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Abstract

Second-order optimization methods, such
as cubic regularized Newton methods, are
known for their rapid convergence rates; nev-
ertheless, they become impractical in high-
dimensional problems due to their substan-
tial memory requirements and computational
costs. One promising approach is to exe-
cute second-order updates within a lower-
dimensional subspace, giving rise to subspace
second-order methods. However, the major-
ity of existing subspace second-order meth-
ods randomly select subspaces, consequently
resulting in slower convergence rates depend-
ing on the problem’s dimension d. In this
paper, we introduce a novel subspace cu-
bic regularized Newton method that achieves
a dimension-independent global convergence
rate of O

(

1
mk + 1

k2

)

for solving convex opti-
mization problems. Here, m represents the
subspace dimension, which can be signifi-
cantly smaller than d. Instead of adopt-
ing a random subspace, our primary innova-
tion involves performing the cubic regular-
ized Newton update within the Krylov sub-
space associated with the Hessian and the
gradient of the objective function. This re-
sult marks the first instance of a dimension-
independent convergence rate for a subspace
second-order method. Furthermore, when
specific spectral conditions of the Hessian
are met, our method recovers the conver-
gence rate of a full-dimensional cubic regular-
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ized Newton method. Numerical experiments
show our method converges faster than exist-
ing random subspace methods, especially for
high-dimensional problems.

1 INTRODUCTION

In this paper, we consider the following unconstrained
minimization problem

min
x∈Rd

f(x),

where f : Rd → R is convex and twice continuously dif-
ferentiable. We focus on the use of second-order meth-
ods for solving this problem, particularly the Cubic
Regularized Newton (CRN) method (Griewank, 1981;
Nesterov and Polyak, 2006). The CRN method stands
out for its fast convergence rate. Specifically, when
dealing with convex functions, it exhibits a global con-
vergence rate of O(1/k2), with k denoting the num-
ber of iterations. Furthermore, in cases where f is
strongly convex, it attains a superlinear convergence
rate (Nesterov and Polyak, 2006). Nevertheless, the
main drawback associated with the CRN method is
its substantial computational cost per iteration, par-
ticularly when the problem’s dimensionality d is high,
leading to unfavorable scaling. This arises from the ne-
cessity to solve a cubic subproblem at each iteration,
demanding a minimum ofO(d3) arithmetic operations.
As a result, CRN becomes impractical for optimization
problems with high dimensions, a common scenario in
modern machine learning applications.

To reduce the computational cost, Hanzely et al.
(2020) proposed the stochastic subspace cubic New-
ton (SSCN) method, which can be regarded as a sub-
space variant of CRN. Inspired by first-order coordi-
nate descent methods (Luo and Tseng, 1992; Nesterov,
2012; Wright, 2015), their key proposition is to solve
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Table 1: The comparison of CRN, SSCN, and our
method in terms of per-iteration cost and convergence
rate. ∗We assume that the cost of computing the sub-
space gradient and the subspace Hessian is O(m) and
O(m2), respectively. ∗∗We assume that the cost of
Hessian-vector product evaluations is O(d).

Methods Per-iteration cost Convergence rate

CRN (Nesterov
and Polyak, 2006)

O(d3) O( 1
k2 )

SSCN (Hanzely
et al., 2020)

O(m3)∗ O( d−m
m

· 1
k
+ d2

m2 · 1
k2 )

Krylov CRN
(ours)

O(md)∗∗ O( 1
mk

+ 1
k2 )

the cubic subproblem over a random low-dimensional
subspace of dimension m j d, instead of the full-
dimensional space R

d. As a result, this strategy effec-
tively reduces the dimension of the cubic subproblem
to m, and thus it can be solved efficiently using O(m3)
arithmetic operations. However, this efficiency comes
at a cost: SSCN suffers from a slower convergence rate

of O
(

d−m
m · 1k +

(

d
m

)2 · 1
k2

)

that scales with the prob-

lem’s dimension d. Additionally, formulating the low-
dimensional cubic subproblem requires computing the
gradient and the Hessian of the objective over the cho-
sen subspace, which also needs to be taken into con-
sideration. In certain special cases, such as generalized
linear models, they can be computed with a complex-
ity of O(m) and O(m2), respectively, as demonstrated
by (Hanzely et al., 2020). In this case, the dominant
cost comes from solving the cubic subproblem, leading
to an overall complexity of O(m3). In Table 1, we re-
port the per-iteration cost of SSCN for such favorable
cases. In general, however, the cost of computing the
subspace gradient and the subspace Hessian could be
dependent on the problem’s dimension d. For instance,
Gower et al. (2019) proposed computing the subspace
Hessian via m back-propagation passes. Since each
back-propagation requires O(d) arithmetic operations,
in this case the per-iteration cost could be O(md).

Given the discussions above, we are motivated by the
following question: “Can we improve the dimensional
dependence of subspace second-order methods?” In-
tuitively, this problem stems from the fact that the
subspace is chosen uniformly random at each itera-
tion, oblivious to the objective function we aim to op-
timize. As a result, such a random subspace is unlikely
to contain a “good” descent direction of the objective,
hindering the convergence of the subspace method. In
this paper, we argue that employing a subspace cus-
tomized to the local geometry of the objective yields
a convergence rate that is independent of the dimen-
sionality. Specifically, we propose the Krylov CRN
method, where we perform the CRN update over the
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Figure 1: Numerical comparisons of CRN, SSCN, and
our proposed Krylov CRN method on a logistic regres-
sion problem. Here, m denotes the dimension of the
subspace, n is the number of samples, and d is the
number of parameters. See Section 5 for full details.

Krylov subspace associated with the Hessian and the
gradient of the objective function. Our contributions
are summarized as follows:

• In the convex case, we prove a dimension-free con-
vergence rate of O( 1

mk + 1
k2 ) for our proposed

method, where m is the subspace dimension and
k is the number of iterations. In particular, we
shave a factor of O(d) from the iteration com-
plexity of SSCN when m j d (see Table 1). Ad-
ditionally, in the strongly convex case, our pro-
posed method achieves a linear rate of conver-
gence, and we again shave a O(d) factor from
the iteration complexity of SSCN when m j d.
Furthermore, we show that our method can be
implemented using the Lanczos method, requir-
ing one gradient evaluation and m Hessian-vector
products per iteration, and the resulting cubic
subproblem can be solved using O(m) arithmetic
operations. Hence, in the worst case, the per-
iteration cost of our method is O(md), resulting
from the computation of m Hessian-vector prod-
ucts.

• We show that our method is capable of exploit-
ing the spectral structure of the objective’s Hes-
sian. Specifically, we characterize the convergence
rate of our method in terms of a spectral quantity
of the objective’s Hessian (cf. Theorem 1), which
could lead to faster convergence rates when the
Hessian possesses some structure. For instance, if
the Hessian has at most m distinct eigenvalues,
then our method recovers the O(1/k2) rate of the
full-dimensional CRN method.

• To demonstrate the efficacy of our algorithm,
we perform numerical experiments on high-
dimensional logistic regression problems, as ex-
emplified by Figure 1. Specifically, we observe
from Figure (a) that our proposed Krylov CRN
method makes much more progress than SSCN in
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each iteration and closely follows the loss curve
of the full-dimensional CRN, even with a mod-
est subspace dimension of m = 10. Moreover,
given the same amount of computation time, Fig-
ure (b) shows that our proposed method can con-
verge much faster than both SSCN and the full-
dimensional CRN.

Additional related work. The idea of using the
Krylov subspace method for solving the subproblem
in CRN has been previously explored by Cartis et al.
(2011) and Carmon and Duchi (2018). However, there
are two key distinctions between their work and ours.
Firstly, they focus on solving nonconvex optimization
problems and establish results for finding approximate
stationary points, whereas our focus is on the con-
vex and strongly convex settings. Secondly, and more
importantly, their analysis requires the Krylov sub-
space solution to be an approximate minimizer of the
full-dimensional cubic subproblem, and hence the sub-
space dimension m needs to depend on the final tar-
get accuracy ϵ. Consequently, to attain a final accu-
racy of ϵ, they require the subspace dimension to be
m = Õ(ϵ− 1

4 ) (Carmon and Duchi, 2020). In contrast,
our results hold for any constant value of m, which can
be independent of the iteration index k or the target
accuracy ϵ.

In addition to CRN, another classical second-order
method is the damped Newton’s method, and its sub-
space variants have also been considered by Gower
et al. (2019); Hanzely (2023). Since their convergence
rates are shown under a different set of assumptions,
their results are not directly comparable with ours.
In addition, we note that their convergence rates suf-
fer from the same issue of dimensional dependence as
they also rely on random subspaces.

2 PRELIMINARIES

In this section, we first introduce the necessary as-
sumptions and highlight the auxiliary results arising
from these conditions. Then, in Section 2.1, we discuss
the original cubic regularized Newton (CRN) method
as well as its subspace variants studied in the litera-
ture. Note that our required assumptions are all com-
mon in the analysis of CRN-type methods (Nesterov
and Polyak, 2006).

Assumption 1. The function f : Rd → R is convex.

Assumption 2. The function f is bounded from below
and has bounded level-sets.

