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Abstract

Active learning is a promising paradigm for reduc-
ing labeling costs by strategically requesting labels
to improve model performance. However, existing
active learning methods often rely on expensive
acquisition functions, extensive model retraining,
and multiple rounds of interaction with annotators.
To address these limitations, we propose a novel
approach for active learning, which aims to select
batches of unlabeled instances through a learned
surrogate model for data acquisition. A key chal-
lenge in this approach is to develop an acquisition
function that generalizes well, as the history of
data, which forms part of the utility function’s in-
put, grows over time. Our novel algorithmic contri-
bution is a multi-task bilevel optimization frame-
work that predicts the relative utility—measured
by the validation accuracy—of different training
sets, and ensures the learned acquisition function
generalizes effectively. For cases where validation
accuracy is expensive to evaluate, we introduce
efficient interpolation-based surrogate models to
estimate the utility function, reducing the evalua-
tion cost. We demonstrate the performance of our
approach through extensive experiments on stan-
dard active classification benchmarks.

1 INTRODUCTION

Many decision making tasks involve maximization of utility
functions [|Chen et al.,[2015b, Jackson et al.||2019]. As an
example, utility in active learning (AL) can be represented in
various forms, such as expected error rate reduction [Muss-
mann et al., 2022} |Roy and McCallum, |2001]], mutual infor-
mation between the labeled and unlabeled datasets [Sourati
et al.| 2016} |/Adaimi and Thomaz, 2019 [Lindley} [1956], or
the uncertainty of model predictions [Settles, 2012, |Shen

et al.| 2017, [Kossen et al.l [2022]. However, maximizing
utility under budget constraints in AL is notoriously chal-
lenging. It is well-known that determining the optimal set
containing maximal information under cardinality constraint
is NP-hard [Ko et al., 1995, |Chen et al., 2015a]. In classifi-
cation tasks, determining the groundtruth utility of subset
of training data needs retraining classifier on that set (and
then evaluate it on the validation set). It’s computationally
infeasible to calculate out the utility for the best possible
subset for downstream tasks without carefully examining
every possible subset [Engstrom et al., 2024]. Moreover,
common AL methods rely on acquisition functions with
high adaptivity to the environment, in which the selection
choices for current round depend on the responses to the
labeling requests for all previous rounds. This reliance poses
major concerns for the deployment of these algorithms to
real-world applications, as there could be a substantial delay
between requesting labels and receiving feedback. For in-
stance, in scientific experiments, feedback from wet-lab or
physics experiments can take days or even months to obtain
[Botu and Ramprasad, 2015} |Yang et al.|[2019], limiting the
rounds of interactions with labelers, thus bearing the risk
of sampling redundant or less effective training examples
within a batch.

We thus ask: How to develop a robust acquisition crite-
rion for AL with only one round of interaction with anno-
tators given fixed budget constraints? So far, dominant AL
approaches rely on customized utility metrics characteriz-
ing the current model’s behavior. Recent works [Ash et al.,
2019, |Killamsetty et al., |2021, |Saran et al., [2023, |Senern
and Savaresel 2017] propose to use gradients of the current
model based on the pseudo labels of the unlabeled data. Yet,
these gradient estimates can be unreliable for single round
AL setting due to the limited data of labeled pool. The data-
models framework [Ilyas et al., 2022| showcases the linear
relationship between training data and model predictions,
a seemingly promising paradigm for designing acquisition
function. It is worth noting that the framework is under
supervised settings, i.e. requiring labeled subsets of train-


mailto:%3Czixin@uchicago.edu%3E?Subject=Learning%20to%20Rank%20for%20Active%20Learning

ing data and studies how the choice of training set affect
model predictions. Conversely, acquisition criteria in AL
are defined as function mapping from unlabeled instances,
or instances without label information, to real utility value.

In this paper, we focus on enhancing the robustness and
generalizability of deep active learning under one round
setting. Given the variability in deep learning models due to
different initializations, hyperparameters, network architec-
tures and training procedures [Jiang et al., {2021} |D’ Amour
et al., 2022, Zhong et al., |2021], the one-shot estimate of
validation accuracy can be highly stochastic, and thus we
resort to the idea of ranking as a strategy to mitigate the
inherent uncertainty. Rather than learning a predictor for
validation accuracy, we shift the perspective towards (ap-
proximately) comparing which subset of unlabeled pool
would lead to better generalization on validation set. Con-
cretely, in Section [d, we aim to approximate the relative
utility value of equal size subset of training data via a novel
variant of RankNet [Burges et al., [2005], which we refer
to as the utility model. This is achieved by integrating a
set-based neural network architecture, enabling us to extend
comparisons from individual examples to pairs of sets.

To accommodate the increasing labeled pool, we separate
samples based on the size of inputs and employ bilevel train-
ing to account for the growing training history. We introduce
a multi-task learning framework that uses the optimal
transport distance [Alvarez-Melis and Fusi, 2020] between
the current labeled data and validation set as an additional
loss, regularizing the utility model to enhance generalization
to new, unlabeled data, while being agnostic to training
dynamics of the underlying classifier. Furthermore, to refine
the utility model estimation and reduce the computational
overhead of obtaining groundtruth utility samples during the
pretraining stage, we employ interpolation-based techniques
to augment utility samples (defined in Section 4.1).

We summarize the above algorithmic insights into a
novel learning-based acquisition strategy, namely RAMBO
(Ranking-based Active learning via Multitask Bilevel
Optimization), as illustrated in Fig. [I. We conducted ex-
tensive experiments on various active learning benchmarks
in image classification, and showed that RAMBO consis-
tently outperforms existing learning/regression-based active
learning algorithms by a significant margin. Our method
offers a promising alternative for maximizing data utility
under budget constraints, unlocking potential applications
in a wide range of classification tasks.

2 RELATED WORK

Utility model learning. Surrogate models build on a
rich and growing body of machine learning literature
[Konyushkova et al., 2017, |Coleman et al., 2019, Kossen
et al.,[2022] llyas et al., 2022, Wang et al., [2023} [Engstrom

et al., [2024]. These works improve data acquisition by:
training a regressor to predict expected error rate reduc-
tion [Konyushkova et al., 2017, Wang et al., [2023], trim-
ming down model architectures/training epochs as proxy
models [Coleman et al., 2019, Wang et al., 2023], approxi-
mating the distribution of labels and unobserved features [[L1
and Oliva} 2021], and harnessing datamodels [Ilyas et al.,
2022] framework by minimizing trained model loss on tar-
get tasks [Engstrom et al.,[2024]. In contrast, our method
use ranking-based neural networks to learn a data acquisi-
tion function(utility model) estimating which subset would
yield higher utility value given a pair of equal size of subset
training data. Contrary to existing works, we train the utility
model by collecting much less samples and sampling from
various sizes of subsets rather than fixing subset sizes.

