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Abstract

Traditionally, data selection has been studied in settings where all samples from
prospective sources are fully revealed to a machine learning developer. However,
in practical data exchange scenarios, data providers often reveal only a limited
subset of samples before an acquisition decision is made. Recently, there have
been efforts to fit scaling functions that predict model performance at any size
and data source composition using the limited available samples. However, these
scaling functions are usually black-box, computationally expensive to fit, highly
susceptible to overfitting, or/and difficult to optimize for data selection. This paper
proposes a framework called projektor , which predicts model performance
and supports data selection decisions based on partial samples of prospective data
sources. Our approach distinguishes itself from existing work by introducing a
novel two-stage performance inference process. In the first stage, we leverage the
Optimal Transport distance to predict the model’s performance for any data mixture
ratio within the range of disclosed data sizes. In the second stage, we extrapolate
the performance to larger undisclosed data sizes based on a novel parameter-
free mapping technique inspired by neural scaling laws. We further derive an
efficient gradient-based method to select data sources based on the projected model
performance. Evaluation over a diverse range of applications (e.g., vision, text,
fine-tuning, noisy data sources, etc.) demonstrates that projektor significantly
improves existing performance scaling approaches in terms of both the accuracy of
performance inference and the computation costs associated with constructing the
performance predictor. Also, projektor outperforms by a wide margin in data
selection effectiveness compared to a range of other off-the-shelf solutions. We
provide projektor as an open-source toolkit.

1 Introduction
The choice of training data is one of the most crucial components when it comes to extracting the best
performance out of a model. Since data is typically acquired from various sources, such as different
organizations or vendors, machine learning practitioners often encounter a central question: how to
select and combine samples from these data sources?

⇤Equal contribution. This work also appears at Data-centric Machine Learning Research (DMLR) Work-
shop@ICML 2023. Code Repository: https://github.com/ruoxi-jia-group/projektor.
37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ruoxi-jia-group/projektor
https://github.com/ruoxi-jia-group/projektor
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Figure 1: (a) Overview of projektor , which take as inputs the public pilot data from each source,
a selection budget, a target model, a validation set representing the test distribution, and return the
optimal combination of data sources as well as the prediction of the resulting model performance. (b)
Optimal data source composition and performance projection in a practical autonomous driving data
acquisition scenario [15]. projektor achieves accurate model performance projection from 1K
pilot samples and effective selection. Please see Evaluation Metrics (Section 5) for details on mAP.

Although data selection has been extensively studied in the literature related to active learning [1],
coreset selection [2], and data valuation [3–8], most techniques are designed for a fully-observable
setting where all data sources are fully revealed to the model developer. The core ideas behind these
techniques are to compare the relative importance of different data points or enumerate possible
combinations of data points, all of which require complete knowledge of the entire collection of data
points. While these methods have shown promising results, their practical applications in real-world
scenarios are limited due to a significant gap: the acquisition decision-making processes require
knowledge of the entire data sets, while data owners may only reveal limited samples before an
acquisition decision is made (e.g., [9, 10] provide the examples in real-world data markets).

To bridge the gap, this paper explores strategic data selection in partially observable settings, where
only limited samples of data sources (referred to as pilot datasets) are accessible. The goal is to
determine an optimal allocation of the selection budget to each source, only based on the pilot
datasets, such that the model trained on the mixture of collected data achieves the best performance
at some given objectives.

Technical challenges. In the fully-observable setting, the evaluation and eventually ranking the
candidate data selection decisions, including the number of samples to be selected and the ratio of
samples from each source ("mixing ratios"), can be determined directly on the available datasets
[11, 12]. However, the partially observable setting presents considerable challenges for evaluating
a selection decision as one can no longer directly evaluate model performance on the entire data.
With limited samples from each data source, the best possible evaluation is the resulting model
performance for any combination of the pilot datasets. Then, to make an informed selection decision,
it is necessary to understand the model’s performance when trained on potentially larger datasets
(target scales) at various mixing ratios. In other words, there is a need for prediction and projection
of model performance onto larger data scales at different mixing ratios.

A recent study [13] proposes a performance scaling law that takes into account the data size and
mixing ratio to predict model performance. Providing a preliminary exploration of this problem,
though, this approach faces two major limitations: (1) The numerical instability of its high-order form
for scaling functions causes significant difficulty in fitting its parameters, rendering the fitted function
susceptible to overfitting and often fails to extrapolate model performance on unseen data mixtures.
(2) It hypothesizes on the separability of model performance scaling with data composition and with
data size, which is generally untrue as evidenced by latest research [14] and leads to unsatisfactory
performance prediction results in empirical observations. Besides, this method requires parameters
that grow quadratically with the number of data sources, demanding many (mixing ratio, resulting
performance) pairs to fit the function, resulting in substantial computational overhead. Thus, there
remains a considerable lack of effective and practical approaches to this problem.

Contributions. The paper investigates two fundamental building blocks for strategic data selection
in the partially observable setting:

(Q1) How to provide an accurate projection of model performance trained on any combination of
data sources based on limited samples? and (Q2) How to determine the optimal selection strategy?
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Towards that end, the paper makes the following contributions.

• Parameter-Efficient Performance Prediction based on Optimal Transport (Addressing Q1). In
contrast to existing model performance scaling methods that feature a one-shot fitting of a non-
informative parametric model ("surrogate"), our approach is a novel two-stage performance inference
process, where the first stage addresses the dependence of the model performance on the mixing
ratio by fitting a parameter-efficient model between model performance and Optimal Transport [16]
distance between the mixtures of training data and the validation data (Section 4.2). Then, for stage
two, we propose a parameter-free mapping that directly projects model performance onto larger data
scales, achieving remarkable accuracy as it fully preserves this the dependency of model performance
scaling with data sizes and data distributions (Section 4.3).

• Determining optimal data selection strategies (Addressing Q2). We consider the typical data
selection goal: maximizing the resulting model performance with fixed data acquisition budgets
(data quantity). With model performance predicted by the proposed tools, these problems translate
into convex losses that are optimized effectively via gradient-based methods (Section 4.4). We also
provide in Appendix.B how it similarly applies to alternative objectives such as minimizing data
acquisition costs for the resulting model performance to reach a given level.

• Experiments. We experiment on a variety of applications (vision, natural language processing
(NLP) etc., with simple to complex models) with a rich diversity of tasks and real-world scenarios
(e.g., autonomous driving, fine-tuning, noisy data sources, unlabeled data). The proposed approach
is highly effective in performance prediction, demonstrating superior prediction precision to many
baselines while being much more efficient to be constructed (Section 5). We test the performance
of data selection by optimizing the performance predictor and show that it improves over existing
methods by 3% on ImageNet-100.

