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Abstract

Tensor completion is a core machine learning algorithm used in recommender systems and other
domains with missing data. While the matrix case is well-understood, theoretical results for tensor
problems are limited, particularly when the sampling patterns are deterministic. Here we bound the
generalization error of the solutions of two tensor completion methods, Poisson loss and atomic norm
minimization, providing tighter bounds in terms of the target tensor rank. If the ground-truth tensor is
order ¢ with CP-rank r, the dependence on r is improved from r2(*=D(*~t=1) iy [16] to r2(:=1(B1=5) The
error in our bounds is deterministically controlled by the spectral gap of the sampling sparsity pattern.
We also prove several new properties for the atomic tensor norm, reducing the rank dependence from
r3'=3 in [14] to 73~ under random sampling schemes. A limitation is that atomic norm minimization,
while theoretically interesting, leads to inefficient algorithms. However, numerical experiments illustrate
the dependence of the reconstruction error on the spectral gap for the practical max-quasinorm, ridge
penalty, and Poisson loss minimization algorithms. This view through the spectral gap is a promising
window for further study of tensor algorithms.

1 Introduction

In many situations, incomplete data measurements are the rule due to data corruption, impracticality, or
impossibility of filling in all information that is desired. Tensor completion is a general technique used to fill
in missing multivariate data using assumptions of prior structure. It is the natural generalization of matrix
completion, made famous as a winning solution to the Netflix prize [2]: A system to recommend films to
users was built by filling in a low-rank matrix of scores for each pair of movies by users.

In tensor completion, we seek to fully or partially recover the entries of an unknown order ¢ tensor (i.e.,
a multidimensional n X --- x n array with ¢ > 2 indices) T given some limited set of observations {T¢}eck.
The ground truth is assumed to have CP-rank r [20]. Mathematical analysis of such methods often assumes
that the observed entries in the tensor £ C [n]* are random, and the best known polynomial-time algorithms
require O(n'/?) sample complexity for an order ¢ tensor [19, 22, 24, 6]. On the other hand, a number of
papers have studied deterministic sampling for matrix completion [17, 4, 3, 5, 10, 12]. For tensors, only a few
recent results have studied error bounds in the deterministic setting. [9, Theorem 3.1] gave a general bound
for non-uniform Frobenius norm error for any deterministic sampling pattern with an NP-hard algorithm.
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However, the dependence on rank in the bound is not specified. An HOSVD method was also analyzed in
[9] for low Tucker rank tensor completion.

Closest to the work we present here, [16] found bounds for minimizing a quasinorm penalized problem
[14] in terms a spectral gap. For regular graphs where each vertex has the same degree, smaller second
eigenvalue corresponds to larger spectral gap. Viewing the sampling pattern as the adjacency tensor of a
t-uniform hypergraph H constructed from a regular graph G, they showed that the second eigenvalue of
G could be used to control the reconstruction error. Expander graphs, which have the smallest possible
second eigenvalue/largest spectral gap, are thus optimal for that theory. In addition, using the definition of
the second eigenvalue for the adjacency tensor of a hypergraph [13], they showed that the for any ¢-uniform
hypergraph (not necessarily regular) as a sampling pattern, its second eigenvalue could also be used to control
the reconstruction error, but with a larger sample complexity bound.

Our main contribution is a collection of theoretical results suggesting that the spectral gap influences
the quality of reconstruction. We first show how the rank dependence of previous generalization bounds [16]
can be tightened if the optimization is done with a different atomic norm penalty. Several properties of this
atomic norm are proven, improving upon the results in [14] where the atomic norm was introduced. We also
extend the analysis of tensor count data with a Poisson likelihood model [21] to deterministic observations.
Finally, we present numerical experiments to showcase how a larger spectral gap leads to less error. These
results together provide strong evidence that the spectral gap of the observation mask is important for
controlling the error of tensor completion. Our notation and some basic definitions are given in App. A.1.

2 Theoretical results

2.1 Tensor atomic norm properties

In order to connect the expansion properties of the sampling pattern hypergraph to the error of the algo-
rithms, we will work with sign tensors. A sign tensor S has all entries equal to +1 or —1,i.e. § € ®§:1{:|:1}”'i.
The sign rank of a sign tensor S is defined as

ranky (S) = inf {7’

SZngl)o---osgt)}, (2.1)
i=1

where ng) € {£1}",i € [r],j € [t]. We define the atomic norm for a tensor T as

i=1

where a; € R, S; € ®!_, {1}, € [r]. This is called tensor atomic-M norm in [14]. In (2.2), the “atoms”
are simple sign tensors.

