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Abstract

Current dataset collection methods typically scrape large amounts of data from the
web. While this technique is extremely scalable, data collected in this way tends
to reinforce stereotypical biases, can contain personally identifiable information,
and typically originates from Europe and North America. In this work, we rethink
the dataset collection paradigm and introduce GeoDE , a geographically diverse
dataset with 61,940 images from 40 classes and 6 world regions, with no personally
identifiable information, collected by soliciting images from people around the
world. We analyse GeoDE to understand differences in images collected in this
manner compared to web-scraping. We demonstrate its use as both an evaluation
and training dataset, allowing us to highlight and begin to mitigate the shortcomings
in current models, despite GeoDE’s relatively small size. We release the full dataset
and code at https://geodiverse-data-collection.cs.princeton.edu/

1 Introduction

The creation of large-scale image datasets has enabled advances in the performance of computer
vision models. Previously limited by internal manual collection efforts [13, 15, 12], in the past 15
years the size of these datasets has rapidly grown. This growth has been empowered by a new data
collection framework: scraping web images at scale. These images are either human-labelled (e.g.,
ImageNet [8, 26]), use tags (e.g., CLIP-400M [24]) or use self-supervision (e.g., PASS [2]).

However, these web-scraped datasets come with their downsides. One of these downsides is that
these datasets can often contain pernicious social and cultural biases. For example, gender and racial
biases can manifest through underrepresentation and/or through stereotypical depictions of certain
demographic groups [21, 4, 40, 34, 3]. There is also geographic bias: works of e.g., Shankar et
al. [27] and de Vries et al. [7] show that web-scraped datasets consist of images mostly from North
America and Western Europe.

The other common downsides are copyright, consent and compensation. Dataset creators frequently
do not obtain full permission of the content creators and of the people featured in the content [3].1
While annotators are compensated, content creators and image subjects rarely are [3]. Though there
have been efforts to balance datasets [10], clean datasets [36], and protect privacy of depicted subjects
by blurring [39], methods that rely on web-scraping cannot fully eliminate these issues [3, 18].

To tackle these issues, an exciting new dataset DollarStreet [25] was recently introduced (licence:
CC). Instead of web-scraping, DollarStreet sources data from the Gapminder foundation. It comprises
of images taken by volunteer and professional photographers in different countries to illustrate
households with different income statuses. This results in 38,479 images from 63 different countries,
tagged with 289 labels. DollarStreet overcomes issues of consent, and is in many ways the first truly
geographically diverse dataset (Tab. 1).

1While images used are sometimes under the most permissive Creative Commons license, it is unclear if
creators know the full impacts of their images being used in the training of large scale models.
37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
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GeoYFCC distribution [10] GeoDE distribution (ours)

Figure 1: We construct a geographically diverse dataset GeoDE that is approximately balanced across
6 world regions. We visualize the images per region, and compare our distribution (right) to that of a
previously created diverse dataset GeoYFCC [10] (left).

However, DollarStreet curates a computer vision dataset from images that have previously been
collected and released on the web. In contrast, we present an alternative geographically-diverse
data collection process (more details in Sec. 3), which allows us to explicitly target a different
object-centric image distribution.

Further, with the advent of multimodal foundation models [24, 22, 23, 32, 9], revising the idea of
manual collection of test datasets may be in order. With these models, direct access to the training data
is frequently impossible, although we know they were trained on trillions of web-scraped examples.
Thus, any dataset comprising of previously available images may actually have been included in the
model training, violating the core machine learning tenet of separate train/test splits.

Contributions. We collected a geographically diverse dataset of common objects which overcomes
many issues described above. Concretely, we commission photos of different objects from people
across the world from Appen (www.appen.com)’s global workforce. This naturally resolves consent

concerns, similar to DollarStreet [25] and ensures that the data is (at least temporarily) an unseen test

set. We own the copyright to all of the images in GeoDE, have explicit permission from creators to
use these images for computer vision, verified that the images do not show identifiable people or
other personally identifiable information (PII), and ensured compensation to the content creators.

The resulting Geographically Diverse Evaluation (GeoDE) dataset2 contains 61,940 images roughly
balanced across 40 object categories and 6 geographic regions. We find that the object recognition
problem becomes surprisingly challenging since the GeoDE images represent the diverse appearance

of common objects across six global regions: Africa, the Americas, East Asia, Europe, Southeast
Asia, and West Asia. Similar to de Vries et al. [7], we show that modern object recognition models
perform poorly on recognizing objects from Africa, East Asia, and SE Asia. Augmenting current
training datasets (like ImageNet [8, 26]) with training images from GeoDE yields an improvement of
9% on DollarStreet [25] and 21% on the test split of GeoDE .