Planning-based vs learning-based AL strategies. Classi-
cal AL have predefined acquisition strategy including un-
certainty sampling [Settles, 2012} [Shen et al., 2017, |Gal
et al.,[2017], diversity sampling [Sener and Savarese, 2017,
Yehuda et al., 2022] or their combined approaches [Xie
et al., 2022, |Citovsky et al.| 2021, |Parvaneh et al., 2022].
Meanwhile, there is a long line of work on learning-based
acquisition function [Fang et al.,[2017,|Bachman et al.| 2017,
Wang et al., 2023, Sinha et al.| [2019, Yan et al.| 2022, Yoo
and Kweon, 2019| [L1 and Oliva, 2021, Killamsetty et al.,
2021]. For instance, priors works combine meta-learning
[Killamsetty et al.,[2021]] or semi-supervised learning [Bor-
sos et al., 2021] with bi-level optimization in designing
acquisition functions. Yoo and Kweon|[2019] adopt the idea
of ranking the predicted classifier loss in comparing two
instances as “loss prediction module”, querying instances
that the classifier is likely to predict wrong, and learn it to
predict target losses of unlabeled inputs. We draw inspira-
tions from [Killamsetty et al.|[2021], Yoo and Kweon|[2019]
by leveraging bi-level training as a subroutine for enhanc-
ing generalizability of utility model and querying highest
ranked unlabeled instances.

Learning to rank. Ranking techniques have been foun-
dational in fields such as information retrieval [Liu et al.,
2009], recommendation systems [Karatzoglou et al., 2013,
L1, 2022] and large language models [Ouyang et al., 2022].
Motivated by Yoo and Kweon [2019], L1 et al. [2021], we
shift from the traditional approach of learning cross-entropy
loss on unlabeled instances to ranking the utility for paired
subsets of data. While both works [[Yoo and Kweon, 2019,
Li et al.,[2021] view ranking predicted losses as an uncer-
tainty measure, our methodology centers on gauging the
utility of labeled data subsets, with the utility being the vali-
dation accuracy post-training. To the best of our knowledge,
our method is the first to incorporate the idea of ranking be-
tween pairs of subsets and link it directly to the performance
of the learning algorithm on the validation set. We will show
the computational advantages and empirical successes of
integrating RankNet [Burges et al.,2005] and sidestepping
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Figure 1: Overview of the RAMBO algorithm. For pretraining stage, we learn a RankNet over pairs of utility samples via
multi-task bilevel optimization; for acquisition stage, we follow the learned utility function to iteratively query data points in
minibatches. Details of the algorithm are provided in Section

regressing on unlabeled subsets in Section

3 PROBLEM STATEMENT

Consider a ground set of data points X" with the groundtruth
labeling function f* : X — ). The active learning problem
in our study unfolds in a two-stage protocol:

1. A pretraining stage, where we train an acquisition
function from an initial pool of data points;

2. An acquisition stage, where we actively select a set of
new examples to label all at once.

We denote the initial pretraining (labeled) set by Sy with
Sop € X and |Sp| = k, and denote the labeled set after
the acquisition stage by S; with |S;| = k + B where B
represents the labeling budget. The unlabeled sets before and
after acquisition are represented as U and U; respectively.
The groundtruth utility function is defined as v : 2% — R,
where u(€) quantifies the utility of a subset £ C X by
evaluating the validation accuracy of the classifier f induced
by the (labeled) data in £. Our goal is to find the optimal
subset S7 such that f, when trained on it, achieves the
highest validation accuracy, thereby optimizing the utility
function w:

Sy € arg max
SoCS1CX,|S1\So|=B
Here, u(S1) = EL[1(f(x) # f*(x)) | S1] for classification
tasks, and can be estimated by the error rate of the resulting
f on a validation set Sy C X.

u(S1) ey

Learning « in Equation I is challenging in our setting. In-
deed, even approximating u requires the groundtruth utility
for a large collection of subsets of the labeled pool, under
the practical constraints of a limited labeling budget. We
emphasize that the instances are selected non-adaptively in
the acquisition stage, i.e., our selection of instances does
not depend on the labels of previously selected instances.

We aim to devise an acquisition strategy for subset selection
with maximal downstream classification accuracy.

4 METHODOLOGY

We introduce our algorithm, RAMBO, following the two-
stage learning protocol described previously. In a nutshell,
RAMBO (1) collects training samples for pretraining utility
model, and (2) greedily selects the batch with the maximal
estimated utility value from one to total batches ¢ in the
acquisition stage. We divide the pretraining stage into 73
iterations and the acquisition stage into 7o iterations with
mini-batch size b for each iteration. More precisely, we
instantiate RAMBO into the following building blocks:

a) Develop a set-based multitask neural network model 4
as a surrogate model for pertaining;

b) Define the loss function for the utility model ;

c) Sample a collection of subsets {(&,u(€))}: C So
where ¢ € [1,71] as a growing labeled set up to Sy
for training u;

d) Update the set based model @ per iteration of the pre-
training stage;

e) Greedily follow the learned utility model # in the ac-
quisition stage.

4.1 A TWO-STAGE ACTIVE LEARNING
FRAMEWORK

So far, we have defined the framework and will unravel a)-d)
above to discuss each relevant aspect respectively:

a) What surrogate models « should we use? Similar to
Ilyas et al.|[2022], by parametrizing a surrogate model with
training samples, we transform the surrogate model con-
struction into a supervised learning task (See Definition|[I)).
In our context, the training samples & are subsets of pretrain-
ing set Sp and the utility value is u (). Throughout this work,



we refer to the pairs (£, u(€)) as utility samples. It is appeal-
ing to adopt their linearity assumption into AL setting due to
strong theoretical footing [Saunshi et al., 2022] and simplic-
ity in model architectures. Nevertheless, to avoid extensive
sample collection and model retraining [Ilyas et al.| |[2022],
we hence prefer more complex architectures for modeling
the interaction between elements within each utility sample.
One natural candidate for @ is set-based neural networks due
to their strong expressive power (i.e., Set Transformer [Lee
et al., 2019] or Deep Sets [Zaheer et al., 2017]). Denote the
general set-based neural network(NN) as

12a) = p(pool({p(x1), - d(xa)})

where {z;}?_, represents a single utility sample & with size
a and ¢, p is the feature extractor and regressor for the set-
based NN itself.

net(§) = net(xq, ...