Note that the set of all rank-1 sign tensors forms a basis for ®§:1 R™, so this decomposition into rank-
1 sign tensors is always possible; furthermore, this is a norm for tensors and matrices [14, 17], and it is
commonly used in compressed sensing and matrix completion [8, 11]. The following results give several
useful properties of the tensor atomic norm, which will be used in our tensor completion analysis (proofs in
Apps. A.2 and A.3, respectively):

T

|7+ = inf {Z ||

i=1

Theorem 2.1. Let T € ®§:1 R™ and S € ®f:1 R™i. The following atomic norm properties hold:
1. T, <|T||+ for any subsets I; C [n;].
2. IT@ Sl < IT)+/S+-
3. ||T % S|+ <||T® S|+, where T, S € @;_, R™.
4 1T Tl < | TZ.



Lemma 2.2. Let u; € R™ with ||ui]|eo <1 fori € [t] and rank-1T =ujougo---ous. Then ||T]+ < 1.

We also need to compare the atomic norm of a tensor T and its CP-rank to obtain rank-dependent
bounds. The following Theorem improves the rank dependence in [14, Theorem 7] by a factor of r (proof in
App. A4):

Theorem 2.3. Let T € ®§=1 R™ and rank(T) = r. Then
IT|oo < T+ < KaVr3t=5|T|, (2.3)
where Kg < 1.783 is Grothendieck’s constant over R.

In contrast, for the max-quasinorm (see App. A.1), it was shown in [16] that

IT]oo < 1T [lmax < V=11 T

Since 3t — 5 < t> — t — 1 for all integers ¢ > 2, atomic norm-based analysis and optimization will yield a
better rank dependence in the generalization error bound.

While the main focus of this paper is on deterministic sampling patterns, we note that Theorem 2.3
can be used to improve upon results in the literature that consider random sampling schemes. In [14], the
authors introduce the atomic norm to show that O (nr?’t*?’) entries chosen randomly are sufficient to provide
an accurate approximation of a rank 7 tensor in ®f:1 R™. Using our main result, Theorem 8 in [14] can
be applied with R = KgVr3t~2|T |+ to reduce the sampling complexity to O (nr3t—5). To the best of our
knowledge, the results here provide the best sampling complexity to date for tensors of general order under
random and deterministic sampling patterns.

2.2 Deterministic tensor completion

Equipped with the properties of the atomic norm proved in Theorem 2.1, we give an improved generalization
error bound for deterministic tensor completion (proof in App. A.5):

Theorem 2.4. Given a hypercubic tensor T' of order t, reveal its entries according to a t-uniform t-partite
hypergraph H = (V,E) with V. =V, U---UV,, |Vi| = -+ = |Vi| = n, and second eigenvalue \o(H). Let T
satisfy

T = argmin 7] <
such that T, =T, forall e€E.
Then the following bound holds:

21+20t/2 0, (H)

1 -
—||T - T|% <
TLt” ||F— ‘E|

ITI%, (2.4)

where Ao(H) = HTH — By , J is the all-ones tensor, and Ty is the adjacency tensor of H such that

nt

Til,...,it = 1{(21, .. .,it) (S E}

The above result is for any ¢-uniform, t-partite hypergraphs, and the error bound depends on the second
eigenvalue of their adjacency tensors. Concentration for the second eigenvalue of adjacency tensors for
random hypergraphs was considered in [13, 25].

Computing Ao (H) is costly since the tensor spectral norm is NP-hard [18]. However, we can “lift” a graph
into a hypergraph in a way that gives a bound in terms of graph eigenvalues. Let G = (V(G), E(G)) be a
connected d-regular graph on n vertices with the second largest eigenvalue (in absolute value) A € (0,d). The
following construction of a t-partite, t-uniform, d'~!-regular hypergraph H = (V, E) from G was given in
[16]. See Fig 1 for an illustration of the “edge lifting” operation from a regular graph to a regular hypergraph
graph when t = 3 and d = 4.
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Figure 1: Lifting a graph G into a hypergraph H when ¢t = 3: We depict a 4-connected ring base graph G
on the left and a single edge in the hypergraph H on the right. (i1,4s,43) forms an hyperedge e in H if and
only if (i1,142,13) is a walk in G.

