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Abstract

Prior work has demonstrated that question classification (QC), recognizing the problem domain of a question, can help answer it more

accurately. However, developing strong QC algorithms has been hindered by the limited size and complexity of annotated data available.

To address this, we present the largest challenge dataset for QC, containing 7,787 science exam questions paired with detailed classification

labels from a fine-grained hierarchical taxonomy of 406 problem domains. We then show that a BERT-based model trained on this dataset

achieves a large (+0.12 MAP) gain compared with previous methods, while also achieving state-of-the-art performance on benchmark

open-domain and biomedical QC datasets. Finally, we show that using this model’s predictions of question topic significantly improves

the accuracy of a question answering system by +1.7% P@1, with substantial future gains possible as QC performance improves.

Keywords: question answering, question classification

1. Introduction

Understanding what a question is asking is one of the first

steps that humans use to work towards an answer. In the

context of question answering, question classification allows

automated systems to intelligently target their inference

systems to domain-specific solvers capable of addressing

specific kinds of questions and problem solving methods

with high confidence and answer accuracy (Hovy et al.,

2001; Moldovan et al., 2003).

To date, question classification has primarily been studied

in the context of open-domain TREC questions (Voorhees

and Tice, 2000), with smaller recent datasets available in the

biomedical (Roberts et al., 2014; Wasim et al., 2019) and

education (Godea and Nielsen, 2018) domains. The open-

domain TREC question corpus is a set of 5,952 short factoid

questions paired with a taxonomy developed by Li and Roth

(2002) that includes 6 coarse answer types (such as entities,

locations, and numbers), and 50 fine-grained types (e.g. spe-

cific kinds of entities, such as animals or vehicles). While

a wide variety of syntactic, semantic, and other features

and classification methods have been applied to this task,

culminating in near-perfect classification performance (Mad-

abushi and Lee, 2016), recent work has demonstrated that

QC methods developed on TREC questions generally fail

to transfer to datasets with more complex questions such as

those in the biomedical domain (Roberts et al., 2014), likely

due in part to the simplicity and syntactic regularity of the

questions, and the ability for simpler term-frequency models

to achieve near-ceiling performance (Xia et al., 2018).

In this work we explore question classification in the con-

text of multiple choice science exams. Standardized science

exams have been proposed as a challenge task for question

answering (Clark, 2015), as most questions contain a variety

of challenging inference problems (Clark et al., 2013; Jansen

et al., 2016), require detailed scientific and common-sense

How would the measurable properties of a golf ball

change if it were moved from Earth to the Moon?

Astronomy > Gravitational Pull

(A) It would have the same mass, but di�erent density

(C) It would have the same mass, but di�erent weight

Q:

QC:

A:

A’:

Answer without Question Classi�cation (Incorrect)

Answer with Question Classi�cation (Correct)

Figure 1: Identifying the detailed problem domain of a question

(QC label) can provide an important contextual signal to guide a

QA system to the correct answer (A’). Here, knowing the prob-

lem domain of Gravitational Pull allows the model to recognize

that some properties (such as weight) change when objects move

between celestial bodies, while others (including density) are unaf-

fected by such a change.

knowledge to answer and explain the reasoning behind those

answers (Jansen et al., 2018), and questions are often em-

bedded in complex examples or other distractors. Question

classification taxonomies and annotation are difficult and

expensive to generate, and because of the unavailability of

this data, to date most models for science questions use one

or a small number of generic solvers that perform little or no

question decomposition (e.g. Khot et al., 2015; Clark et al.,

2016; Khashabi et al., 2016; Khot et al., 2017; Jansen et al.,

2017). Our long-term interest is in developing methods that

intelligently target their inferences to generate both correct

answers and compelling human-readable explanations for

the reasoning behind those answers. The lack of targeted

solving – using the same methods for inferring answers to

spatial questions about planetary motion, chemical ques-

tions about photosynthesis, and electrical questions about

circuit continuity – is a substantial barrier to increasing per-

formance (see Figure 1).

To address this need for developing methods of targetted
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inference, this work makes the following contributions:

1. We provide a large challenge dataset of question clas-

sification labels for 7,787 standardized science exam

questions labeled using a hierarchical taxonomy of 406

detailed problem types across 6 levels of granularity. To

the best of our knowledge this is the most detailed ques-

tion classification dataset constructed by nearly an order

of magnitude, while also being 30% larger than TREC,

and nearly three times the size of the largest biomedical

dataset.

2. We empirically demonstrate large performance gains

of +0.12 MAP (+13.3% P@1) on science exam ques-

tion classification using a BERT-based model over five

previous state-of-the art methods, while improving per-

formance on two biomedical question datasets by 4-5%.

This is the first model to show consistent state-of-the-

art performance across multiple question classification

datasets.

3. We show predicted question labels significantly improve

a strong QA model by +1.7% P@1, where ceiling per-

formance with perfect classification can reach +10.0%

P@1. We also show that the error distribution of ques-

tion classification matters when coupled with multiple

choice QA models, and that controlling for correlations

between classification labels and incorrect answer candi-

dates can increase performance.

2. Related work

Question classification typically makes use of a combina-

tion of syntactic, semantic, surface, and embedding methods.

Syntactic patterns (Li and Roth, 2006; Silva et al., 2011;

Patrick and Li, 2012; Mishra et al., 2013) and syntactic

dependencies (Roberts et al., 2014) have been shown to

improve performance, while syntactically or semantically

important words are often expanding using Wordnet hyper-

nyms or Unified Medical Language System categories (for

the medical domain) to help mitigate sparsity (Huang et al.,

2008; Yu and Cao, 2008; Van-Tu and Anh-Cuong, 2016).

Keyword identification helps identify specific terms use-

ful for classification (Liu et al., 2011; Roberts et al., 2014;

Khashabi et al., 2017). Similarly, named entity recogniz-

ers (Li and Roth, 2002; Neves and Kraus, 2016) or lists

of semantically related words (Li and Roth, 2002; Van-Tu

and Anh-Cuong, 2016) can also be used to establish broad

topics or entity categories and mitigate sparsity, as can word

embeddings (Kim, 2014; Lei et al., 2018). Here, we empir-

ically demonstrate many of these existing methods do not

transfer to the science domain.

The highest performing question classification systems

tend to make use of customized rule-based pattern match-

ing (Lally et al., 2012; Madabushi and Lee, 2016), or a

combination of rule-based and machine learning approaches

(Silva et al., 2011), at the expense of increased model con-

struction time. A recent emphasis on learned methods has

shown a large set of CNN (Lei et al., 2018) and LSTM (Xia

et al., 2018) variants achieve similar accuracy on TREC

question classification, with these models exhibiting at best

TREC GARD ARC

Measure Open Medical Science

Average per question:

Words 9.1 10.3 20.5

Sentences 1.0 1.0 1.7

Clausal Dependencies 0.2 0.6 0.8

Prep. Dependencies 0.9 1.1 2.7

Total Questions 5,952 2,936 7,787

Question Categories 6 or 50 13 9 to 406

Table 1: Summary statistics comparing the surface and syntactic

complexity of the TREC, GARD, and ARC datasets. ARC ques-

tions are complex, syntactically-diverse, and paired with a detailed

classification scheme developed in this work.

small gains over simple term frequency models. These re-

cent developments echo the observations of Roberts et al.

