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Abstract—We consider the problem of decentralized optimiza-
tion in networks with communication delays. To accommodate
delays, we need decentralized optimization algorithms that work
on directed graphs. Existing approaches require nodes to know
their out-degree to achieve convergence. We propose a novel
gossip-based algorithm that circumvents this requirement, allow-
ing decentralized optimization in networks with communication
delays. We prove that our algorithm converges on non-convex
objectives, with the same main complexity order term as cen-
tralized Stochastic Gradient Descent (SGD), and show that the
graph topology and the delays only affect the higher order terms.
We provide numerical simulations that illustrate our theoretical
results.

Index Terms—Decentralized optimization, gossip algorithms,
networks with delays, collaborative machine learning, non-convex
optimization.

I. INTRODUCTION

In decentralized optimization, the nodes in a network coop-
erate to minimize a global objective function that is the average
of nodes’ local objective functions. The motivation for these
problems comes from a variety of applications, including, but
not limited to, decentralized estimation in sensor networks,
collaborative machine learning, and decentralized coordination
of multi-agent systems. We formalize these problems by
considering a collection of N nodes, which can communicate
with each other through the edges of a graph G — see Fig. 1 for
an example. Each node has a local cost function f,, : R¢ — R.
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Fig. 1. Directed communication graph example, with N = 5.

The goal is for all nodes to find a common model = € R¢ that
minimizes a global cost function f of the form

1 N
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Previous research has proposed several techniques to minimize
(1). The first study of this problem can be tracked back at
least to [1]. For the problem of finding a common solution
among nodes, the seminal works in gossip algorithms [2],
[3] brought ideas from mixing in Markov chains to allow
averaging over graphs. To minimize (1), it is standard to either
use a combination of gradient descent with gossip steps [4], or
problem-specific methods such as alternating direction method
of multipliers (ADMM) [5]. In the case where G is undirected,
there are multiple efforts to solve this problem in various
settings, like asynchronous communications [6], time-varying
graphs [7], [8], or quantized communications [9], [10]. In the
case where G is directed, nodes must know their out-degree to
achieve consensus, as stated in [11]. Under such assumption, a
family of so-called Push-Sum methods was proposed, starting
with [4], [12]. There are also multiple extensions for various
settings, like quantized communications [9], and asynchronous
communications [13].

There exist several nice surveys that detail the contributions
in this field, see for example [11] for synchronous methods,
and [14] for asynchronous methods.

The common assumption for existing algorithms for di-
rected decentralized optimization is that nodes in the network
must know their out-degree. In this paper, we propose a gossip-
based optimization approach where nodes do not need to know
their out-degree to achieve convergence. Such a property is
desired in many scenarios which arise naturally. For example,
consider networks where links are directed and established
without a handshake, in other words, networks where the
transmitter sends messages and the receivers do not need
to acknowledge their reception. Such a setting is likely in
scenarios where some nodes may have a transmit power that
is larger than others, making some bidirectional communica-
tion impossible. Another possible application is in networks
where nodes simply broadcast messages periodically, without
knowledge of who receives them. Our algorithm, DT-GO
(Delay Tolerant Gossiped Optimization), allows decentralized
optimization in such networks.

II. SETUP AND PROPOSED ALGORITHM

A. Problem setup

As described in the introduction, we consider a set of NV
nodes that share their information over a network modeled as



a directed graph G. Since the shared information can only
reach a limited number of neighboring nodes, not necessarily
known to the transmitter, we assume that the nodes can only
know their in-degree.

Our approach to minimize (1) is to iteratively perform two
phases: (i) local optimization, and (ii) consensus. At each
local optimization phase, nodes optimize their models based
on their local data. This makes local models drift from the
average. Therefore, we introduce a consensus phase, where
nodes communicate among themselves to converge to the
average of their models. The problem in the consensus phase
is known in the literature as decentralized averaging.

B. Decentralized averaging

Let us assume that every Node n starts with an initial model,
or initial state, 7,,(0) € R?. At each time ¢, nodes broadcast
their models and collect the models of their neighbors. They
then perform a weighted average with the models they receive,
which is called a gossip step. Specifically, Node n weighs
information received from Node m with weight W,,,. A
natural choice for these weights is the inverse of the in-degree
of each node. Other choices also work, as long as they satisfy
our definition of a gossip matrix.