Assumption 3. The Hessian ∇2f is L2-Lipschitz:
∥∇2f(x)−∇2f(y)∥ f L2∥x− y∥, for all x,y ∈ R

d.

Utilizing conventional arguments (see, e.g., (Nesterov,

2018, Lemma 1.2.4)), one key implication of Assump-
tion 3 is that we can control the difference between
the function f(x) and its quadratic approximation, as
demonstrated in the following proposition.

Proposition 1. If Assumption 3 holds, then for any
x,x′ ∈ R

d, we have |f(x)− f(x′)−∇f(x′)¦(x−x′)−
1
2 (x− x′)¦∇2f(x′)(x− x′)| f L2

6 ∥x− x′∥3.

2.1 Subspace Cubic Regularized Newton

In this part, we start by providing an overview of the
classic full-dimensional CRN method (Nesterov and
Polyak, 2006) as well as its subspace variant. Recall
that the CRN method is motivated by the following
simple observation: using Proposition 1, we can upper
bound the function f by its quadratic approximation
with a cubic regularizer. Specifically, let gk and Hk

denote the vector ∇f(xk) and the matrix ∇2f(xk),
respectively; we will use these notations throughout
the paper. Then, given a regularization parameter
M g L2 and the current iterate xk, we have

f(x) f f(xk)+ g¦
k (x− xk)+

1

2
(x− xk)

¦Hk(x− xk)

+
M

6
∥x− xk∥3. (1)

Thus, a reasonable choice is to select the new iterate
xk+1 as the minimizer of the upper bound of f(x)
that is given in the right-hand side of (1). Specifically,
starting with any x0 ∈ R

d, the update rule of CRN
can be written as

sk := argmin
s∈Rd

{

g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3

}

(2)

xk+1 = xk + sk.

It is well-known that the CRN method achieves a
fast convergence rate of O(1/k2) if Assumptions 1-3
hold (Nesterov and Polyak, 2006). However, solving
the cubic subproblem in (2) could be computation-
ally prohibitive, particularly in a high-dimensional set-
ting where d is large. To better elaborate on this
issue, note that the standard approach for solving
the above subproblem (as discussed in (Conn et al.,
2000; Cartis et al., 2011)) is to reformulate (2) as
a one-dimensional nonlinear equation in ¼, which is
given by ¼ = M

2 ∥(Hk + ¼I)−1gk∥. By applying
Newton’s method to find its root, to be denoted by
¼∗, the solution of (2) can then be determined as
sk = −(Hk + ¼∗I)−1gk. Therefore, finding sk at each
iteration demands solving multiple linear systems of
equations of dimension d, which requires O(d3) arith-
metic operations. Hence, the cost of finding the solu-
tion of (2) in CRN scales poorly with the dimension d.

To mitigate this issue, subspace variants of the
CRN method have been proposed in the literature
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by Doikov and Richtárik (2018) and Hanzely et al.
(2020). Their main idea is to restrict the variable s in
the subproblem in (2) to a low-dimensional subspace
Vk, thus reducing the effective dimension of the sub-
problem. Concretely, let Vk ∈ R

d×m be a tall matrix
whose columns form an orthogonal basis for Vk, where
m is the subspace dimension. Then, solving the cubic
subproblem in (2) over the subspace Vk is equivalent
to

zk := argmin
z∈Rm

{

g̃¦
k z+

1

2
z¦H̃kz+

M

6
∥z∥3

}

, (3)

sk := Vkzk,

where g̃k := V¦
k gk ∈ R

m and H̃k := V¦
k HkVk ∈

R
m×m are the gradient and Hessian in the subspace,

respectively. Note that the effective dimension of the
subproblem in (3) is m and hence it can be solved
in O(m3) time. In particular, Doikov and Richtárik
(2018) considered objective functions with a block sep-
arable structure, and their method defines the sub-
space Vk and its corresponding projection matrix Vk

by sampling a random block of coordinates at each
iteration. Later, Hanzely et al. (2020) extended this
idea of the subspace CRN method to general objective
functions and general random subspaces satisfying the
assumption E[VkV

¦
k ] =

m
d I for all k g 0.

Although the proposed randomized subspace CRN
methods in (Doikov and Richtárik, 2018; Hanzely
et al., 2020) successfully reduce the cost of solving
the subproblem in the CRN method, their conver-
gence rate depends on the problem’s dimension d, as
highlighted in Table 1. Moreover, in addition to As-
sumptions 1-3, they also require an extra assumption
that the objective function Hessian has bounded eigen-
values, i.e., ∇2f(x) ¯ L1I for all x ∈ R

d. Under
these assumptions, SSCN is shown to achieve a rate of

O(d−m
m · L1

k + d2

m2 · 1
k2 ). This issue raises the question of

whether there is a better choice of the subspace so that
the convergence rate of the subspace CRN method is
independent of the dimension and has a better depen-
dence on L1, while ensuring that the cost of solving the
subproblem remains affordable. In the next section, we
show that our proposed Krylov subspace CRN method
can achieve this goal.

3 THE PROPOSED ALGORITHM

In this section, we first explain the rationale behind
the use of the Krylov subspace before introducing our
proposed Krylov CRN method.

3.1 Rationale behind the Krylov Subspace

To motivate the use of the Krylov subspace, let us ex-
amine how introducing the subspace Vk would change

the convergence analysis and under what conditions
on Vk the subspace method can still retain the fast
convergence rate of O(1/k2). In the analysis of the
CRN method in (Nesterov and Polyak, 2006), given
the current iterate xk and the next iterate xk+1 which
is computed based on (2), we use the following crucial
inequality

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3, (4)

which is true for any M g L2 and for all s ∈ R
d.

Importantly, (4) provides an upper bound on f(xk+1)
for any s ∈ R

d, which gives us the freedom to choose
a well-designed s related to the optimal solution x∗ in
the convergence analysis.

Given that the inequality in (4) plays a significant
role in demonstrating the O(1/k2) convergence rate of
CRN, we need to investigate the equivalent inequality
that can be established for the subspace variant of the
CRN method. This inequality may assist us in making
well-informed choices for the subspace Vk to minimize
its impact on the convergence rate. More precisely, if
we follow the update in (3), then we can show that for
any s ∈ R

d, we have

f(xk+1) f f(xk) + g¦
k Pks+

1

2
(Pks)

¦HkPks

+
M

6
∥Pks∥3, (5)

where Pk := VkV
¦
k is the orthogonal projection ma-

trix associated to the subspace Vk (for more details
check the proof of Lemma 10 in the Appendix). By
comparing (5) and (4) term by term, we observe that
(4) still holds true if Pk is selected such that the fol-
lowing conditions hold for all s ∈ R

d:

(A) g¦
k Pks f g¦

k s.

(B) (Pks)
¦HkPks f s¦Hks.

(C) ∥Pks∥ f ∥s∥.

Note that Condition (C) holds automatically since Pk

is an orthogonal projection matrix. On the other hand,
the first two conditions impose restrictions on the ma-
trix Pk, which in turn constrains the subspace Vk that
we can choose. Below, we will outline the conditions
under which the requirements in (A) and (B) would
be met.

Proposition 2. Let Pk be the orthogonal projection
matrix associated to the subspace Vk.

(i) Condition (A) holds true if and only if gk ∈ Vk.

(ii) Condition (B) holds true if and only if Vk is
an invariant subspace with respect to the matrix
Hk, i.e., Hks ∈ Vk for any s ∈ Vk.
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Algorithm 1 Krylov cubic regularized Newton

1: Input: Initial point x0 ∈ R
d, subspace dimension

m, regularization parameter M > 0
2: for k = 0, 1, . . . , do
3: Set (Vk, g̃k, H̃k) = Lanczos(Hk,gk;m)
4: Solve the cubic subproblem

zk = argmin
z∈Rm

{

g̃¦
k z+

1

2
z¦H̃kz+

M

6
∥z∥3

}

,

5: Update xk+1 = xk +Vkzk
6: end for

From Proposition 2, we immediately obtain that
Hkgk ∈ Vk. Moreover, by repeatedly applying (ii), it
follows from induction that Hi

kgk ∈ Vk for any i g 0.
Thus, we conclude that the minimal subspace satisfy-
ing both conditions (A) and (B) is given by the lin-
ear span of {Hi

kgk}∞i=0, which is exactly the maximal
Krylov subspace generated by Hk and gk. Formally,
the j-th Krylov subspace generated by a symmetric
matrix A and a vector b is defined as

Kj(A,b) = span{b,Ab, . . . ,Aj−1b}.

Moreover, it can be shown that (Saad, 2011, Chap-
ter 6) there exists an integer r0 such that Kj(A,b) =
Kr0(A,b) for all j g r0, and we call Kr0(A,b) as the
maximal Krylov subspace. In this case, the dimension
of the maximal Krylov subspace is r0.