(2014), who showed that existing methods beyond term

frequency models failed to generalize to medical domain

questions. Here we show that strong performance across

multiple datasets is possible using a single learned model.

Due to the cost involved in their construction, question

classification datasets and classification taxonomies tend

to be small, which can create methodological challenges.

Roberts et al. (2014) generated the next-largest dataset from

TREC, containing 2,936 consumer health questions classi-

fied into 13 question categories. More recently, Wasim et al.

(2019) generated a small corpus of 780 biomedical domain

questions organized into 88 categories. In the education do-

main, Godea et al. (2018) collected a set of 1,155 classroom

questions and organized these into 16 categories. To enable

a detailed study of science domain question classification,

here we construct a large-scale challenge dataset that ex-

ceeds the size and classification specificity of other datasets,

in many cases by nearly an order of magnitude.

3. Questions and Classification Taxonomy

Questions: We make use of the 7,787 science exam ques-

tions of the Aristo Reasoning Challenge (ARC) corpus

(Clark et al., 2018), which contains standardized 3
rd to

9
th grade science questions from 12 US states from the past

decade. Each question is a 4-choice multiple choice ques-

tion. Summary statistics comparing the complexity of ARC

and TREC questions are shown in Table 1.

Taxonomy: Starting with the syllabus for the NY Regents

exam, we identified 9 coarse question categories (Astron-

omy, Earth Science, Energy, Forces, Life Science, Matter,

Safety, Scientific Method, Other), then through a data-driven

analysis of 3 exam study guides and the 3,370 training ques-

tions, expanded the taxonomy to include 462 fine-grained

categories across 6 hierarchical levels of granularity. The

taxonomy is designed to allow categorizing questions into

broad curriculum topics at its coarsest level, while labels

at full specificity separate questions into narrow problem

domains suitable for targetted inference methods. Because

of its size, a subset of the classification taxonomy is shown

in Table 2, with the full taxonomy and class definitions

included in the supplementary material.
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Prop. Category

8.0% Astronomy / Celestial Events

2.7% Planetary/Stellar Features

2.0% Natural Cycles and Patterns

0.7% Planetary/Stellar Distances

0.4% Orbits

22.4% Earth Science

8.4% Human Impacts on the Earth

6.8% Weather

4.5% Geology

2.4% Outer Structure (Atmosphere/Hydrosphere)

1.3% Inner Structure (Crust/Mantle/Core)

7.4% Energy

1.6% Properties of Light

1.5% Converting Energy

0.9% Electricity

0.9% Sound Energy

0.4% Potential/Kinetic Energy

3.5% Forces

0.8% Gravity

0.7% Friction

0.5% Speed/Velocity

0.4% Mechanical Energy

0.3% Newton’s Laws

34.7% Life Science

16.3% Life Functions

13.6% Features and their Functions

5.7% Cellular Biology

5.3% Animal Features and Functions

3.1% Plant Features and Functions

1.2% Photosynthesis

0.7% Reproduction/Pollination

0.1% Seed Dispersal

0.4% Leaves

0.3% Roots

1.2% Environmental Effects on Development

0.8% Responses to Environment Changes

0.8% Basic Life Functions

6.3% Interdependence/Food Chains

4.7% Reproduction

3.3% Adaptations and the Environment

1.4% Continuity of Life/Life Cycle

17.0% Matter

5.0% Chemistry

2.2% Measurement

2.4% Changes of State

2.5% Properties of Materials

1.8% Physical vs Chemical Changes

1.4% Mixtures

1.1% Safety

0.7% Safety Procedures

0.4% Safety Equipment

7.6% Scientific Method

5.8% Components of Inference

0.9% Graphing Data

0.6% Scientific Models

3.3% Other

1.6% History of Science

Table 2: A subset (approximately 10%) of our question classifi-

cation taxonomy for science exams, with top-level categories in

bold. The full taxonomy contains 462 categories, with 406 of these

having non-zero counts in the ARC corpus. “Prop.” represents the

proportion of questions in ARC belonging to a given category. One

branch of the taxonomy (Life Science → ... → Seed Dispersal)

has been expanded to full depth.

Annotation: Because of the complexity of the questions, it

is possible for one question to bridge multiple categories –

for example, a wind power generation question may span

both renewable energy and energy conversion. We allow up

to 2 labels per question, and found that 16% of questions

required multiple labels. Each question was independently

annotated by two annotators, with the lead annotator a do-

main expert in standardized exams. Annotators first inde-

pendently annotated the entire question set, then questions

without complete agreement were discussed until resolu-

tion. Before resolution, interannotator agreement (Cohen’s

Kappa) was κ = 0.58 at the finest level of granularity, and

κ = 0.85 when considering only the coarsest 9 categories.

This is considered moderate to strong agreement (McHugh,

2012). Based on the results of our error analysis (see Sec-

tion 4.3.), we estimate the overall accuracy of the question

classification labels after resolution to be approximately

96%. While the full taxonomy contains 462 fine-grained

categories derived from both standardized questions, study

guides, and exam syllabi, we observed only 406 of these

categories are tested in the ARC question set.

4. Question Classification Models

4.1. Question Classification on Science Exams

We identified 5 common models in previous work primarily

intended for learned classifiers rather than hand-crafted rules.

We adapt these models to a multi-label hierarchical classifi-

cation task by training a series of one-vs-all binary classifiers

(Tsoumakas and Katakis, 2007), one for each label in the tax-

onomy. With the exception of the CNN and BERT models,

following previous work (e.g. Silva et al., 2011; Roberts et

al., 2014; Xia et al., 2018) we make use of an SVM classifier

using the LIBSvM framework (Chang and Lin, 2011) with a

linear kernel. Models are trained and evaluated from coarse

to fine levels of taxonomic specificity. At each level of

taxonomic evaluation, a set of non-overlapping confidence

scores for each binary classifier are generated and sorted

to produce a list of ranked label predictions. We evaluate

these ranks using Mean Average Precision (see Manning et

al., 2008). ARC questions are evaluated using the standard

3,370 questions for training, 869 for development, and 3,548

for testing, as in Clark et al. (2018).

N-grams, POS, Hierarchical features: A baseline bag-

of-words model incorporating both tagged and untagged

unigrams and bigams. We also implement the hierarchical

classification feature of Li and Roth (Li and Roth, 2002),

where for a given question, the output of the classifier at

coarser levels of granularity serves as input to the classifier

at the current level of granularity.

Dependencies: Bigrams of Stanford dependencies

(De Marneffe and Manning, 2008). For each word, we

create one unlabeled bigram for each outgoing link from

that word to its dependency (Patrick and Li, 2012; Roberts

et al., 2014).

