery
)
(〈b, xquery〉 − 〈a, xquery〉)

]
= 0,

since

E

(
ŷquery − 〈b, xquery〉

∣∣∣∣xquery
)

=

(
E

1

M

M∑

i=1

yiΓ
−1xi − b

)⊤

xquery = 0.

Similarly, for IV, we have

IV = 2E (ŷquery − 〈b, xquery〉) (〈a, xquery〉 − yquery)

= 2E

[
E

(
(ŷquery − 〈b, xquery〉) (〈a, xquery〉 − yquery)

∣∣∣∣xquery, yquery
)]

= 2E

[
E

(
ŷquery − 〈b, xquery〉

∣∣∣∣xquery, yquery
)
(〈a, xquery〉 − yquery)

]

= 0.

For VI, we have

VI = 2E tr
[
(b− a) (〈a, xquery〉 − yquery)x

⊤
query

]

= 2 tr
[
(b− a)a⊤Λ

]
− 2 tr

[
(b− a)E

(
yqueryx

⊤
query

)]
= 0,

where the last line comes from the definition of a. Therefore, all cross terms vanish and it suffices to consider

II and III.

For II, from the definition we have

II

=E

(
1

M

M∑

i=1

yixi − E (yquery · xquery)
)⊤

Γ−1xqueryx
⊤
queryΓ

−1

(
1

M

M∑

i=1

yixi − E (yquery · xquery)
)

=E tr

(
1

M

M∑

i=1

yixi − E (yquery · xquery)
)(

1

M

M∑

i=1

yixi − E (yquery · xquery)
)⊤

Γ−2Λ

(property of trace and the fact that Γ and Λ commute)
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=
1

M2

M∑

i,j=1

E tr
{
(yixi − E (yquery · xquery)) (yjxj − E (yquery · xquery))⊤ Γ−2Λ

}

=
1

M
E tr

{
(y1x1 − E (yquery · xquery)) (y1x1 − E (yquery · xquery))⊤ Γ−2Λ

}

(all cross terms vanish due to the independence of xi)

=
1

M
tr
[
ΣΓ−2Λ

]
.

The last line comes from the definition of Σ.

For III, we have

III = E(b− a)⊤xqueryx
⊤
query(b− a) = a⊤Λ(Γ−1 − Λ−1)Λ(Γ−1 − Λ−1)Λa

= tr
[(
I − ΓΛ−1

)2
Γ−2Λ3aa⊤

]
(property of trace and the fact that Γ and Λ commute)

=
1

N2
tr
[(
Id + tr(Λ)Λ−1

)2
Γ−2Λ3aa⊤

]

=
1

N2

[
tr(Γ−2Λ3aa⊤) + 2 tr(Λ) tr(Γ−2Λ2aa⊤) + tr(Λ)2 tr(Γ−2Λaa⊤)

]
.

Combining all terms above, we conclude.

C Proof of Theorem 4.5

The proof of Theorem 4.5 is very similar to that of Theorem 4.1. The first step is to explicitly write out

the dynamical system. In order to do so, we notice that the Lemma 5.1 does not depend on the training

data and data-generaing distribution and hence, it still holds in the case of a random covariance matrix.

Therefore, we know when we input the embedding matrix Eτ to the linear self-attention layer with parameter

θ = (WKQ,WPV ), the prediction will be

ŷquery(Eτ ; θ) = u⊤Hτu,

where the matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R

(d+1)2×(d+1)2 , Xτ =


 0d×d xτ,query

(xτ,query)
⊤ 0


 ∈ R

(d+1)×(d+1)

and

u = Vec(U) ∈ R
(d+1)2 , U =


 U11 u12

(u21)
⊤ u−1


 ∈ R

(d+1)×(d+1),

where U11 = WKQ
11 ∈ R

d×d, u12 = wPV
21 ∈ R

d×1, u21 = wKQ
21 ∈ R

d×1, u−1 = wPV
22 ∈ R correspond to

particular components of WPV and WKQ, defined in (3.5).
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C.1 Dynamical system

The next lemma gives the dynamical system when the covariance matrices in the prompts are i.i.d. sampled

from some distribution. Notice that in the lemma below, we do not assume Λτ are almost surely diagonal.

The case when the covariance matrices are diagonal can be viewed as a special case of the following lemma.