Now given these definitions, if we select Vk in (3) as
the maximal Krylov subspace generated by Hk and
gk denoted by Kr0(Hk,gk), then the key inequality
in (4) remains valid and we retain the same conver-
gence rate as the full-dimensional CRN method. How-
ever, the dimension of the maximal Krylov subspace
can be as large as d, which contradicts our goal of
dimension reduction. To solve this problem, we pro-
pose using the Krylov subspace up to dimension m,
which is Km(Hk,gk). In this case, Condition (A) still
holds exactly since gk ∈ Km(Hk,gk) for any m g 1,
and the only violated condition due to this approxi-
mation is Condition (B). In fact, as we shall show in
Section 4, the approximation error corresponding to
Condition (B) would be independent of the problem’s
dimension d. In comparison, when using random sub-
space selection as in SSCN, both conditions in (A) and
(B) only hold approximately and the induced approx-
imation error depends on the ratio m/d, resulting in a
convergence rate that inevitably depends on d.

3.2 Krylov Cubic Regularized Newton

Next, we present our proposed Krylov CRN method,
which is a particular instance of the subspace CRN

Algorithm 2 (V, b̃, Ã) = Lanczos(A,b;m)

1: Input: A ∈ R
d×d, b ∈ R

d, and the dimension m
2: Initialize: v1 = b/∥b∥, ´1 = 0, v0 = 0
3: for j = 1, 2, . . . ,m do

4: wj ← Avj − ´jvj−1

5: ³j ← w¦
j vj

6: wj ← wj − ³jvj

7: ´j+1 ← ∥wj∥2
8: vj+1 ← wj/´j+1

9: end for

10: Output: V = [v1,v2, . . . ,vm], b̃ = ∥b∥e1, and
Ã = tridiag({´j}mj=2, {³j}mj=1, {´j}mj=2)

method in (3). Specifically, we choose the subspace Vk
to be the m-th Krylov subspace Km(Hk,gk) and let
Vk ∈ R

d×m be the matrix formed by its orthonormal
basis. Our method is summarized in Algorithm 1.

The only missing piece in Algorithm 1 is how to com-
pute the orthonormal basis of Vk to form the matrix
Vk, as well as the subspace gradient g̃k and the sub-
space Hessian H̃k. To achieve this goal, we use the
Lanczos method as shown in Algorithm 2, which is a
commonly used method for computing an orthonormal
basis for the Krylov subspace (Lanczos, 1950). Specif-
ically, given an input matrix A, an input vector b and
the target dimension m, Algorithm 2 iteratively gen-
erates a sequence of orthonormal vectors {vj}mj=1 that
spans the Krylov subspace, as well as two auxiliary
scalar sequences {³j}mj=1 and {´j}m+1

j=2 .

In the analysis, we will heavily rely on some useful
properties of the Lanczos vectors {vj}mj=1, which we
summarize in Proposition 3 for convenience.

Proposition 3. The following statements hold true.

(i) Kj(A,b) = span{v1, . . . ,vj}, for any j g 1.

(ii) Avj = ´j+1vj+1+³jvj+´jvj−1, for any j g 1.

(iii) Let V(j) = [v1,v2, . . . ,vj ] ∈ R
d×j and Ã(j) =

tridiag({´l}jl=2, {³l}jl=1, {´l}jl=2) defined as




















³1 ´2

´2 ³2 ´3

´3 ³3
. . .

. . .
. . . ´j−1

´j−1 ³j−1 ´j

´j ³j





















.

Then, we have that (V(j))¦AV(j) = Ã(j) and

(V(j))¦b = ∥b∥e(j)1 , where e
(j)
1 denotes the first

standard basis vector in R
j.

Given the results of Proposition 3, by applying Algo-
rithm 2 with Hk and gk as the inputs, we can obtain
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the orthogonal basis matrix Vk for the Krylov sub-
space Km(Hk,gk). As a byproduct, we also obtain the
subspace gradient g̃k = V¦

k gk and the subspace Hes-

sian H̃k = V¦
k HkVk by (iii) in Proposition 3. More-

over, utilizing the Krylov subspace has the additional
benefit of having H̃k as a tridiagonal matrix, which
simplifies solving the cubic subproblem in (3) greatly.
To elaborate, following the standard approach as de-
scribed in Section 2.1, each Newton step requires solv-
ing a tridiagonal system of linear equations, which can
be solved in O(m) operations. Thus, given g̃k and
H̃k, the cost of solving the cubic subproblem for our
method is O(m).

Remark 1 (Computational cost of Algorithm 1). It
is worth noting that in Algorithm 2, we only need
to evaluate matrix-vector products of the matrix A.
Therefore, in the implementation of Algorithm 1, we
do not have to store the Hessian matrix Hk explic-
itly, but only need to compute m Hessian-vector prod-
ucts. This computation can be done efficiently via
back-propagation with a computational cost similar to
gradient computation (Pearlmutter, 1994), which typ-
ically requires O(d) arithmetic operations. Hence, the
total cost per iteration of our method is O(md).

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence rate of our
proposed method in Algorithm 1. We first character-
ize the additional approximation error when solving
the cubic subproblem over a Krylov subspace, as op-
posed to using the full-dimensional space Rd as in (2).
This error analysis is key to our convergence proofs
and is fully discussed in Section 4.1. We then present
our main theorems in Section 4.2, covering both the
cases where f is convex and strongly convex. Finally,
in Section 4.3, we highlight the connection between our
convergence bounds and the eigenspectrum of the Hes-
sian matrices. In particular, we show that our conver-
gence rate can be further improved when the Hessian
matrices admit specific spectral structures.

4.1 Approximation Error of Krylov Subspace

As we discussed in Section 3.1, the crucial step in
the convergence analysis is to establish a similar up-
per bound on f(xk+1) as in (4). We already showed
that this key inequality will remain valid if Conditions
(A), (B), and (C) are all satisfied, which is the case
when the subspace Vk in Algorithm 1 is chosen as the
maximal Krylov subspace. However, since we employ
a Krylov subspace only up to dimension m in Algo-
rithm 1, Condition (B) is potentially violated and this
is the main source of the approximation error.

As it turns out, in our convergence analysis, it is

enough to control the “minimal violation” of Condi-
tion (B) among all the Krylov subspaces up to the

dimension m. To formalize this, let us define V
(j)
k ∈

R
d×j as the matrix that consists of the first j Lanc-

zos vectors (cf. item (iii) of Proposition 2). Then, we

can define P
(j)
k = V

(j)
k V

(j)¦
k , which is the orthogo-

nal projection matrix of the subspace Kj(Hk,gk). In
the following lemma, we provide the key inequality for
Algorithm 1 that serves a similar role as the one in (4).

Lemma 1. Let {xk}kg0 be the sequence generated by
Algorithm 1 and suppose that Assumptions 1, 2 and 3
hold true. Suppose M g L2. For any s ∈ R

d, we have

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3

+
1

2
min

j∈{1,...,m}

{

(P
(j)
k s)¦HkP

(j)
k s− s¦Hks

}

.

In light of Lemma 1, our aim is to bound the additional

error term minj∈{1,...,m}{(P(j)
k s)¦HkP

(j)
k s − s¦Hks}

for any s ∈ R
d. Before stating our result in Lemma 3,

we introduce a quantity that plays a major role in our
error analysis. Specifically, for a symmetric matrix
A ∈ R

d×d and a vector b ∈ R
d, we define

Ã(j)(A,b) := max
w∈K(j),∥w∥=1

dist(Aw,K(j))

for j = 1, . . . ,m, where K(j) denotes Kj(A,b) and
dist(u,V) := minv∈V ∥u − v∥ is the distance between
a vector u and a subspace V. Intuitively, Ã(j)(A,b)
characterizes how far a vector w in K(j) can be pushed
away from the subspace under the linear mapping A,
and in particular we have Ã(j)(A,b) = 0 if and only if
Kj(A,b) is an invariant subspace with respect to the
matrix A. Furthermore, we define

Ä(m)(A,b) :=

( m
∏

j=1

Ã(j)(A,b)

)
1
m

. (6)

As we shall discuss in Section 4.3, Ä(m)(A,b) is closely
related to the eigenspectrum of the matrix A. In par-
ticular, it can be upper bounded by the largest eigen-
value of A in the worst case, as shown in Lemma 2.

Lemma 2. Assume that 0 ¯ A ¯ L1I. Then, for any
b ∈ R

d we have Ä(m)(A,b) f 21/mL1/4.

As a corollary, we emphasize that Ä(m)(A,b) is inde-
pendent of the problem’s dimension and can be upper-
bounded by the largest eigenvalue ofA. Moreover, this
upper bound can be further improved if the matrix A

exhibits specific spectral structures. We defer the dis-
cussions regarding these special cases to Section 4.3.

Next we leverage the definition in (6) to establish an
upper bound on the approximation error caused by
using a Krylov subspace of dimension m.
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Lemma 3. For any k g 0 and any s ∈ R
d, we have

min
j∈{1,...,m}

(P
(j)
k s)¦HkP

(j)
k s− s¦Hks

f 2Ä(m)(Hk,gk)

m
∥s∥2.

By combining Lemma 1 and Lemma 3, we obtain

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3

+
Ä(m)(Hk,gk)

m
∥s∥2. (7)

Compared with (4), the inequality in (7) has an ad-
ditional error term Ä(m)(Hk,gk)∥s∥2/m. Given that
Ä(m)(Hk,gk) can be upper bounded by a constant as
shown in Lemma 2, we observe that the error term
decays at the rate of O(1/m) as the subspace dimen-
sion m increases. Thus, as we should expect, a larger
subspace dimension results in a smaller approximation
error, which then leads to a faster convergence rate.