In experiments, we find set-based NN shall serve as a prim-
itive for utility models, but still, it lacks principled super-
vision signals for model training. Engstrom et al. [2024]
train millions of cheap datamodels [llyas et al.| [2022] in
the hope of better generalization for unseen tasks, while
in our setting, we shall not afford large-scale training due
to computational infeasibility and aim to obtain good util-
ity model with hundreds of samples for faster deployment.
Therefore, we need a more fine-grained signal that would tie
labeled data and validation set. In particular, Alvarez-Melis
and Fusi [2020] introduce the notion of geometric distance
via optimal transport (OT) between two datasets and Just
et al. [2023] extend it as a learning-agnostic proxy for mea-
suring model performance on S,;. The celebrated success
of OT distance in predicting validation set accuracy [Just
et al.,|2023| enables us to cast the groundtruth OT distance
between utility samples and validation set [|Alvarez-Melis
and Fusi, 2020] as a supervision signal for the utility model.

Definition 1 (Surrogate Utility Model). Let X" be the in-
stance domain, and & be any sampled subset drawn from
the distribution D over X. A surrogate utility model 4.(§) is
a set function mapping from 2% — R, optimized to predict
the true utility u(§) on a training set £ ~ D:

@ = arg min E§~D [L(Tw (&), u(&)] )

U

where L(-,-) denotes the loss function, and ., is a para-
metric set function to approximate u.

b) What loss function should we minimize? One natu-
ral choice is to minimize the MSE (mean square error) of
estimated and true utility value as £ = (4 — u)?. Yet, the
evaluation of validation accuracy is non-deterministic (thus
stochastic) due to the aleatoric uncertainty of the classifier
itself [Park et al.,[2023]. While the simplistic way is to train
a neural network to approximate the utility value in a regres-
sion fashion and minimize the MSE, we fail to learn a good
utility model by regressing validation accuracy on a set of

utility samples (See Section[5.4 for ablation study on casting
utility model as regression). An alternative for loss function
lies in the idea of pairwise ranking, simplifying regression
problem to ranking problem. Yoo and Kweon|[2019] intro-
duce a loss prediction module to predict the classifier loss
on a single data point and handicraft the loss function for
predicting the classifier loss in a pairwise ranking fashion.
For minibatch samples with size d, Yoo and Kweon|[2019]
divide it into d/2 pairs and rank the differences between
each pair of predicted and groundtruth losses to discard the
overall loss scale. Extending the idea of ranking classifica-
tion loss between pairs of instances to rank the utility value,
we incorporate the classical RankNet [Burges et al.|[2005]
structure to rank between pairs of equal-size utility samples
with OT distance as a regularizer in the final loss.

Definition 2 (Ranking Loss). Given X, and let &1,&5 be
two sampled subset drawn from distribution D over X with
equal size d. Denote the utility value (validation accuracy)
of &1 as uy and the utility value of &5 as us. W.lo.g. suppose
Uy > Uz, U12 = U1 — Ug. Specifically, u; > uy is taken to
mean that the surrogate utility model U asserts that &1 > &o.
Denote the modeled posterior P(uy I> uz) by Pio, and let
Py be the desired target values for those posteriors. The
Binary Cross Entropy (BCE) loss for pair (£1,&5) is written
as

Lrank = —P121og Pia — (1 — P12)log(1 — Pis).

With this metric in hand, we shall guide 4 to learn the
principled signal ties to validation set accuracy and ignore
the shifting distribution between labeled data and S,,4; in
the acquisition stage (See Definition [3). Even though OT
distance can be approximated in near-linear time complexity
[Altschuler et al.,[2017], our goal is to estimate which subset
of training data yields the highest validation accuracy rather
than approximating OT distance itself. To circumvent the
computational infeasibility, we leverage the OT distance as
a supervision signal to regularize @ rather than serving as
an input to u. We show the efficacy of incorporating OT
Distance Loss in Section 5.4

Definition 3 (OT Distance Loss). Given two utility samples
&1, &o. Denote the corresponding ground truth OT distance
values by OTy, OTs, and the predicted OT distance values
as dTl and OATQ. The OT distance loss is defined as

Lor =M1 (0T1 — OT1)? + Ao (0T — OTy)?
— A3(min(OT1, 0) 4+ min(OT, 0))

where A1, A2, A3 are hyperparameters.

Here, the first two terms are mean squared error for OT dis-
tances and the third terms are positive constraints. Intuitively,
the OT distance loss specifies the penalty for mispredicting
the OT distance values of utility samples &; and ;. Com-
bining the ranking loss and the OT distance loss, we obtain
the loss function for RAMBO over pairs of utility samples:



Definition 4 (Total Loss for Utility Model). Given two
utility samples &1, 5. The total loss over (€1, &) is defined
as

»CTaml = ['Rank + )\OT ' EOT (3)

where Aor is a hyperparameter.

¢) How do we collect utility samples iteratively? The
very first question encountered during pretraining is how
to generate utility samples. [llyas et al.| [2022] construct
training subsets by random sampling a fixed-length subset.
One caveat in our setting is the growing length of labeled
sets as the progression of the active learner. To enable the
model to adapt to the growing length of utility samples, one
needs to incorporate diversity in the size of £. One natural
choice is to perform rejection sampling from the powerset of
So, i.e., & ~ 25 Instead of fixing the sampling proportion,
we propose to fix the number of utility samples collected
from Sy per iteration during pretraining as n.

d) How do we update the set-based NN during pretrain-
ing? As mentioned in Section |4.1 the length of labeled
utility samples grows, and random split for training and val-
idation set may fail to capture the notion of generalizability
in neural batch active learning. The goal of the utility model
is to generalize to the longer length of utility samples and
learn a general mapping from utility sample to validation ac-
curacy. Inspired by bilevel training work [Franceschi et al.,
2018} |(Grazzi et al., [2020} Borsos et al.l 2021]], we employ a
bilevel framework to separate the utility samples by length.
In practice, we separate the validation set and training set
by 50% and 50% for simplicity. We retrain the set-based
NN per iteration with the accumulation of utility samples
per iteration. We defer the complete discussion of bi-level
training to Section[4.2.1]

e) How do we acquire data in the acquisition stage? In
the context of utility maximization, perhaps the simplest
candidate is to select the instance with the largest predicted
utility. Popular approaches rely on sequentially picking one
data point per round [Houlsby et al., 2011} Gal et al.,[2017]]
though the addition of a single data point causes minimal
change to validation accuracy while increasing the cost of
model retraining. |Alieva et al.|[2020] suggest that for many
sequential decision making problems, greedy heuristics for
sequentially selecting actions exhibit superior performance
without invoking expensive evaluation oracles. Recall that
one shall interpret @ as a score-based acquisition function
and leverage it for sequential decision making, i.e. to greed-
ily select unlabeled data with the highest predicted util-
ity. Inspired by (Citovsky et al.|[2021], we employ Margin
Sampling [Roth and Small} 2006] as a filter for unlabeled
instances i.e., select M unlabeled instances with lowest
margin scores, per iteration in the acquisition stage (See
Algorithm [2). We propose to randomly split I, into batches
of size b, concatenate each batch to the current labeled pool,