Lemma C.1. Consider gradient flow on (4.10) with respect to u starting from an initial value that satisfies

Assumption 3.3. We assume the covariance matrices Λτ are sampled from some distribution with finite third

moment and Λτ are positive definite almost surely. We denote u = Vec (U) := Vec


 U11 u12

(u21)
⊤ u−1


 and

define

Γτ =

(
1 +

1

N

)
Λτ +

1

N
tr(Λτ )Id ∈ R

d×d.

Then the dynamics of U follows

d

dt
U11(t) = −u2−1E [ΓτΛτU11Λτ ] + u−1E

[
Λ2
τ

]

d

dt
u−1(t) = −u−1 trE

[
ΓτΛτU11Λτ (U11)

⊤
]
+ tr

(
E
[
Λ2
τ

]
(U11)

⊤
)
,

(C.1)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0.

Proof. This lemma is a natural corollary of Lemma 5.2. Notice that Lemma 5.2 holds for any fixed positive

definite Λτ . So when Λτ is random, if we condition on Λτ , the dynamical system will be

d

dt
U11(t) = −u2−1 [ΓτΛτU11Λτ ] + u−1

[
Λ2
τ

]

d

dt
u−1(t) = −u−1 tr

[
ΓτΛτU11Λτ (U11)

⊤
]
+ tr

([
Λ2
τ

]
(U11)

⊤
)
,

(C.2)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0. Then, we conclude by simply taking expectation over Λτ .

The lemma above gives the dynamical system with general random covariance matrix. When Λτ are

diagonal almost surely, we can actually simplify the dynamical system above. In this case, we have the

following corollary.

Corollary C.2. Under the assumptions of Lemma C.1, we further assume the covariance matrix Λτ to be

diagonal almost surely. We denote uij(t) ∈ R as the (i, j)-th entry of U11(t), and further denote

γi = E


N + 1

N
λ3
τ,i +

1

N
λ2
τ,i ·

d∑

j=1

λτ,j


 ,

ξi = E
[
λ2
τ,i

]
,

ζij = E

[
N + 1

N
λ2
τ,iλτ,j +

1

N
λτ,iλτ,j ·

d∑

k=1

λτ,k

]
(C.3)
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for i, j ∈ [d], where the expectation is over the distribution of Λτ . Then, the dynamical system (C.1) is

equivalent to
d

dt
uii(t) = −γiu

2
−1uii + ξiu−1 ∀i ∈ [d],

d

dt
uij(t) = −ζiju

2
−1uij ∀i 6= j ∈ [d],

d

dt
u−1(t) = −

d∑

i=1

[
γiu−1u

2
ii

]
−
∑

i 6=j

ζiju−1u
2
ij +

d∑

i=1

[ξiuii] .

(C.4)

Proof. This is directly obtained by rewriting the equation for each entry of U11 and recalling the assumption

that Λτ (and hence Γτ ) is diagonal almost surely.

C.2 Loss function and global minima

As in the proof of Theorem 4.1, we can actually recover the loss function in the random covariance case, up

to a constant.

Lemma C.3. The differential equations in (C.4) are equivalent to gradient flow on the loss function

ℓrdm(U11, u−1) = E tr

[
1

2
u2−1ΓτΛτU11Λτ (U11)

⊤ − u−1Λ
2
τ (U11)

⊤
]

=
1

2

d∑

i=1

[
γiu

2
−1u

2
ii

]
+

1

2

∑

i 6=j

ζiju
2
−1u

2
ij −

d∑

i=1

[ξiuiiu−1]

(C.5)

with respect to uij∀i, j ∈ [d] and u−1, from an initial value that satisfies Assumption 3.3.

Proof. This can be verified by simply taking gradient of ℓrdm to show that

d

dt
uii = −∂ℓrdm

∂uii
∀i ∈ [d],

d

dt
uij = −∂ℓrdm

∂uij
∀i 6= j ∈ [d],

d

dt
u−1 = −∂ℓrdm

∂u−1
.

Next, we solve for the minimum of ℓrdm and give the expression for all global minima.

Lemma C.4. Let ℓrdm be the loss function in (C.5). We denote

min ℓrdm := min
U11∈Rd×d,u−1∈R

ℓrdm (U11, u−1) .

Then, we have

min ℓrdm = −1

2

d∑

i=1

ξ2i
γi

(C.6)

and

ℓrdm(U11, u−1)−min ℓrdm =
1

2

d∑

i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑

i 6=j

ζiju
2
−1u

2
ij . (C.7)

Moreover, denoting uij as the (i, j)-entry of U11, all global minima of ℓrdm satisfy

u−1 · uij = I(i = j) · ξi
γi
. (C.8)
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Proof. From the definition of ℓrdm, we have

ℓrdm =
1

2

d∑

i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑

i 6=j

ζiju
2
−1u

2
ij −

1

2

d∑

i=1

ξ2i
γi

≥ −1

2

d∑

i=1

ξ2i
γi
.