Definition 1 (Gossip matrix). Given a strongly connected
directed graph G, its gossip matrix W is an N x N real matrix
whose entries satisfy:

(i) W is row-stochastic: the sum of the entries in every row
is one, i.e., ijl W;; =1 for all .
(i1) Every entry W, is non-negative, and zero only if there
is no directed edge from Node m to Node n in G.
(iii) Entries in the diagonal are positive. This is equivalent to
asking each node in G to have a self-loop.

Formally, each gossip iteration is defined as z,(t + 1) =
22:1 WmZm (t), which can be written in a matrix form as
X(t+1) = WX(t). Here, X (¢) is the N x d real matrix whose
rows are the node states. Notice from item (ii) in Def. 1 that
Wo.m 1s only positive when Node n can actually receive model
Zn(t). When t — oo, we want the sequence of models to tend
to the average, i.e, z,(t) = z = + Zﬁ;l z,(0). However, if
the gossip matrix W is row-stochastic nodes do not necessarily
converge to the average. An illustration of this phenomenon
can be seen in Fig. 2, where the nodes using a regular gossip
algorithm, marked by the “non-corrected node values”, clearly
do not converge to z. For row-stochastic matrices, it can be
shown that the nodes converge to a weighted average

N
i=> mrn(0), 2)
n=1

where m, are non-negative weights that add up to one [15,
Lemma 5]. We prove that my,..., 7y are positive in Sec-
tion IIl. In this section, first, we present an algorithm that
“corrects” the values such that the nodes converge to the
average. Then, we show that this algorithm is capable of
handling links with communication delays.
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Fig. 2. Plot of corrected and non-corrected node values throughout time.
Initial node values are chosen at random from a normal (0, 5). The gossip
weights are the inverse of the in-degrees, where G is shown in Fig. 1.

C. Algorithm design

We present DT-GO, which corrects the weighted average
described in Eq. (2) and allows the consensus phase to
converge to the true average. Then, we can minimize the cost
function in Eq. (1) judiciously by interchanging consensus and
local optimization phases.

The key idea is described in the following Lemma.

Lemma IL.1. Consider a digraph G with an associated gossip
matrix W as in Def. 1. If every node n multiplies its initial

state x,,(0) by a factor d,, = 7, then the gossip iterations

Ny’
ra(t+1) = ngl WomTm (t) converge to the true mean,
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The proof of this lemma follows immediately from Eq. (2)
by inserting the re-weighted initial states. See Fig. 2 for an
illustration of this lemma in practice, where the corrected node
values correspond to a run where every initial state from Node
n is re-weighted with d,,.

Observe that if every node has initial state z,,(0) = e,, a
real vector of length N that includes all zeros, except a one
in coordinate n, the gossip iterations converge to

N
=Y e, )
n=1

that is, a vector with each 7,, in the n-th coordinate. Therefore,
each node can compute d,, when convergence is achieved.
Leveraging this observation, we propose Alg. 1. Note that
we do not use vectors e,,, because nodes do not know the
network size N a priori. Instead, we use dictionaries that
follow the same principle, and are implementable in practice.
Once the warm-up period is over, nodes can obtain N from
the dictionary size.
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D. Incorporating Delays

The framework proposed for DT-GO is designed to easily
accommodate links with delays, i.e., links where information
takes more than one round to arrive at the receiver. To
incorporate the delays, similar to [1], [15], we introduce the
notion of virtual nodes, or non-computing nodes, that serve as
a relay of the message for a round. If Node n sends messages
to Node m with a delay of k£ rounds, we simply add & nodes to
the graph GG, each with objective function 0 to avoid modifying
the objective function (1). For example, in Fig. 3, Node 4

-,
P SERE ‘—’@:)

r

1

!'~

7/ ;‘-...-._y
T Wy

Fig. 3. Example of a graph with delayed links. We have added a delay of 2
rounds to the edge between Node 4 and Node 2 of the graph in Fig. 1.

sends messages to Node 2 with a delay of 2 rounds. Therefore,
we add two nodes, 6 and 7, to the graph, and Node 4 sends
messages to Node 6, which sends messages to Node 7, which
finally sends messages to Node 2. The weight of the old edge
from Node 4 to 2, Way, is now assigned to the edge from
Node 7 to 2 and the weights of the other new edges are set
to 1. Note that this procedure ensures that the nodes’ input