Algorithm 1 RAMBO

1: Input: B, Uy, So X, b, M, n, Spal-

2: Output: S;

3: Initialize (4o, ¢o) from offline dataset

4: Randomly divide Sy with size k into Sy with size kq
and {s1, $2...57, } with each size b and set Uy = Uy

7bk1 and Ty = %

5.1 =

6: Train f on Sy and get accuracy on S, as accg
7: Dy + {}

8: fori=0:7 do > Pretraining
9: S¢+1 «~— S; U {Si+1}

10: Train f on S; 41

11: Obtain accuracy on Sy as acc; 11

12: D; 41 < Utility-Samples-Augmentation(S;,

13: Siy1,n,acc;, acciy1, D;)
14: Train 4; from D; 4 > Bilevel Optimization
15: for j =0: 72 do > Acquisition
16: Si+1,Ujs1 < Greedy-Margin(4, , 7,0, S;, M, Uj)

17: S1,Uy = S,,, Us,

Algorithm 2 Greedy-Margin

1: Input: 4, j, b, S;, M, Uj.

2: Output: Sjy1, Ujiq

3: R — a subset obtained by smallest margin scores M
examples from U; \ S;

4: Randomly divide R into {[£]} batches of subsets
(@), )

5t bmax ¢ ArgmMaxy(, o je(| &) a(S; U (2:)b_)

6: Sj+1 — Sj U {bmax}

7. Uj+1 — Uj \ {bmax}

and then use the concatenated batch as input to 4 for utility
prediction. We perform sequential batch selection within
the acquisition stage and select the unlabeled batch with the
largest predicted score.

4.2 THE RAMBO ALGORITHM

The essence of our two-stage utility model aligns with
Shakespeare’s famous line from The Tempest, “What’s past
is prologue.” Our overarching motivation is to train an ac-
quisition function on past utility samples that generalize
well to utility samples of longer history. We initialize the
utility model by collecting and training samples from of-
fline datasets, providing an initial estimate of the feature
extractor ¢g. This initial feature extractor ¢ (-) can serve as
a warm start for non-adaptive batch selection in the acqui-
sition stage. We emphasize the need for this initialization
step as RAMBO designed for single-round acquisition.



Algorithm 3 Utility-Samples-Augmentation

1: Input: Si: Si—‘—l’ n, acc;, accCiy1, Dz

2: Output: D; 4

3: for j € range(n) do

4: Sample random a pair of (1, &2) from S; with equal
size

5: Compute distance between ¢(&1) and ¢(.5;) as d1 ;
and distance between ¢(&1) and ¢(S; 1) as dyiy1.
Same Rule applies to £, to obtain dy ; and da ;4.

6: Calculate uq, us for & and &, by Equation 4]

: Di%DiU{(flvul)v(g%uQ)}
8: Di+1 +«— D;

4.2.1 Bi-Level Optimization

To align with the growing labeled pool of AL setting, a core
requirement of our utility model is the capability to gener-
alize to longer and unseen data by drawing on prior utility
samples. A line of research [Rajeswaran et al., 2019, Liu
et al., 2019] suggests that meta-learning shall lead to fast
adaptation and generalization to new tasks. One formulation
of meta-learning is bi-level optimization [Maclaurin et al.|
2015] where the inner objective represents the adaptation
to a given task and the outer problem is the meta-training
objective. Motivated by [Franceschi et al.|[2018], we formu-
late utility model training as bilevel optimization, combin-
ing gradient-based hyperparameter optimization and meta-
learning in which the outer optimization problem is solved
subject to the optimality of an inner optimization problem.
To improve its generalization capability on samples with
varied lengths, we divide the utility samples (&, u(&)) at
iteration ¢ to training D, and validation set D, by length,
where Dy, corresponds to utility samples with length smaller
than the median and vice versa, and treat them as input
dataset for inner objective L and outer objective E. We
consider the bilevel optimization framework as

m}%n E(w(A),A) s.t. w(A\) = arg min L(w0)

weRd

where A is a hyperparameter, £ and £ are continuously
differentiable functions, the outer objective

E(w(X),\) == Lotal (W)
{(51,u(51))5(55,u(53)) }€Dva

and the inner objective as

L) = >

{(81,u(51)),(S5,u(S5)) } €Dy

»CTolal (UA)) + Q)\ (ﬁ})

where Dy = {(&1,u(&1)), (&2, u(&€2)) 1, is a set of pair of
utility samples attributed to the training set, Ly (+) is the
loss function specified in Definition 4, and Q) is a regular-
izer parametrized by \. The outer objective is the proxy of

the generalization error of 4(-), given by the average loss
on D,g.

The inner optimization is aimed at utility model optimiza-
tion, i.e., finding the best parameters that minimize the loss
on smaller length training samples Dy;. Conversely, the outer
optimization targets to generalize the model to longer-length
utility samples D,,;, which seeks the optimal regularizer pa-
rameterized by A. With bilevel formulation, RAMBO shows
better and more stable performance when performing unla-
beled data selection on CIFAR10 with labeling budge 5000
(as suggested by Table[T). Table[I|shows the average perfor-
mance of models with bilevel training used in optimization,
which mostly outperforms the rest of counterparts without
bilevel training, illustrating the enhanced generalizability
across various model architectures and training algorithms.

4.2.2 Interpolation-Based Utility Samples

In contrast to thousands or even millions of training samples
for datamodels framework |[lyas et al.|[2022], Engstrom et al.
[2024], the scarcity of utility samples poses challenges to
the efficacy of our utility model training. We resort to the
consistency regularization techniques from semi-supervised
learning to augment artificial (£, w(€)). Inspired by [Par;
vaneh et al.|[2022], the latent space of the classifier’s feature
extractor shall contain valuable representations that can be
interpolated within labeled instances. The empirical suc-
cess suggests a change in perspective—rather than twisting
the classifier, we leverage the shared representations in @
throughout the progress of optimization. In particular, we
adopt the interpolation consistency regularization strategy
[Verma et al., [2022] (Definition @ The pseudo code for
utility samples augmentation is outlined in Algorithm 3]

Definition 5 (Utility Value Interpolation). Denote the val-
idation accuracy at iteration i as acc;. For a given utility
sample &1, let dy ; be its distancemwith the previous labeled
pool S; and dy ;11 the distance with the current labeled
pool S; 1. The augmented utility value uy for & yields as

up =a-u; + (1 —a) uip )

dy i1

with o := T

S EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate the performance of RAMBO on four active
learning benchmarks in image classification: MNIST [Le-
Cun et al., 1998], FashionMNIST [Xiao et al.| [2017], CI-
FAR10 [Krizhevsky et al.,[2009], SVHN[Netzer et al.,[2011].