2 Related Work

The recent line of research on Data valuation aims to assess the relative importance of each data
source ("value’") to machine learning applications [3–8]. While originally designed for data pricing,
these values are frequently used to inform data selection [4, 17]: in more detail, one can rank the data
sources based on their values and select the data points with the highest values. While value-based
selection shows some promising results, data values are not directly related to model performance
and hence cannot inform the prediction of model performance resulting from the selected data.
Besides, values for different data sources typically cannot be combined to measure the value of their
compositions [18, 8]. Notably, distributional distances including Optimal Transport have seen a major
presence in data valuation as an implicit proxy for model performance [8, 19], but no connection
has been made to directly relate data distance to model performance. Our work bridges this gap
and directly addresses this long-standing problem. On another line, Coreset selection attempts to
find a representative subset of data points to speed up learning [2]. Coreset selection methods have
been studied for different learning algorithms [20, 21]. For example, a popular coreset selection
approach for neural networks is to cast data selection as a bilevel optimization problem that selects the
optimal subset to maximize the performance evaluated on a validation dataset [22]. However, coreset
selection techniques rely on access to all the data samples to be chosen from, which limits their use
in the partially observable setting. Besides, Predicting the resulting model performance associated
with a dataset without performing actual training on it has attracted a lot of attention in different use
cases, such as interpreting the model learning process [23, 24]–which leverages surrogate functions
to model the black-box relationships between model performance and training data, or predicting
performance under the distributional shift [25]. Our work resembles the idea of predicting model
performance from data but differs in the technique of leveraging the data distance in the performance
predictor. Scaling laws, predicting how the model performance changes with the scale of training
data, model parameters, and computation budget [26], have seen increasingly successful in a variety
of tasks pertaining to vision and text processing [27]. The performance of machine-learning models
generally adheres to a power law relationship with the scale of these variables, which allows for
predicting the model performance on larger scales with high precision [26] and provides a viable
approach to predicting the potential usefulness of target data from only a small proportion of the set.
[14] shows that data from different distributions generally scale at different rates. Our work provides
a novel approach that materializes this dependency of scaling relationships with data distributions
and achieves remarkable empirical results.
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3 Problem Formulation

Data provider. Suppose that there are m prospective data providers. Datasets (data sources) held by
these providers are denoted by D

all
1 , . . . , D

all
m, respectively. We focus on the case that only partial data

(samples) from these sources are made available to the public, replicating practical data exchange
scenarios [9]. We refer to the public subset of each data source as a pilot dataset and denote it by
D

pi
i , where D

pi
i ✓ D

all
i and |D

pi
i | = ni ⌧ N̄i = |D

all
i | for all i. Each provider i, upon accepting the

purchasing order for acquiring ni samples (ni  N̄i), will randomly sample a subset Si of size ni

from D
all
i and return the subset to the requester.2

Data collector (or requester, machine learning practitioner). Now, consider a data collector who
would like to acquire samples from the providers to train a model. Notably, the collector’s acquisition
decisions must be made based only on the pilot datasets. We assume the collector has a validation set
D

val, representing the desired target data distribution. For ease of exposition, we assume the collector
has a target learning algorithm A

3 that is going to be applied to the collected data as well as a target
performance metric L which takes the input of a trained model and a validation set and returns a
performance score. The model performance resulting from training on any dataset S can be thus
expressed as L(A(S), Dval).

Given a selection budget of N samples, a mixing ratio of data sources p = {p1, . . . , pm} such that
8i, 0  pi  1 and

Pm
i=1 pi = 1, and m datasets D1, . . . , Dm to be mixed, we denote the selected

dataset by D(N,p) = S1 [ · · · [ Sm, where each Si is a random subset of Dall
i and |Si| = piN .

Using these notations, we now describe the typical acquisition goals that can be accommodated by
our approach:

• (Primary) Fixed-budget selection for maximal performance: The collector seeks to maximize
the resulting model performance by strategically choosing the mixing ratio p of m data
sources at a pre-specified selection budget Ns 

Pm
i=1 N̄i. The objective can be formalized

as maxp L(A(D(Ns,p)), Dval).
• (Alternative) Flexible-budget selection for reaching performance threshold with minimal

costs: The collector seeks to attain a target model performance u
tar by choosing both the

mixing ratio p as well as the selection budget N . More formally, the objective can be
expressed as minN,p N s.t. maxp L(A(D(N,p), Dval) � u

tar.

The alternative objective can be treated as a direct extension of the primary, where one solves the
"performance maximization" problem for different data quantities N and performs a line search for
minimal data quantity N that meets the performance requirement. We defer to Appendix.B for its
complete solution procedure due to the similarity.

Design challenge and key idea. The primary challenge is that the collector cannot access
D

all
1 , . . . , D

all
m for decision making and hence cannot directly evaluate the two optimization ob-

jectives for every N . Yet, as the pilot datasets are public, the collector can evaluate and observe
the model performance associated with various mixtures of the pilot datasets for N 2 {N : Npi 

|D
pi
i |, i = 1, . . . ,m} project the evaluations onto larger data scales. Our high-level idea to tackle

the challenge is to first predict the model performance associated with any mixture of prospective
unrevealed data sources based on observations on pilot datasets and project the predictions onto
different data scales using scaling laws, then determine the data selection strategy by optimizing the
predicted performance at the target scales.

4 Methodology of projektor : prediction, projection, and selection

4.1 Preliminaries on Optimal Transport

Optimal Transport (OT) is a metric for measuring the discrepancy between probability distribu-
tions [16]. Compared to other measures such as the Kullback-Leibler Divergence [29] or Maxi-

2This paper will assume each provider honestly provides requested samples and leave an in-depth study of
potential security risks, such as malicious data manipulation [28] to future work.

3The proposed data selection approach can support multiple learning algorithms by simply applying it to
different choices of algorithms/metrics and picking the best one.
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mum Mean Discrepancies [30], OT enjoys advantageous analytical properties (is a valid metric;
compatible with sparse-support distributions; stable with respect to deformations of the distri-
butions’ supports [31, 32]). Given probability measures µt, µv over the space Z , the OT dis-
tance is defined as [33] OT(µt, µv) := min⇡2⇧(µt,µv)

R
Z2 C(z, z0)d⇡(z, z0), where ⇧(µt, µv) :=�

⇡ 2 P(Z ⇥ Z) |
R
Z ⇡(z, z0)dz = µt,

R
Z ⇡(z, z0)dz0 = µv

 
denotes a collection of couplings be-

tween two distributions µt and µv, C : Z ⇥ Z ! R+ is a symmetric positive-definite cost function
(with C(z, z) = 0), respectively. A popular choice of C is given in [34] by considering z as the feature-
label pair (x, y). The computation of the OT distance usually relies on the Sinkhorn algorithm [35],
which attains almost linear time complexity and memory overhead with the state-of-the-art imple-
mentations and applies to large scales with parallel computing [31, 32]. Given Dt = {(xi, yi)}Ni=1

of size N , and Dv = {(x0
i, y

0
i)}

T
i=1 of size T , one can construct discrete probability measures

µt(x, y) := 1
N

PN
i=1 �(xi,yi) and µv(x, y) := 1

T

PT
i=1 �(x0

i,y
0
i)

, where � is the Dirac delta func-
tion. With slight abuse of notation, we use OT(Dt, Dv) to denote the OT distance between their
corresponding discrete measures OT(µt(x, y), µv(x, y)).

Extensive theoretical studies show that the OT distance between two distributions provides an upper
bound on the difference of a model’s performance when evaluated on the two distributions [36,
37, 8]. Largely built upon Kantorovich-Rubinstein Duality [38], existing theoretical results require
assumptions on the Lipschitz constant of the model with respect to the input space. However, the
constant is rarely known in practice, nor can it be bounded tightly for complex models such as deep
neural networks. As a result, despite its widespread popularity as a performance proxy [8, 36, 39],
one cannot directly apply the existing theoretical results to directly estimate the model performance
based on the OT distance, posing an important gap.

