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Recent studies exploring the abilities of transformer-
based protein language models have highlighted their per-
formance on the task of remote homology detection, but
have not provided datasets or evaluation procedures geared
toward properly measuring performance on this task. With
the goal of obtaining more informative and reproducible re-
sults, we offer a detailed procedure for constructing datasets
and evaluating remote homology detection performance in
a way that allows detailed analyses to be performed that
shed light on the remote homology detection performance
throughout the “twilight zone” of low sequence similarity.
Using the proposed procedures, we found that three state-
of-the-art protein language models exhibit diminishing per-
formance when the pairwise sequence similarity between the
query sequence and other proteins is restricted to below 35%
identity.

Introduction
Protein Language Models (PLMs)(Bepler and Berger 2021;
Elnaggar et al. 2022a; Heinzinger et al. 2019), are
transformer-based(Vaswani, Shazeer et al. 2017) models that
are trained on large amounts of protein sequence data. In ad-
dition to effectively modelling the protein sequence, recent
studies(Rives, Meier et al. 2021) have indicated that PLMs
also implicitly model protein structure and function, mak-
ing their sequence representations useful for downstream
tasks such as predicting secondary structure (Elnaggar et al.
2022b), subcellular localization (Stärk et al. 2021; Elnag-
gar et al. 2022b), evolutionary relationships within protein
families (Hie et al. 2022) and superfamily (Kabir and Shehu
2022) and family (Nambiar et al. 2020) membership. One
task in particular that has been used as a “stress-test” of the
degree to which PLMs can learn structural information is
remote homology detection.

Remote homology detection refers to the task of identi-
fying pairs of proteins that share similar structure but have
a deceptively low level of similarity between their raw se-
quences. In particular, remote homology at the superfamily
level refers to proteins in the same superfamily but different
families, where superfamily membership indicates similar
structural characteristics and family membership indicates
a high degree of similarity in the protein sequence.

Several existing studies observe strong performance of
PLMs on remote homology detection, but these studies

seem to rely on simplified formulations of the remote ho-
mology problem to make this point. Specifically, the ho-
mology detection problem is often made easier by leav-
ing high-similarity pairs of sequences in the evaluation
dataset, making some homologs trivially identifiable from
the sequence-level commonalities alone. The simplified for-
mulation adopted by these studies also seems particularly in-
appropriate because contemporary structural biology litera-
ture frequently admits that the homology-detection problem
only becomes truly challenging when considering sequences
in the “twilight zone” of less than 35% identity(Rost 1999).

In addition, the existing studies do not provide detailed
procedures for reproducing the relevant datasets or evalua-
tions. This makes it difficult to replicate results and also ne-
cessitates starting from scratch when attempting to evaluate
new models or modify the evaluation procedure in any way.

In this paper, we seek to introduce detailed and repro-
ducible dataset construction procedures as well as a refined
evaluation method aimed at providing more informative re-
sults regarding performance in the low sequence-identity
setting.

Problem Formulation
A convenient definition of remote homology that has been
adopted by many recent computational studies relies on
the hierarchical protein classification system used to an-
notate proteins in the Structural Classification of Proteins
(SCOP2) (Andreeva, Howorth et al. 2013; Andreeva, Kule-
sha et al. 2019) and SCOPe(Chandonia, Guan et al. 2021;
Fox, Brenner, and Chandonia 2013) databases. In this sys-
tem, if two proteins are believed to share a common ances-
try due to common functional and structural features, they
are said to belong to the same superfamily. Family member-
ship, on the other hand, refers to proteins that share a high
similarity in their raw sequence. As such, sequences shar-
ing above 30% identity generally labeled as belonging to the
same family. It should be noted that there appear to be ex-
ceptions to these criteria because the classification is based
on identified clusters of similar proteins rather than describ-
ing all of the individual pairwise commonalities.

Basic Definition: Remote Homology
Following the definition from (Chen, Guo et al. 2016;
Strodthoff, Wagner et al. 2020; Rives, Meier et al. 2021),



we first define that a pair of proteins, pi and pj , are remote
homologs if they belong to the same superfamily but differ-
ent families, as follows:

areRemoteHomologs(pi, pj) ={
1, if SFi = SFj and Fi ̸= Fj

0, otherwise
(1)

where SFi and Fi define the superfamily and family label
annotation of the i-th protein.

Hardened Definition: Remote Homology
We harden the above definition to accommodate the se-
quence identity threshold and focus on the truly hard cases;
that is, no pair of remote homologs will share sequence iden-
tity more than a predefined threshold. This threshold will en-
sure that this pair falls into the ”twilight zone” (Rost 1999)
in terms of sequence identity. The sequence identity is com-
puted as a pairwise global alignment score. The extended
equation is as follows:

(2)

areRemoteHomologs(pi, pj , th) =
1, if SFi = SFj and Fi ̸= Fj

and identity(pi, pj) ≤ th

0, otherwise
(3)

Homology Detection Using Sequence
Representations
Following Rives et al.(Rives, Meier et al. 2021), we focus
on representation-based detection of remote homology. This
entails computing the cosine similarity between two vector-
encoded protein representations to predict whether or not
they are homologous. In this approach, sequence pairs with a
higher cosine similarity between their vector-representations
are taken to be more likely to be homologous than those with
low cosine similarity.