Definition 2.5 (Edge lifting for regular hypergraphs). Let V =V, UV, U---UV; be the disjoint union of ¢
vertex sets such that |V;| = .-+ = |V;| = n. The hyperedges of H correspond to all walks of length ¢ — 1 in
G: (v1,...,v) is a hyperedge in H if and only if (i1,...,4;) is a walk of length t — 1 in G.

Theorem 2.6. Given a hypercubic tensor T' of order t, reveal its entries according to a t-partite, t-uniform,
d*=-regular hypergraph H = (V,E) lifted from a d-regular graph G of size n with second eigenvalue (in
absolute value) A € (0,d). Then solving

T = argmin 7]«

such that T.=T, forall ec€FE (2.5)

will result in the following mean squared error bound:
1, A
T - T < 22 - 3)5ITIE
A
< 2%(2t — 3)EKgr3t*5|T|§o. (2.6)

Theorem 2.6 is proven in App. A.6. Suppose we lift an expander graph G with A = O(v/d) and t, |T|s =
O(1). In order to have the right hand side of (2.6) bounded by ¢, we need to take

2(t—1)(3t—5)

nr

|E| =0 <52(t1)) (2.7)
(2

many samples. The sample complexity in [16] is O %) Optimizing the atomic norm instead

of the max-quasinorm yields a better bound, although it requires costly integer programming.

3 Poisson Tensor Regression

We may also use the atomic norm properties to obtain error bounds in the case of noisy tensor completion.
In this scenario, we seek to estimate a parametric tensor 7' from noisy, incomplete observations so that T
is never observed directly. We specifically consider the Poisson tensor completion problem [21], where we
observe count data X € ®§:1 N’} obeying

X, ~ Poisson(T,) forall e€ E, (3.1)



where T' € ®Z:1[ﬁ7 a]™ specifies the range of possible Poisson parameters (with 0 < 8 < «). Given X, for
e € E, we approximate T via a Poisson maximum likelihood estimator

T= arg max Z X log(Z,) — Ze (3.2)
2e5:(@) ocE

where our parametric tensor search space is

S.(8,0) = {Z e Q8.

=1

rank(Z) < r}.

This leads to our main result for the Poisson regression (proof in App. A.7):

Theorem 3.1. Let the hypercubical parameter tensor T and observations X be generated as above, with

entries revealed according to a t-uniform, t-partite hypergraph H = (V,E) with V. =V U---UV,, V1| =
- = |V;| = n, and second eigenvalue Ao(H). Then with probability exceeding 1 — %, there exists an absolute

constant C > 0 such that T satisfies:

Ca’t3/2\/nr3t=5 log, (n)
BVIE|
2t+2nt/2)\2 (H)KéOéQ’I"St_ES
|E|

1, -
T =TI} <

(3.3)

Furthermore, if the entries are revealed according to a t-partite, t-uniform, d*='-reqular hypergraph H =

(V,E) constructed from a d-regular graph G of size n with second eigenvalue (in absolute value) A € (0,d),

then with probability exceeding 1 — #,

Calt3/2/r3t=5log, (n)
B1 /dtfl

A
+ a?28(2t — 3)EKér3t_5. (3.4)

1. -
—IT =TI <

If all r,t,«, 8 are independent of n, and we take an expander graph with A\ = O(\/&)7 (3.4) says if
nd*=t is w(n log? n), then the generalization error goes to 0 as n — oco. Fixing ¢, a, 8, the sample size is

2(t—1)(3t—5) nr3t=5 o2 . . . e .
O (m’ =D + Eog (")) for an e-approximation. The result is no longer deterministic due to the

random nature of the observed counts X, but not the observation mask. We roughly obtain the same

3t—5 2
sampling complexity as in Theorem 2.6 with an extra O (W) term.

We end this section by noting that the derived noisy tensor completion error bounds (3.3) and (3.4) are
dependent on the Poisson parameter bounds 5, a. Such dependence is typical in the literature under random
sampling schemes [7, 21]. Theoretical results therein exhibit analogous dependence on the distributional
parameter space, with numerical experiments that further validate this dependence as 8 and « are varied.

4 Numerical Experiments

We now present some numerical experiments that explore our derived error bounds in practice. The goal of
this section is to showcase how the accuracy of estimators T depends on the spectral gap of the associated
hypergraph or “lifted” regular graph that specifies the sampled tensor entries. To do so, we will generate
subsets of revealed tensor entries F in different manners that vary the second eigenvalue of the associated
adjacency tensor or lifted graph. The following experiments keep the cardinality |E| fixed so that only the
distribution of the sampled entries contributes to the behavior of the reconstruction errors.