The equation holds when uij = 0 for i 6= j ∈ [d] and u−1uii =
ξi
γi

for each i ∈ [d]. This can be achieved by

simply letting u−1 = 1 and uii =
ξi
γi

for i ∈ [d]. Of course, when we replace (u−1, uii) with (cu−1, c
−1uii)

for any constant c 6= 0, we can also achieve this global minimum.

C.3 PL Inequality and global convergence

Finally, to end the proof, we prove a Polyak-Łojasiewicz Inequality on the loss function ℓrdm, and then prove

global convergence. Before that, let’s first prove the balanced condition of parameters will hold during the

whole trajectory.

Lemma C.5 (Balanced condition). Under the assumptions of Lemma C.1, for any t ≥ 0, it holds that

u2−1 = tr
[
U11(U11)

⊤
]
. (C.9)

Proof. The proof is similar to the proof of Lemma A.3. From Lemma 5.2, we multiply the first equation in

(C.1) by (U11)
⊤ from the right to get

[
d

dt
U11(t)

]
(U11)

⊤ = −u2−1E

[
ΓτΛτU11Λτ (U11)

⊤
]
+ u−1E

[
Λ2
τ (U11)

⊤
]
.

Also we multiply the second equation in Lemma C.1 by u−1 to obtain

(
d

dt
u−1(t)

)
u−1(t) = −u2−1 trE

[
ΓτΛτU11Λτ (U11)

⊤
]
+ u−1 tr

(
E
[
Λ2
τ

]
(U11)

⊤
)
,

Therefore, we have

tr

[(
d

dt
U11(t)

)
(U11(t))

⊤
]
=

(
d

dt
u−1(t)

)
u−1(t).

Taking the transpose of the equation above and adding to itself gives

d

dt
tr
[
U11(t)(U11(t))

⊤
]
=

d

dt

(
u−1(t)

2
)
.

Notice that from Assumption 3.3, we know that

u−1(0)
2 = σ2 = σ2 tr

[
ΘΘ⊤ΘΘ⊤

]
= tr

[
U11(0)(U11(0))

⊤
]
.

So for any time t ≥ 0, the equation holds.

Next, similar to the proof of Theorem 4.1, we prove that, as long as the initial scale is small enough, u−1

will be positive along the whole trajectory and can be lower bounded by a positive constant, which implies

that the trajectories will be away from the saddle point at the origin.
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Lemma C.6. We do gradient flow on ℓrdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose the initializa-

tion satisfies Assumption 3.3 with initial scale

0 < σ <

√√√√ 2 ‖EΛτΘ‖2F√
d
[
E ‖Γτ‖op ‖Λτ‖2F

] , (C.10)

then for any t ≥ 0, it holds that

u−1(t) > 0. (C.11)

Proof. From the dynamics of gradient flow, we know the loss function ℓrdm is non-increasing:

dℓrdm
dt

=

d∑

i,j=1

∂ℓrdm
∂uij

· duij
dt

+
∂ℓrdm
∂u−1

· du−1

dt
= −

d∑

i,j=1

[
∂ℓrdm
∂uij

]2
−
[
∂ℓrdm
∂u−1

]2
≤ 0.

Since we assume U11(0) = ΘΘ⊤, we know the loss function at t = 0 is

ℓrdm(U11(0), u−1(0)) = E tr

[
σ4

2
ΓτΛτΘΘ⊤ΛτΘΘ⊤ − σ2Λ2

τΘΘ⊤
]
.

From the property of trace, we know

E tr
[
σ2Λ2

τΘΘ⊤
]
= σ2 ‖EΛτΘ‖2F .

From Von-Neumann’s trace inequality and the assumption that
∥∥ΘΘ⊤∥∥

F
= 1, we know

E tr

[
σ4

2
ΓτΛτΘΘ⊤ΛτΘΘ⊤

]
≤ σ4

√
d

2
E ‖Γτ‖op

∥∥∥ΛτΘΘ⊤ΛτΘΘ⊤
∥∥∥
F

≤
σ4

√
d
∥∥ΘΘ⊤∥∥2

F

2

[
E ‖Γτ‖op ‖Λτ‖2F

]
=

σ4
√
d

2

[
E ‖Γτ‖op ‖Λτ‖2F

]
.