4.2 Aligning data distance with performance predictions

Inspired by the theoretical results that the upper bound on the difference between training loss and
validation loss can be tightly bounded by an affine transformation of the OT distance [33, 8], our first
proposed approach is to directly estimate this transformation by empirically fitting data distances
to model performance and then the estimated transformation can be used for predicting the model
performance for different data mixtures. Formally, we consider the following performance estimator:

L̂
�
A(D(N,p)), Dval� = a1 · OT

�
D(N,p), Dval�+ a0, (1)

where scaling parameter a1 and centering parameter a0 define the affine transformation. These
two parameters can be estimated through least-square fitting. In particular, consider collecting the
"training data" by forming the set of tuples {(Nj ,pj ,L(A(D(Nj ,pj)), Dval))}`j=1, where Nj is
randomly sampled from {1, . . . ,

Pm
i=1 |D

pi
i |} and pj is sampled from a probability simplex. Then,

these parameters can be estimated as

(â1, â0) = arg min
a1,a0

X̀

j=1

�
L̂
�
A(D(Nj ,pj)), D

val�
� L

�
A(D(Nj ,pj)), D

val� �2
.

We refer to this method as center-scaling (projektor/CS). a1 can be considered an empirical
estimate of the Lipschitz constant, and this treatment has been informally adopted in various works
under different names [40–42]. projektor/CS has only two parameters that need to be estimated,
which brings an important benefit of efficiency: we only need to have a few training iterations to get
the "training data" for the above least-square fitting.
While proposed projektor/CS is sufficient to provide reliable performance predictions in most
circumstances, we found it possible to further improve the prediction accuracy by making the scaling
parameter and centering parameter a function of the mixing ratio. The intuition is that for samples
from different data sources (i.e., data lying in different manifolds of the input space), the Lipschitz
constant of the model along the combined manifold may vary with the mixing ratio. Hence, we
supplement projektor/CS with simple nonlinear terms to characterize the dependence on each
data source, leading to the pseudo-quadratic (projektor/PQ) method, which is given as

L̂(A(D(N,p)), Dval) =
mX

i=1

(bi2 · p2i + bi1 · pi + b0) · OT(D(N,p), Dval) +
mX

i=1

(ci2 · p2i + ci1 · pi + c0), (2)

where (b2,b1,b0, c2, c1, c0) are pseudo-quadratic parameters where the fitting process is similar
to Eq. (1). projektor/PQ has O(m) parameters (m is the number of data sources). So its fitting
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process will require more re-training than projektor/CS. However, as we will show in Section 5,
it still significantly improves the efficiency over the existing baselines [13]. This pseudo-quadratic
form is chosen for it contains the simplest nonlinear terms and we want to preserve the convexity for
numerical stability. We trimmed off the cross terms in the quadratic function as they often do not
contribute much, resulting in the number of parameters growing linearly rather than quadratically
with the number of data sources as in [13], greatly easing the computation burden in parameter fitting.

4.3 Parameter-free performance projection onto larger data scales

Once the parameters are learned, the performance predictors (1) and (2) can be used to predict the
validation performance associated with a training set by calculating the OT distance between the
training and the validation set and plugging it as input to the predictors. Then, we need to project
these predictions onto the target data scales. Neural scaling laws showcase the predictability of
empirical performance with respect to the size of the training dataset, where it typically follows a
log-linear scaling relationship as

EV [L(A(D(N,p));Dval)] ⇡ �↵ log(N) + C

where ↵ and C are some constants [26]. Recent work [14] shows that when data from different
sources differ in "quality" (e.g., noise level), which is the most likely scenario in practice, the scaling
parameters are often vastly different, rendering parameters ↵ and C functions of data composition
p and model performance for different data mixtures p scales with different rates. [13] assumes
the same constant ↵ for all data mixtures, leading to unsatisfactory scaling results. The difficulty
underlying this dependence is that these scaling parameters differ for every data mixture and there is
no closed-form expression available for this functional relationship. With the performance prediction
tools proposed above, it is possible to directly predict model performance of any data mixture at
the scale the tool has been fitted. That is, for any given data scale N0, as long as one completes the
one-off fitting process of the performance predictor, model performance for any data composition at
data size N0 can be inferred directly using Eq. (1) or Eq. (2). Thus, by performing the fitting process
at different small scales for once, for any desired data mixture, we can directly fit the neural scaling
laws for this particular distribution and project it onto larger data scales, without needing to train any
additional model or make any further approximations. We formalize it into the following theorem.
Theorem 1 (Data Composition Dependent Performance Projection). Consider log-linear perfor-
mance scaling relationship depending on both data size N and data composition p given as
EV [L(A(D(N,p));Dval)] = �↵(p) log(N) + C(p). Assume one has completed the fitting of
the performance predictor on two different scales N0 < N1, which gives L̂(A(D(N0,p));Dval) and
L̂(A(D(N1,p));Dval) for all data mixtures p. Then, the model performance L̂(A(D(N,p));Dval)
for any data mixture p at any data scale N can be predicted as

L̂(A(D(N,p);Dval) =

✓
log

N1

N0

◆�1 
log

N
N0

L̂(A(D(N1,p));D
val)� log

N
N1

L̂(A(D(N0,p);D
val)

�

(3)
without requiring fitting any additional parameters. The proof and derivations are given in Appendix.B.
We refer to this method as parameter-free projection for model performance. As this procedure does
not rely on any additional assumption or parameterized surrogate, it requires minimal computational
overhead while achieving considerably higher prediction accuracy compared to existing approaches
such as [13]. Not exclusive to the performance predictor proposed in this work, this method can be
plugged into other predictors seamlessly and provides benefits at large, marking a novel contribution
to performance projection in data acquisition problems.

4.4 Performance-guided data selection

The intention of creating the proposed tools is not limited to providing predictions for model
performance, rather, we expect the predictions to support determining the optimal data acquisition
strategy. We show that these problems are convex and differentiable (Appendix.B) and thus can be
solved effectively via gradient-based methods. Specifically, for our primary objective fixed-budget
selection for maximal performance, with the proposed performance predictors with projection, we
solve for p⇤ = argmaxp L̂(A(D(Ns,p)), Dval). We solve it iteratively with the following procedure.
First, we initialize the algorithm with p = p0 where p0 can be chosen arbitrarily provided that
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P
i pi = 1. Then, at each step, we perform the gradient update as

pt+1
 pt + d

t
·
@L̂(A(D(Ns,p)), Dval)

@p

�����
p=pt

where d
t is the step size at iteration t and we obtain p⇤ = pT at convergence as the desired solution.

Optimal Transport naturally provides its gradient w.r.t. the probability mass of data points in its
dual solutions [8], which directly gives the gradients w.r.t. data mixtures p. This easy availability
of gradients renders the optimization highly efficient in computation, resulting in remarkably fast
solutions. We use the calibrated gradient of OT from [8] which ensures the updated mixture p
remains within the simplex

P
i pi = 1 at each step. We provide technical details of the gradient

computation in Appendix.B. The alternative objective can be treated as a direct extension of the
primary and we defer to Appendix.B for its solution procedure. The pseudo-code for projektor is
provided in Appendix A.
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Figure 2: Workflow chart for the two-stage performance inference process of projektor .

5 Evaluation

In this section, we cover two main applications for projektor . 1) Performance projection, where
for any mixing ratio of data sources and any data scale, we want to predict the performance of the
model trained on a given composed dataset. We also demonstrate efficiency and efficacy of our
method for different scenarios of data sources, such as mislabeled or unlabeled data. 2) Optimal data
source acquisition strategy, where for a given data budget, we find a mixing ratio of data sources
that can maximize the performance of a model. We present a solution to select optimal data source
composition for two learning paradigms scenarios: training from scratch and model fine-tuning.