Question Expansion with Hypernyms: We perform hy-

pernym expansion (Huang et al., 2008; Silva et al., 2011;

Roberts et al., 2014) by including WordNet hypernyms (Fell-

baum, 1998) for the root dependency word, and words on
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ARC Science Exams

Adapted From Model L1 L2 L3 L4 L5 L6 Gain (L6)

Unigram Model 0.885 0.714 0.602 0.535 0.503 0.490

Li and Roth (2002) Uni+Bi+POS+Hier (UBPH) 0.903 0.759 0.644 0.582 0.549 0.535 Baseline

Van-tu et al. (2016) UBPH+WordNet Expansion 0.901 0.755 0.645 0.582 0.552 0.535 –

Roberts et al. (2014) UBPH+Dependencies 0.906 0.760 0.645 0.583 0.549 0.536 –

He et al. (2015) MP-CNN 0.908 0.757 0.654 0.597 0.563 0.532 –

Khashabi et al. (2017) UBPH+Essential Terms 0.913 0.774 0.666 0.607 0.575 0.564 +0.03∗

This Work BERT-QC 0.942 0.841 0.745 0.684 0.664 0.654 +0.12∗

Number of Categories 9 88 243 335 379 406

Table 3: Results of the empirical evaluation on each of the question classification models on the ARC science question dataset, broken

down by classification granularity (coarse (L1) to fine (L6)). Performance reflects mean average precision (MAP), where a duplicate table

showing P@1 is included in the appendix. The best model at each level of granularity is shown in bold. * signifies that a given model is

significantly better than baseline performance at full granularity (p < 0.01).

its direct outgoing links. WordNet sense is identified using

Lesk word-sense disambiguation (Lesk, 1986), using ques-

tion text for context. We implement the heuristic of Van-tu

et al. (2016), where more distant hypernyms receive less

weight.

Essential Terms: Though not previously reported for QC,

we make use of unigrams of keywords extracted using the

Science Exam Essential Term Extractor of Khashabi et al.

(2017). For each keyword, we create one binary unigram

feature.

CNN: Kim (2014) demonstrated near state-of-the-art per-

formance on a number of sentence classification tasks (in-

cluding TREC question classification) by using pre-trained

word embeddings (Mikolov et al., 2013) as feature extrac-

tors in a CNN model. Lei et al. (2018) showed that 10 CNN

variants perform within +/-2% of Kim’s (2014) model on

TREC QC. We report performance of our best CNN model

based on the MP-CNN architecture1 of Rao et al. (Rao et al.,

2016), which works to establish the similarity between ques-

tion text and the definition text of the question classes. We

adapt the MP-CNN model, which uses a “Siamese” struc-

ture (He et al., 2015), to create separate representations for

both the question and the question class. The model then

makes use of a triple ranking loss function to minimize the

distance between the representations of questions and the

correct class while simultaneously maximising the distance

between questions and incorrect classes. We optimize the

network using the method of Tu (2018).

BERT-QC (This work): We make use of BERT (Devlin et

al., 2018), a language model using bidirectional encoder rep-

resentations from transformers, in a sentence-classification

configuration. As the original settings of BERT do not

support multi-label classification scenarios, and training a

series of 406 binary classifiers would be computationally

expensive, we use the duplication method of Tsoumakas

et al. (2007) where we enumerate multi-label questions as

multiple single-label instances during training by duplicat-

ing question text, and assigning each instance one of the

multiple labels. Evaluation follows the standard procedure

1https://github.com/castorini/Castor

TREC

Model Desc. Coarse Fine

Learned Models

Li and Roth (2002) SNoW 91.0% 84.2%

Kim (2014) CNN 93.6% –

Xia et al. (2018) TF-IDF 94.8% –

Van-tu et al. (2016) SVM 95.2% 91.6%

Xia et al. (2018) LSTM 95.8% –

Lei et al. (2018) RR-CNN 95.8% –

This Work BERT-QC 96.2% 92.0%

Xia et al. (2018) Att-LSTM 98.0% –

Rule Based Models

da Silva et al. (2011) Rules 95.0% 90.8%

Madabushi et al. (2016) Rules – 97.2%

Number of Categories 6 50

Table 4: Performance of BERT-QC on the TREC-6 (6 coarse

categories) and TREC-50 (50 fine-grained categories) question

classification task, in context with recent learned or rule-based

models. Performance is reported as classification accuracy. Bold

values represent top reported learned model performance. BERT-

QC achieves performance similar to or exceeding the top reported

non-rule-based models.

where we generate a list of ranked class predictions based on

class probabilities, and use this to calculate Mean Average

Precision (MAP) and Precision@1 (P@1). As shown in

Table 3, this BERT-QC model achieves our best question

classification performance, significantly exceeding baseline

performance on ARC by 0.12 MAP and 13.3% P@1.2

4.2. Comparison with Benchmark Datasets

Roberts et al. (2014) observed that, apart from term fre-

quency methods, question classification methods developed

on one dataset generally do not exhibit strong transfer per-

formance to other datasets. While BERT-QC achieves large

gains over existing methods on the ARC dataset, here we

demonstrate that BERT-QC also matches state-of-the-art

performance on TREC (Li and Roth, 2002), while surpass-

ing state-of-the-art performance on the GARD corpus of

2Question classification performance evaluated using Preci-

sion@1 is reported in Table 11 (see Appendix)
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Model Desc. Accuracy

Learned Models

Roberts et al. (2014) Bag of Words 76.9%

Roberts et al. (2014) CQT2/SVM 80.4%

This Work BERT-QC 84.9%

Table 5: Performance of BERT-QC on the GARD consumer health

question dataset, which contains 2,937 questions labeled with 13

medical question classification categories. Following Roberts et al.

(2014), this dataset was evaluated using 5-fold crossvalidation.

consumer health questions (Roberts et al., 2014) and ML-

BioMedLAT corpus of biomedical questions (Wasim et al.,

2019). As such, BERT-QC is the first model to achieve

strong performance across more than one question classifi-

cation dataset.

4.2.1. TREC Question Classification

TREC question classification3 is divided into separate coarse

and fine-grained tasks centered around inferring the ex-

pected answer types of short open-domain factoid questions.

TREC-6 includes 6 coarse question classes (abbreviation,

entity, description, human, location, numeric), while TREC-

50 expands these into 50 more fine-grained types.

TREC question classification methods can be divided into

those that learn the question classification task, and those

that make use of either hand-crafted or semi-automated syn-

tactic or semantic extraction rules to infer question classes.

To date, the best reported accuracy for learned methods is

98.0% by Xia et al. (2018) for TREC-6, and 91.6% by

Van-tu et al. (Van-Tu and Anh-Cuong, 2016) for TREC-504.

Madabushi et al. (2016) achieve the highest to-date per-

formance on TREC-50 at 97.2%, using rules that leverage

the strong syntactic regularities in the short TREC factoid

questions.