From the assumptions on Θ and Λτ we know EΛτΘ 6= 0d×d and E ‖Γτ‖op ‖Λτ‖2F > 0. Therefore, com-

paring the two displays above, we know when (C.10) holds, we must have ℓrdm(0) < 0. So from the non-

increasing property of the loss function, we know ℓrdm(t) < 0 for any time t ≥ 0. Notice that when u−1 = 0,
the loss function is also zero, which suggests that u−1(t) 6= 0 for any time t ≥ 0. Since u−1(0) > 0 and the

trajectory of u−1 must be continuous, we know that it stays positive at all times.

Lemma C.7. We do gradient flow on ℓrdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose the initializa-

tion satisfies Assumption 3.3 and the initial scale satisfies (C.10). Then, for any t ≥ 0, it holds that

u−1(t) ≥
√

σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖2F

]]
> 0. (C.12)

Proof. From the dynamics of gradient flow, we know ℓrdm is non-increasing (see the proof of Lemma C.6).

Recall the definition of the loss function:

ℓrdm(U11, u−1) = E tr

[
1

2
u2−1ΓτΛτU11Λτ (U11)

⊤ − u−1Λ
2
τ (U11)

⊤
]
.
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Since Λτ commutes with Γτ and they are both positive definite almost surely, we know that ΓτΛτ � 0d×d

almost surely from Lemma D.1. Again, since U11Λτ (U11)
⊤ � 0d×d almost surely, from Lemma D.1 we

have tr
[
1
2u

2
−1ΓτΛτU11Λτ (U11)

⊤] ≥ 0 almost surely. Therefore, we have

ℓrdm(U11, u−1) ≥ −E tr
[
u−1Λ

2
τ (U11)

⊤
]
= − tr

[
u−1

(
EΛ2

τ

)
(U11)

⊤
]
.

From Von Neumann’s trace inequality (Lemma D.3) and the fact that u−1(t) > 0 for any t ≥ 0 (Lemma

C.6), we know ℓrdm(U11(t), u−1(t)) ≥ −
√
du−1

∥∥EΛ2
τ

∥∥
op
‖U11‖F . From Lemma C.5, we know u2−1 =

tr(U11(U11)
⊤) = ‖U11‖2F . Since u−1(t) > 0 for any time, we know actually u−1(t) = ‖U11(t)‖F . So we

have

ℓrdm(U11(t), u−1(t)) ≥ −
√
du−1(t)

2
∥∥EΛ2

τ

∥∥
op
.

From the proof of Lemma C.6, we know

ℓrdm(U11(t), u−1(t)) ≤ ℓrdm(U11(0), u−1(0)) ≤
σ4

√
d

2

[
E ‖Γτ‖op ‖Λτ‖2F

]
− σ2 ‖EΛτΘ‖2F .

Combine the two preceding displays above, we have

u−1(t) ≥
√

σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖2F

]]
> 0.

The last inequality comes from Lemma C.6.

Finally, we prove the PL Inequality, which naturally leads to the global convergence.

Lemma C.8. We do gradient flow on ℓrdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose the initializa-

tion satisfies Assumption 3.3 and the initial scale satisfies (C.10). If we denote

η = min {γi, i ∈ [d]; ζij , i 6= j ∈ [d]}

and

ν :=
η · σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖2F

]]
> 0, (C.13)

then for any t ≥ 0, it holds that

‖∇ℓrdm(U11, u−1)‖22 :=
d∑

i,j=1

∣∣∣∣
∂ℓrdm
∂uij

∣∣∣∣
2

+

∣∣∣∣
∂ℓrdm
∂u−1

∣∣∣∣
2

≥ ν (ℓrdm −min ℓrdm) . (C.14)

Additionally, ℓrdm converges to the global minimal value, uij and u−1 converge to the following limits,

lim
t→∞

uij(t) = I(i = j) ·
[

d∑

i=1

ξ2i
γ2i

]− 1

4

· ξi
γi

∀i ∈ [d], lim
t→∞

u−1(t) =

[
d∑

i=1

ξi
γi

] 1

4

. (C.15)
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Translating back to the original parameterization, we have this is equivalent to

lim
t→∞

WKQ(t) =




∥∥∥
[
EΓτΛ

2
τ

]−1
E
[
Λ2
τ

]∥∥∥
− 1

2

F
·
[
EΓτΛ

2
τ

]−1
E
[
Λ2
τ

]
0d

0⊤d 0


 ,

lim
t→∞

WPV (t) =



0d×d 0d

0⊤d

∥∥∥
[
EΓτΛ

2
τ

]−1
E
[
Λ2
τ

]∥∥∥
1

2

F


 ,

where Γτ = N+1
N Λτ +

1
N tr(Λτ )Id ∈ R

d×d and E is over Λτ .