Further, requesting images with specific content mitigated selection bias: web-scraped images
are typically uploaded by creators with different incentives, e.g. to generate engagement with
exciting/unique content [28], and disincentives for mundane everyday content. We show that the
distribution of images in GeoDE is different to that in other datasets, even when controlling for world
region and object class.

Unfortunately, a key drawback of our method is the cost, which is partially the result of aiming for fair
compensation to the content creators and curators. The method can also lead to other biases (e.g., lack
of economic diversity, since workers are required to have a smart phone). However, we demonstrate
that even small amounts of data collected in this way can be beneficial in remedying some of the
concerns with large-scale web-scraped datasets. Our work challenges the current paradigm for dataset
collection and illustrates the process of manually curating image datasets. In addition, we introduce the
GeoDE dataset which offers a more geodiverse and ethically created alternative for object recognition.
Data and code can be found at https://geodiverse-data-collection.cs.princeton.edu/

2 Related Work

There are three key research directions that inspired this work. The first is the call to increase
geographic diversity in visual datasets [27, 7]. In response, there have been attempts to construct such
datasets [10, 1], summarized in Tab. 1. However, these datasets are still geographically concentrated
(in Europe for GeoYFCC [10] or India for OpenImages Extended [1]). The dataset most similar to

2GeoDE is owned and maintained by Princeton; Meta AI was not involved with the data collection.
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Table 1: We compare approaches to dataset collection, along with the distribution and sizes of
each. Although GeoDE is smaller than standard datasets, we ensure that images are sourced with
permission, contain no identifiable people, and are balanced across both regions and object classes.

Dataset Size;
distribution

Collection process;
annotation process

Geographic
coverage

Personally
Identifiable Info
(PII)

ImageNet
[8, 26]

14.2M; mostly
balanced
across classes

Scraped images from the web
based on the class label;
crowd-sourced annotations

Mostly North
America & Western
Europe [27]

Contains people,
subset with faces
blurred [38]

PASS
[2]

1.4M; N/A (no
labels)

Random images from Flickr; no
annotations

Flickr, thus mostly
North America &
Western Europe

No people

OpenImages
[19]

9.1M ; long-tailed
class distribution

Flickr images with CC-BY
licenses; automatic labels with
some human verification

Mostly North
America & Western
Europe [27]

Contains people

OpenImages
Extended
[1]

478K; long-tailed
class distribution

Crowd-sourced gamified app to
collect images; automatic labels
and manual descriptions

More than 80% of
images are from
India

People are
blurred

GeoYFCC
[10]

330K; long-tailed
class distribution

Flickr images subsampled to be
geodiverse; noisy tags

62 countries, but
concentrated in
Europe (Fig. 1)

Contains people

DollarStreet
[25]

38,479; mostly
balanced across
topics

Images by professional and
volunteer photographers; manual
labels including household income

63 countries in
Africa, America,
Asia & Europe

Yes, with
permission

GeoDE
(ours)

61,940; balanced
across classes and
regions

Crowd-sourced collection using
paid workers; manual annotation

Even coverage over
six geographical
regions (Tab. 3)

No identifiable
people and no
other PII

ours is DollarStreet [25], also mentioned in the introduction. Both DollarStreet and our GeoDe were
collected to improve geographic diversity of image datasets, are relatively small scale datasets (62k
for GeoDE, 39k for DollarStreet), and are collected through crowd-sourcing. However, DollarStreet
was repurposed as a computer vision dataset by curating the images through GapMinder, a non-profit
organization that collected these images to showcase differences in how people live around the
world. Thus, the images in DollarStreet were collected through a more social science perspective: for
example, images are collected to showcase different everyday actions such as “washing hands” as
opposed to objects such as “hand soap”. On the other hand, GeoDE is more focused on understanding
how objects across the world are visually different.

Second, in using participants to generate visual content, we follow video datasets Charades [28],
Epic Kitchens [6] and Ego4d [14]. We similarly leverage paid workers to provide examples that fall
outside the common web-scraped distribution. However, we differ in that our key goal is to ensure
geographic diversity. This poses unique challenges in recruitment and dataset scope (more in Sec. 3).

Finally, in our data collection efforts we take into account the extensive literature around selection
bias in computer vision datasets [31, 4, 40, 34, 29, 11, 37, 3] and ensure that our dataset is collected
responsibly, with attention to privacy, consent, copyright and worker compensation [3].

3 Collecting GeoDE

We describe our data collection process, including our selection of object classes and world regions.