!The OT distance is computed by utilizing utility model latent
space representation.



To facilitate a thorough comparison against the baselines,
we evaluated them across various acquisition stage budget
B as {500, 700, 900, 1000} for MNIST and FashionMNIST
with k& = 200, {5000, 7000, 9000, 10000} for CIFAR10
and SVHN with £ = 2500. We focus on the accuracy of
the validation set as the key performance metric, with the
validation set size fixed at 1000 for all datasets. We ran each
experiment ten times and reported average and standard
error across all experiments.

We consider two network architectures: For MNIST and
FashionMNIST, we utilized a neural network structure simi-
lar to LeNet [LeCun et al.,|1998], as suggested by Beck et al.
[2021], and for CIFAR10 and SVHN, we employed ResNet-
18 [He et al., 2016]. We defer the details of utility model
architecture and the choice of classifiers to the Appendix [A.

We fit all classifiers using cross-entropy loss with the Adam
optimizer until training accuracy exceeds 99% with maxi-
mum 100 epochs and learning rate 0.001. No learning rate
schedulers or data augmentations are used.

5.2 BASELINES

While numerous AL methods has been proposed for specific
tasks such as object detection [[Yuan et al.,[2021]], semantic
segmentation [Kim et al., 2021] and instance segmentation
[Chaplot et al., 2021], these algorithms rely on heuristics
acquisition functions and are not suitable to the single-round
setting considered in this work. Hence, we mainly consider
the state-of-the-art learning-based AL baselines designed
for the single-round AL setting:

DULO [Wang et al.,|2023]: A learning based approach cu-
rated for one round AL setting by selecting a subset with
size B instances from Uy which maximize a learned utility
function. DOLO relies on a regression-based surrogate util-
ity function, and employs a stochastic block-wise greedy
selection strategy for batch acquisition. In contrast, our algo-
rithm utilizes a RankNet with a multi-task training loss for
training the acquisition function, and uses the greedy-margin
subroutine for data acquisition.

LLAL [Yoo and Kweon|[2019]: A learning based approach
estimating the errors of the predictions (loss) made by the
classifier and select B unlabeled instances with top pre-
dicted losses.

We also include a RANDOM strategy as baseline, which
selects B samples uniformly at random. For additional com-
parisons against a collection of non-task-aware, heuristic-

Baselines use implementations from open-source AL toolkit
DISTIL [Team|[2023]. All models are trained in PyTorch [Paszke
et al.|[2017].

7Yoo and Kweon [2019]] design loss prediction module using
middle layers of ResNet18. For FashionMNIST and MNIST, we
extract middle layers of Beck et al. [2021]’s neural networks.

based AL baselines, please refer to the supplemental results
in Appendix [B.T.

5.3 MAIN RESULTS

In Figure 2} RAMBO outperforms most of the baselines
across multiple architectures and various labeling budgets
for the acquisition stage. For easy datasets like Fashion-
MNIST and MNIST, RAMBO shall learn a good shared
representation for effective utility value interpolation and
can easily beat all the baselines oblivious to different la-
beling budgets which suggests RAMBO is a good choice
regardless of labeling budget. Even though MNIST and
FashionMNIST are easy to learn, but due to limited labeled
pool, LLAL [Yoo and Kweon| 2019] fails to learn a good
loss prediction module or uncertainty estimate, and thus
RAMBO has a substantial gain compared to it. However,
RAMBO performs interpolation techniques to augment util-
ity samples within a limited labeled pool and generalize to
predictions of a longer history of labeled data, leading to a
learning-based acquisition function amenable to the grow-
ing labeled pool. For more challenging datasets, such as
CIFAR10 and SVHN, when the model fails to have good
architecture priors due to a limited labeled pool, RAMBO
outperforms DULO [Wang et al.|[2023] in large gain com-
pared to easy datasets. We conjecture it’s because ranking is
generally easier for model to learn compared to regression,
especially under complex dataset (Figure|[T).

5.4 ABLATION STUDY

We perform an ablation study on the size of Pretraining set,
the design choices of each submodule as bilevel training,
OT distance and RankNet as well as hyperparameter for
OT Distance Loss (Definition [4). We use CIFAR10 as an
example dataset, and defer our results on the remaining
datasets to the Appendix [B]

Size of pretraining budget £  Naturally, we want to exam-
ine the effect of size of pretraining set for determining how
the scale of initial labeled pool impacts overall single round
selection performance. Figure [2e] shows across different
seed set size for pretraining stage, RAMBO outperforms
all other baselines.

Bi-level training, OT Distance and RankNet Next, we
shift to study the intertwined effects of three design choices.
Table [I] shows the combined efficacy of bilevel training,
OT distance, and RankNet, offering insights into the syn-
ergy of these three foundational modules. The cross mark
for RankNet means regression based acquisition function
and the loss is designed as MSE between predicted util-
ity vs. true utility value. One thing to note is that if the
performance of regression based acquisition function with-
out bi-level training and OT distance is similar to random,
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which corroborates our intuition about ranking instead of
regressing validation accuracy on labeled samples.

Table 1: Ablation study on three submodules with pretrain-
ing set & = 3500 and acquisition budget B = 5000. The
last row corresponds to the random baseline.

Bilevel Optimal Transport ~RankNet Accuracy
v v v 77.3+£0.2
v v X 76.1+0.3
v X v 76.2£0.4
v X X 70.5+0.3
X v v 75.5£0.3
X v X 75.5 £ 0.3
X X v 76.0 £0.8
X X X 74.6 £ 0.7
- - - 74.7+£0.3

Hyperparameter Tuning for OT distance By definition,
Lotal = LRank,» + Aot - Lot (Definition[d). One can change
the scale of Aor for utility model training in pretraining.
We study the effect of hyperparameter Agr in final model
performance on validation set. We highlight the importance
of incorporating OT distance into the loss structure which
makes « insensitive to the scale of Agr. When Aot > 0,
the overall validation accuracy is larger than Aot = 0. The
choice of A\gr is specific to dataset and batch setting and we
present one setting of A\gr with varied Labeling Budget for
acquisition stage in Figure [2f] We also provide additional

results on more fine-grained orders of magnitude of Ao in
Appendix [B.6!