Algorithm 1 DT-GO at Node n
1: Generate local id number id,,.
{WARM-UP PERIOD}
Initialize dictionary dict < {id,, : 1}.
for T'am-up rounds do
Broadcast dict and receive neighbors’ dictionaries.
dict < weighted average of available dictionaries.
end for
From dict, obtain N and 7,, as in Eq. (4).
{MINIMIZING f PERIOD}
Initialize x,,(0).
9: fortin0,..., 7 —1do
10:  Initialize auxiliary variables z,, y.
{Optimization phase}
11:  SGD step: y < z,(t) — nVE, (20 (), &n).
{Consensus phase}
12: Adjust update: 2, < 2, (t) + 5t (y — zn (1))
13:  for 7, rounds do
14: Broadcast z,, and receive neighbor states.
15: Average states: z, < Z Wi Zm.-
16:  end for
17 zp(t+ 1) + zp.
18: end for
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weights still add up to one. Also, the resulting extended graph
is still strongly connected.

III. PERFORMANCE BOUNDS AND PROOF OF
CONVERGENCE

In this section, first, we discuss the case without delays,
as it gives a stronger and more illustrative bound. Then, we
present the case with delays.

A. Case without delays

First, we introduce a proposition that is needed to show that
our algorithm converges.

Proposition II1.1. Given a gossip matrix W satisfying Def. 1

we can ensure that

(i) The limit lim;_,. W :== W exists, that is, our gossip
algorithm converges to a stationary solution.

(ii) The matrix W is row-stochastic, and its rows are all
identical, with positive entries 1, ..., TN that add up to
one.

(iii) The squared Frobenius norm of the global state con-
verges to the stationary solution at a geometric rate, i.e.,
there exist constants C and p, with p < 1, such that for

— W5 < Cpt.

Proof: Since W is primitive, statements (i) and (ii) are
immediate consequences of applying the Perron-Frobenius
theorem [16]. Furthermore, m,...,7n are the coordinates
of the left Perron eigenvector of W. Statement (iii) also has
a straightforward proof via eigendecomposition, as shown in
[17, Fact 3]. In addition, we have p = |\2|?, the second largest
eigenvalue of W in absolute value squared. [ ]

B. Case with delays

Let us now assume that we have a network with arbitrary
delays. The number of non-virtual nodes is N, and we add
virtual nodes to obtain a network of size N,. Similarly, the
original gossip matrix W is extended as previously described
to a gossip matrix W,,.

Proposition II1.2. Given a gossip matrix W satisfying Def. I,
and its extended version with delays W,, we can ensure that

(i) The limit lim;_, W{: = WX exists, that is, our gossip
algorithm with delays converges to a stationary solution.
(ii) The matrix W3° is row-stochastic, and its rows are all
identical, with non-negative entries m, 1,...,mT, N, that
add up to one.
The squared Frobenius norm of the global state con-
verges to the stationary solution at a geometric rate, i.e.,
there exist constants C and p, with p < 1, such that for
— W3 < Cpt.
The weights that correspond to non-virtual nodes, i.e.,
Ty,1,- -+, Ty, N are all positive.

Proof: From [15, Lemma 5], Facts (i) and (ii) follow
immediately. For Fact (iii), [15, Lemma 5] ensures that
1+n B2
1—nbe

(iii)

(v)

W =W, <2 1—nP)%, (5



where By := N — 1 + NBj, B; is the maximum number of
delays between two nodes in G, and n € (0,1) is a positive
lower bound for all the non-zero entries of W. Squaring the
expression and knowing that the Frobenius norm upper-bounds
the 2-norm proves the statement. The proof of (iv) follows
from [1, Lemma 5.2.1]. [ |

Proposition III.2 allows us to guarantee convergence for
graphs with delays, albeit it often gives us a looser bound
for delay-less graphs.

C. DT-GO'’s convergence rate

A corollary of Propositions III.1 and III.2 is that we can
choose a number of gossip rounds 7, such that Cp™s < 1, as
needed for our convergence results.