Proof. First, we prove the PL Inequality. From Lemma C.4, we know

ℓrdm(U11, u−1)−min ℓrdm =
1

2

d∑

i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑

i 6=j

ζiju
2
−1u

2
ij ,

where ξi, ζij , γi are defined in (C.3). Meanwhile, we calculate the square norm of the gradient of ℓrdm:

‖∇ℓrdm(U11, u−1)‖22 :=
d∑

i,j=1

∣∣∣∣
∂ℓrdm
∂uij

∣∣∣∣
2

+

∣∣∣∣
∂ℓrdm
∂u−1

∣∣∣∣
2

≥
d∑

i,j=1

∣∣∣∣
∂ℓrdm
∂uij

∣∣∣∣
2

=
d∑

i=1

γ2i u
2
−1

(
uiiu−1 −

ξi
γi

)2

+
∑

i 6=j

ζ2iju
4
−1u

2
ij .

Comparing the two displays above, we know in order to achieve ‖∇ℓrdm‖22 ≥ ν (ℓrdm −min ℓrdm) , it

suffices to make

γiu−1(t)
2 ≥ ν

2
∀i ∈ [d],

ζiju−1(t)
2 ≥ ν

2
∀i 6= j ∈ [d].

We define η := min {γi, ζij , i 6= j ∈ [d]} , then it is sufficient to make

ηu−1(t)
2 ≥ ν

2
.

From Lemma C.7, we know that we can actually lower bound u−1 from below by a positive constant. Then,

the inequality holds if we take

ν :=
η · σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖2F

]]
> 0.

Therefore, as long as we take ν as above, a PL inequality holds for ℓrdm.
With an abuse of notation, let us write ℓrdm(t) = ℓrdm(U11(t), u−1(t)). Then, from the dynamics of

gradient flow and the PL Inequality ((C.14)), we know

d

dt
[ℓrdm(t)−min ℓrdm] = −‖∇ℓrdm(t)‖22 ≤ −ν (ℓrdm(t)−min ℓrdm) ,
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which by Grönwall’s inequality implies

0 ≤ ℓrdm(t)−min ℓrdm ≤ exp(−νt) [ℓrdm(0)−min ℓrdm] → 0

when t → ∞. From Lemma C.4, we know

d∑

i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
∑

i 6=j

ζiju
2
−1u

2
ij → 0 when t → ∞.

This implies

uiiu−1 →
ξi
γi

∀i ∈ [d],

uiju−1 → 0 ∀i 6= j ∈ [d].

(C.16)

We take square of uii(t)u−1(t) and uij(t)u−1(t), then sum over all i, j ∈ [d]. Then, we get

u2−1

∑d
i,j=1 u

2
ij →

∑d
i=1

ξ2i
γ2

i

. From Lemma C.5, we know for any t ≥ 0, u−1(t)
2 = tr

(
U11(U11)

⊤) =
∑d

i,j=1 u
2
ij . So we have

u−1(t)
4 = u2−1

d∑

i,j=1

u2ij →
d∑

i=1

ξ2i
γ2i

,

which implies

u−1(t) →
[

d∑

i=1

ξ2i
γ2i

] 1

4

(C.17)

when t → ∞. Combining (C.16) and (C.17), we conclude

uij(t) → 0 ∀i 6= j ∈ [d], uii(t) →
[

d∑

i=1

ξ2i
γ2i

]− 1

4

· ξi
γi

∀i ∈ [d].

D Technical lemmas

Lemma D.1 (Matrix Derivatives, Kronecker Product and Vectorization, [PP+08]). We denote A,B,X as

matrices and x as vectors. Then, we have

• ∂x⊤
Bx

∂x =
(
B+B

⊤)
x.

• Vec(AXB) =
(
B

⊤ ⊗A
)
Vec(X).

• tr
(
A

⊤
B
)
= Vec(A)⊤Vec(B).

• ∂
∂X tr

(
XBX

⊤) = XB
⊤ +XB.

• ∂
∂X tr

(
AX

⊤) = A.