We compare the performance of BERT-QC with recently

reported performance on this dataset in Table 4. BERT-QC

achieves state-of-the-art performance on fine-grained classi-

fication (TREC-50) for a learned model at 92.0% accuracy,

and near state-of-the-art performance on coarse classifica-

tion (TREC-6) at 96.2% accuracy.5

4.2.2. Medical Question Classification

Because of the challenges with collecting biomedical ques-

tions, the datasets and classification taxonomies tend to be

small, and rule-based methods often achieve strong results

(e.g. Sarrouti et al., 2015). Roberts et al. (2014) created

the largest biomedical question classification dataset to date,

annotating 2,937 consumer health questions drawn from

the Genetic and Rare Diseases (GARD) question database

with 13 question types, such as anatomy, disease cause, di-

3http://cogcomp.org/Data/QA/QC/
4Model performance is occasionally reported only on TREC-6

rather than the more challenging TREC-50, making direct compar-

isons between some algorithms difficult.
5Xia et al. (2018) also report QC performance on MS Marco

(Nguyen et al., 2016), a million-question dataset using 5 of the

TREC-6 labels. We believe this to be in error as MS Marco QC la-

bels are automatically generated. Still, for purposes of comparison,

BERT-QC reaches 96.2% accuracy, an increase of +3% over Xia

et al. (2018)’s best model.

Model Desc. µF1 Accuracy

Learned Models

Wasim et al. (2019) SSVM 0.42 0.37

Wasim et al. (2019) LPLR 0.47 0.42

Wasim et al. (2019) FDSF 0.50 0.45

This Work BERT-QC 0.55 0.48

Table 6: Performance of BERT-QC on the MLBioMedLAT

biomedical question dataset, which contains 780 questions la-

beled with 88 medical question classification categories. Following

Wasim et al. (2019), this dataset was evaluated using 10-fold cross-

validation. Micro-F1 (µF1) and Accuracy follow Wasim et al.’s

definitions for multi-label tasks.

agnosis, disease management, and prognoses. Roberts et

al. (2014) found these questions largely resistant to learning-

based methods developed for TREC questions. Their best

model (CPT2), shown in Table 5, makes use of stemming

and lists of semantically related words and cue phrases to

achieve 80.4% accuracy. BERT-QC reaches 84.9% accuracy

on this dataset, an increase of +4.5% over the best previ-

ous model. We also compare performance on the recently

released MLBioMedLAT dataset (Wasim et al., 2019), a

multi-label biomedical question classification dataset with

780 questions labeled using 88 classification types drawn

from 133 Unified Medical Language System (UMLS) cate-

gories. Table 6 shows BERT-QC exceeds their best model,

focus-driven semantic features (FDSF), by +0.05 Micro-F1

and +3% accuracy.

4.3. Error Analysis

We performed an error analysis on 50 ARC questions where

the BERT-QC system did not predict the correct label, with

a summary of major error categories listed in Table 7.

Associative Errors: In 35% of cases, predicted labels were

nearly correct, differing from the correct label only by the

finest-grained (leaf) element of the hierarchical label (for

example, predicting Matter → Changes of State → Boiling

instead of Matter → Changes of State → Freezing). The

bulk of the remaining errors were due to questions contain-

ing highly correlated words with a different class, or classes

themselves being highly correlated. For example, a specific

question about Weather Models discusses “environments”

changing over “millions of years”, where discussions of en-

vironments and long time periods tend to be associated with

questions about Locations of Fossils. Similarly, a question

containing the word “evaporation” could be primarily fo-

cused on either Changes of State or the Water Cycle (cloud

generation), and must rely on knowledge from the entire

question text to determine the correct problem domain. We

believe these associative errors are addressable technical

challenges that could ultimately lead to increased perfor-

mance in subsequent models.

Errors specific to the multiple-choice domain: We ob-

served that using both question and all multiple choice an-

swer text produced large gains in question classification per-

formance – for example, BERT-QC performance increases

from 0.516 (question only) to 0.654 (question and all four

answer candidates), an increase of 0.138 MAP. Our error
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Proportion Error Type

46% Question contains words correlated with incorrect class

35% Predicted class is nearly correct, and distance 1 from gold class (different leaf node selected in taxonomy)

25% Predicted class is highly correlated with an incorrect multiple choice answer

18% Predicted class and gold class are on different aspects of similar topics/otherwise correlated

10% Annotation: Gold label appears incorrect, predicted label is good.

8% Annotation: Predicted label is good, but not in gold list.

8% Correctly predicting the gold label may require knowing the correct answer to the question.

Table 7: BERT-QC Error Analysis: Classes of errors for 50 randomly selected questions from the development set where BERT-QC did

not predict the correct label. These errors reflect the BERT-QC model trained and evaluated with terms from both the question and all

multiple choice answer candidates. Questions can occupy more than one error category, and as such proportions do not sum to 100%.

analysis observed that while this substantially increases QC

performance, it changes the distribution of errors made by

the system. Specifically, 25% of errors become highly cor-

related with an incorrect answer candidate, which (we show

in Section 5.) can reduce the performance of QA solvers.6

5. Question Answering with QC Labels

Because of the challenges of errorful label predictions cor-

relating with incorrect answers, it is difficult to determine

the ultimate benefit a QA model might receive from report-

ing QC performance in isolation. Coupling QA and QC

systems can often be laborious – either a large number of

independent solvers targeted to specific question types must

be constructed (e.g. Minsky, 1986), or an existing single

model must be able to productively incorporate question

classification information. Here we demostrate the latter

– that a BERT QA model is able to incorporate question

classification information through query expansion.

BERT (Devlin et al., 2018) recently demonstrated state-

of-the-art performance on benchmark question answering

datasets such as SQUaD (Rajpurkar et al., 2016), and

near human-level performance on SWAG (Zellers et al.,

2018). Similarly, Pan et al. (2019) demonstrated that BERT

achieves the highest accuracy on the most challenging sub-

set of ARC science questions. We make use of a BERT QA

model using the same QA paradigm described by Pan et al.

(2019), where QA is modeled as a next-sentence prediction

task that predicts the likelihood of a given multiple choice

answer candidate following the question text. We evaluate

the question text and the text of each multiple choice an-

swer candidate separately, where the answer candidate with

the highest probablity is selected as the predicted answer

for a given question. Performance is evaluated using Preci-

sion@1 (Manning et al., 2008). Additional model details

and hyperparameters are included in the Appendix.

We incorporate QC information into the QA process by

implementing a variant of a query expansion model (Qiu and

Frei, 1993). Specifically, for a given {question, QC label}
pair, we expand the question text by concatenating the defini-

tion text of the question classification label to the start of the

question. We use of the top predicted question classification

label for each question. Because QC labels are hierarchical,

6When a model is trained using only question text (instead of

both question and answer candidate text), the distribution of these

highly-correlated errors changes to the following: 17% chose the

correct label, 17% chose the same label, and 66% chose a different

label not correlated with an incorrect answer candidate.

Original Question Text

What happens to water molecules during the

boiling process?

Expanded Text (QC Label)

Matter Changes of State Boiling What happens to

water molecules during the boiling process?

Table 8: An example of the query expansion technique for ques-

tion classification labels, where the definition text for the QC label

is appended to the question. Here, the gold label for this question is

“MAT COS BOILING” (Matter → Changes of State → Boiling).