We compare with six existing baseline methods, where the first four: (1) Linear [13], which assumes
a linear relationship with the data compositions; (2) Pseudo-Quadratic assumes a simple non-linear
relationship; (3) Quadratic [13] assumes a fully quadratic relationship; (4) Rational [13] models a
relationship through the sum of a set of rational functions. For m data sources, each function has
m parameters, and there are m such functions, totaling m

2 parameters; (5) LOO [5] measures the
importance of a data source by computing the performance difference after removing that source;
(6) Shapley [18] is a game-theoretic method which computes the average marginal contribution of a
data source to different subsets of other sources. Baselines (5) and (6) are suitable for informing the
selection of data sources but are unable to predict model performance, so we only include them in
data source selection experiments. Details on implemented baselines are described in Appendix D
and further explained in [13]. For all experiments, we set up the problem with three data sources,
where each source consists of different classes, and we refer the reader for additional information on
the experimental setup, algorithm, datasets, models, implementations, code repository, and ablation
studies on the number of data sources to Appendix D. We also showcase the runtime vs performance
prediction trade-off and comparison with baseline methods.
Evaluation Metrics. We use mean absolute error (MAE) to measure the performance of our method
by calculating the absolute difference between the predicted accuracy and the actual accuracy. For
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Figure 3: Predicted model performance vs. actual model
performance for extrapolation on CIFAR-10 with total
of 1000 data points for 3 data sources. Comparison
between projektor and baselines.

Figure 4: MAE vs. number of
model trainings used for fitting the
method. Efficiency comparison between
projektor and baselines.

the object detection task, we adopt a commonly used metric, mean average precision (mAP), which
measures the average precision of a model across multiple classes or categories, providing a single
value that represents the overall accuracy. The average precision represents the area under the
precision-recall curve for a single class.
Hyperparameters. For practical reasons, we set the data scale N1 in Eq. 5 to be the size of the
smallest pilot dataset, i.e. N1 = mini |D

pi
i |. Upon selecting N1, we empirically choose N0 to be 2

3N1.
For further investigations on selecting N0, we provide sensitivity analysis on N0 in Appendix D.

5.1 Performance Prediction

Method MNIST CIFAR-10 ImageNet100 IMDB

Projektor/PQ (Ours) 1.63 · 7.27(� 3.01) 0.84 · 1.26(� 0.00) 0.53 · 0.38(� 0.00) 0.25 · 1.16(� 0.00)
Projektor/CS (Ours) 3.30 · 4.26(� 0.00) 0.97 · 1.95(� 0.69) 0.54 · 1.03(� 0.65) 0.90 · 1.87(� 0.71)
Linear 5.27 · 28.03(� 23.77) 4.44 · 6.04(� 4.78) 1.47 · 4.59(� 4.21) 1.88 · 7.48(� 6.32 )
Pseudo-Quadratic 1.63 · 7.27(� 3.01) 1.82 · 2.90(� 1.64) 0.77 · 2.72(� 2.34) 0.43 · 2.74(� 1.58)
Quadratic 1.63 · 7.27(� 3.01) 0.88 · 5.22(� 3.96) 0.50 · 2.34(� 1.96) 0.43 · 2.74(� 1.58)
Rational 5.28 · 27.29(� 23.03) 0.83 · 2.95(� 1.69) 0.44 · 2.27(� 1.89) 1.91 · 7.11(� 5.95)

d

Table 1: Training and test MAE values for extrapolation of data source compositions for each method. For
each cell the left/right column value denotes the MAE value for predicting the training/test data, respectively.
Underlined green/bold red denotes lowest training/test MAE value, respectively.
A. Predicting Performance for Unseen Data Mixtures p
In this experiment, we fit the parameters on limited compositions and extrapolate the prediction to
unseen compositions. Specifically, we choose one data source and limit its maximum composition
to < 55% of contribution in the training set of the performance predictor, then we predict accuracy
on the compositions consisting of � 55% of contribution. As we observe in Figure 3, Linear and
Pseudo-Quadratic methods cannot fit well the training data, which indicates that these methods do not
have a strong representation power. While Quadratic and Rational baselines can fit the training data,
they suffer from overfitting and do not generalize to unseen compositions. On the other hand, as seen
in Table 1, our method projektor/PQ achieves the best training and extrapolation performance.
projektor/CS achieves second best extrapolation performance. Furthermore, we analyze the
efficiency of our method compared to other baselines. As observed in Figure 4, projektor not only
achieves the lowest MAE score but also converges with around 15 training data for projektor/CS
and 25 for projektor/PQ, which demonstrates low computational requirement of our method.
With shown strong predictive power of projektor , we now proceed to practical applications in
performance projections onto larger data scales.

B. Performance Projection to Larger Data Scales
Mislabeled Data Sources. In this experiment, we project performance onto larger data scales and
also assume a more practical setting where data sources might not be of high quality and contain
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Figure 6: Optimal data source composition selection
for 50K ImageNet-100 from 10K samples and the
actual model performance.
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Figure 7: Performance projection of selected optimal
mixture ratios in (Fig. 6) onto 50K ImageNet-100
from 10K samples. Comparison with the actual model
performance.

noisy labels [43]. It is then critical to factor such irregularity for the performance prediction into
our method. Given three mislabeled data sources formed by sampling CIFAR-10, each of which
releases a pilot dataset of size 1K, we project performance for various mixing ratios onto larger
data sizes, i.e. 2K, 5K, 7K, and 10K. We then measure the MAE value across all data scales. We
observe in Fig. 5 that projektor achieves the best projection performance compared to all baseline
methods. projektor/PQ achieves the lowest MAE score below 2% and projektor/CS is
slightly above 2%. The improved performance of our method can be attributed to the incorporation
of actual data distance computation. This inclusion allows for a more accurate representation of
mislabeling information in performance projection, unlike baseline methods that neglect this crucial
information.

Figure 5: Performance projections from 1K
CIFAR-10 samples across various mixing ra-
tios and larger data scales: 2K, 5K, 7K, 10K.
Comparison between projektor and base-
lines.

The promising results demonstrate the potential of our
method to project performance of any composition to any
data scale, which is important in the case of mislabeled
data sources in the partially-revealed setting.

Unlabeled Data Sources. As mentioned earlier, data
sources often contain noisy labels, and the process of
labeling data can be costly. On the other hand, it is not un-
common to encounter unlabeled data sources. Therefore,
we would like to extend our method to accommodate the
setting of data sources without labeled data, and we aim to
project performance of unlabeled data compositions from
pilot data source mixtures of 1K samples from CIFAR-
10. The three data sources contain unlabeled data from
different classes of CIFAR-10. In this case, we compute
the optimal transport distance on the feature space only,
and we assume access to the labels of the pilot datasets,
which enables us to train a model and obtain performance values. Consequently, we project per-
formance across various mixing ratios onto larger data sizes (2K, 5K, 7K, and 10K). To visualize
the performance of our method, we plot the difference between the projected performance and the
actual performance. The closer the value approaches zero, the more optimal the projection becomes.
Surprisingly, as we illustrate in Fig. 8, projektor can consistently maintain good projection
performance for larger data sizes. Even at 10K, the largest error is below 10%. These outcomes show
that projektor can also be extended to unlabeled data sources, which demonstrates the flexibility
and practicality of our method.

5.2 Optimal Data Source Selection

Training a model requires a tremendous amount of resources to tune hyperparameters to achieve the
highest performance. We demonstrate that by choosing data strategically, we can also improve model
performance. We consider a setting, where we are facing the problem of choosing only 50K to train
ResNet-50 on ImageNet100 and would like to maximize the model’s performance.
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Figure 8: A direct visualization for the
landscape of prediction errors in model
performance for all data compositions as
the scale of data to be predicted grows.
We consider the setting of 3 data sources
with unlabeled samples from CIFAR-10.
We construct the proposed performance
predictors within 1k samples that are
considered accessible to the practitioner.
We then predict model performance for
all data compositions and on larger data
scales (2-10k samples). X-Y axes rep-
resent the proportion of data from data
sources #1 and #2 (consequentially, the
proportion of data from data source #3
will be 100%-X-Y) and the prediction
errors are visualized in Z-axis (horizon-
tal plane represents zero error, red spikes
blue dips represent deviations from over-
/under-prediction). As the data scale gets
larger, the performance predicted from
the initial 1k samples becomes slightly
less accurate, but prediction error re-
mains mostly within 5% even at the scale
of 10k data (10 times larger than the pi-
lot data), retaining its effectiveness and
functionality.