Note that if W is doubly stochastic and we do not add
delays, C' =1, and 7, can be set to 1. Also, ¥ then converges
to an all-one matrix divided by N, and our algorithm becomes
equivalent to Decentralized SGD (DSGD) [4]. Furthermore, if
G is a complete graph and we set edge weights to 1/N, then
the gossip matrix becomes the averaging matrix, and both DT-
GO and DSGD are equivalent to centralized SGD.

Assuming that the warm-up phase is complete and 7, is
large enough such that C'p™s < 1, with a slight abuse of the
notation we can write Alg. 1’s iterations as

X(t+1) = W7 (X(t) — nDIF(t)) 6)

where JF(t) is an N X d real matrix that represents the
stochastic gradients at time ¢, and D = diag( Nagr- ﬁ)
is the diagonal correction matrix. If there are v1rtua1 nodes,
the corresponding entries in the diagonal matrix D are set to
1. This ensures that D is well defined, since 7, > 0 when
Node n is non-virtual — see Proposition III.2. This matrix
notation allows us to follow an analysis approach similar to
[18]. Before stating our main convergence result, first, we
make the following standard assumptions [4], [9].

Assumption IIL.3. Each function f,: R? — R is L-smooth,
that is

IV faly) = Vfa(@)| < Llly — || Yo,y €RY, (D)

and we have access to unbiased stochastic gradients,
VF,(z,&,), with bounded variance on each worker:

E[IVFu(@,) = VSul@)I] < 02 ®)
E[IVE@.6)"] <G vaeRL

We denote 72 := 4 Z _, o2 for convenience.

We now present our main convergence result, which applies
for cases with and without delays.

Theorem I11.4. Given a gossip matrix as in Def. 1 (possibly
extended with delays as in Section II-D), a number of iterations
T, a large enough T4 such that |[W7Ts — W°°||§ < Cp™ =
1—c < 1, and under Assumption II1.3, there exists a constant

(depending on T') stepsize 1 such that the DT-GO iterations
70 = ZnN:1 Ty, (t) satisfy:
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where Fy := f(2) — f* f* is a lower bound for f, and D
is the diagonal correction matrix, with virtual nodes having 1
in their corresponding entries.

We present a sketch of Theorem III.4’s proof, which is not
included with full details due to the lack of space. The first
key insight is that

N
E[f(#(t+1)] =E |f %Z W@ (t),60)|

(10)
since the weighted averages are preserved at each iteration.

We can check this as follows: let us define X (¢ + 1) as an
N x d matrix whose rows are Z(t). From Eq. (6), we obtain

X(t+1)=W>eX(t+1) = W™ (X (t) — nDIF(t))

where J is the averaging matrix of all ones divided by N.
Notice that this is exactly Eq. (10) in matrix form. Using this
insight, we expand Eq. (10) leveraging L-smoothness:

E[f(#(t+1)] < E[f(#(1)]
(V(E(2) %Z (@t e»]

1 2
HN;VFA%@)’&”)

After algebraic manipulation, and using the bounded variance
assumption as well as L-smoothness, we obtain

E[f(#(+1)] < ELF@0)] - 1B [IV/G0)IE]
y o Z]E (1) ~ 2 ()] +n

Rearranging terms and averaging over 7 iterations yield

2
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| 2T 1 N
S S E ) 20
t=0 n=1

We bound the third term on the RHS using Lemma IIL.5. Then,
choosing the appropriate stepsize, following arguments similar
to [18, Lemma A.5] concludes the proof.

Notice that the first term in Theorem III.4 is the same as
that of centralized SGD, and only the higher order terms are



affected by the graph topology and the delays between nodes,
which affect D and c as described in Proposition III.2.

We now present Lemma II1.5, used in the main proof, which
guarantees that all nodes converge to the same solution when
n—0asT — oo.

Lemma IILS. Given a gossip matrix as in Def. 1 (possibly
extended with delays as in Section II-D), a large enough 7,
such that ||W7™ — W>|3 < Cp™ == 1— ¢ < 1, and under
Assumption II1.3, with constant stepsize 1, DT-GO iterations
satisfy

N 2
- 4N ||D|; G?
2
1) — za (D) < 7726722,
n=1

where D is the diagonal correction matrix, with virtual nodes
having 1 in their corresponding entries.