In the case of PLMs, protein representations can be ob-
tained by extracting their final-layer embeddings from the
transformer model.

PLMs for Remote Homology Prediction
In the context of PLMs, our interest in their remote ho-
mology detection performance is twofold: (1) More accu-
rate tools for remote homology prediction are needed in
structural biology research, where the still-imperfect HH-
blits(Remmert et al. 2011) algorithm is currently the state
of the art method for homology detection, and (2) observ-
ing PLM performance on remote homology detection can
shed light on the degree to which PLMs implicitly learn
about protein structure despite being trained only on raw se-
quences.

For both of these goals, the ability to gain a detailed
understanding of PLM performance for different sequence

identity thresholds is critical. For the purposes of this study,
we will consider protein representations from 3 state-of-the-
art PLMs: (1) ESM-1b(Rives, Meier et al. 2021), (2)ESM-
2(Verkuil et al. 2022), and (3)ProtTrans-T5(Elnaggar et al.
2022a).

Evaluation Datasets
In this section, we describe (1) the dataset construction
pipeline used by Rives et al. to evaluate PLM remote homol-
ogy detection and (2) our own enhanced dataset construction
and evaluation procedures.

Procedure from Rives et al.
The primary study of PLM performance on remote homol-
ogy detection is included in the paper by Rives et al. in-
troducing and analyzing the ESM1-b model.(Rives, Meier
et al. 2021) Here we reproduce their dataset construction
pipeline to the best of our ability, while noting that many
details in their description were unclear and no dataset was
made public for this task. The authors also did not respond
to our request for access to their evaluation dataset. Also
note that their evaluation involved calculation of area under
the receiver operating characteristic (AUROC) and HIT-10
metrics, but it is not clear whether these values are meant
to be macro-averaged across all queries or calculated for the
dataset as a whole. Due to time and resource constraints, we
take a random sample of 1000 query sequences to calculate
performance metrics on this dataset, and macro-average the
results across all queries.

Our attempt to reproduce their dataset construction
pipeline is shown in Figure 1. Note that our attempt to re-
construct their dataset had over twice as many unique remote
homolog pairs at the superfamily level when compared with
the number given in their original evaluation.

In addition to reproducing their original experiments, we
also evaluate PLMs on datasets generated using the same
procedure but using different sequence-identity threshold
subsets provided by the ASTRAL compendium (Dai et al.
2019).

Proposed Procedure
Unlike Rives et al., we choose to use the SCOP2(Andreeva,
Howorth et al. 2013; Andreeva, Kulesha et al. 2019)
database instead of SCOPe due to our observation that the
superfamily annotations in SCOP2 tend to be more reliable.

Our experimental setup is designed with the goal of acces-
sibility and reproducibility. As such, we opt to construct our
datasets using all sequences in SCOP2 with minimal pre-
processing or filtering. One exception to this is the removal
of sequences where multiple spans were indicated within
the same sequence, due to the ambiguity this creates when
assessing the domains of the sequence and sub-sequences.
We remove 506 such sequences compared with the total
of 36, 900 sequences provided in SCOP2 database. Conse-
quently, we have 2, 260, 440 remote-homolog pairs at the
superfamily level. Note that we analyze significantly more
remote-homologs (24 times) compared to Rives et. al (Rives,
Meier et al. 2021) that reports performance on 92, 944 pairs
of remote-homologs from SCOPe.



Remove Partial Sequences*

Rives et al. ESM-1 Remote Homology Dataset
 (Attempted Reconstruction)

Total Samples in SCOPe database 

ASTRAL Subset Omitting Sequences >40% Identity

N = 15,175
S = 2,066

F = 4,704
R = 678,536

Remove β-Propellers and Rossman-like Folds

N = 14,832
S = 2,040 

F = 4,621

R = 318,914

Remove Sequences with no Remote Homologs in Dataset*

N = 14,278
S = 1,999

F = 4,522
R = 281,355

N = 12,423
S = 827 

F = 3,350
R = 281,355

N = 93,264 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
S = 2,066 𝑠𝑢𝑝𝑒𝑟𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠

F = 5,048 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠   

𝑅 = 32,035,576 remote homolog  pairs

Further Filtering?

Best-Effort Reconstruction

Rives et al. 
Remote Homology 
Evaluation Dataset

N = 𝟏𝟐, 𝟒𝟐𝟑
𝑺 = 𝟖𝟐𝟕 

F = 𝟑, 𝟑𝟓𝟎
𝑹 = 𝟐𝟖𝟏, 𝟑𝟓𝟓

N = 𝒖𝒏𝒌𝒏𝒐𝒘𝒏
𝑺 = 𝟑𝟔𝟔 

F= 𝒖𝒏𝒌𝒏𝒐𝒘𝒏
𝑹 = 𝟗𝟐, 𝟗𝟒𝟒

Figure 1: Our attempt to reconstruct the remote homology
evaluation dataset used by Rives et al. Asterisks denote fil-
tering steps that were not explicitly mentioned but which we
executed in an attempt to bring the number of samples closer
to those reported by Rives et al.