However, we are provided with only a pilot dataset of
size 10K from each data source. As we observe in Fig-
ure 6, our optimized mixing ratio based on (4.4) achieves
the highest model performance compared to all baselines.
Further, using the functions from the previous step, we
project the performance of our selected mixing ratio, and
we observe in Figure 7 that projektor not only most
closely predicts the accuracy to the actual accuracy but
also attains the highest actual accuracy out of all methods.
The improved selection of mixture ratios in our method
can be attributed to our proposed selection approach (4.4).
Unlike baseline methods that assume the same optimal
composition for all data scales, our method finds optimal
compositions specific to each data scale. For more exper-
iments on CIFAR-10, we refer the reader to Appendix D.

5.3 Application to Fine-tuning

As powerful architectures has been introduced and com-
putation power has improved, larger models and datasets
has become increasingly prevalent in training visual and
natural language tasks. However, retraining these large pre-
trained foundation models can be cost-prohibitive, which
leads to widespread adoption for fine-tuning these mod-
els. However, these large pre-trained foundation models
are expensive to retrain but are popular for fine-tuning
for more customized tasks. In our case, we adopt a pre-
trained Faster R-CNN model trained on COCO dataset.
Our task is to fine-tune the model on the autonomous
driving dataset for object detection, BDD100K [15]. We
assume each data source to specialize in taking pictures at
a specific time of day, i.e. daytime, night, or dawn/dusk
pictures. Similarly to the previous task, we select optimal
data source composition and project the mean average pre-
cision (mAP) onto larger data scales. In Figure 1(b), we
observe fine-tuning accuracy projection onto eight larger
data scales from 1000 samples and observe that our predic-
tions do not deviate from the actual accuracy by more than
0.4, which indicates projektor’s extended capability
of performance projection for fine-tuning.

6 Discussion and Outlook

This paper presents a novel framework to conduct data selection from partially revealed sources,
addressing the practical challenge in emerging data market scenarios. In particular, in contrast to
existing work that tries to directly fit non-informative parametric surrogates on the limited available
samples to predict model performance at different data sizes and compositions of data sources, which
suffers from pronounced computational burdens and often unsatisfactory results, our key technical
contribution is an OT-based performance scaling method. The take-away from our empirical study is
that despite being extensively adopted in the past, fitting non-informative parametric surrogates for
predicting performance scaling is actually suboptimal–computationally inefficient, often impractical,
and less accurate; utilizing data distance in the performance prediction provides immediate benefits
and presents a better pathway to construct the predictors.

Contributing a new perspective with performance and efficiency improvements, this work still has
some Limitations and opens up many new investigation venues, such as lifting the requirement on val-
idation data, accounting for malicious data owners, and extending to data sources that are misaligned
in feature space. Additional discussions and Broader Impacts are provided in Appendix.E.
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Appendix A projektor : Framework and Algorithms

A.1 projektor Pipeline

I. Training Data Preparation. For data distance-based performance prediction, the first step of
the pipeline is to prepare "training data" (introduced in Section 4.2) to fit parameters of Equations 1
and 2. The data consists of different data source compositions for some given data scales N0, N1,
where for each composition p, we compute the OT distance of the composed dataset D(N1, p) to
the validation data and then train a model on D(N1, p) to get the actual model performance. For
simplicity, we select compositions through grid search. This step is represented in Algorithm 1 from
lines 4-9 and is the first (I) step in the pipeline Figure 2.

II. Fitting Predictor Function. Once the training data is prepared, we proceed to fit our function
in Eqs. 1 and 2. This step is shown in lines 10-11 in Algorithm 1 and is the second (II) step of the
pipeline Figure 2. Then, with the performance predictors fitted for data scales N0 and N1, we move
on to the inference stage, where we can perform 2 tasks: performance projection and data source
selection.

III. Two-Stage Performance Projection. For performance projection, we project the performance
to any data size N for any mixing ratio p in two stages. (1) We predict the performance given the
mixing ratio p at data scales N0 and N1. (2) We use Eq. 5 to project performance prediction to any
data size N . This process is represented in line 12 of Algorithm 1 and is the third (III) step of the
pipeline Figure 2.

IV. Optimal Data Source Selection. For optimal data source selection, we solve an optimization
problem through gradient descent, which is provided in Eq. B.3.1. The gradient computation uses
parameters of the fitted functions from step II and the process terminates when the mixing ratio
converges. This process is represented in line 12 of Algorithm 2 and is the fourth (IV) step of the
pipeline Figure 2.

Algorithm 1: projektor performance predictor.

In :Pilot Datasets Dpi
1 , D

pi
2 , . . . , D

pi
m; Query Data Budget N ; Query Mixing Ratio p;

0-Data Scale Size N0; 1-Data Scale Size N1; Learning Algorithm A; Performance Metric
Function L(·, Dval); OT Distance Function OT (·, Dval).

Out :Projected Model Performance! [0, 1].
1 P Generate mixing ratios
2 DT0, DT1  Initialize empty lists to store OT distances
3 L0, L1  Initialize empty lists to store performance values
4 for Mixing Ratio pi in P do
5 S0, S1 = D(N0,pi),D(N1,pi) newly composed datasets of size N0, N1

6 DT0  append OT (S0, D
val) Optimal Transport distance between S0 and D

val

7 DT1  append OT (S1, D
val) Optimal Transport distance between S1 and D

val

8 L0  append L(A(S0), Dval) Performance of a model trained on S0

9 L1  append L(A(S1), Dval) Performance of a model trained on S1

10 L̂(A(D(N0, ·)), Dval) Fit the function from Eq. 2 with ((P, DT0), L0)
11 L̂(A(D(N1, ·)), Dval) Fit the function from Eq. 2 with ((P, DT1), L1)
12 L̂(A(D(N,p));Dval) Project performance by substituting L̂(A(D(N0,p)), Dval) and

L̂(A(D(N1,p)), Dval) into Eq. 5
13 return L̂(A(D(N,p);Dval)
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Algorithm 2: Optimal data source composition p⇤ Update.

In : Pilot Datasets Dpi
1 , D

pi
2 , . . . , D

pi
m; Query Data Budget N ; Query Mixing Ratio p;

0-Data Scale Size N0; 1-Data Scale Size N1; Trained projektor Models with N0 and
N1 Data Budgets: f0, f1; Enquired Data Budget: N ; OT Distance Function OT (·, Dval)
Validation Set: Dval.
Out :Optimal data source composition p⇤.