• ∂
∂X tr

(
AXBX

⊤
C
)
= A

⊤
C

⊤
XB

⊤ +CAXB.
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Lemma D.2. If X is Gaussian random vector of d dimension, mean zero and covariance matrix Λ, and

A ∈ R
d×d is a fixed matrix. Then

E

[
XX⊤AXX⊤

]
= Λ

(
A+A⊤

)
Λ + tr(AΛ)Λ.

Proof. We denote X = (X1, ..., Xd)
⊤. Then,

XX⊤AXX⊤ = X(X⊤AX)X⊤ =




d∑

i,j=1

AijXiXj


XX⊤.

So we know (XX⊤AXX⊤)k,l =
(∑d

i,j=1AijXiXj

)
XkXl. From Isserlis’ Theorem in probability theory

(Theorem 1.1 in Michalowicz et al. [Mic+09], originally proposed in Wick [Wic50]), we know for any

i, j, k, l ∈ [d], it holds that

E
[
XiXjXkXl

]
= ΛijΛkl + ΛikΛjl + ΛilΛjk.

Then, we have for any fixed k, l ∈ [d],

E(XX⊤AXX⊤)k,l =
d∑

i,j=1

AijΛijΛkl +AijΛikΛjl +AijΛilΛjk

= tr(AΛ)Λkl + Λ⊤
k (A+A⊤)Λl.

Therefore, we know

E(XX⊤AXX⊤) = Λ
(
A+A⊤

)
Λ + tr(AΛ)Λ.

Lemma D.3 (Von-Neumann’s Trace Inequality). Let U, V ∈ R
d×n with d ≤ n. We have

tr
(
U⊤V

)
≤

d∑

i=1

σi(U)σi(V ) ≤ ‖U‖op ×
d∑

i=1

σi(V ) ≤
√
d · ‖U‖op‖V ‖F

where σ1(X) ≥ σ2(X) ≥ · · · ≥ σd(X) are the ordered singular values of X ∈ R
d×n.

Lemma D.4 ([MR99]). For any two positive semi-definitive matrices A,B ∈ R
d×d, we have

• tr[AB] ≥ 0.

• AB � 0 if and only if A and B commute.
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E Experiment details

In this section, we provide more details for the experiment in Figure 1. Our experimental setup is based on

the codebase provided by Garg et al. [Gar+22], with a modification that allows for the possibility that the

covariate distribution changes across prompts. We use the standard GPT2 architecture with 256 embedding

size, 12 layers and 8 heads [Rad+18] as implemented by HuggingFace [Wol+20]. For the GPT2 models, we

use the embedding method proposed by Garg et al. [Gar+22], where instead of concatenating x and y into a

single token, they are treated as separate tokens. It is also worth noting that the training objective function

for the GPT2 model is different than those we consider for the linear self-attention network: for the GPT2

model, the objective function is the average over the full length of the context sequence (predictions for each

xi using (xk, yk)k<i), while in our setting the objective function is only for the final query point. However,

in the figure, for both GPT2 and the linear self-attention model the error plotted corresponds to the error for

predicting the final query point.

In all experiments, covariates are sampled from a mean-zero Gaussian in d = 20 dimensions with either

fixed or random covariance matrix. For the fixed covariance case, we fix the covariance matrix to be identity;

for the random case, the covariance matrices are restricted to be diagonal and all diagonal entries are i.i.d.

sampled from the standard exponential distribution. The linear weights in all tasks are i.i.d. sampled from

standard Gaussian distribution and also independently from all covariates. We trained the model for 500000
steps using Adam [KB14] with a batch size of 64 and learning rate of 0.0001. We use the same curriculum

strategy of Garg et al. [Gar+22] for acceleration.

For testing the trained model, we used ordinary least squares as a baseline which is optimal for noiseless

linear regression tasks. For prompts at test time, covariates are sampled i.i.d. from a mean-zero Gaussian

distribution. For the fixed-covariance evaluation, the covariance is the identity matrix. In the random-

covariance evaluation, the covariance is a random diagonal matrix with diagonal entries sampled from the

standard exponential distribution, multiplied by a scaling coefficient c ∈ {1, 4, 9}, i.e. for each task τ, the

covariance matrix in the random case is

Λτ = c · diag (λτ,1, ..., λτ,d)

where λτ,i
i.i.d.∼ Exponential(1) for any τ and i ∈ [d]. The plots in Figure 1 show the error averaged over

642 prompts, where we sample 64 covariance matrices for each curve and 64 prompts for each covariance

matrix. We compute 90% confidence interval over 1000 bootstrap trials for each teat.
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