5.5 ROBUSTNESS ANALYSIS

Validation set size vs. validation accuracy One poten-
tial concern of surrogate model training is the consistency
and robustness of utility across different subset sizes. In
real-world applications, it is crucial to adapt to scenarios
with varying data availability, ranging from scarce data, re-
sulting in small validation sets [Hacohen et al., [2022], to
situations with ample labeled examples, leading to larger
validation sets [Citovsky et al., [2021]. To account for the
variations in validation set size, we conduct experiments to
measure validation set accuracy across various sizes. Us-
ing CIFAR10 as a benchmark dataset, we evaluated 100
randomly collected utility samples, assessing utility values
across validation set sizes of 200, 400, 600, 800, 1000. As
illustrated in Figure [3a} the average validation set accuracy
remains consistent regardless of the validation set size, with
the standard error decreasing as the size of the validation
set increases. We have also conducted sensitivity analysis
of validation accuracy w.r.t the size of validation set size for
MNIST, FashionMNIST and SVHN in Appendix [B.2!

Noisy oracles The quality of labels provided by an oracle
can vary depending on the expertise of human annotators.
For example, labels from medical images annotated by ex-
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perts are likely to be more accurate compared to crowd-
sourced data from non-experts. To examine the robustness
of RAMBO, we investigate the impact of a noisy oracle,
which non-adversarially generated erroneous labels for cer-
tain classes. We randomly changed the groundtruth labels
for 20% of the data to reflect incorrect labeling. Figure @
denotes RAMBO outperforms the rest of three baselines by
a large margin even though all of four methods are greatly
affected by noisy labels with performances dropped by 30%.

Class-Imbalance The issue of class imbalance, where
some classes are underrepresented compared to others, can
significantly affect the performance of active learning algo-
rithms. To investigate the robustness of RAMBO in such
scenarios, we follow class-imbalanced settings similar to
Killamsetty et al. [2021] and artificially generate class-
imbalance for the above dataset by removing 20% of the
instances from 30% of total classes available. Figure [3¢]il-
lustrates that RAMBO exhibits a much greater advantage
over other baselines.

6 CONCLUSION

We have demonstrated existing state-of-the-art methods can
be suboptimal in single round selection. We show that un-
der certain budget for pretraining, RAMBO shall achieve
better generalization performance compared to other active
learning algorithms, and that most of validation accuracy
improvement is realized by our two-stage algorithm. Fi-
nally, we illustrate how behaviors of all algorithms change
with variation of pretraining and single round acquisition
budget across multiple datasets and architectures. One po-
tential direction for future work could be to determine an
optimal budget allocation for both the pretraining and ac-
quisition stages, as well as the extension of RAMBO to the
few-rounds setting.
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A UTILITY MODEL ARCHITECTURE
AND CHOICE OF CLASSIFIERS

Here, we describe the acquisition network (Utility Model)
discussed in Section

A.1 MNIST AND FASHIONMNIST

Our architecture performs the following operations on pairs
of subsets of images (Utility Samples) with equal size. We
use below networks as feature extractor for pairs of raw
embeddings of images. For each one within the pair:

—_

. 2-D Convolution on set of images.

. 2-D Max Pool on output of (1).

. ReLU on output of (2).

. 2-D DropOut on output of (3).

. 2-D Max Pool on output of (4).

. ReLU on output of (5).

. Fully-Connected Layer on Output of (6).
. ReL.U on output of (7).

O 0 N N W A W

. 2-D DropOut on output of (8).
10. Fully-Connected Layer on output of (9).
11. ReLU on output of (10).
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A.2 CIFAR10 AND SVHN

We use pretrained ResNet-18 on ImageNet as feature extrac-
tor and perform the following operations on pairs of subsets
of extracted features for each image. For each one within
the pair:

1. Fully Connected Layer on set of feature embeddings.
2. ReLU on output of (1).
3. Fully Connected Layer on output of (2).

A.3 MUTITASK SET-BASED NEURAL
NETWORKS WITH RANKNET

After average pooling of output of (11) for MNIST and Fash-
ionMNIST in Section [A.T]and output of (3) for CIFAR10
and SVHN in Section|A.2]

for each one within the pair, we perform the following oper-
ations:

1. Fully Connected Layer on extracted features
2. ReLU on output of (1).
3. Fully Connected Layer on output of (2).

Denote the output of (3) as ¢, and ¢- for both the first one
and second one in each pair of utility sample.

For the prediction of probability score that which subset
has larger utility value in the pair, we apply RankNet on ¢
and ¢ for pair comparison. The output score predicted by
RankNet is the final probability score that we shall use to
determine whether the first set has larger utility value than
the second.

For the interpolation of utility value, we use ¢ and ¢ as
embedding. For computing the distance between above two
embeddings, we resort to the Euclidean distance.

For the prediction of optimal transport distance, we use
MLP projection head for ¢; and ¢3:

1. Fully Connected Layer on ¢ and ¢o
2. ReLU on outputs of (1)
3. Fully-Connected Layer on outputs of (2).

We use the outputs of (3) as a supervision signal in designing
the loss function for the utility model (see Definition [3 in
Section [4)).

We choose A1, Ao to be 0.5 and A3 to be 1.

A.4 CHOICE OF CLASSIFIERS

The reason why we do not use ResNet-18 for MNIST type
datasets is that ResNet-18 might be an overkill for MNIST
and FashionMNIST as MNIST is a relatively simple dataset

consisting of grayscale images of handwritten digits with a
resolution of 28x28 pixels. ResNet18 is a complex architec-
ture designed for much more challenging image recognition
tasks. Moreover, due to its depth and complexity, ResNet18
has a lot more parameters compared to simpler models.
Training such a large model on a 700 data points for MNIST
could lead to overfitting with poor generalization. In fact,
with 700 labeled MNIST data points, the ResNet-18 struc-
ture only achieves, on average, 78 % validation set accuracy.

B SUPPLEMENTAL EXPERIMENTAL
RESULTS

B.1 ADDITIONAL AL BASELINES

We also consider non-task-aware and representative deep
AL baselines. For all experiments, we include a classical
Margin Sampling algorithm, two recent active learning algo-
rithms, BADGE and CoreSet, one learning-based algorithm,
GLISTER, and random selection Random.

Margin Sampling [Roth and Small| [2006]: Selects B ex-
amples from U/, with the smallest difference between the
first and second most probable classes predicted by f.

BADGE [Ash et al.; 2019]: A hyperparameter-free ap-
proach that trades between diversity and uncertainty using
k-means+-+ in hallucinated gradient space.

CoreSet [[Sener and Savarese, [2017]]: A diversity-based ap-
proach using greedy approximation to the k-center problem
on representations from the current classifier’s penultimate
layer.