1 p Initialize Random Data Source Composition
2 while p not converged do
3 S0, S1 = D(N0,pi),D(N1,pi) newly composed datasets of size N0, N1

4 gradient Compute gradient wrt. p using Eqs. 6, 7, 8.
5 p Update composition p with the gradient update according to Eq. B.3.1
6 return p

Appendix B Proofs and Optimization Details

B.1 Proof for Theorem 1

Theorem 1 (Data Composition Dependent Performance Projection (restated)). Consider log-linear
performance scaling relationship depending on both data size N and data composition p given as

EV [L(A(D(N,p));Dval)] = �↵(p) log(N) + C(p) (4)
Assume one has completed the fitting of the performance predictor on two different scales N0 < N1,
which gives L̂(A(D(N0,p));Dval) and L̂(A(D(N1,p));Dval) for all data mixtures p. Then, the
model performance L̂(A(D(N,p));Dval) for any data mixture p at any data scale N can be
predicted as

L̂(A(D(N,p);Dval) =

✓
log

N1

N0

◆�1 
log

N
N0

L̂(A(D(N1,p));D
val)� log

N
N1

L̂(A(D(N0,p);D
val)

�

(5)

Proof. From Eq. (4), for any data mixture pz, we have

EV [L(A(D(N,pz));D
val)] = �↵(pz) log(N) + C(pz)

Then, for data scales N0 and N1 where one has completed fitting the performance predictors, we have

EV [L(A(D(N0,pz));D
val)] = �↵(pz) log(N0) + C(pz)

EV [L(A(D(N1,pz));D
val)] = �↵(pz) log(N1) + C(pz)

which gives

↵̂(pz) =
L̂(A(D(N0,pz));Dval)� L̂(A(D(N1,pz));Dval)

log(N1)� log(N0)

where L̂(A(D(N0,pz));Dval) and L̂(A(D(N1,pz));Dval) are given by the fitted predictors.

For any data scale Nz , we have

EV [L(A(D(Nz,pz));D
val)] = �↵(pz) log(Nz) + C(pz)

Plugging in the above equations, the performance prediction can be given by

L̂(A(D(Nz,pz));D
val) =� ↵̂(pz) · [log(Nz)� log(N1)] + L̂(A(D(N1,p));D

val)

=� [L̂(A(D(N0,pz));D
val)� L̂(A(D(N1,pz));D

val)]
log(Nz)� log(N1)
log(N1)� log(N0)

+ L̂(A(D(N1,p));D
val)

=

✓
log

N1

N0

◆�1 
log

Nz

N0
L̂(A(D(N1,pz));D

val � log
Nz

N1
L̂(A(D(N0,pz);D

val)

�

which completes the proof.

Q.E.D.
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B.2 Objectives for Data Selection

Problem formulation is provided in Section 3, where the following two objectives are introduced.
Given a selection budget of N samples, a mixing ratio of data sources p = {p1, . . . , pm} such that
8i, 0  pi  1 and

Pm
i=1 pi = 1, and m datasets D1, . . . , Dm to be mixed, we denote the selected

dataset by D(N,p) = S1 [ · · · [ Sm, where each Si is a random subset of Dall
i and |Si| = piN .

Using these notations, we now describe the typical acquisition goals that can be accommodated by
our approach:

• (Primary) Fixed-budget selection for maximal performance: The collector seeks to maximize
the resulting model performance by strategically choosing the mixing ratio p of m data
sources at a pre-specified selection budget Ns 

Pm
i=1 N̄i. The objective can be formalized

as maxp L(A(D(Ns,p)), Dval).
• (Alternative) Flexible-budget selection for reaching performance threshold with minimal

costs: The collector seeks to attain a target model performance u
tar by choosing both the

mixing ratio p as well as the selection budget N . More formally, the objective can be
expressed as minN,p N s.t. maxp L(A(D(N,p), Dval) � u

tar.

The primary objective, "fixed-budget selection for maximal performance", is formulated as a convex
optimization and we solve it via gradient-based methods. The alternative objective can be treated
as a direct extension of the primary, where one solves the "fixed-budget selection for maximal
performance" problem for different data quantities N and performs a line search for minimal data
quantity N that meets the performance requirement.

B.3 Optimization and Convexity

B.3.1 Primary

For our primary objective fixed-budget selection for maximal performance, with the proposed perfor-
mance predictors with projection, we solve for

p⇤ = argmax
p

L̂(A(D(Ns,p)), D
val)

We show this objective function is convex in data composition p, where the proposed gradient-based
method will guarantee to find its optimal solution p⇤ efficiently.

Empirically, model performance L always appears convex in data composition p, which is also
reported in [13]. This means the model trained on data combined from multiple sources always
achieves no worse performance than the average performance of models trained separately on data
from each source. Theoretically, as given in [38], the gap between training and validation performance
can be tightly bounded by the OT distance between training and validation data, whereas the OT
distance is always convex in data composition p. We now show our proposed performance predictors
as well as the optimization problem based on them are also convex in data composition p.

For projektor/CS in Eq. (1), consider data compositions p0 6= p1 and a convex combination
p2 = ↵p0 + (1� ↵)p1 for some constant ↵ 2 (0, 1). Then, we have

L̂
�
A(D(N,p2)), D

val�
� ↵L̂

�
A(D(N,p0)), D

val�
� (1� ↵)L̂

�
A(D(N,p1)), D

val�

= a1 ·
⇥
OT

�
D(N,p2), D

val�
� ↵OT

�
D(N,p0), D

val�
� (1� ↵)OT

�
D(N,p1), D

val�⇤

� 0

where the inequality holds because a1 > 0 always holds and OT distance is always convex in
data composition p by definition [16]. Thus, projektor/CS is convex in data composition p.
projektor/PQ is constructed as projektor/CS with pseudo quadratic terms and its convexity
in p can be shown similarly.

We solve the above optimization problem iteratively with the following procedure. First, we initialize
the algorithm with p = p0 where p0 can be chosen arbitrarily provided that

P
i pi = 1. Then, at

each step, we perform the gradient update as

pt+1
 pt + d

t
·
@L̂(A(D(Ns,p)), Dval)

@p

�����
p=pt
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where d
t is the step size at iteration t and we obtain p⇤ = pT at convergence as the desired optimal

solution.

B.3.2 Alternative

Then, for flexible-budget selection for reaching performance threshold with minimal budget:

min
N,p

N s.t. max
p

L(A(D(N,p), Dval) � u
tar

We solve it through a bi-level optimization, where the lower level is the same as the primary objective
and the upper level is a line search for optimal data quantity N

⇤. Note that the model performance
L(A(D(N,p), Dval) is monotonically non-decreasing and concave in N . Thus, the optimal data
quantity N

⇤ can be found via a straightforward line search. Initialize at N0 = 0 and p = p0 where
p0 can be chosen arbitrarily provided that

P
i pi = 1. Then, at each step, we perform the gradient

update as

N
t+1
 N

t + d
t
·
@L̂(A(D(N,pt⇤)), Dval)

@N

�����
N=Nt

with
pt⇤ = argmax

p
L̂(A(D(Nt,p)), D

val)

where dt is the step size at iteration t and pt⇤ is the optimal data mixture at Nt, respectively. Continue
until L̂(A(D(Nt,pt⇤)), Dval) � u

tar is achieved and then the data acquisition strategy D(Nt,pt⇤)
is accepted. Note that at each step, pt is initialized from p(t�1)⇤ and the optimization for pt⇤ is
completed fairly easily within a few steps.

B.4 Gradients Calculation, Stepsize Selection, and Convergence

For the primary problem optimizing over p(N) where N is the target data quantity, the gradients can
be calculated as

@L̂(A(D(N,p);Dval)
@p

=

✓
log

N1

N0

◆�1
"
log

N
N0

@L̂(A(D(N1,p));D
val)

@p
� log

N
N1

@L̂(A(D(N0,p);D
val)

@p

#

(6)
Optimal Transport naturally provides the gradient information of the OT distance w.r.t. the probability
mass of datapoints on which it is computed in its dual solutions. [8] provides an approach that directly
constructs the calibrated gradient from the output of the OT solver that informs how the OT distance
changes as the probability mass of the datapoints changes, while ensuring the updated mixture p
remains within the simplex

P
i pi = 1 at each step.