Figure 2: Question answering performance (the proportion of

questions answered correctly) for models that include question

classification labels using query expansion, compared to a no-

label baseline model. While BERT-QC trained using question and

answer text achieves higher QC performance, it leads to unstable

QA performance due to its errors being highly correlated with

incorrect answers. Predicted labels using BERT-QC (question text

only) show a significant increase of +1.7% P@1 at L6 (p < 0.01).
Models with gold labels show the ceiling performance of this

approach with perfect question classification performance. Each

point represents the average of 10 runs.

we append the label definition text for each level of the label

L1...Ln. An exampe of this process is shown in Table 8.

Figure 2 shows QA peformance using predicted labels

from the BERT-QC model, compared to a baseline model

that does not contain question classification information. As

predicted by the error analysis, while a model trained with

question and answer candidate text performs better at QC

than a model using question text alone, a large proportion

of the incorrect predictions become associated with a neg-

ative answer candidate, reducing overall QA performance,
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and highlighting the importance of evaluating QC and QA

models together. When using BERT-QC trained on ques-

tion text alone, at the finest level of specificity (L6) where

overall question classification accuracy is 57.8% P@1, ques-

tion classification significantly improves QA performance by

+1.7% P@1 (p < 0.01). Using gold labels shows ceiling QA

performance can reach +10.0% P@1 over baseline, demon-

strating that as question classification model performance

improves, substantial future gains are possible. An analysis

of expected gains for a given level of QC performance is in-

cluded in the Appendix, showing approximately linear gains

in QA performance above baseline for QC systems able to

achieve over 40% classification accuracy. Below this level,

the decreased performance from noise induced by incorrect

labels surpasses gains from correct labels.

5.1. Automating Error Analyses with QC

Detailed error analyses for question answering systems are

typically labor intensive, often requiring hours or days to

perform manually. As a result error analyses are typically

completed infrequently, in spite of their utility to key deci-

sions in the algortithm or knowledge construction process.

Here we show having access to detailed question classifi-

cation labels specifying fine-grained problem domains pro-

vides a mechanism to automatically generate error analyses

in seconds instead of days.

To illustrate the utility of this approach, Table 9 shows the

performance of the BERT QA+QC model broken down by

specific question classes. This allows automatically identify-

ing a given model’s strengths – for example, here questions

about Human Health, Material Properties, and Earth’s In-

ner Core are well addressed by the BERT-QA model, and

achieve well above the average QA performance of 49%.

Similarly, areas of deficit include Changes of State, Repro-

duction, and Food Chain Processes questions, which see

below-average QA performance. The lowest performing

class, Safety Procedures, demonstrates that while this model

has strong performance in many areas of scientific reason-

ing, it is worse than chance at answering questions about

safety, and would be inappropriate to deploy for safety-

critical tasks.

While this analysis is shown at an intermediate (L2) level

of specificity for space, more detailed analyses are possible.

For example, overall QA performance on Scientific Inference

questions is near average (47%), but increasing granularity

to L3 we observe that questions addressing Experiment De-

sign or Making Inferences – challenging questions even for

humans – perform poorly (33% and 20%) when answered

by the QA system. This allows a system designer to intel-

ligently target problem-specific knowledge resources and

inference methods to address deficits in specific areas.

6. Conclusion

Question classification can enable targetting question an-

swering models, but is challenging to implement with high

performance without using rule-based methods. In this work

we generate the most fine-grained challenge dataset for ques-

tion classification, using complex and syntactically diverse

questions, and show gains of up to 12% are possible with

our question classification model across datasets in open,

QA

Question Category Accuracy N

Strong Performance

Life - Human Health 73% 11

Forces - Friction 71% 7

Energy - Sound 71% 7

Energy - Light 70% 10

Matter - Material Properties 68% 22

Matter - Object Properties 66% 9

Forces - Gravity 66% 9

Science - Scientific Models 66% 9

Earth - Inner Core 64% 33

Astronomy - Natural Cycles 64% 11

Energy - Device Use 63% 8

Energy - Waves 63% 8

Earth - Weather 62% 74

Energy - Conversion 62% 13

Energy - Thermal 60% 10

Above Average Performance

Earth - Geology 58% 38

Science - Graphs 56% 9

Life - Environmental Adaptations 53% 32

Matter - Phys./Chemical Changes 53% 17

Astronomy - Features 52% 27

Astronomy - Tides 50% 6

Approximately Average Performance

Earth - Human Impacts 51% 84

Matter - Chemistry 50% 46

Other - History of Science 50% 10

Life - Features and Functions 49% 176

Below Average Performance

Science - Scientific Inference 47% 58

Life - Food Chains 44% 54

Astronomy - Celestial Distances 44% 9

Life - Reproduction 41% 41

Energy - Electrical 40% 5

Life - Classification 38% 13

Matter - Changes of State 29% 21

Below Chance Performance

Earth - Outer Core 17% 12

Safety - Safety Procedures 7% 14

Table 9: Analysis of question answering performance on specific

question classes on the BERT-QA model (L6). Question classes in

this table are at the L2 level of specificity. Performance is reported

on the development set, where N represents the total number of

questions within a given question class.

science, and medical domains. This model is the first demon-

stration of a question classification model achieving state-of-

the-art results across benchmark datasets in open, science,

and medical domains. We further demonstrate attending to

question type can significantly improve question answering

performance, with large gains possible as quesion classifi-

cation performance improves. Our error analysis suggests

that developing high-precision methods of question classifi-

cation independent of their recall can offer the opportunity

to incrementally make use of the benefits of question classi-

fication without suffering the consequences of classification

errors on QA performance.
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7. Resources

Our Appendix and supplementary material (avail-

able at http://www.cognitiveai.org/

explanationbank/) includes data, code, experi-

ment details, and negative results.

8. Acknowledgements

The authors wish to thank Elizabeth Wainwright and

Stephen Marmorstein for piloting an earlier version of the

question classification annotation. We thank the Allen Insi-

tute for Artificial Intelligence and National Science Founa-

tion (NSF 1815948 to PJ) for funding this work.

9. Bibliographical References

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for

support vector machines. ACM transactions on intelligent

systems and technology (TIST), 2(3):27.

Clark, P., Harrison, P., and Balasubramanian, N. (2013).

A study of the knowledge base requirements for passing

an elementary science test. In Proceedings of the 2013

Workshop on Automated Knowledge Base Construction,

AKBC’13, pages 37–42.

Clark, P., Etzioni, O., Khot, T., Sabharwal, A., Tafjord,

O., Turney, P. D., and Khashabi, D. (2016). Combining

retrieval, statistics, and inference to answer elementary

science questions. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, February 12-17,

2016, Phoenix, Arizona, USA., pages 2580–2586.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,

Schoenick, C., and Tafjord, O. (2018). Think you have

solved question answering? try arc, the ai2 reasoning

challenge. arXiv preprint arXiv:1803.05457.