4.2 Main Results

In this section, we will leverage the upper bounds es-
tablished in the previous section to present the con-
vergence rate of our proposed method in both convex
and strongly convex settings. To this end, let x∗ be
an optimal solution of f and define D as

D := sup{∥x− x∗∥ : x ∈ R
d, f(x) f f(x0)}, (8)

which is finite since the level-set {x ∈ R
d : f(x) f

f(x0)} is bounded due to Assumption 2. In addition,
the following quantity will be essential in measuring
the convergence rate of our proposed algorithm

Ä(m)
max = max

i∈{0,1,...,k−1}
{Ä(m)(Hi,gi)}, (9)

as it provides a universal upper bound on the error
corresponding to Condition (B). By Lemma 2, if we as-
sume that ∇2f(xk) ¯ L1I as in (Hanzely et al., 2020),

then we have Ä
(m)
max f 21/mL1/4. On the other hand,

Ä
(m)
max can be much smaller than L1 in some special

cases as discussed in Section 4.3. Next we present the
convergence rate of our method in the convex setting.

Theorem 1. Let {xk}kg0 be the sequence generated
by Algorithm 1 and suppose that Assumptions 1, 2 and
3 hold true. Then, for any k g 0, we have

f(xk)−f(x∗) f 9Ä
(m)
maxD2

2m

(

1

k
+

1

k2

)

+
9(L2 +M)D3

2k2
.

Theorem 1 shows that f(xk) − f(x∗) converges at a
global convergence rate of O( 1

mk +
1
k2 ). As a corollary,

to reach an error of ϵ > 0, the number of required it-
erations can be upper bounded by O( 1

mϵ +
1√
ϵ
), which

is indeed independent of the problem’s dimension d.
To the best of our knowledge, this is the first sub-
space second-order method that attains a dimension-
independent convergence rate. In comparison, SSCN
in (Hanzely et al., 2020) achieves an iteration complex-
ity of O(d−m

m · 1ϵ+ d
m · 1√

ϵ
). Note that when we deal with

subspace second-order methods, we are particularly in-
terested in scenarios where the subspace dimension m
is a fixed constant much smaller than the problem di-
mension d, i.e., m j d. This is driven by a practical
necessity to ensure a scalable per-iteration computa-
tional cost as the problem dimension increases. As
our convergence bounds suggest, in the regime where
mj d, our iteration complexity is lower than the one
for SSCN by a factor of d.

Moreover, a better complexity can be achieved if f
is strongly convex with parameter µ > 0, that is,
∇2f(x) ° µI for all x ∈ R

d. As shown in Theo-
rem 2, in this setting Algorithm 1 achieves a linear
convergence rate.

Theorem 2. Let {xk}kg0 be the sequence generated by
Algorithm 1 and suppose Assumptions 1, 2, and 3 hold
true. Moreover, assume that f is µ-strongly convex.
Then, the number of iterations required to reach ¶k :=
f(xk)− f(x∗) f ϵ can be upper bounded by

k = O
(

(

Ä
(m)
max

mµ
+ 1

)

log
¶0
ϵ
+

√
L2 +M¶0.250

µ0.75

)

.

Remark 2. Similar to Hanzely et al. (2020), Theorem 2
continues to hold if we replace the strong convexity
of f with the weaker assumption that µ

2 ∥x − x∗∥2 f
f(x)− f(x∗) for any x ∈ R

d.

When the target accuracy ϵ is sufficiently small, Theo-
rem 2 shows that the iteration complexity is dominated

by
Ä(m)
max

mµ log 1
ϵ , where the factor

Ä(m)
max

mµ can be regarded
as the effective condition number. In particular, con-
sider the special case where µI ¯ ∇2f(x) ¯ L1I for all

x ∈ R
d. By Lemma 2, we always have

Ä(m)
max

mµ f
L1

mµ . On

the other hand, under the same setting as in (Hanzely
et al., 2020), SSCN achieves an iteration complexity
of O

((

d−m
m

L1

µ + d
m

)

log 1
ϵ

)

. Thus, we shave a fac-
tor of d from their iteration complexity bound when
m = O(1). Moreover, as we discuss in the next sec-

tion, the quantity Ä
(m)
max can be much smaller than L1

when the Hessian admits some specific spectral struc-
ture, leading to an even faster convergence rate.

4.3 Special Cases

As shown in Theorems 1 and 2, the quantity Ä
(m)
max

plays an important role in the convergence rate of our
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proposed method. Moreover, by its definition in (9),
we can upper bound Ä(m)(Hi, gi) for i = 0, 1, . . . , k−1
individually and then take the maximum to establish

an upper bound on Ä
(m)
max. In this section, we will show

that Ä(m)(Hi,gi) is closely related to the structure of
the eigenspectrum of the Hessian matrix Hi, and it
can be much smaller than the worst-case upper bound
in Lemma 2 in some special cases. The proofs in this
section are deferred to Appendix D.

To begin with, we derive an alternative expression
for Ä(m)(A,b) in (6) in terms of matrix polynomi-
als. Specifically, for a polynomial of degree m
given by p(x) = xm +

∑m−1
i=0 cix

i, we define p(A) :=

Am +
∑m−1

i=0 ciA
i, where we observe the convention

that A0 = I. Moreover, we define Mm := {xm +
∑m−1

i=0 cix
i | c0, . . . , cm−1 ∈ R} as the set of monic

polynomials of degree m. With these notations, we
are ready to state Lemma 4.

Lemma 4. The quantity Ä(m)(A,b) in (6) can be
equivalently expressed as

Ä(m)(A,b) = min
p∈Mm

∥

∥

∥

∥

p(A)
b

∥b∥

∥

∥

∥

∥

1
m

.

Lemma 4 implies Ä(m)(A,b) f minp∈Mm
∥p(A)∥

1
m
op,

where ∥ · ∥op denotes the operator norm of the matrix.
Furthermore, assume that A has r distinct eigenvalues
¼1 > ¼2 > · · · > ¼r, where r f d. Then, we have

Ä(m)(A,b) f min
p∈Mm

max
i∈{1,2,...,r}

|p(¼i)|
1
m .

Hence, by making suitable assumptions on the eigen-
values ¼1, ¼2, . . . , ¼r and choosing the polynomial p ac-
cordingly, we can obtain different bounds on Ä(m).

Remark 3. It is worth noting that the matrix approx-
imation problem minp∈Mm

∥p(A)∥op has been stud-
ied before (Greenbaum and Trefethen, 1994), and the
polynomial that achieves the minimum is also known
as the Chebyshev polynomial of A (Toh and Trefethen,
1998; Faber et al., 2010). However, to the best of
our knowledge, no explicit upper bound on its opti-
mal value has been reported in the literature.

Example I. Our first result shows that Ä(m) can be
upper bounded by the geometric mean of the largest
m distinct eigenvalues of the Hessian H.

Lemma 5. Assume that the Hessian H has r distinct
eigenvalues in decreasing order: ¼1 > ¼2 > · · · > ¼r.

For any g ∈ R
d, Ä(m)(H,g) f (

∏m
i=1 ¼i)

1
m when m <

r and Ä(m)(H,g) = 0 when m g r.

Hence, if the eigenvalues of H decay fast, then the
bound in Lemma 5 can be much smaller than the one
in Lemma 2. Moreover, as an important corollary, if

the number of nonzero eigenvalues of the Hessian is at
most m− 1, then Ä(m)(H,g) = 0 and the convergence
rate of our algorithm becomes O(1/k2). This means
that, as a special case, if the rank of Hessian is at most
m−1, the convergence rate of our Krylov CRN method
with dimension m is as good as the full-dimensional
CRN method. On the other hand, random subspace
methods such as SSCN are unable to recover such a
result when the Hessian has a low-rank structure.

Remark 4. The second result in Lemma 5 can be fur-
ther strengthened: we have Ä(m)(H,g) = 0 if and only
if m g r0, where r0 denotes the dimension of the
maximal Krylov subspace generated by H and g. The
proof can be found in Appendix D.3.

Example II. The second case we study is when the
eigenvalues of the Hessian H are concentrated in two
clusters [0,∆] and [L1 − ∆, L1], where ∆ is a small
constant (see Goujaud et al. (2022)).

Lemma 6. Assume that all the eigenvalues of the
Hessian H lie within the two intervals [0,∆] and
[L1 − ∆, L1] for some L1 > ∆ > 0. Then, when
m is even, for any g ∈ R

d we have Ä(m)(H,g) f
21/m

√

∆(L1 −∆)/2.

Lemma 6 shows that if the eigenvalues of the Hessian
are close to either 0 or L1 with an error of size ∆,
then the convergence rate of our method becomes

O
(

∆(L1−∆)
mk + 1

k2

)

. As a result, to reach ϵ-accuracy,

the overall iteration complexity of our method in the

convex setting becomes O
(

∆(L1−∆)
ϵ + 1√

ϵ

)

. Thus, if

the size of the cluster satisfies ∆ = O(√ϵ), the overall

iteration complexity of our method becomes O
(

1√
ϵ

)

,

matching the one for the classic CRN method.