We tested the max-quasinorm minimization algorithm of [16] with graph lifting for a graph with d = 15
and random target tensor with n = 100, ¢ = 3, and » = 3. To vary the eigenvalue \2(G), we start by
creating a d-connected ring graph (see Figure 1). We then perform a number of random edge swaps where
we randomly select two edges and switch their endpoints, which preserves the regularity of the graph. This
is the classical switch Markov chain for generating random regular graphs [15]. As the number of swaps
increases, Ao decreases until it stabilizes at approximately 2v/d — 1. We vary the number of swaps between
0 and 600 to give as wide of a Ay range as possible. This graph is then lifted into a hypergraph/tensor mask
of observed entries.

Figure 2 shows the results from these experiments. We observe a significant positive correlation between
generalization error and As, increasing nonlinearly for the larger values of the eigenvalue. To check if this
pattern persisted when limiting to lower Ao values, we removed the points with large Ay values that were
dominating the plot. We can see there still is a positive correlation when the points are removed, providing
further evidence that Ay is a determinant of generalization error. Further details and similar plots for two
additional square loss algorithms, as well as regression reports, are included in App. A.8 and the supplemental
files.

We also experimented with the Poisson regression algorithm [21]. In this case, we did not use graph lifting
but came up with a procedure to generate mask tensors with varying Ao (H) by starting from a grid-like mask
and randomly shuffling entries. The tensor eigenvalue A2(H) was estimated by a rank-1 fit to (Ty — %‘ ).
We again saw a strong correlation between Ay and error. Further details and plots of results are shown in
App. A9.

5 Conclusion

We provided an improved analysis of deterministic tensor completion based on the spectral gap of expander
graphs in [16] and applied the results for Poisson tensor regression. Our new numerical experiments support
the dependence of generalization error on the spectral gap. Our main contribution also improves upon
previous results that consider random sampling schemes, providing the best sampling complexity to date for
general order tensor completion problems in terms of the CP-rank.

It would be interesting to see if our analysis can be extended for deterministic non-uniform low CP-
rank tensor completion following the line of work [12, 9]. However, more properties of the tensor atomic or
max-quasinorm are needed. In particular, in the matrix case, we have the following relation between the
max-norm and operator norm: ||A%B|| < ||Al|max]||B]|| for any two n x n matrices A, B, which is crucial in the
proof of [12, Theorem 15] and [9, Theorem B.1]. Generalizing this inequality for these tensor factorization
norms is an interesting question for future work.

Our work also contains some limitations. First, we did not study the computational complexity of
our optimization algorithms, although we expect them to be NP-hard [1]. Directly minimizing the atomic
norm as in Theorem 2.4 requires integer programming and is not efficient in practice. Finally, while many
numerical results show a good correlation with Ao, there is significant unexplained variance at a given gap and
across algorithms. Like many results, these theoretical bounds are not tight enough to quantitatively predict
performance, and they are far from the parameter counting lower-bound of O(nrt) for the CP decomposition.
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Figure 2: Numerical experiments show that reconstruction error correlates with Ay(G) using the max-
quasinorm minimization method and graph lifting. This graph has d = 15 and n = 100, and the tensor order
t = 3, for 2.25% of the entries sampled. Above: The full range of graph eigenvalues by varying edge swaps
from 0 to 600. Below: Linear fits show significant positive correlation even when points with Ay > 12 are
removed. Coefficients of determination R? for linear fits of error versus A, are included.
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A Appendix

A.1 Notation and definitions

We use lowercase symbols u for vectors, uppercase U for matrices and tensors. The symbol “o” denotes the
outer product of vectors, i.e. T' = uovow denotes the order 3, rank-1 tensor with entry 7; ; 1 = w;v;w,. We
also use this symbol for the outer product of matrices as appears in the rank-r decomposition of a tensor

T =UDoU? oU®, where each matrix U®) has r columns, so that T} ;x = >, U, 1) Uj(zl) Uk /., and

T=0\ 1U () is shorthand for the same order ¢, rank-r tensor. The symbols @ and * denote Kronecker and
Hadamard products, respectively. We use ® 1 R" for the space of all order ¢ tensors with n; entries in
the 4-th dimension. We use 14 € R™ as the 1ndlcator vector of a set A C [n], i.e. (14); =1ifi € Aand 0
otherwise. For any order ¢ tensor T € ®§:1 R™ and subsets I; C [n;], denote Tjh,__, 1, to be the subtensor
restricted on the index set Iy X - - - x I;. Norms || - || are by default the ¢3 norm for vectors and operator norm
for matrices and tensors. We use the notation | - |, for entry-wise ¢, norms of matrices and tensors.