Clark, P. (2015). Elementary school science and math tests

as a driver for AI: take the aristo challenge! In Blai

Bonet et al., editors, Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, January 25-

30, 2015, Austin, Texas, USA., pages 4019–4021. AAAI

Press.

De Marneffe, M.-C. and Manning, C. D. (2008). The stan-

ford typed dependencies representation. In Coling 2008:

proceedings of the workshop on cross-framework and

cross-domain parser evaluation, pages 1–8. Association

for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.

(2018). Bert: Pre-training of deep bidirectional trans-

formers for language understanding. arXiv preprint

arXiv:1810.04805.

Fellbaum, C. (1998). WordNet. Wiley Online Library.

Godea, A. and Nielsen, R. (2018). Annotating educational

questions for student response analysis. In Proceedings

of the Eleventh International Conference on Language

Resources and Evaluation (LREC-2018).

He, H., Gimpel, K., and Lin, J. (2015). Multi-perspective

sentence similarity modeling with convolutional neural

networks. In Proceedings of the 2015 Conference on Em-

pirical Methods in Natural Language Processing, pages

1576–1586.

Hovy, E., Gerber, L., Hermjakob, U., Lin, C.-Y., and

Ravichandran, D. (2001). Toward semantics-based an-

swer pinpointing. In Proceedings of the first international

conference on Human language technology research,

pages 1–7. Association for Computational Linguistics.

Huang, Z., Thint, M., and Qin, Z. (2008). Question classifi-

cation using head words and their hypernyms. In Proceed-

ings of the Conference on Empirical Methods in Natural

Language Processing, pages 927–936. Association for

Computational Linguistics.

Jansen, P., Surdeanu, M., and Clark, P. (2014). Discourse

complements lexical semantics for non-factoid answer

reranking. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (ACL).

Jansen, P., Balasubramanian, N., Surdeanu, M., and Clark, P.

(2016). What’s in an explanation? characterizing knowl-

edge and inference requirements for elementary science

exams. In Proceedings of COLING 2016, the 26th Inter-

national Conference on Computational Linguistics: Tech-

nical Papers, pages 2956–2965, Osaka, Japan, December.

Jansen, P., Sharp, R., Surdeanu, M., and Clark, P. (2017).

Framing qa as building and ranking intersentence answer

justifications. Computational Linguistics.

Jansen, P., Wainwright, E., Marmorstein, S., and Morrison,

C. (2018). Worldtree: A corpus of explanation graphs for

elementary science questions supporting multi-hop infer-

ence. In Proceedings of the Eleventh International Con-

ference on Language Resources and Evaluation (LREC-

2018).

Khashabi, D., Khot, T., Sabharwal, A., Clark, P., Etzioni,

O., and Roth, D. (2016). Question answering via inte-

ger programming over semi-structured knowledge. In

Proceedings of the International Joint Conference on Ar-

tificial Intelligence, IJCAI’16, pages 1145–1152.

Khashabi, D., Khot, T., Sabharwal, A., and Roth, D. (2017).

Learning what is essential in questions. In Proceedings of

the 21st Conference on Computational Natural Language

Learning (CoNLL 2017), pages 80–89.

Khot, T., Balasubramanian, N., Gribkoff, E., Sabharwal, A.,

Clark, P., and Etzioni, O. (2015). Exploring markov logic

networks for question answering. In EMNLP.

Khot, T., Sabharwal, A., and Clark, P. (2017). Answering

complex questions using open information extraction. In

Proceedings of the 55th Annual Meeting of the Associa-

tion for Computational Linguistics, ACL 2017, Vancouver,

Canada, July 30 - August 4, Volume 2: Short Papers,

pages 311–316.

Kim, Y. (2014). Convolutional neural networks for sentence

classification. In Proceedings of the 2014 conference

on empirical methods in natural language processing

(EMNLP), pages 1746–1751.

Lally, A., Prager, J. M., McCord, M. C., Boguraev, B. K.,

Patwardhan, S., Fan, J., Fodor, P., and Chu-Carroll, J.

(2012). Question analysis: How watson reads a clue.

IBM Journal of Research and Development, 56(3.4):2–1.

Lei, T., Shi, Z., Liu, D., Yang, L., and Zhu, F. (2018).

A novel cnn-based method for question classification in

intelligent question answering. In Proceedings of the

2018 International Conference on Algorithms, Computing

and Artificial Intelligence, page 54. ACM.

Lesk, M. (1986). Automatic sense disambiguation using

machine readable dictionaries: how to tell a pine cone



5378

from an ice cream cone. In Proceedings of the 5th an-

nual international conference on Systems documentation,

pages 24–26. ACM.

Li, X. and Roth, D. (2002). Learning question classifiers. In

Proceedings of the 19th international conference on Com-

putational linguistics-Volume 1, pages 1–7. Association

for Computational Linguistics.

Li, X. and Roth, D. (2006). Learning question classifiers:

the role of semantic information. Natural Language En-

gineering, 12(3):229–249.

Liu, F., Antieau, L. D., and Yu, H. (2011). Toward au-

tomated consumer question answering: Automatically

separating consumer questions from professional ques-

tions in the healthcare domain. Journal of biomedical

informatics, 44(6):1032–1038.

Madabushi, H. T. and Lee, M. (2016). High accuracy rule-

based question classification using question syntax and

semantics. In COLING, pages 1220–1230.

Manning, C. D., Raghavan, P., and Schütze, H. (2008).

Introduction to Information Retrieval. Cambridge Univer-

sity Press.

McHugh, M. L. (2012). Interrater reliability: the

kappa statistic. Biochemia medica: Biochemia medica,

22(3):276–282.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and

Dean, J. (2013). Distributed representations of words and

phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119.

Minsky, M. (1986). The Society of Mind. Simon & Schuster,

Inc., New York, NY, USA.

Mishra, M., Mishra, V. K., and Sharma, H. (2013). Ques-

tion classification using semantic, syntactic and lexical

features. International Journal of Web & Semantic Tech-

nology, 4(3):39.
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10. Appendix

10.1. Annotation

Classification Taxonomy: The full classification taxonomy

is included in separate files, both coupled with definitions,

and as a graphical visualization.

Annotation Procedure: Primary annotation took place

over approximately 8 weeks. Annotators were instructed to

provide up to 2 labels from the full classification taxonomy

(462 labels) that were appropriate for each question, and to

provide the most specific label available in the taxonomy

for a given question. Of the 462 labels in the classification

taxonomy, the ARC questions had non-zero counts in 406

question types. Rarely, questions were encountered by

annotators that did not clearly fit into a label at the end

of the taxonomy, and in these cases the annotators were

instructed to choose a more generic label higher up the

taxonomy that was appropriate. This occurred when the

production taxonomy failed to have specific categories for

infrequent questions testing knowledge that is not a standard

part of the science curriculum. For example, the question:

Which material is the best natural resource to use for

making water-resistant shoes? (A) cotton (B) leather (C)

plastic (D) wool

tests a student’s knowledge of the water resistance of dif-

ferent materials. Because this is not a standard part of the

curriculum, and wasn’t identified as a common topic in the

training questions, the annotators tag this question as be-

longing to Matter → Properties of Materials, rather than a

more specific category.