Specifically, for projektor/CS, recalling Eq. (1), we have

@L̂(A(D(N,p);Dval)
@p

= a1·
@OT(A(D(N,p);Dval)

@p
=


@OT(A(D(N,p);Dval)

@p1
...
@OT(A(D(N,p);Dval)

@pm

�
,

where p1 + p2 + ...pm = 1. Let {r11, r21...r
n1
1 ...r

ni
i ...r

nm
m } be the samples consisting R(N,p) where

ri represents samples from data source i. Then, the calibrated gradient can be given as

@OT(A(D(N,p);Dval)

@pi
=

1

ni

0

@
niX

j=1

f
j
i �

ni

N � ni

X

x={1...m}\i

nxX

y=1

f
y
x

1

A , (7)

where f j
i is the dual solution of OT that corresponds to r

j
i . The calibrated gradient ensures the updated

mixture p remains within the simplex
P

i pi = 1 at each step. Similarly, for projektor/PQ in Eq.
(2), the calibrated gradient is given as

@L̂(A(D(N,p);Dval)

@pi
= (bi2 · p

2
i + b

i
1 · pi + b0) ·

@OT(A(D(N,p);Dval)

@pi

+ [bi2 · (2pi) + b
i
1] · OT(A(D(N,p);Dval) + [ci2 · (2pi) + c

i
1].

(8)
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Then, to perform gradient-based optimization, first, we initialize the algorithm with p = p0 where
p0 can be chosen arbitrarily provided at

P
i pi = 1. Then, at each step, we perform the gradient

update as

pt+1
 pt + d

t
·
@L̂(A(D(Ns,p)), Dval)

@p

�����
p=pt

where d
t
> 0 is the step size at iteration t. In practice, we choose diminishing step sizes that satisfy

Robbins—Monro conditions such that dt < d
t+1,

P
t d

t =1, and
P

t(d
t)2 <1. then the series

pt is guaranteed to converge to the optimal solution p⇤ [44] given that objective function is convex
and bounded. Gradients for projektor/PQ can be obtained similarly and the solution procedure
is the same. The proposed method is shown to achieve remarkable performance and fast convergence,
yielding satisfactory results in a swift manner.

Appendix C Sampling Stochasticity and Market Practices

In the data selection problem formulated in this work, we aim to optimize predicted performance
with objectives given in terms of finite samples from the pilot dataset. We note that this pilot dataset
is considered a random sample from the whole dataset of each data provider and is inevitably affected
by the stochasticity of the sampling process. Our performance predictions L̂ are empirical estimates
of the expectation for the variable based on the samples. Thus, it substantially depends on the
sampling process for the estimates to be unbiased and precise. Data providers should adhere to certain
guidelines when selecting the pilot datasets. The sampling process should be unbiased where each
sample is selected with an equal chance. Examples include sampling with a Bernoulli process where
each sample is selected with a fixed probability p; or permutation sampling where one selects the first
N samples from the random permutation.

There might be strategic providers that do not adhere to the guidelines. Multiple mechanisms are
available to incentivize providers to provide true samples. Since the full dataset will be revealed after
purchase, the data buyer can examine the posterior probability for the pilot dataset being sampled
from the whole dataset according to the prescribed sampling protocol. The chance of the distribution
of the pilot dataset having a large deviation from that of the whole dataset should be small. A
threshold for hypothesis testing can be set to determine whether to accept or reject the pilot dataset as
an unbiased sample from the whole dataset. If there are external supervisions (e.g., market regulators),
they can conduct sequential hypothesis testing to check whether the samples provided by each seller
converge to the whole dataset or comply to the prescribed sampling procedure.

Appendix D Experiment Details and Additional Results

D.1 Datasets and Models

For our experiments, we use the following vision and language datasets:

Dataset Total Training Data Total Test Data Number of Classes
IMDB [45] 25,000 25,000 2
MNIST [46] 50,000 10,000 10
CIFAR-10 [47] 50,000 10,000 10
ImageNet100 [48] 130,000 5,000 100
BDD100K [15] 70,000 10,000 10

Table 2: Details on datasets used in experiments.

For IMDB dataset, we trained a Long Short-Term Memory (LSTM) network model [49] for 20
epochs; for MNIST dataset, we use Support Vector Machines (SVMs) with RBF kernel. For CIFAR-
10 dataset, we trained on the pre-activation Resnet with identity mappings (PreActResNet-18 [50])
for 100 epochs. We trained ImageNet-100 on ResNet-50 [51] backbone for 200 epochs with cosine
annealing as the learning rate scheduler. For the autonomous driving object detection dataset,
BDD100K, we fine-tune an improved pre-trained faster region proposal-CNN network (Faster-RCNN
ResNet50 [52]) on COCO dataset [53] for 30 epochs.
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D.2 Details on Baseline Methods

For N samples (data quantity) from m data sources with a mixing ratio p = {p1, . . . , pm}, we
consider the following baselines

Linear: L̂(A(D(N,p);Dval) := a0p + b log(N) + c, where a = {a0, a1, ..., am}, b, and c are
coefficients to be fitted.

Leave-one-out (LOO) and Shapley can be considered special cases for Linear, where the coefficients
are calculated as the marginal contribution of the data source (LOO) or its averaged contribution to
different combinations of other data sources (Shapley) [18], as opposed to the least-square fitting as
in Linear.

Pseudo-quadratic: L̂(A(D(N,p);Dval) :=
Pm

i=1(c
i
2 · p

2
i + c

i
1 · pi + c0) + b log(N)

Quadratic: L̂(A(D(N,p);Dval) :=
Pm

i=1(c
i
2 ·p

2
i +c

i
1 ·pi+c0)+

Pm
i=1

Pi
j=1(c

ij
3 ·pipj)+b log(N)

Rational: L̂(A(D(N,p);Dval) :=
Pm

i=1

⇣Pm
j=1 c

ij
· pj

⌘�1
+ b log(N)

We fit the Rational baseline according to the setup detailed in [13] and to our best effort. Originally,
the method is intended for predicting log loss, whereas in our case, we aim to predict model accuracy.
Thus, we replaced the log loss with log (1� accuracy) for the prediction target.

D.3 Performance Prediction for Unseen Data Mixtures p: Ablation Study

Data Source Case 1 Case 2 Case 3 Case 4 Case 5
1 {0, 3, 6, 7} {1, 7} {1, 5, 6, 8, 9} {4, 6, 9} {0, 1, 2}
2 {4, 5, 9} {0, 3, 6, 8, 9} {2, 7} {8} {2, 4, 6}
3 {1, 2, 8} {2, 4, 5} {0, 3, 4} {0, 1, 2, 3, 5, 7} {3, 5, 7, 8}

Table 3: Class distributions of data sources for five different cases.

In the previous experiments, we presented results over a single data source class distribution. Here,
we present a more comprehensive view of the projektor’s performance by running multiple
times over random class distributions of data sources, according to Table 3. As shown in Table 4,
for all cases, either projektor/CS or projektor/PQ achieves the highest performance, while
baseline methods struggle to get close performance. Although, in many cases (1,2,3,5), Quadratic or
Rational baseline obtains the lowest training data MAE, but in test performance, these methods have
poor generalization scores, which indicate high overfitting to the training data. These results indicate
that predicting performance from data source composition is insufficient for fitting and OT distance
plays an important role in better alignment of data sources to the model accuracy.