Computing Sequence Similarity
To enable our analysis of the PLM representations of remote
homologs, we compute pairwise sequence alignments and
identity scores for each of the 2 ×

(
N
2

)
pairs of sequences

in the SCOP2 database. (Unlike the above ASTRAL subsets
available for SCOPe, we needed to compute these manually
for SCOP2.) To compute these, we used Biopython’s(Cock,
Antao et al. 2009) pairwise alignment tool with default pa-
rameters.

Sequence-Identity Thresholding We compute the per-
formance metrics using all protein sequences as individ-
ual queries. The thresholds we choose vary from 10% to
100% sequence identity with 5% increment. To compute
AUROC, AUPRC, and HIT-10, we do not perform any sub-
sampling or averaging of the protein sequences but instead
choose to calculate all query-vs-ground-truth pairs and com-
pute the metrics once over all samples, for each value of
the sequence-identity threshold. This has the advantage of
providing robust and reliable metrics, but this strategy also
weights our results in favor of the larger superfamilies when
compared with the strategy of sampling a single query from
each superfamily. So, to provide a more fine-grain analysis
at the superfamily level, we also report the same metrics for
individual superfamilies from ”hard” and ”soft” domains,
that is, difficult-to-predict and easy-to-predict superfamilies
for each PLM.

Query-based Analysis Using each sequence’s PLM-
learned embedding as a query (qi), we exclude all other se-
quences from the same family (Fi) from the corpus of se-
quences (C) that will be queried. In our case, C refers to
the set of all N sequences in SCOP2. We then exclude from
C all sequences sharing a sequence identity above a given
threshold th with the query sequence. The remaining query-
sequence pairs are denoted as {(qi, s)|qi ∈ C, s ∈ Ci},
where Ci = C \ (Fi ∪ {s ∈ C : identity(qi, s) > th}).

For evaluating the performance, we consider the ground
truth to be (i.e., the sequences are true homologs) if a se-
quence in the test dataset is from the same superfamily as
the query and false otherwise, in accordance with Equation .

We then compare the pairwise embedding similarities and
ground truths across all queries to obtain the following met-
rics:

1. Area Under Reciever Operating Characteristic Curve
(AUROC) (Davis and Goadrich 2006). We also report
DeLong variances in the AUROC(DeLong, DeLong, and
Clarke-Pearson 1988).

2. Hit-10 (Ma, Wang et al. 2014) is the percentage of
queries for which a true homolog was in the top-10 se-
quences with the most similar embeddings.

Comparative Analysis using Both Procedures
Using our enhanced dataset construction and evaluation pro-
cedure to measure Hit-10 and AUC, we are able to observe
diminished performance beginning at 35% sequence simi-
larity. These metrics are shown in Figure 3.



Figure 3: AUROC, DeLong variance in AUC, and Hit-10
score using embedding similarity as a predictor of homol-
ogy for embeddings from all three PLMs, as the filtering se-
quence identity threshold is decreased from 100% to 10%. A
threshold of 100% indicates no filtering beyond removal of
sequences in the same family as the query, following Eq. 1.
PLM embeddings of each sequence from the sequences in
SCOP2 are used as queries.
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Figure 2: Remote homology Detection Performance when
using the attempted reconstruction of the dataset and evalu-
ation in Rives et al. with the addition of multiple sequence-
identity thresholds.

By contrast, we can see that these weak points are hidden
when using our reconstruction of the original dataset and
evaluation procedure, whose results are shown for ESM-1b

and ProtTransT5 in Figure 2. The reason for the drastic per-
formance differences between the two datasets are unclear,
and further analysis must be done to determine whether it
stems from the dataset or evaluation procedures. A few po-
tential sources for the discrepancy could be: (1) A difference
in alignment algorithm and scoring function when comput-
ing identity scores between ASTRAL and biopython, (2)
the use of macro-averaged AUC rather than calculating the
AUC across all ground truths and predictions at once as we
did in our enhanced procedure, (3) our use of random sam-
pling when selecting queries for the reconstructed dataset
rather than using every available sequence as a query, (4)
drastic unexplained differences between the distributions of
sequences included in the SCOP2 and SCOPe databases.

These results highlight the degree to which dataset se-
lection and evaluation procedures affect performance in re-
mote homology detection. In follow-up work, we will in-
vestigate each of these possibilities to determine the exact
causes for the performance discrepancies and what they can
tell us about the specific success and failure cases of PLMs
in detecting remote homology.

Data Availability
The code to download and reproduce the datasets in this
paper can be found at: https://github.com/amoldwin/plm-
remote-homology-evaluation
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