Let T € ®§:1 R™ and S € ®§:1 R™i. We define the Kronecker product of two tensors (T’ ® S5) €

®:_, R™™i as the tensor with entries
(T®S)kl ----- ki zﬂl,... 3

fOI' kl :jl +m1(i1 — 1),...,]% :jt —l—mt(it — ].)
Let 7,5 € ®'_, R". We define the Hadamard product of two tensors (T * S) € @'_, R™ as the
tensor with indices (T .S)i, ...i, = Tiv,....iySiv .o ie-

For matrices, the most common measure of complexity is the rank. In the tensor setting, there are various
definitions of rank [20]. However, in this paper, we will work with the CP-rank defined as

,
rank(T):min{r ’T:Zugl)o-wougt)}, (A.1)

i=1

where each vectors u ) eR™,
In [14], Ghadermarzy, Plan, and Yilmaz studied tensor completion without reducing it to a matrix case
by minimizing a max-quasinorm as a proxy for rank. This is defined as

t
[T [l max = min H ”U(i)”loo )
T=UMo...oU®) bl

where the factorization is a CP decomposition of T'.
Define the spectral norm of a tensor T' as

IT] = sup Z i v1(in) v (i) (A.2)

U17~~'7Ut65n71 ;

where S”~! is the unit sphere in R™.

A d-regular graph on n vertices is a graph where each vertex has the same degree d. The adjacency
matrix of a graph G = (V, E) is a [V| x |V| symmetric matrix such that A;; = 1{{3,j} € E} foralli,j € V.
The second eigenvalue (in absolute value) of G, denoted by A(G), is defined as A = max{|A2(A4)|, |\ (A)]}.

A hypergraph H = (V| E) counsists of a set V of vertices and a set E of hyperedges such that each
hyperedge is a nonempty set of V. A hypergraph H is k-uniform for an integer k > 2 if every hyperedge
e € E contains exactly k vertices. The degree of i, is the number of all hyperedges incident to i. A hypergraph
is d-regular if all of its vertices have degree d. A k-uniform hypergraph is k-partite if we can decompose
the vertex set as a disjoint union V' = Vj U --- U V}, such that each hyperedge in F contains exactly one
vertex in V;,1 <14 < k. The adjacency tensor T of a k-uniform hypergraph H = (V, E') on n vertices is a
k-th order symmetric tensor of size n such that T;, . ;. = 1{{i1,...,ix} € E}. The second eigenvalue of H,

denoted by A2(H), is defined as \y(H) = HT - =

ones tensor.
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A.2 Proof of Theorem 2.1

We prove Claims (1 —4) in order. For Claim (1), write T using the decomposition which attains the atomic
norm, T = O!_,U® for some U € R™*" 1 < i <t. Then a single entry of T’ can be written as

21, T § :al 112” z,w

where uf, E{1+1}for1<zk<nk,1<z<r1<k<t
U(l) — [alugl),. - 7067"1,65‘1)],

and U 2 < k < t are matrices with column vectors given by ugk), e ,us«k) € R™. By the definition of

atomic norm, we have
.

I1T)+ =" oul.

i=1
We know that T7, . 1, = U (Z)z, where U (¢ ) denotes the submatrix of U with the column restricted
on I;. Therefore Ty, . ;, can be written as a hnear combination of rank-1 sign tensors with the sum of

absolute value of weights given by > '_, |a;|. By the definition of the atomic norm, this is an upper bound,
so |77, ..., /|« < |IT|l+. This proves Claim (1). For Claim (2), let

T=0_,TY and S=Q,S®

be the rank ry and ro decompositions of T" and S that attain their atomic norms. We can write

21, -t _§ :al 11,2 ’ 1, 17 Jl’ STt E :ﬁj j : jf,j7 (A3)

wherev GE{-LH1} for 1 <yjp <mp, 1 <j<r1<k<t,

v — [511;1 e ﬁmvg)]’
and V(k),2 < k < t are matrices with column vectors given by ng)’ y .’%(«k)' And by definition, [|S]s —
32521 1Bjl- Then since

1 t t
(T®S)k‘1 ..... ke = ,I’il-,-~-,’itSj1 ..... jt (Z U1(1)l Ui(f,,)l> (Z 71, l’ VY(f 3/)