Method Case 1 Case 2 Case 3 Case 4 Case 5
projektor/PQ 1.41 · 2.63 (� 0.00) 1.11 · 1.35 (� 0.00) 1.24 · 1.22 (� 0.15) 0.88 · 1.39 (� 0.00) 0.84 · 1.26 (� 0.00)
projektor/CS 1.45 · 7.07 (� 4.44) 1.12 · 1.49 (� 0.14) 1.24 · 1.07 (� 0.00) 0.91 · 2.31 (� 0.92) 0.97 · 1.95 (� 0.69)
Linear 3.31 · 10.67 (� 8.04) 5.51 · 7.70 (� 6.35) 4.35 · 7.31 (� 6.24) 5.38 · 8.92 (� 7.53) 4.44 · 6.04 (� 4.78)
Pseudo-Quadratic 1.35 · 10.18 (� 7.55) 1.04 · 5.21 (� 3.86) 1.82 · 4.94 (� 3.87) 1.34 · 3.54 (� 2.15) 1.82 · 2.90 (� 1.64)
Quadratic 1.05 · 9.42 (� 6.79) 1.02 · 4.94 (� 3.59) 0.97 · 3.48 (� 3.41) 0.93 · 3.28 (� 1.89) 0.88 · 5.22 (� 3.96)
Rational 1.06 · 15.99 (� 13.36) 1.09 · 6.24 (� 4.89) 1.04 · 4.89 (� 3.82) 1.04 · 3.02 (� 1.63) 0.83 · 2.95 (� 1.69)

Table 4: Multiple runs over random data source class distributions in CIFAR10. For each cell the
left-column value denotes the fitting MAE value for fitting the training data and we marked in
underlined green, whereas the right-column value denotes the MAE value for testing data and we
marked in bold red.

D.4 Extended Application to Multiple Number of Data Sources

So far, our experiments are focused solely on the cases with three data sources. To show the
practicality of our method, we extend projektor to more challenging cases, where we have more
than three data sources. Specifically, we explore the setting with 4, 5, and 6 data sources and illustrate
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the results with baseline comparisons in Table 5. As we observe, our methods, both projektor/CS
and projektor/PQ, achieve the best testing MAE scores as well as one of the lowest training
MAE scores. While both Linear and Pseudo-Quadratic baselines are under-performing and receive
poor testing MAE values. As observed in previous experiments, Quadratic baseline presents strong
training data fitting but weak testing predictions. For the Rational baseline, we tried our best to fit this
method, but we demonstrate that with the larger number of data sources, it is even harder to properly
train this function which results in increasing errors, respectively. This experiment demonstrates the
capability of our method to extend to more practical settings with multiple data sources.

Method 4 Sources 5 Sources 6 Sources
projektor/PQ 1.15 · 2.83(� 0.00) 0.99 · 3.40(� 0.00) 1.14 · 2.53(� 0.00)
projektor/CS 1.28 · 3.51 (� 0.68) 1.23 · 4.14 (� 0.74) 1.29 · 2.91 (� 0.38)
Linear 2.12 · 4.58 (� 1.75) 2.38 · 4.74 (� 1.34) 1.99 · 4.03 (� 1.50)
Psuedo-Quadratic 1.32 · 3.97 (� 1.14) 1.43 · 5.24 (� 1.84) 1.34 · 3.91 (� 1.38)
Quadratic 1.06 · 3.93 (� 1.10) 0.97 · 8.70 (� 5.30) 1.02 · 4.67 (� 2.14)
Rational 52.72 · 57.93 (� 55.1) 611.5 · 501 (� 497.6) 1034 · 1155 (� 1152)

Table 5: Performance on various number of data sources (4,5,6) in CIFAR-10. For each cell the
left-column value denotes the fitting MAE value for fitting the training data and we marked in
underlined green, whereas the right-column value denotes the MAE value for testing data and we
marked in bold red.

D.5 Optimal Data Source Composition

Here, we showcase the optimal data source selection on CIFAR-10 dataset. Similarly as in Section 5.2
given a pilot dataset of size 1.5K from each of the three data sources, we would like to find the
mixing ratio that can maximize the model performance when trained on 10K dataset. As illustrated in
Fig. 9, projektor/PQ and projektor/CS select mixing ratios that achieve the highest model
performance, gaining 4% and 2% in performance improvement over the best baseline method. Our
methods select nontrivial mixing ratios which also outperform the uniform mixing ratio by 5%
and 3%, respectively. Furthermore, we observe in Fig. 10 that our methods also perform well in
performance prediction into larger data scales. Specifically projektor/PQ and projektor/CS
predictions are within 2.2% discrepancy from the actual model performance for 10K dataset, while
the best baseline method prediction has over 5% error. To demonstrate projektor capability, we
additionally present results on the case where data sources contain some mislabeled data.
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Figure 9: Optimal data source composition selection
for 10K CIFAR-10 from 1.5K samples and the actual
model performance.
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Figure 10: Performance projection of selected op-
timal mixture ratios in (Fig. 9) onto 10K CIFAR-10
from 1.5K samples. Comparison with the actual model
performance.

In this case, we assume data sources have noisy labels. In particular, data sources have 20%, 15%, 25%
of mislabeled data, respectively. In Fig. 11, surprisingly, we observe that even though the first data
source has 20% of mislabeled data, choosing more of that source improves the model performance.
A possible explanation is that the first source dataset contains classes that are important for learning
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and the second source has less important for model performance or requires less to be learned
(especially since it has a lower mislabeled rate). Moreover, we notice that projektor ’s mixing
ratio can improve the model performance by over 3% from the performance of the best baseline.
Results from Fig. 12 indicate that projektor ’s performance projection onto 10K dataset has a
prediction error within 1.7%, while the best baseline has an error of over 2.2%. To sum up, we have
shown possibilities of projektor in mixing ratio selection and performance prediction. While
baseline methods have the same mixing ratio over any data scales, our method chooses different
optimal mixing ratios for different data scales, which has shown some advantages in improving model
performance.
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Figure 11: Optimal data source composition selec-
tion for 10K CIFAR-10 from 1.5K samples with misla-
beled data sources, and the actual model performance.
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mal mixture ratios in (Fig. 11) onto 10K CIFAR0-10
from 1.5K samples. Comparison with the actual model
performance.

Appendix E Additional Discussion and Broader Impacts

Limitations. Despite contributing a new perspective with performance and efficiency improvements,
this work still has some limitations and opens up many new investigation venues: (1) How to quantify
the influence or further lift the dependence on validation data? While a validation set representative
of the downstream learning task is a common assumption in the ML literature, it may or may not
be available during data exchange and its quality may vary. (2) Our design could be vulnerable to
estimation errors in the scaling law for data sizes, which could lead to magnified prediction errors
on larger scales and affect data acquisition decisions [54]. Especially, noises are inevitable due to
the performance stochasticity of ML models as well as the sampling process to generate the pilot
dataset. (3) Our current framework does not take into consideration of broader tasks that aim for
goals beyond accuracy, e.g., fairness, variable data costs, as well as broader acquisition scenarios
where data sources have misaligned feature space. Incorporating other objectives and extending to
heterogeneous data sources is an exciting direction. (4) Our setup considers honest data providers
and the requested samples are faithfully sampled from the actual data sources, leaving an in-depth
study of potential security risks, such as malicious data manipulation [28] to future work.

Broader Impacts. This work will have significant impacts beyond advancing the research on data
selection and data markets. The techniques developed in this work can be applied to a variety of other
subfields of ML related to data acquisition, data valuation, interpretability, robustness, etc. The results
of this paper will facilitate the automation of data selection and quality management in machine
learning, which in turn, accelerates research and improves services based on ML. Data exchanges
and data markets are also at the heart of the global data economy. The advancements in practical data
exchanges in this work will substantially benefit the development of data markets and promote data
sharing, contributing to the business and economy as well as society as a whole.
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