Questions from the training, development, and test sets

were randomly shuffled to counterbalance any learning ef-

fects during the annotation procedure, but were presented in

grade order (3rd to 9th grade) to reduce context switching

(a given grade level tends to use a similar subset of the tax-

onomy – for example, 3rd grade questions generally do not

address Chemical Equations or Newtons 1st Law of Motion).

Interannotator Agreement: To increase quality and con-

sistency, each annotator annotated the entire dataset of 7,787

questions. Two annotators were used, with the lead an-

notator possessing previous professional domain expertise.

Annotation proceeded in a two-stage process, where in stage

1 annotators completed their annotation independently, and

in stage 2 each of the questions where the annotators did not

have complete agreement were manually resolved by the an-

notators, resulting in high-quality classification annotation.

Because each question can have up to two labels, we treat

each label for a given question as a separate evaluation of

interannotator agreement. That is, for questions where both

annotators labeled each question as having 1 or 2 labels,

we treat this as 1 or 2 separate evaluations of interannotator

agreement. For cases where one annotator labeled as ques-

tion as having 1 label, and the other annotator labeled that

same question as having 2 labels, we conservatively treat

this as two separate interannotator agreements where one

annotator failed to specify the second label and had zero

agreement on that unspecified label.

Classification # of Interannotator

Level Classes Agreement (κ)

L1 (Coarsest) 9 0.85

L2 88 0.71

L3 243 0.64

L4 335 0.60

L5 379 0.58

L6 (Finest) 406 0.58

Table 10: Interannotator Agreement at L6 (the native level the

annotation was completed at), as well as agreement for truncated

levels of the heirarchy from coarse to fine classification.

Though the classification procedure was fine-grained com-

pared to other question classification taxonomies, containing

an unusually large number of classes (406), overall raw in-

terannotator agreement before resolution was high (Cohen’s

κ = 0.58). When labels are truncated to a maximum taxon-

omy depth of N, raw interannotator increases to κ = 0.85

at the coarsest (9 class) level (see Table 10). This is con-

sidered moderate to strong agreement (see McHugh (2012)

for a discussion of the interpretation of the Kappa statistic).

Based on the results of an error analysis on the question

classification system (see Section 10.3.2.), we estimate that

the overall accuracy of the question classification labels after

resolution is approximately 96% .

Annotators disagreed on 3441 (44.2%) of questions. Pri-

mary sources of disagreement before resolution included

each annotator choosing a single category for questions re-

quiring multiple labels (e.g. annotator 1 assigning a label

of X, and annotator 2 assigning a label of Y, when the gold

label was multilabel X, Y), which was observed in 18% of

disagreements. Similarly, we observed annotators choos-

ing similar labels but at different levels of specificity in the

taxonomy (e.g. annotator 1 assigning a label of Matter →
Changes of State → Boiling, where annotator 2 assigned

Matter → Changes of State), which occurred in 12% of

disagreements before resolution.

10.2. Question Classification

10.2.1. Precision@1

Because of space limitations the question classification re-

sults are reported in Table 3 only using Mean Average Pre-

cision (MAP). We also include Precision@1 (P@1), the

overall accuracy of the highest-ranked prediction for each

question classification model, in Table 11.

10.2.2. Negative Results

CNN: We implemented the CNN sentence classifier of Kim

(2014), which demonstrated near state-of-the-art perfor-

mance on a number of sentence classification tasks (includ-

ing TREC question classification) by using pre-trained word

embeddings (Mikolov et al., 2013) as feature extractors in a

CNN model. We adapted the original CNN non-static model

to multi-label classification by changing the fully connected

softmax layer to sigmoid layer to produce a sigmoid output

for each label simultaneously. We followed the same pa-

rameter settings reported by Kim et al. except the learning

rate, which was tuned based on the development set. Pilot

experiments did not show a performance improvement over

the baseline model.
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ARC Science Exams

Adapted From Model L1 L2 L3 L4 L5 L6 Gain (L6)

Unigram Model 82.2 62.1 51.8 44.2 40.8 39.6

Li and Roth (2002) Uni+Bi+POS+Hier (UBPH) 84.2 67.6 56.6 49.4 46.5 44.5 Baseline

Van-tu et al. (2016) UBPH+WordNet Expansion 84.1 67.1 56.4 49.3 46.4 44.7 +0.2

Roberts et al. (2014) UBPH+Dependencies 84.7 68.0 56.5 49.2 45.6 44.8 +0.3

He et al. (2015) MP-CNN 84.8 66.3 56.3 50.7 46.6 43.5 –

Khashabi et al. (2017) UBPH+Essential Terms 85.9 69.4 58.7 51.9 48.4 48.0 +3.5∗

This Work BERT-QC 90.2 78.2 67.6 60.6 58.9 57.8 +13.3∗

Number of Categories 9 88 243 335 379 406

Table 11: Performance of each question classification model, expressed in Precision@1 (P@1). * signifies a given model is significantly

different from the baseline model (p < 0.01).

Label Definitions: Question terms can be mapped to cate-

gories using manual heuristics (e.g. Silva et al., 2011). To

mitigate sparsity and limit heuristic use, here we generated a

feature comparing the cosine similarity of composite embed-

ding vectors (e.g. Jansen et al., 2014) representing question

text and category definition text, using pretrained GloVe

embeddings (Pennington et al., 2014). Pilot experiments

showed that performance did not significantly improve.

Question Expansion with Hypernyms (Probase Ver-

sion): One of the challenges of hypernym expansion

(e.g. Huang et al., 2008; Silva et al., 2011; Roberts et al.,

2014) is determining a heuristic for the termination depth

of hypernym expansion, as in Van-tu et al. (2016). Because

science exam questions are often grounded in specific exam-

ples (e.g. a car rolling down a hill coming to a stop due to

friction), we hypothesized that knowing certain categories

of entities can be important for identifying specific question

types – for example, observing that a question contains a

kind of animal may be suggestive of a Life Science question,

where similarly vehicles or materials present in questions

may suggest questions about Forces or Matter, respectively.

The challenge with WordNet is that key hypernyms can be

at very different depths from query terms – for example,

“cat” is distance 10 away from living thing, “car” is

distance 4 away from vehicle, and “copper” is distance

2 away from material. Choosing a static threshold (or

decaying threshold, as in Van-tu et al. (2016)) will inheri-

ently reduce recall and limit the utility of this method of

query expansion.

To address this, we piloted a hypernym expansion ex-

periment using the Probase taxonomy (Wu et al., 2012), a

collection of 20.7M is-a pairs mined from the web, in

place of WordNet. Because the taxonomic pairs in Probase

come from use in naturalistic settings, links tend to jump

levels in the WordNet taxonomy and be expressed in com-

mon forms. For example, cat → animal, car → vehicle,

and copper → material, are each distance 1 in the Probase

taxonomy, and high-frequency (i.e. high-confidence) taxo-

nomic pairs.