=1 I'=1
=33 (Uv) - (0
I=110=1
T17T2

— () ¢h)
;(Ul(g)vl)

for ks = js +my(is — 1) forall s =1,...,t and p = I + ro(I — 1), we have that T ® S = Ot_,(U® @ V).
This gives a way to write T'® S as a weighted sum of rank-1 sign tensors with the sum of absolute value of
weights given by

: (Tm ® V(t))

ki,p kt,p

1 T2

D> laibil = Tl llS] <

i=1 j=1
Therefore |T® S||+ < || T||«|IS||+. This completes the proof of Claim (2). For Claim (3), note that every
entry in T % .S appears in T ® S, since

(T*S)Zl ----- (T®S)il+n1(i1_1),<~-7it+nt(it_1)'

So we have that T+ S = (T'® S)y,.....1, for some subsets of indices Iy, ..., I;, and by Claim (1), the result
follows. Finally, from Claims (2) and (3), [T+« T|l+ < [|T® T+ < HTH:I:a and Claim (4) follows.
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A.3 Proof of Lemma 2.2

Since ||uiloo < 1, u; € [—1,1]™, where [—1,1]™ is a convex hull of the set {—1,1}", u; can be written as a
convex combination of {—1,1}" such that

SR

ke[2mi]
where v}, k € [2"] are all possible vectors in {—1,1}" and Zk |)\,(:)| = 1. Therefore we have

T=uioug---ou = Z )\ t) (1) ..ov’(ctt)7

.....

which is a decomposition of T' as a linear combination of sign rank-1 tensors. So

ITe< Y YAl <1
k1,..,kt

A.4 Proof of Theorem 2.3

The lower bound was shown in [14, Theorem 7]. We now focus on the upper bound. When ¢t = 2, using
Grothendieck’s inequality, it was shown in [17, Theorem 7] that [|T']|+ < K¢||T||max- From John’s Theorem
(see, for example [23, Corollary 2.2]), ||T||max < v/7|T |- This proves (2.3) when ¢t = 2.

For ¢ > 3, we will use induction. Let T be an order ¢ tensor with rank r and |T|s < 1. Then T has the

rank-r decomposition as
.
1,2 t
— o) "0+ 0 A
T E vj 0 ; vj.
Jj=1

Matricizing along mode-1 we obtain T};; € R™%(n27n¢) guch that

Ty = szl o (v} ®-- ®vf).
i=1

Let W be a Rz )%™ matrix such that W(:,i) = v? ® - -- ® v¢. By John’s Theorem ([23, Corollary 2.2]),
there exists an S € R"*" such that

T[l] =Xo Y7 (A4)
where X = VDG € RM*" Y = WS € R and || X||l2.00 < 7'/, ||V ]l2.00 < 1. This also implies

1Y loo < IY 2,00 < 1. Since each column of Y is a linear combination of columns of W, for some constants

T
i)=Y v} @ @)
j=1
Then .
E; = Z%‘j(%? o out)
j=1
is a order (¢ — 1) tensor of rank at most r with ||F;||cc < 1. By induction, we have || F;||+ < Kgvr3t-7.

Then by the definition of the atomic norm in (2.2), there exists a decomposition of E; such that for some
integer 7;,

E;, = Z)\() 2 5...0 uﬁ,j’

12



where .
ST < Kavirsis,
j=1
and [Jud;|lc <1 for 2 < d <t. This gives a decomposition of T such that

r I _
T:ino Z)‘EZ)H?’JO' ZZ)\ )l.TZ”oo(” zH ) 2 O"'Ou§7j7 (A.5)
i=1 j=1

=1 j=1
where x; is the ¢-th column vector of X and
[Zilloo < llzilla < [|X 2,00 < /2.

Here we assume all z; # 0 for ¢ € [r]. Otherwise, we can ignore the terms involving a zero vector. (A.5)
gives a decomposition of 7" into a linear combination of _._, r; many rank-1 tensors where each component
vector has £,,-norm at most 1. Therefore by Lemma 2.2 and the triangle inequality,

T T )
1T < 32D Ao < P2 K Vi = Ke/ros,
i=1 j=1
A.5 Proof of Theorem 2.4
Following every step in the proof of [16, Theorem 1.2], we have

1 2Xo(H
LY n- g n) < PR gy,
e€[n]t

ecE

holds for any tensor 7. Now we apply this inequality to the tensor of squared residuals R := (T—T) * (T—T).
Since we solve for T' with equality constraints, we have that R, = 0 for all e € E. Thus, using Claim (4) in
Theorem 2.1,

1, - 1
EHT—TH% =l > R (A.6)
2int/2 Xy (H) 2int2 \o(H) |, = 2nt2\o(H) /, 2
<= IRl < S EE I - TR < = (1 + 1T

Since T is the output of our optimization routine and T is feasible, |||+ < ||T|+. This leads to the final
result.