5 NUMERICAL EXPERIMENTS

In this section, we compare the numerical performance
of our Krylov CRN method with full-dimensional CRN
(Nesterov and Polyak, 2006) and SSCN (Hanzely et al.,
2020). We focus on logistic regression problems on
LIBSVM datasets (Chang and Lin, 2011). In our ex-
periments, we use three different datasets representing
low, medium, and high-dimensional problems. Specif-
ically, we use “w8a”, “rcv1”, and “news20”, with di-
mensions d = 300, d = 47, 236, and d = 1, 355, 191,
respectively. Note that the sample sizes n of these
datasets are almost comparable with each other. We
set the subspace dimension to be m = 10 in our
method, while we vary the subspace dimension in
SSCN from 10 to 1, 000 to ensure its best performance.
Moreover, since the Lipschitz constant of the Hessian is
unknown in advance, we use a backtracking line search
scheme to select the regularization parameters. All ex-
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Figure 2: Numerical comparisons of CRN, SSCN, and our proposed Krylov CRN method for logistic regression
on LIBSVM datasets. Here, m is the subspace dimension, n is the number of samples, and d is the number of
parameters. The first row depicts the loss curves in terms of the number of iterations, while the second row
depicts these curves in terms of the overall computation time. We observe that Krylov CRN converges much
faster than the others when the dimension d is large.

periments are run on a MacBook Pro with an Apple
M1 chip and 16GB RAM.

In Figures (a)-(c), we plot the suboptimality gap of
CRN, SSCN, and our proposed Krylov CRN method
in terms of the number of iterations. We observe that
our method performs similarly to the full-dimensional
CRN method, even though the cubic subproblem is
solved over a subspace of dimension m = 10. Also,
compared with SSCN, our Krylov CRN method is able
to make much more progress in each iteration, and the
gap between these two methods becomes more sig-
nificant as the problem’s dimension d increases. We
should add that the convergence behaviors of these
methods in Figures (a)-(c) in terms of iteration com-
plexity are consistent with the theoretical results dis-
cussed in this paper. Specifically, we observe that
SSCN converges slower as d increases, which is ex-
pected given the fact that its convergence rate scales
linearly with d. Conversely, the convergence path of
our proposed method remains almost unchanged as d
increases. This consistency aligns with our theoretical
findings that the iteration complexity of our method
is dimension-free.

Since the per-iteration costs of these methods are dif-
ferent, in Figures (d)-(f) we also compare their per-
formance in terms of the overall computation time.

As shown in Figure (d), the full-dimensional CRN
method converges very fast and outperforms all the
other methods on a problem with a low-dimensional
dataset, such as “w8a”. However, as the dimension
of the problem increases, the per-iteration cost of the
CRN method rises rapidly and completes much fewer
iterations in the given amount of time, resulting in its
poor performance. Moreover, while SSCN typically
incurs a smaller per-iteration cost than our method,
Figures (e) and (f) show that our method still overall
outperforms SSCN due to its faster convergence rate.

6 CONCLUSION

In this paper, we proposed the Krylov subspace cu-
bic regularized Newton method, where we perform the
cubic regularized Newton update over the Krylov sub-
space associated with the Hessian and the gradient
at the current iterate. We proved that our proposed
method converges at a rate of O

(

1
mk + 1

k2

)

in the con-
vex setting, where m is the subspace dimension and
k is the iteration counter. Furthermore, we character-
ized how the spectral structure of the Hessian matrices
impacts its convergence, showing that the convergence
rate can improve when the Hessian admits favorable
structures. Finally, our experiments demonstrated the
superior performance of our proposed method.
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Supplementary Materials

A PROOF OF PROPOSITION 2

To prove item (i), we note that Condition (A) is equivalent to (Pkgk − gk)
¦s f 0 for any s ∈ Rd. In particular,

by choosing s = Pkgk − gk, we can deduce that gk = Pkgk. Since Pk is an orthogonal projection matrix
associated with the subspace Vk, this holds if and only if gk ∈ Vk.
To prove item (ii), we consider the following decomposition s = ŝ + s§, where ŝ ∈ Vk and s§ ∈ V§

k . Here, V§
k

denotes the orthogonal complement of Vk. Since ŝ = Pks, we have

s¦Hks− (Pks)
¦Hk(Pks) = s¦Hks− ŝ¦Hkŝ = (ŝ+ s§)¦Hk(ŝ+ s§)− ŝ¦Hkŝ

= 2(s§)¦Hkŝ+ (s§)¦Hks
§.

Thus, Condition (B) is equivalent to

2(s§)¦Hkŝ+ (s§)¦Hks
§ g 0, ∀ŝ ∈ Vk and s§ ∈ V§

k . (10)

Moreover, we claim that (10) further implies

(s§)¦Hkŝ = 0, ∀ŝ ∈ Vk and s§ ∈ V§
k . (11)

Otherwise, suppose there exist ŝ0 ∈ Vk and s§0 ∈ V§
k with (s§0 )

¦Hkŝ0 ̸= 0. Without loss of generality, assume
(s§0 )

¦Hkŝ0 > 0. Since Vk is a linear subspace, we have ¼ŝ0 ∈ Vk for any ¼ ∈ R. However, when ¼ → −∞, we
have

2(s§0 )
¦Hk(¼ŝ0) + (s§0 )

¦Hks
§
0 = 2¼(s§0 )

¦Hkŝ0 + (s§0 )
¦Hks

§
0 → −∞,

which leads to a contradiction with (10). This proves that the statement in (11). Finally, since s§ can be any
vector in V§

k , (11) holds if and only if Hkŝ ∈ Vk. Since ŝ is an arbitrary vector in Vk, by definition, this shows
that Vk is an invariant subspace.

B THE LANCZOS METHOD

First, we provide the proof of Proposition 3 in Section B.1. Then in Section B.2, we present additional technical
lemmas that we will use in the convergence proof.

B.1 Proof of Proposition 3

Item (i) is a standard property of the Lanczos method; for instance, see Saad (2011, Proposition 6.5). Item (ii)
follows from Lines 4, 6, and 8 in the update rule of Algorithm 2. To prove item (iii), we first rewrite the recursive
formula in item (ii) in a matrix form, as shown in the following lemma.

Lemma 7. We have AV(j) = V(j)Ã(j) + ´j+1vj+1(e
(j)
j )¦, where e

(j)
j is the j-th standard basis vector in Rj.

Proof. It suffices to verify that the two matrices in the identity have the exactly same columns. For any l ∈
{1, . . . , j}, the l-th column of AV(j) is given by Avl. On the other hand, by the definition of Ã(j), we can
observe that the l-th column of the the right-hand side matrix is given by ´lvl−1 + ³lvl + ´l+1vl+1. Hence, the
equality holds due to Item (ii) in Proposition 3.

Now we are ready to prove item (iii) in Proposition 3. Since the vectors {vj}mj=1 are orthonormal, it holds

that (V(j))¦V(j) = I and
(

V(j)
)¦

vj+1 = 0. Thus, by Lemma 7, we have (V(j))¦AV(j) = (V(j))¦V(j)Ã(j) +

´j+1(V
(j))¦vj+1(e

(j)
j )¦ = Ã(j). Moreover, note that we set v1 = b

∥b∥ in Algorithm 2. Since (V(j))¦v1 = e
(j)
1 ,

we further obtain that (V(j))¦b = ∥b∥e(j)1 . This completes the proof.
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B.2 Technical Lemmas

In this section, we provide some additional useful results regarding the outputs of the Lanczos method in
Algorithm 2. For the convenience of the reader, we briefly recap our notations. Given the input matrix A

and the input vector b, we let {vj}mj=1, {³j}mj=1, {´j}m+1
j=2 be the sequences generated during the execution of

Algorithm 2. Also recall that V(j) = [v1,v2, . . . ,vj ] ∈ Rd×j and P(j) = V(j)(V(j))¦.

Lemma 8. The following statement holds true.

(i) (I−P(j))AP(j) = ´j+1vj+1v
¦
j for any j g 1.

(ii) For any j g 1, we have

´j+1 = Ã(j)(A,b) := max
w∈K(j),∥w∥=1

dist(Aw,K(j)), (12)

where K(j) denotes Kj(A,b) and dist(u,V) := minv∈V ∥u − v∥ is the distance between a vector u and a
subspace V.

(iii) We have
m+1
∏

j=2

´j = min
u∈Km(A,b)

∥Amv1 − u∥. (13)

We note that some results in Lemma 8 are likely known in the literature (see, e.g., Parlett (1998)), but for
completeness we provide their proofs below.

Proof. To prove item (i), by using Lemma 7 and the fact that P(j) = V(j)(V(j))¦, we obtain

AP(j)=AV(j)(V(j))¦=V(j)Ã(j)(V(j))¦ + ´j+1vj+1(e
(j)
j )¦(V(j))¦=V(j)Ã(j)(V(j))¦ + ´j+1vj+1v

¦
j .

Moreover, since the vectors {vj}mj=1 are orthonormal, it holds that (I−P(j))V(j) = V(j)−V(j)(V(j))¦V(j) = 0

and (I−P(j))vj+1 = vj+1− (V(j))¦V(j)vj+1 = vj+1. Hence, we conclude that (I−P(j))AP(j) = ´j+1vj+1v
¦
j .