GLISTER [Killamsetty et al.,[2021]: A learning-based ap-
proach selecting B instances from U{, that would maximize
the log-likelihood on held-out validation set S,,4; by convert-
ing it as a mixed discrete-continuous bilevel optimization.
We adopt the GLISTER-ONLINE version as an approxima-
tion for the inner optimization problem by taking a single
gradient step update.

B.2 VALIDATION SET SIZE VS. VALIDATION
ACCURACY

In addition to Fig3a), we provide additional results on valida-
tion set accuracy w.r.t the size of the validation set (averaged
across ten trials) in Table[2, These results demonstrate the
robustness of validation accuracy as a consistent measure
of utility value, with the standard error inside the parenthe-
ses generally decreasing as the validation set size increases.
Even at smaller validation set sizes of 50 or 100—signifi-
cantly less than the pretraining set size Sp = k—the accu-
racy measures are comparable to those observed with larger
sizes, such as 800 or 1000.



Dataset\validation size 50 100 200

400 600 800 1000

SVHN

MNIST
FashionMNIST
CIFAR10

0.132(0.018) 0.132(0.012) 0.133(0.011) 0.130(0.010) 0.136(0.009) 0.130(0.009) 0.130(0.008)
0.758(0.007) 0.757(0.005) 0.763(0.001) 0.764(0.003) 0.760(0.009) 0.770(0.009) 0.764(0.008)
0.699(0.023) 0.714(0.015) 0.707(0.011) 0.712(0.009) 0.712(0.009) 0.707(0.009) 0.712(0.009)
0.358(0.020) 0.372(0.016) 0.370(0.007) 0.365(0.008) 0.366(0.005) 0.368(0.003) 0.366(0.003)

Table 2: Validation performance across different datasets and validation sizes.

B.3 ADDITIONAL RESULTS ON CLEAN DATA,
NOISY ORACLES, AND CLASS-IMBALANCE
SETTINGS

We follow the settings and present additional results, in-
cluding both the learning-based, one-round AL baselines
discussed in the main paper and the deep AL baselines
described in Appendix [B.1. In particular, we focus on all
scenarios, including the default clean data setting, the noisy
oracle setting, and the class-imbalance setting for all bench-
marks (MNIST, FashionMNIST, CIFAR10 and SVHN) in
Figure[d Figure[5|and Figure[§]

RAMBO outperforms the rest of the baselines in most sce-
narios. Admittedly, for SVHN, LLAL [Yoo and Kweon,
2019] outperforms the rest of the baselines (including
RAMBO) by a large margin. Indeed, SVHN is an easy
dataset with a large initial pool of k£ and a labeling budget of
B. Given k£ = 2500, as mentioned in|[Hacohen et al.|[2022],
uncertainty plays a much more significant role than diver-
sity when the labeling budget and initial labeled set are both
important. Training a classifier with a reasonably accurate
uncertainty estimate is feasible. Therefore, the specific de-
sign choice of LLAL [Yoo and Kweon, |2019] to estimate
the cross-entropy loss between pairs of unlabeled instances,
another measure of uncertainty but with groundtruth labels
information incorporated in the loss prediction module, shall
have superior empirical results in SVHN. Yet, we empha-
size that LLAL is non-robust across different datasets. For
instance, LLAL has mediocre performance in Figure
(a) and (b), much less than RAMBO. One similar argu-
ment could be FashionMNIST and MNIST are easy datasets
and thus |Hacohen et al.|[2022] suggest that the acquisition
function should focus on typical, easy and representative
points.

Moreover, compared to DULO, RAMBO requires much
fewer samples for training. Prior works either involve train-
ing millions of datamodels [Engstrom et al.,|2024] or col-
lecting thousands of samples [Wang et al.| [2023], which
would require considerable time before the deployment or
acquisition stage. In contrast, ours requires only hundreds
of utility samples to achieve a fair amount of accuracy im-
provement. This efficiency is achieved by imposing a strong
regularization signal through the OT distance loss, and by
reducing the regression task to a ranking problem.

B.4 SIZE OF PRETRAINING SET

In the main paper, we have focused our evaluation on
CIFAR-10. Here, we provide experiments to show the effec-
tiveness of RAMBO on diverse datasets such as MNIST,
FashionMNIST, and SVHN for single-round unlabeled data
selection. We construct all the pretraining sets by random
sampling from the whole training set of each dataset.

Figure[7]illustrates the impact of the size of the pretraining
set on final validation set accuracy. One shall see RAMBO
outperforms the rest of the baselines with most of the pre-
training splits. The only performance degradation case of
RAMBO could be SVHN where k£ = 5500 and B = 5000.
One possibility could be £ = 5500 is suffice for BADGE
to learn an accurate-enough gradient embedding space
for single round selection. Therefore, BADGE could beat
RAMBO when k£ = 5500 and B = 5000 for SVHN as
the pretraining set is sufficiently large compared to the ac-
quisition budget. Another interesting observation is that
GLISTER often performs worse than most baselines for
three datasets when the pretraining set has an extremely
low budget, as £k = 100 for FashionMNIST/MNIST and
k = 1500 for SVHN. A plausible reason could be that a
limited pretraining budget, combined with a substantial ac-
quisition budget, might exacerbate the bias brought about by
the single-step gradient approximation during the inner-level
optimization phase, particularly when trying to maximize
the log-likelihood of the training set.

B.5S BILEVEL TRAINING, OT DISTANCE AND
RANKNET

For simplicity, the “v"” for optimal transport denotes Aot =
1 and the “x” for RankNet represents regression-based util-
ity model as stated in the main paper. For ablating other
network components, we still keep the same feature extrac-
tor explained in Section[A.T|for MNIST and FashionMNIST
and Section[A.2) for CIFAR10 and SVHN. For the regres-
sion style acquisition function, we impose MLP head on
the shared representation space ¢ for predicting validation
accuracy with & = g(¢) = W@ (a(WM)) where o is
a RELU activation function, very much similar to the de-
scription of predicting OT distance in Section[A.3] For OT
distance regularization, we adopt the same MLP projection
head architecture described in Section[A3]
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Figure 4: Clean data setting: Active learning validation performance with B = 500 for FashionMNIST and MNIST and
B = 5000 for CIFAR10 and SVHN. Results are given in %. The shaded area denotes standard error.
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Figure 5: Noisy oracles setting: Active learning validation performance with B = 500 for FashionMNIST and MNIST and
B = 5000 for CIFAR10 and SVHN. Results are given in %. The shaded area denotes standard error.
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Figure 6: Class-imbalance setting: Active learning validation performance with B = 500 for FashionMNIST and MNIST
and B = 5000 for CIFAR10 and SVHN. Results are given in %. The shaded area denotes standard error.