A.6 Proof of Theorem 2.6
Following the same steps in the proof of [16, Theorem 1.3],

2t 1
1 _ A
— ST dt —— > T. <22 =2t 2(27:_3)3. (A7)
e€[n]t ecE
Define R = (T'— T) % (I' — T). Then we have
Lz o _ |1 t—2 A t A2
LIP =T = | Y R <27200-8)5 (170 + 7)) < 2@ -3)3ITIE. (A8)

e€n]t
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A.7 Proof of Theorem 3.1

We closely follow the proof of Theorem 3 in [21]. The proof here is modified by using Lemma 2.3 to bound
the atomic norm (which improves the rank dependence by a factor of r) and applying bounds (A.6) and
(A.8) to replace the uniform random sampling assumption on E.

Let 74+ = Supzeg, (a,p) [ Z]l+. As in the proof of Theorem 3 in [21], up to equation 3.14, for any E we
obtain that with probability greater than 1 — 2|E|~!

(a(e? - 2) + 3log,(| ) <

243/2
\Tlm Z R < 128av/tn(2r+ + 2) Ca?t3/2\/nry logy(n)

ecE B\/E B\/@ ’

where R = (T — T) % (T — T) and C' > 0 is an absolute constant. Adding and subtracting e D ecn)t e to
the left-hand side and rearranging, we have shown

nt AVIE|

Bounding the last term as in (A.6) gives

1
R. — & > Re|. (A.9)

t ecE

1 Z Rl < Ca?t3/2\/nry logy(n) N it Z
" e€[n]

1 Z < Co2t3/2\/nrylogy(n)  272nt/2 )\ (H)rd

R + ,
W 2 N B

which will establish (3.3). To prove (3.4), the additional assumptions imposed on H can be used to instead
bound the last term of (A.9) as in (A.8) and obtain

2,3/2
1 Z Rl < Ca?t3/2\/nry logy(n)

t

" e€[n]t 5‘/ |E|

The proof ends by using |E| = nd'~! and applying Lemma 2.3 to see that ro < Kgav/r3t=5,

+21(2t — 3) 502

>

A.8 Square loss experiments

Theorems 2.4 and 2.6 both concern constrained regression where the observations are fit exactly. How-
ever, for noisy data, one can use a square loss and get similar bounds as in [16]. We tested the per-
formance of three least-squares tensor completion algorithms for varying spectral gaps. These differed
in their regularization and optimization routines, and we refer to the algorithms as “ridge,” “ridge pro-
jected,” and “max-quasinorm.” All of these algorithms are implemented in the code provided at https:
//github.com/kamdh/max-qnorm-tensor-completion

The standard ridge and projected version of it consider a sum of squares penalty on the factor matrices
S U@ % as in ridge regression. The ridge algorithm attempts to solve for

t
Ridge: min IP(T" = T)|F +e> U9, (A.10)
T =UM o 0U®) P
where T/ = UM o ... o U® is the CP decomposition into factor matrices, and P is a projection operator
that zeroes out unobserved entries in the data tensor 1. The optimization routine performs alternating
minimization over the factor matrices—coordinate descent—using the conjugate gradient method. This is one

of the simpler tensor completion algorithms that one could imagine.
The projected ridge method attempts to solve a constrained version of the ridge problem

t
i D12, st. [|[P(T —T)||r <. A1l
T/:Ug)lg{omt);HU 7 st [[P( e <6 (A.11)
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Figure 3: Numerical experiments show that reconstruction error (y-axes, log scale for visualization) cor-
relates with Ao(G) for three different algorithms and varying graph degrees d =7, 15, 23. Coefficients of
determination (R?, linear fit of error ~ Ay without log scaling to be consistent with Fig. 2) are inlaid, and full
regression reports are provided in the supplemental materials. In the sparsest sampling regime (d = 7), no
method performs well, and the correlation is less consistent. In the denser regimes, the algorithms perform
better, although ridge exhibits very high variance in error, while max-quasinorm and projected ridge are
more consistent.
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Figure 4: Same as for Fig. 3 except cutting off the largest A, values and just depicting d = 15, 23. Numerical
experiments show that reconstruction error (y-axes, log scale for visualization) correlates with \2(G) for three
different algorithms and varying graph degrees. Coefficients of determination (R2, linear fit of error ~ Ao
without log scaling to be consistent with Fig. 2) are inlaid, and full regression reports are provided in the
supplemental materials. Here, the correlations are generally weaker except for the ridge projected algorithm,
which has the best performance.
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To deal with the hard constraint on the square residuals, we use an analogous relaxation and variable
projection technique as the max-quasinorm algorithm from [16]. This leads to the relaxed optimization
problem