To prove item (ii), we will use the result we just proved in item (i). Since P(j) is the orthogonal projection
matrix associated to Kj(A,b), we have dist(Aw,K(j)) = ∥(I −P(j))Aw∥ by the distance-minimizing property
of orthogonal projection. Moreover, note that for any w ∈ Kj(A,b), we have P(j)w = w. Thus, we can write

dist(Aw,K(j)) = ∥(I−P(j))Aw∥ = ∥(I−P(j))AP(j)w∥ = ´j+1∥vj+1(v
¦
j w)∥ = ´j+1|v¦

j w|.

Thus, the maximum in (12) is achieved when w = ±vj , which proves the desired result.

To prove item (iii), we will first use (12) to derive the following alternative expression for ´j+1:

´2 = min
u∈K1(A,b)

∥Av1 − u∥ and ´j+1 =
minu∈Kj(A,b) ∥Ajv1 − u∥

minu∈Kj−1(A,b) ∥Aj−1v1 − u∥ for j g 2.

If this is the case, then (13) directly follows from telescoping. To prove this, we first note that K1(A,b) =
span(v1) and thus

´2 = max
w∈K1(A,b),∥w∥=1

dist(Aw,K1(A,b)) = dist(Av1,K1(A,b)) = min
u∈K1(A,b)

∥Av1 − u∥.

Moreover, since Kj(A,b) is a linear subspace, we have dist(¼Aw,Kj(A,b)) = ¼dist(Aw,Kj(A,b)) for any
¼ > 0. Thus, we can equivalently write (12) as

´j+1 = max
w∈Kj(A,b)

dist(Aw,Kj(A,b))

∥w∥ . (14)

Note that for any w ∈ Kj(A,b), it can be decomposed as w = c0A
j−1v1 − u, where c0 ∈ R is some scalar

and u ∈ Kj−1(A,b). If c0 = 0, then w ∈ Kj−1(A,b) and further we have Aw ∈ Kj(A,b), which implies that
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dist(Aw,K(j)) = 0. Hence, for the maximization problem in (14), without loss of generality, we can assume that
w = Aj−1v1 − u with u ∈ Kj−1(A,b) and rewrite (14) as

´j+1 = max
u∈Kj−1(A,b)

dist(Ajv1 −Au,Kj(A,b))

∥Aj−1v1 − u∥ = max
u∈Kj−1(A,b)

dist(Ajv1,Kj(A,b))

∥Aj−1v1 − u∥ , (15)

where we used the fact thatAu ∈ Kj(A,b) in the second equality. Moreover, the nominator in (15) can be written
as dist(Ajv1,Kj(A,b)) = minu∈Kj(A,b) ∥Ajv1−u∥, while the denominator is equal to minu∈Kj−1(A,b) ∥Aj−1v1−
u∥. This completes the proof.

As a corollary of item (ii) in Lemma 8, the quantity Ä(m)(A,b) defined in (6) can also be written as Ä(m)(A,b) =
(

∏m
j=1 ´j+1

)
1
m

. This observation will be used in the following lemma.

Lemma 9. Assume that A ° 0. Then, for any s ∈ Rd, we have

min
j∈{1,2,...,m}

{

(P(j)s)¦AP(j)s− s¦As
}

f 2Ä(m)(A,b)

m
∥s∥2. (16)

Proof. To begin with, fix j ∈ {1, 2, . . . ,m}. By using s = P(j)s+ (I−P(j))s, we can write

s¦As = (P(j)s)¦AP(j)s+ 2
(

(I−P(j))s
)¦

AP(j)s+
(

(I−P(j))s
)¦

A(I−P(j))s.

Since A ° 0, we have
(

(I−P(j))s
)¦

A(I−P(j))s g 0, which implies that

(P(j)s)¦AP(j)s− s¦As f −2
(

(I−P(j))s
)¦

AP(j)s. (17)

To bound the right-hand side of (17), we first note that
(

(I−P(j))s
)¦

AP(j)s = s¦(I − P(j))AP(j)s =
´j+1(v

¦
j+1s)(v

¦
j s), where we used item (i) in Lemma 8 to obtain the last equality. Hence, (17) becomes

(P(j)s)¦AP(j)s− s¦As f −2´j+1(v
¦
j+1s)(v

¦
j s) f 2´j+1|v¦

j s||v¦
j+1s|.

Since the inequality above holds for any j, by taking the minimum over j = 1, 2, . . . ,m, it further leads to

min
j∈{1,2,...,m}

{

(P(j)s)¦AP(j)s− s¦As
}

f 2 min
j∈{1,2,...,m}

´j+1|v¦
j s||v¦

j+1s|. (18)

Since the minimum is upper bounded by the geometric mean, we also have

min
j∈{1,2,...,m}

´j+1|v¦
j s||v¦

j+1s| f
(

m
∏

j=1

´j+1|v¦
j s||v¦

j+1s|
)

1
m

f
(

m
∏

j=1

´j+1

)
1
m
(

m
∏

j=1

|v¦
j s||v¦

j+1s|
)

1
m

. (19)

Recall that we have Ä(m)(A,b) =
(

∏m
j=1 ´j+1

)
1
m

. Furthermore, note that {vj}mj=1 are orthonormal and by

Bessel’s inequality we have
m+1
∑

j=1

|v¦
j s|2 f ∥s∥2.

Using the inequality of arithmetic and geometric means, we obtain

(

m
∏

j=1

|v¦
j s||v¦

j+1s|
)

1
m

f 1

m

m
∑

i=1

|v¦
j s||v¦

j+1s| f
1

m

m
∑

i=1

1

2
(|v¦

j s|2 + |v¦
j+1s|2) f

1

m

m+1
∑

j=1

|v¦
j s|2 f

1

m
∥s∥2. (20)

Finally (16) follows from (18), (19) and (20). This completes the proof.
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C PROOFS OF THE MAIN THEOREMS

To begin with, recall that the columns of Vk form an orthogonal basis for the Krylov subspace Km(Hk,gk).
Hence, for any s ∈ Km(Hk,gk), there exists z ∈ Rm such that s = Vkz and ∥z∥ = ∥s∥. Thus, by substituting
Vkz for s in (3), the update rule of Algorithm 1 can be equivalently written as

sk := argmin
s∈Km(Hk,gk)

{

g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3

}

(21)

xk+1 = xk + sk. (22)

This alternative form of Algorithm 1 will be useful in the subsequent proofs.

C.1 Proof of Lemma 1

As the first step of proving Lemma 1, we first present the following lemma, which shows a similar inequality as
in (4) but only holds for vector s in the subspace Km(Hk,gk).

Lemma 10. For any s ∈ Km(Hk,gk), we have

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3.

Proof. Since M g L2 and sk = xk+1 − xk, by applying Proposition 1 with x′ = xk and x = xk+1 we have

f(xk+1) f f(xk) + g¦
k sk +

1

2
s¦k Hksk +

M

6
∥sk∥3.

According to (21), sk is chosen as the minimizer of the cubic subproblem over the subspace Km(Hk,gk), which
means that g¦

k sk + 1
2s

¦
k Hksk + M

6 ∥sk∥3 f g¦
k s +

1
2s

¦Hks +
M
6 ∥s∥3 for any s ∈ Km(Hk,gk). Hence, the result

immediately follows.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Recall that P
(j)
k = V

(j)
k V

(j)¦
k is the orthogonal projection matrix of the subspace Kj(Hk,gk).

For any given s ∈ Rd, define s(j) = P
(j)
k s for j = 1, 2, . . . ,m. Since we have s(j) ∈ Kj(Hk,gk) ¢ Km(Hk,gk) for

any j f m, by applying Lemma 10 with s = s(j), we get

f(xk+1) f f(xk) + g¦
k s

(j) +
1

2
(s(j))¦Hks

(j) +
M

6
∥s(j)∥3

= f(xk) + g¦
k P

(j)
k s+

1

2
(P

(j)
k s)¦HkP

(j)
k s+

M

6
∥P(j)

k s∥3.

Moreover, since gk ∈ Kj(Hk,gk) for all j g 0, we have P
(j)
k gk = gk. Also, since P

(j)
k is an orthogonal projection

matrix, we have ∥P(j)
k s∥ f ∥s∥ for any s ∈ Rd. Thus, we get

f(xk+1) f f(xk) + g¦
k s+

1

2
(P

(j)
k s)¦HkP

(j)
k s+

M

6
∥s∥3

= f(xk) + g¦
k s+

1

2
s¦Hks+

M

6
∥s∥3 + 1

2

(

(P
(j)
k s)¦HkP

(j)
k s− s¦Hks

)

. (23)

Since (23) holds for any j ∈ {1, 2, . . . ,m}, we obtain the desired result by taking the minimum of the right-hand
side over j = 1, . . . ,m.

C.2 Proof of Lemma 3

Since f is convex by Assumption 1, we have Hk ° 0. Thus, Lemma 3 immediately follows from Lemma 9 by
setting A = Hk and b = gk.



Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Rate

C.3 Proof of Theorem 1

Our starting point is the inequality in (7). By choosing s = 0, we immediately obtain that f(xk+1) f f(xk), which
implies f(xk) f f(x0) for all k g 0. Thus, xk is in the level-set {x ∈ Rd : f(x) f f(x0)} and hence ∥xk−x∗∥ f D
according to (8). Moreover, by Proposition 1, it holds that |f(xk+ s)−f(xk)−g¦

k s− 1
2s

¦Hks| f L2

6 ∥s∥3. Thus,
by denoting Ä(m)(Hk,gk) by Ä

(m)
k , together with (7) we can get

f(xk+1) f f(xk + s) +
Ä
(m)
k

m
∥s∥2 + L2 +M

6
∥s∥3, ∀s ∈ Rd. (24)

Now define two auxiliary sequences {ak}kg0 and {Ak}kg0 by ak = k2, A0 = 0 and Ak = Ak−1+ak. By choosing
s = ak+1

Ak+1
(x∗ − xk) in (24), we get

f(xk+1) f f

(

Ak

Ak+1
xk +

ak+1

Ak+1
x∗

)

+
Ä
(m)
k

m

a2k+1

A2
k+1

∥x∗ − xk∥2 +
L2 +M

6

a3k+1

A3
k+1

∥x∗ − xk∥3 (25)

f Ak

Ak+1
f(xk) +

ak+1

Ak+1
f(x∗) +

Ä
(m)
k

m

a2k+1

A2
k+1

∥x∗ − xk∥2 +
L2 +M

6

a3k+1

A3
k+1

∥x∗ − xk∥3, (26)

where we used Jensen’s inequality in the last inequality. By multiplying both sides by Ak+1 and using the upper
bound ∥xk − x∗∥ f D, we obtain

Ak+1 (f(xk+1)− f(x∗)) f Ak(f(xk)− f(x∗)) +
Ä
(m)
k

m
·
a2k+1

Ak+1
D2 +

L2 +M

6
·
a3k+1

A2
k+1

D3.

Note that Ak+1 =
∑k+1

j=1 aj =
∑k+1

j=1 j
2 g (k + 1)3/3 and ak+1 = (k + 1)2. Hence, we further have

Ak+1 (f(xk+1)− f(x∗)) f Ak(f(xk)− f(x∗)) +
3Ä

(m)
k

m
(k + 1)D2 +

3

2
(L2 +M)D3.

By unrolling the above inequality, we obtain

Ak(f(xk)− f(x∗)) f 3D2

m

k−1
∑

j=0

(j + 1)Ä
(m)
j +

3

2
(L2 +M)D3k.

Finally, by using Ä
(m)
j f Ä

(m)
max and Ak g k3/3, this implies that

f(xk)− f(x∗) f 9Ä
(m)
maxD2

2m

(

1

k
+

1

k2

)

+
9(L2 +M)D3

2k2
.

C.4 Proof of Theorem 2

To simplify the notation, we define T
(m)
M : Rd → Rd as the operator that maps the current iterate xk to the

next iterate xk+1 in Algorithm 1. Formally, from (21) and (22) we have

T
(m)
M (x) = x+ argmin

s∈Km(∇2f(x),∇f(x))

{

ï∇f(x), sð+ 1

2
s¦∇2f(x)s+

M

6
∥s∥3

}

.

Thus, Algorithm 1 can be equivalently written as xk+1 = T
(m)
M (xk) for k g 0.

To prove Theorem 2, we artificially divide the iterates of Algorithm 1 into different stages and use xi,t to denote
the t-th iterate in the i-th stage. Also, the i-th stage has length ki which we will specify later. Formally, in

the first stage, we set x1,0 = x0 and let x1,t+1 = T
(m)
M (x1,t) for 0 f t f k1 − 1. Subsequently, in the i-th stage

(i g 2), we set the initial iterate xi,0 as the last iterate of the previous stage xi−1,ki−1 and let xi,t+1 = T
(m)
M (xi,t)

for 0 f t f ki − 1. Note that we have not altered the algorithm and the above procedure is exactly equivalent
to Algorithm 1; The different stages are introduced solely for the purpose of analysis.
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We choose the length ki of the i-th stage such that the suboptimality gap halves after every stage, that is,
f(xi+1,0)− f(x∗) f 1

2 (f(xi,0)− f(x∗)) for i g 0. In particular, we claim that it is sufficient to choose

ki=

⌈

72Ä
(m)
max

mµ
+

6 · 2 1
4 (L2 +M)

1
2 (f(xi,0)− f(x∗))

1
4

µ
3
4

⌉

f 72Ä
(m)
max

mµ
+

8(L2 +M)
1
2 (f(xi,0)− f(x∗))

1
4

µ
3
4

+ 1.

Let Di = sup{∥x − x∗∥ : x ∈ Rd, f(x) f f(xi,0)}. Note that for any x satisfying f(x) f f(xi,0), by using
strong convexity we can bound µ

2 ∥x − x∗∥2 f f(x) − f(x∗) f f(xi,0) − f(x∗). This implies that ∥x − x∗∥ f
√

2(f(xi,0)−f(x∗))
µ and thus we have Di f

√

2(f(xi,0)−f(x∗))
µ . Hence, by applying Theorem 1, we can bound that

f(xi,ki
)− f(x∗) f 9Ä

(m)
maxD2

i

2m

(

1

ki
+

1

k2i

)

+
9(L2 +M)D3

i

2k2i

f 9Ä
(m)
max

mµ
(f(xi,0)− f(x∗))

(

1

ki
+

1

k2i

)

+
9
√
2(L2 +M)

k2i

(

f(xk,0)− f(x∗)

µ

)
3
2

.

Since we choose ki such that ki g 72Ä(m)
max

mµ , we have

9Ä
(m)
max

mµ
(f(xi,0)− f(x∗))

(

1

ki
+

1

k2i

)

f 18Ä
(m)
max

mµki
(f(xi,0)− f(x∗)) f 1

4
(f(xi,0)− f(x∗)) .

Moreover, since ki g 6 · 2 1
4
(L2+M)

1
2 (f(xi,0)−f(x∗))

1
4

µ
3
4

, we also have

9
√
2(L2 +M)

k2i

(

f(xi,0)− f(x∗)

µ

)
3
2

f 1

4
(f(xi,0)− f(x∗)) .

By combining the two, we conclude that f(xi+1,0)−f(x∗) = f(xi,ki
)−f(x∗) f 1

2 (f(xi,0)− f(x∗)). By induction,

we have f(xi,0)− f(x∗) f (f(x0)− f(x∗))/2i−1 = ¶0/2
i−1. Hence, after at most i∗ = +log2( ¶0ϵ ) + 1, stages, we

have f(xi∗,0) f ϵ. Furthermore, the total number of iterations can be bounded by

i∗−1
∑

i=1

ki f
72Ä

(m)
max

mµ

(

log2

(

¶0
ϵ

)

+ 1

)

+ log2

(

¶0
ϵ

)

+ 1 +

∞
∑

i=1

8(L2 +M)
1
2 (f(xi,0)− f(x∗))

1
4

µ
3
4

f 72Ä
(m)
max

mµ

(

log2

(

¶0
ϵ

)

+ 1

)

+ log2

(

¶0
ϵ

)

+ 1 +
8(L2 +M)

1
2 (f(x0)− f(x∗))

1
4

(1− 2−
1
4 )µ

3
4

.

D UPPER BOUNDS ON ρ
(m)

In this section, we first present the proof of Lemma 4, which relates Ä(m)(A,b) to matrix polynomials. Then in
the subsequent sections, we will use this lemma to derive different bounds on Ä(m)(A,b) by choosing different
polynomials. As it will play an important role in our proof, we first briefly recap the definition of Chebyshev
polynomials and present some useful properties (Saad, 2011, Section 4.4).

The Chebyshev polynomial of the first kind of degree k can be defined by

Tk(x) = cos(k cos−1 x).

Equivalently, it can also be defined via the following recurrence relation:

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x) ∀k g 1.

For convenience, we list some useful properties of the Chebyshev polynomials in the following proposition.

Proposition 4. The following statements hold true.

(i) |Tk(x)| f 1 for all x ∈ [−1, 1] and k g 0.

(ii) For k g 1, the leading coefficient of Tk(x) is 2k−1.
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D.1 Proof of Lemma 4

By items (i) and (iii) in Proposition 8, we can write

Ä(m)(A,b) =





m
∏

j=1

´j+1





1
m

= min
u∈Km(A,b)

∥Amv1 − u∥ 1
m ,

where we recall that v1 = b/∥b∥. Moreover, for any u ∈ Km(A,b), by definition, there exist c0, . . . , cm−1 ∈ R

such that

u =

m−1
∑

j=0

cjA
jb =





m−1
∑

j=0

cjA
j



b =



−
m−1
∑

j=0

c̃jA
j





b

∥b∥ ,

where we let c̃j = −cj∥b∥. Hence, we have

Amv1 − u =



Am +

m−1
∑

j=0

c̃jA
j





b

∥b∥ =
p(A)b

∥b∥ ,

where p is a monic polynomial of degree m as defined in Lemma 4. Thus, minimizing u over the subspace
Km(A,b) is equivalent to minimizing p over the setMm, which leads to

Ä(m)(A,b) = min
p∈Mm

∥

∥

∥

∥

p(A)
b

∥b∥

∥

∥

∥

∥

1
m

.