Table 3: Ablation study on three submodules with pretrain- ~ Table 4: Ablation study on three submodules with £ = 200
ing budget k£ = 200 and acquisition budget B = 500 for and B = 500 for MNIST. The last row corresponds to the
FashionMNIST. The last row corresponds to the random random baseline.

baseline.

Bilevel Optimal Transport ~RankNet Accuracy

Bilevel Optimal Transport RankNet  Accuracy

v v v 95.3 +0.2
v v v 83.1+0.1 v v X 94.9+0.2
Ve v X 81.9+0.2 v X v 95.0£0.1
v X v 81.2+0.4 v X X 94.8 £0.2
v X X 81.8+0.2 X v v 94.6 £ 0.1
X v v 81.0+£0.3 X v X 94.9+0.1
X v X 81.7+0.2 X X v 95.0 £0.2
X X v 80.9+0.3 X X X 94.8 0.2
X X X 81.6 £0.1 - - - 93.4+0.1
- - - 81.2+0.2

three submodules for the rest of three datasets. Table[3] &
To prove the efficacy of synergizing three seemingly irrel-  and[5 show the impact of turning off each submodule on
evant submodules together, we provide ablation study of  the final validation set accuracy for FashionMNIST, MNIST
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Figure 8: Ablation on Agr across different acquisition budget. (a-b) k£ = 200; (¢) k£ = 2500

Table 5: Ablation study on three submodules with k¥ = 3500
and B = 5000 for SVHN. The last row corresponds to the
random baseline.

Bilevel Optimal Transport RankNet  Accuracy

v v v 88.1+0.3
v v X 86.7£0.2
v X v 87.8£0.3
v X X 86.5+0.3
X v v 87.8 £0.2
X v X 86.3 0.1
X X v 87.5£0.1
X X X 86.1+0.2
- - - 86.5 £ 0.3

and SVHN respectively.

While the main premise of combining three submodules to
improve validation set performance, it is natural to evaluate
the significance of each submodule plays the role in utility
model training. For FashionMNIST, one might see bilevel
training plays a signicant role in obtaining good validation
set accuracy as the top three combinations of submodules
all have bilevel training turned on (Table[3). For MNIST, the
gain of validation set accuracy for each design choice shall
be subtle to differentiate under various settings as determin-
istic CNNs can easily achieve 96% accuracy under simpler
acquisition heuristics ,i.e., least confidence or max entropy

[Gal et al.|[2017]. Still, we shall see the marginal improve-
ment with all three submodules turned on (Table |4) and the
top three combinations of submodules all have RankNet
turned on which validates the necessity of pairwise rank-
ing in the design choice of our utility model. For complex
datasets as SVHN, RankNet plays a crucial role in improv-
ing classification performance as expected, demonstrated by
the top three scores of accuracy all have RankNet turned on

(Table[3).

B.6 HYPERPARAMETER TUNING FOR OT
DISTANCE

Figure [2(f) in Section 3 illustrates the benefits of incorpo-
rating optimal transport distance into the loss structure of
our utility model. Figure [§ shall serve as a complement
to uncover the usefulness of optimal transport distance, re-
gardless of the scale of Agr, for various datasets of interest.
Regardless of datasets and classification networks architec-
ture, the incorporation of optimal transport distance finds
utility in reducing generalization error, measured by the in-
crease of validation set accuracy. Even though A\or can be a
hard hyperparameter for fine-tuning, either Figure 2f) and
Figure 8 suggest final validation set accuracy for Aor # 0
is higher than its counterpart for A\or = 0.

For additional results on CIFAR10 with Ao spanning more
orders of magnitude, please see Table|[6]



Labeling Budget \\ o1 0 10e-2 10e-1 1 10 100

3000 0.714(0.002) 0.718(0.006) 0.728(0.003) 0.721(0.002) 0.724(0.003) 0.718(0.005)
5000 0.752(0.003) 0.761(0.004) 0.760(0.003) 0.772(0.002) 0.755(0.003) 0.757(0.004)
7000 0.771(0.003) 0.774(0.004) 0.779(0.005) 0.778(0.003) 0.779(0.003) 0.788(0.009)
10000 0.793(0.003) 0.800(0.003) 0.801(0.004) 0.809(0.002) 0.803(0.002) 0.816(0.005)

Table 6: Labeling budget vs. Ao performance. Values in parentheses indicate standard error.

B.7 RUNTIME ANALYSIS stage are negligible.

All models are trained using NVIDIA A40 GPU with 48GB.
To increase the running speed of our experiments, we use
data parallelism on multiple GPUs in implementations. The
time recorded below is for Pytorch training with 2 GPUs. As
stated in main text, all the experiments are repeated for 10
trials to reduce the training stochasticity. We fix k = 2500
and B = 5000 for CIFAR10 and SVHN with n = 30 utility
samples collected per batch with 73 = 2, b = 1000 and
k1 = 500 for pretraining stage with each batch trained for
20 epochs. For CIFAR10, we collect 500 pairs of utility
samples for u offline training with roughly 3 hours and 20
minutes. Then, the total training time for both pretraining
and acquisition stage is 1 hour and 20 minutes with pre-
training stage 50 minutes and acquisition stage 30 minutes.
For SVHN, we collect 500 pairs of utility samples for of-
fline training with roughly 1 hour and 40 minutes. Then,
the total training time for both pretraining and acquisition
stage is roughly 1 hour with pretraining stage 29 minutes
and acquisition stage 34 minutes.

We fix £ = 200 and B = 500 for MNIST and FashionM-
NIST with n = 50 utility samples collected per batch with
71 = 3, b =50 and k; = 50 for pretraining stage with each
batch trained for 20 epochs. For MNIST, we first randomly
collect 500 pairs of utility samples and the total training time
for utility model % for offline training is 50 minutes. Then,
the total training time for both pretraining and acquisition
stage is 59 minutes with pretraining stage 39 minutes and
acquisition stage 20 minutes. For FashionMNIST, the offline
training for utility model % is 50 minutes for 500 pairs of
utility samples. The total training time for both pretraining
and acquisition stage is 50 minutes with pretraining stage
32 minutes and acquisition stage 18 minutes.

For learning-based acquisition function LLAL [Yoo and
Kweon, |2019], the training time for loss prediction module
for CIFAR10 with k£ = 2500 and B = 5000 is 20 minutes
and acquisition time is 50 minutes and SVHN with & =
2500 and B = 5000 is 5 minutes and acquisition time is
30 minutes. For Margin, GLISTER, random, BADGE and
CoreSet applied on CIFAR10 and SVHN, the training time
for pretraining set is roughly 5 minutes and acquisition stage
is 14 minutes, 20 minutes, 10 minutes, 20 minutes and 10
minutes. For those four methods applied on FashionMNIST
and MNIST, the training time for pretraining and acquisition
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