t
; : . : O ' 2 2
Ridge projected: %1%; Uz + 5 |IP(T"—T - R)||% + Bl RI% (A.12)
st ||R|F <4,

where again 7/ = UM o ... o U®), The parameters we used are § = 0.05\/|f, e =0.01, rg; = 10r, k = 100,
B =1, rebalance = True, init = ’svdrand’. Due to its intriguingly good performance (see below), we
plan to study this algorithm in more detail in a future work.

The final algorithm is the max-quasinorm algorithm studied in detail in [16]. This algorithm is the closest
to atomic norm minimization that we know of that’s also practical. Atomic norm minimization is challenging
since it would require integer optimization. For completeness, the optimization problem is

Max-quasinorm: %r}ilr% 1T || max + gHP(T/ —T - R)||% + B||R||% (A.13)
st. [[P(R)||r < 6.

The parameters for the max-quasinorm algorithm were 6 = 0.05\/|f, e =0.01, rqy = 10r, k =100, B =1,
rebalance = True, init = ’svdrand’.

The target tensors were size n = 100, order ¢t = 3, rank r = 3, and their factors were generated from a
uniform distribution U/[0,1] and rescaled to have Hilbert-Schmidt norm v/nf. After fitting 7, we measure
generalization error ||T' — T||p using the tensor Frobenius norm (root mean square error). Due to the
normalization of the target tensor, an error of 1 corresponds to 100% relative error.

We sampled the tensor entries using graph lifting, where a d-regular graph G is lifted into a hypergraph
by the t-path traversal method described in the main text. We start by taking the d-connected ring on n
nodes, where each node is connected to its d nearest neighbors with periodic boundary conditions. This is a
deterministic graph with eigenvalue \3(G) &~ d—1 in experiments. In order to vary Ay(G), we pick edge pairs
at random and swap their endpoints. These edge swaps preserve the degree distribution, but after many
swaps, the graph distribution approaches that of the d-regular random graph, which has \y(G) =~ 2v/d — 1,
approximately as small as possible. We take d € {7, 15,23} to generate hypergraphs with varying proportions
0.5%, 2.3%, 5.3% of observed entries.

Besides the results shown in Figure 2 for d = 15 and just the max-quasinorm algorithm, we show
supporting results for other parameters and algorithms in Figure 3. These also show a significant correlation
between A2(G) and the reconstruction error of the tensor for all cases except d = 7. In that case, there are
too few observations to correctly learn the tensor no matter the gap. We performed linear regression of error
versus Ay. Coefficients of determination are given in the plot, and the full regression reports are given in
supplemental tables. Finally, Figure 4 shows the same data over a smaller range of \s.

A.9 Poisson loss experiments

We used the Poisson max-likelihood algorithm from [21] with code provided by those authors. The algorithm
was run with its default parameters. The target tensors were size n = 100, order ¢ = 3, and rank r = 3.
Their factors were generated randomly from the uniform distribution and rescaled so the resulting tensor
had entries in [1, 6].

The sampling was performed without graph lifting. We found that a regularly spaced “grid” tensor had
a large \o(H), and that swapping grid entries with random entries caused the eigenvalue to decrease. To
generate the grid for a particular sampling fraction, we uniformly spaced ones in a length n® linear array
that gets reshaped into an n x n x n array. To vary Aq(H), we then shuffle some fraction of those ones into
random locations. In all experiments, we observe 5% of the entries and shuffle between 10% and 100% of
those grid points with random locations.
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. Poisson Tensor Completion: rank = 3
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Figure 5: Results of Poisson tensor regression mean squared error for masks with varying A\o(H). A strong
correlation is exhibited for target tensor with rank r» = 3.

To estimate Ao(H), we fit a rank-1 tensor R to (Ty — %‘J ) using alternating least squares, so that
R~ (Ty— %' ). The Frobenius norm || R||r gives an estimate of the second eigenvalue. Figure 5 shows how
the mean squared error -5 |7 — T||% varies with Ao(H). Again, we see a strong positive correlation between

error and the eigenvalue.
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