This completes the proof.

D.2 Proof of Lemma 2

Assume that A has r distinct eigenvalues ¼1 > ¼2 > · · · > ¼r, where r f d. As discussed in Section 4.3, for any
monic polynomial p̂ ∈Mm, by using Lemma 4 we can bound

Ä(m)(A,b) f min
p∈Mm

∥p(A)∥
1
m
op f min

p∈Mm

max
i∈{1,2,...,r}

|p(¼i)|
1
m f max

i∈{1,2,...,r}
|p̂(¼i)|

1
m . (27)

Since 0 ¯ A ¯ L1I, we have 0 f ¼i f L1 for all i = 1, . . . , r. Now we will choose the polynomial p̂ as

p̂(¼) = 2−m+1

(

L1

2

)m

Tm

(

2¼

L1
− 1

)

= 2

(

L1

4

)m

Tm

(

2¼

L1
− 1

)

.

By item (ii) in Proposition 4, we can verify that p̂ is indeed a monic polynomial of degree m. Moreover, for
any ¼ ∈ [0, L1], we can obtain from item (i) in Proposition 4 that |p̂(¼)| f 2 (L1/4)

m
. hence, we conclude that

Ä(m)(A,b) f 21/mL1/4.

D.3 Proof of Lemma 5

Assume that H has r distinct eigenvalues ¼1 > ¼2 > · · · > ¼r, where r f d. We follow similar arguments as in
Section D.2 but choose the polynomial p̂ differently. Specifically, in the first case when m < r, we let

p̂(¼) =

m
∏

j=1

(¼− ¼j).

It is easy to verify that p̂ is a monic polynomial of degree m with its zeros at ¼1, . . . , ¼m. Thus, we immediately
get p̂(¼i) = 0 for i ∈ {1, 2, . . . ,m}. On the other hand, for any i ∈ {m+ 1,m+ 2, . . . , r}, we have 0 f ¼i f ¼m

and thus p̂(¼i) f
∏m

j=1 |¼i − ¼j | f
∏m

j=1 ¼j . Hence, by (27) we conclude that Ä(m)(H,g) f
(

∏m
j=1 ¼j

)
1
m

.

In the second case when m g r, we can let

p̂(¼) = (¼− ¼1)
m−r

r
∏

j=1

(¼− ¼j).
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Algorithm 3 Cubic regularized Newton with line search

1: Input: Initial point x0 ∈ Rd, initial regularization parameter R0 > 0, line search parameter ´ ∈ (0, 1)
2: for k = 0, 1, . . . , do
3: Let Mk be the smallest number in {Rk´

−i : i g 0} such that

sk = argmin
s∈Rd

{

g¦
k s+

1

2
s¦Hks+

Mk

6
∥s∥3

}

,

xk+1 = xk + sk,

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

Mk

6
∥s∥3.

4: Set Rk+1 ← ´Mk

5: end for

We can observe that p̂ is a monic polynomial of degree m and it vanishes at all ¼i for i = 1, 2, . . . , r. Thus, we
conclude that Ä(m)(H,g) = 0.

Finally, we prove our claim in Remark 4. We first make a simple observation that Hmg ∈ Km(H,g) if and only if
m g r0, where we recall r0 denotes the dimension of the maximal Krylov subspace. This is because, by definition,
we have Km(H,g) ª Km+1(H,g) for m < r0 and Km(H,g) = Km+1(H,g) for m g r0. To complete the proof,

Lemma 4 implies that Ä(m)(H,g) = 0 if and only if there exists a polynomial p(x) = xm +
∑m−1

i=0 cix
i ∈ Mm

such that p(H)g = 0, i.e., Hmg = −∑m−1
i=0 ciH

ig. Moreover, this is exactly equivalent to the condition that
Hmg ∈ Km(H,g), and hence by our initial observation above we have Ä(m)(H,g) = 0 if and only if m g r0.

D.4 Proof of Lemma 6

Inspired by Goujaud et al. (2022), we choose the polynomial p̂ as

p̂(¼) = 21−
m
2

(

∆(L1 −∆)

2

)
m
2

Tm/2(Ã(¼)), where Ã(¼) = 1− 2

∆(L1 −∆)
¼(L1 − ¼).

We can verify that this is a monic polynomial of degreem. Moreover, for any ¼ ∈ [0,∆]∪[L1−∆, L1], it holds that
Ã(¼) ∈ [−1, 1]. Hence, using item (i) in Proposition 4, for any i = 1, 2, . . . , r we obtain that |Tm/2(Ã(¼i))| f 1,

which further implies that |p̂(¼)| f 21−
m
2

(

∆(L1−∆)
2

)
m
2

. Thus, by (27) we get Ä(m)(H,g) f 21/m
√

∆(L1 −∆)/2.

E EXPERIMENT DETAILS

In the experiments, we focus on the logistic regression problem with LIBSVM datasets (Chang and Lin, 2011).
Specifically, consider a dataset {(aj , bj)}nj=1 of n points, where aj ∈ Rd is the j-th feature vector and bj ∈ {0, 1} is
the j-th binary label. Then, the logistic loss function is given by f(x) = 1

n

∑n
j=1

(

(1− bj)a
¦
j x+ log(1 + e−a¦

j x)
)

.

We tested the CRN method (Nesterov and Polyak, 2006), the SSCN method (Hanzely et al., 2020), and our
proposed Krylov CRN method (Algorithm 1). In the following sections, we further describe their implementation
details.

E.1 Cubic Regularized Newton

Recall that in the analysis of CRN, the regularization parameter M should satisfy M g L2. Since the Lipschitz
constant L2 is unknown in practice, we use a backtracking line search scheme to select Mk at the k-th iteration, as
described in Algorithm 3. Specifically, at the k-th iteration, we iteratively increase the value of the regularization
parameter Mk until the key inequality in (4) is satisfied.

To solve the cubic subproblem in (2), we follow the standard approach in Cartis et al. (2011, Section 6.1). As we
mentioned in Section 2.1, by using the first-order optimality condition, the cubic subproblem can be reformulated
as the nonlinear equation:

¼ =
M

2
∥(Hk + ¼I)−1gk∥.
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Algorithm 4 Stochastic Subspace Cubic Newton with line search

1: Input: Initial point x0 ∈ Rd, subspace dimension m, initial regularization parameter R0 > 0, line search
parameter ´ ∈ (0, 1)

2: for k = 0, 1, . . . , do
3: Sample m coordinates uniformly and randomly and let Ik be the set of sampled indices
4: Compute the subspace gradient g̃k and the subspace Hessian H̃k

5: Let Mk be the smallest number in {Rk´
−i : i g 0} such that

zk = argmin
z∈Rm

{

g̃¦
k z+

1

2
z¦H̃kz+

Mk

6
∥z∥3

}

,

xk+1[Ik] = xk[Ik] + zk,

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

Mk

6
∥s∥3.

6: Set Rk+1 ← ´Mk

7: end for

Algorithm 5 Krylov cubic regularized Newton with line search

1: Input: Initial point x0 ∈ Rd, subspace dimension m, initial regularization parameter R0 > 0, line search
parameter ´ ∈ (0, 1)

2: for k = 0, 1, . . . , do
3: Set (Vk, g̃k, H̃k) = Lanczos(Hk,gk;m)
4: Let Mk be the smallest number in {Rk´

−i : i g 0} such that

zk = argmin
z∈Rm

{

g̃¦
k z+

1

2
z¦H̃kz+

Mk

6
∥z∥3

}

,

xk+1 = xk +Vkzk,

f(xk+1) f f(xk) + g¦
k s+

1

2
s¦Hks+

Mk

6
∥s∥3.

5: Set Rk+1 ← ´Mk

6: end for

Thus, we define the univariate function ϕ(¼) = ¼2 − M2

4 ∥(Hk + ¼I)−1gk∥2 and use the Newton’s method to find
its unique root ¼∗. Then, we can compute the solution by sk = −(Hk +¼∗I)−1gk. Note that at each iteration of
Newton’s method, we need to solve a linear system of equations in the form of (Hk+¼I)s = −gk with a different
¼. When the problem dimension d is small (less than 500 in our experiment), we can store the Hessian matrix
Hk and solve the linear system directly by computing the matrix inverse. On the other hand, when d is large,
we need to use the conjugate gradient method to solve the linear system relying on Hessian-vector products.

E.2 Stochastic Subspace Cubic Newton

We implemented the coordinate version of SSCN, where we sample m coordinates uniformly and randomly at
each iteration. We use a similar backtracking line search scheme in SSCN to select the regularization parameter
Mk as shown in Algorithm 4. Given an index set I, we use x[I] to denote the subvector indexed by I. Moreover,
to achieve its best performance, we follow the strategy in (Hanzely et al., 2020, Section 7.1) and store the residuals
a¦j xk for each data point j = 1, 2, . . . , n and at each iteration k. As shown in Hanzely et al. (2020), in this case

the computational cost of the subspace gradient and the subspace Hessian is O(nm) and O(nm2), respectively.

E.3 Krylov Cubic Regularized Newton

To implement our proposed method, we also use a backtracking line search scheme to select the regularization
parameter. The full algorithm is given in Algorithm 5.
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