Proof: We follow the proof from [18, Lemma A.2].
. 2
Define r, = E U’X(t) - X(t)HF} Then,

e = ||ove — W) - por) - )| |

since (W7 — W)X (t) = 0. Using the contractive property
of WTs — W, it follows immediately that

e < (1= 0 || X(0) - X() - npor (o)
< -ga+aE||x0 - X0 ]
+ (1= )1+ )E [|DOF@)]3]
<(1-5)n+ 21D NG
24\|D\2|§NG2

Finally, we can check by induction that r; < U
satisfies the recursion and the proof is complete. ]

IV. EXPERIMENTAL RESULTS

We perform a set of experiments on the following problem:
Each node n has an objective function f,(z) = (z — n)%
This defines a function f that has a unique global minimum
at x* = w We generate random directed graphs with
N = 100 nodes. Every possible edge in the graph exists
with a probability p and non-strongly connected generated
graphs are discarded. In this section, we report DT-GO’s
mean performance over I = 100 randomly generated graphs.
Note that if p = 1, the graph is complete and DT-GO is
equivalent to centralized SGD, which serves as our benchmark.
Every node averages all received messages with equal weights,
i.e., the inverse of the in-degree. We use 1y = % and
T4 = 1, and report the cost and consensus suboptimalities. The
cost and consensus are defined as +; Zgzl(n —x,(t))? and
+ Zf:f:l(i(t) — 2, (t))?, respectively. For both measures, the
Suboptimality is defined as the difference between the value
and that of the centralized SGD method, which is equivalent
to the case of p = 1. Figs. 4 and 5 show how the graph

topology, measured by the edge probability p affects DT-
GO’s performance. Higher graph connectivity implies faster
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Fig. 4. DT-GO’s cost comparison for strongly connected directed random
graphs with edge probability p. The cost is % ZnN:1 (n —xn(t))2, and the
suboptimality is the difference with respect to the baseline, p = 1, which is
centralized SGD.

61 — p=20.1
=5 == p=02
= =0.3
[} p :
§4_ e p=04
§ p=20.6
2 3 p=1.0
wn
B
g 21
? ]

3

Olq N
\
N~

0 - > P ——

T T T T T T
0 20 40 60 80 100

Round

Fig. 5. DT-GO’s consensus comparison for strongly connected di-
rected random graphs with edge probability p. Consensus is defined as
% 27]:7:1 (Z(t)—xn(t))?, and the suboptimality is the difference with respect
to the baseline, p = 1, which is centralized SGD.

consensus. Also, a smaller consensus value allows solutions
that differ more at each node, which make local costs lower. In
turn, the cost suboptimality has negative peaks before reaching
consensus.

Figs. 6 and 7 show the effects of delay on DT-GO’s
performance. We consider a complete graph of N = 100 nodes
and add delays at each node according to a Poisson distribution
with parameter \. We generate the delays for 7 = 100 cases
for each \ value and report the mean performance. Note that
A = 0 implies no delays, and for a complete graph without
delays DT-GO is the same as centralized SGD. This will
serve as the baseline for our experiments. As expected, higher
values of A make DT-GO converge slower. Figs. 6 and 7 only
include the first 30 iterations of the algorithm to highlight the



— A=0.0

140 4 -= A=01
> A=0.2
= A=0.3
CS -
£ 30 L A=04
2 o
2 =
720 k%
% Fy o
Q [
O 10 -t

0 - MRS S S

T T T T T
0 5 10 15 20 25 30

Fig. 6. DT-GO’s cost comparison for complete gragfhs with Poisson-
distributed delays among the edges. The cost is % o (n = zn (1),
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with respect to the baseline, A = 0, which is centralized SGD without delays.
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Fig. 7. DT-GO’s cost comparison for complete graphs with Poisson-
distributed delays among the edges. Consensus is % ny:l (Z(t) —zn(t))2,
averaging only over non-virtual nodes. The suboptimality is the difference
with respect to the baseline, A\ = 0, which is centralized SGD without delays.

delays’ effects. The code for both experiments is available at
[19].

V. CONCLUSIONS

We have presented DT-GO, a decentralized algorithm for
solving optimization problems in networks with arbitrary
delays. Nodes in the network need not have knowledge of
their out-degree for DT-GO to converge. We have shown that,
under standard assumptions, DT-GO is guaranteed to converge
to the problem’s optimal solution at the same complexity order
as the plain decentralized SGD with a fully connected graph.
We have also provided simulation results that back up our
theoretical findings.
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