Similar to query expansion using WordNet Hypernyms,

our pilot experiments did not observe a benefit to using

Probase hypernyms over the baseline model. An error anal-

ysis suggested that the large number of noisy and out-of-

context links present in Probase may have reduced perfor-

mance, and in response we constructed a filtered list of

710 key hypernym categories manually filtered from a list

of hypernyms seeded using high-frequency words from an

in-house corpus of 250 in-domain science textbooks. We

also did not observe a benefit to question classification over

the baseline model when expanding only to this manually

curated list of key hypernyms.

10.2.3. Additional Positive Results

Topic words: We made use of the 77 TREC word lists of Li

and Roth (2002), containing a total of 3,257 terms, as well

as an in-house set of 144 word lists on general and elemen-

tary science topics mined from the web, such as ANIMALS,

VEGETABLES, and VEHICLES, containing a total of 29,059

words. To mitigate sparsity, features take the form of counts

for a specific topic – detecting the words turtle and giraffe

in a question would provide a count of 2 for the ANIMAL

feature. This provides a light form of domain-specific en-

tity and action (e.g. types of changes) recognition. Pilot

experiments showed that this wordlist feature did add a mod-

est performance benefit of approximately 2% to question

classification accuracy. Taken together with our results on

hypernym expansion, this suggests that manually curated

wordlists can show modest benefits for question classifica-

tion performance, but at the expense of substantial effort in

authoring or collecting these extensive wordlists.

10.2.4. Additional BERT-QC Model Details

Hyperparameters: For each layer of the class label hierar-

chy, we tune the hyperparameters based on the development

set. We use the pretrained BERT-Base (uncased) checkpoint.

We use the following hyperparameters: maximum sequence

length = 256, batch size = 16, learning rates: 2e-5 (L1), 5e-5

(L2-L6), epochs: 5 (L1), 25 (L2-L6).

Statistics: We use non-parametric bootstrap resampling

to compare the baseline (Li and Roth (2002) model) to all

experimental models to determine significance, using 10,000

bootstrap resamples.

10.3. Question Answering with QC Labels

Hyperparameters: Pilot experiments on both pre-trained

BERT-Base and BERT-Large checkpoints showed similar

performance benefits at the finest levels of question classifi-

cation granularity (L6), but the BERT-Large model demon-

strated higher overall baseline performance, and larger in-
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cremental benefits at lower levels of QC granularity, so we

evaluated using that model. We lightly tuned hyperparam-

eters on the development set surrounding those reported

by Devlin et al. (2018), and ultimately settled on param-

eters similar to their original work, tempered by technical

limitations in running the BERT-Large model on available

hardware: maximum sequence length = 128, batch size = 16,

learning rate: 1e-5. We report performance as the average

of 10 runs for each datapoint. The number of epochs were

tuned on each run on the development set (to a maximum

of 8 epochs), where most models converged to maximum

performance within 5 epochs.

Preference for uncorrelated errors in multiple choice

question classification: We primarily report QA perfor-

mance using BERT-QC trained using text from only the

multiple choice questions and not their answer candidates.

While this model achieved lower overall QC performance

compared to the model trained with both question and multi-

ple choice answer candidate text, it achieved slightly higher

performance in the QA+QC setting. Our error analysis in

Section 4.3. shows that though models trained on both ques-

tion and answer text can achieve higher QC performance,

when they make QC errors, the errors tend to be highly

correlated with an incorrect answer candidate, which can

substantially reduce QA performance. This is an important

result for question classification in the context of multi-

ple choice exams.In the context of multiple choice exams,

correlated noise can substantially reduce QA performance,

meaning the kinds of errors that a model makes are impor-

tant, and evaluating QC performance in context with QA

models that make use of those QC systems is critical.

Related to this result, we provide an analysis of the noise

sensitivity of the QA+QC model for different levels of ques-

tion classification prediction accuracy. Here, we perturb

gold question labels by randomly selecting a proportion of

questions (between 5% and 40%) and randomly assigning

that question a different label. Figure 3 shows that this

uncorrelated noise provides roughly linear decreases in per-

formance, and still shows moderate gains at 60% accuracy

(40% noise) with uncorrelated noise. This suggests that

when making errors, making random errors (that are not cor-

related to incorrect multiple choice answers) is preferential.

Training with predicted labels: We observed small gains

when training the BERT-QA model with predicted QC labels.

We generate predicted labels for the training set using 5-fold

crossvalidation over only the training questions.

Statistics: We use non-parametric bootstrap resampling to

compare baseline (no label) and experimental (QC labeled)

runs of the QA+QC experiment. Because the BERT-QA

model produces different performance values across succes-

sive runs, we perform 10 runs of each condition. We then

compute pairwise p-values for each of the 10 no label and

QC labeled runs (generating 100 comparisons), then use

Fisher’s method to combine these into a final statistic.

10.3.1. Interpretation of non-linear question

answering gains between levels

Question classification paired with question answering

shows statistically significant gains of +1.7% P@1 at L6
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Figure 3: Analysis of noisy question classification labels

on overall QA performance. Here, the X axis represents

the proportion of gold QA labels that have been randomly

switched to another of the 406 possible labels at the finest

level of granularity in the classification taxonomy (L6). QA

performance decreases approximately linearly as the propor-

tion of noisy QC labels increases. Each point represents the

average of 20 experimental runs, with different questions

and random labels for each run. QA performance reported

is on the development set. Note that due to the runtime

associated with this analysis, the results reported are using

the BERT-Base model.

using predicted labels, and a ceiling gain of up to +10%

P@1 using gold labels. The QA performance graph in Fig-

ure 2 contains two deviations from the expectation of linear

gains with increasing specificity, at L1 and L3. Region at

L2 → L3 : On gold labels, L3 provides small gains over L2,

where as L4 provides large gains over L3. We hypothesize

that this is because approximately 57% of question labels

belong to the Earth Science or Life Science categories which

have much more depth than breadth in the standardized sci-

ence curriculum, and as such these categories are primarily

differentiated from broad topics into detailed problem types

at levels L4 through L6. Most other curriculum categories

have more breadth than depth, and show strong (but not

necessarily full) differentiation at L2. Region at L1 : Pre-

dicted performance at L1 is higher than gold performance at

L1. We hypothesize this is because we train using predicted

rather than gold labels, which provides a boost in perfor-

mance. Training on gold labels and testing on predicted

labels substantially reduces the difference between gold and

predicted performance.

10.3.2. Overall annotation accuracy

Though initial raw interannotator agreement was measured

at kappa = 0.58, to maximize the quality of the annotation

the annotators performed a second pass where all disagree-

ments were manually resolved. Table 11 shows question

classification performance of the BERT-QC model at 57.8%

P@1, meaning 42.2% of the predicted labels were differ-

ent than the gold labels. The question classification error

analysis in Table 7 found that of these 42.2% of errorful pre-

dictions, 10% of errors (4.2% of total labels) were caused by

the gold labels being incorrect. This allows us to estimate

that the overall quality of the annotation (the proportion
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of questions that have a correct human authored label) is

approximately 96%.
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