Selecting the object classes. We focus on object classes that are likely to be visually distinct
in different parts of the world. Selecting such objects is a chicken-and-egg problem: without a
geographically diverse dataset at our disposal, it is unclear which objects are diverse. We adopt
a number of heuristics using existing datasets to find a plausible set. We use simple computer
vision techniques (linear models and visual clustering, using features extracted from self-supervised
PASS-pretrained models [2]) along with manual examination to identify a set of candidate tags from
DollarStreet [25] and GeoYFCC [10] (e.g., “chili,” “footstool,” “stove”). To prune these tags, we
remove those that are not objects (e.g., “arctic”, “descent”), remove wild animals not found in all
regions (e.g., “gnu”, “camel”) and group variants of objects (e.g., “stupa”, “temple”, “church” and
“mosque”). The final set of objects is in Tab. 2, and the full process is in the supp. mat.
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Table 2: GeoDE consists of 40 object classes, loosely organized into 4 groups.
Indoor common Indoor rare Outdoor common Outdoor rare
bag, chair, dustbin,
hairbrush/comb, hand
soap, hat, light fixture,
light switch, toothbrush,
toothpaste/toothpowder

candle, cleaning
equipment, cooking pot,
jug, lighter, medicine,
plate of food, spices,
stove, toy

backyard, car, fence,
front door, house, road
sign, streetlight/lantern,
tree, truck, waste
container

bicycle, boat, bus, dog,
flag, monument,
religious building, stall,
storefront, wheelbarrow

Table 3: GeoDE consists of images from six world regions. Within each, there are 3-4 countries
contributing to most of the images. Participants from other countries within the region were accepted.

West Asia: Saudi Arabia, UAE, Turkey Africa: Egypt, Nigeria, South Africa
East Asia: China, Japan, South Korea SE Asia: Indonesia, Philippines, Thailand
Americas: Argentina, Colombia, Mexico Europe: Italy, Romania, Spain, United Kingdom

Selecting diverse geographic regions. We chose six regions: Africa, Central and South America
(“Americas”), East Asia, Europe, SouthEast (“SE”) Asia and West Asia. Within each, we targeted 3-4
countries (Tab. 3). The regions were chosen due to the lack of available images from them in most
public datasets [27, 7, 35]; the countries were chosen based on the presence of participants within
Appen’s database3. We obtain a roughly even distribution of images across each class and region pair.

Image collection and worker demographics. Workers were asked to upload images for a given
object class (Fig 2). There were 4,500+ workers, representing a range of genders, ages and races (see
supp. mat.). All images submitted were manually checked by Appen’s quality assurance (QA) team.

4 Lessons learned from collecting GeoDE

A key part of this study was to understand if manually taking photographs is a viable alternative to
web-scraping. In this section we detail the lessons learned in constructing the GeoDE dataset.

Getting sufficient images of all object classes. While some object classes expectedly proved
more difficult than others (e.g., “monument” or “flag” were simply hard for workers to find), others
surprised us. For example, “stove” was originally underrepresented until the definition was clarified to
“any cooking surface either electric, gas, induction.” Workers’ perception of their cooking appliance as
“stove” varied, highlighting a vocabulary challenge unique to geographically diverse data collection.

Multiple copies of images. Two most common types of error were incorrect images (i.e, not
belonging to the class selected) and multiple copies of an image. The QA team found that participants
often submitted multiple copies of the same object instance from different angles despite instructions
not to do so. Workers also sometimes submitted very similar objects (examples in supp. mat.), for
example, three hats by the same worker with slightly varying colors). We filtered out such images.

Multiple objects per image. For some of the (especially larger and outdoor) object categories, it was
difficult to ensure that other objects were not present, particularly “trees”. For example, we found
that images of “fences” often have “trees” present, and it was not always possible to discern between
objects in the foreground and background (examples in supp. mat.). Thus, we requested that images
that had a significant portion of the image covered by trees be explicitly tagged. These additional
annotations can be used to filter and remove such images and/or to analyze errors made by a model.

Other. Beyond these, the rest of the data collection went smoothly. Following instructions, only
0.78% images contained identifiable information. Some images contain non-identifiable incidental
people in the background (especially for larger object classes, like “monument”). All such images
are tagged in GeoDE. We were also able to ensure that the number of images per region is roughly
equal, although it was harder to obtain an even number of images per country within each region.

Cost. Collecting images in this way was expensive: each image cost roughly $0.87 for a total cost of
$54,000, not including researcher time. This allowed us to compensate photographers as well as the
management and QA teams for their labour.

3While we do not currently find this to be the case empirically, we acknowledge that the regions themselves
are quite broad, and certain objects might look different within the region.
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General Instructions
In this task, you will submit up to 3 photos of the same type of object (e.g., upload 3 photos of 3 different

bags; please do not upload 3 photos of the same bag from different angles).
1. Please make sure the location function is enabled for the camera.
2. The photo resolution should be at least 640 x 480.
3. All images should be new photos captured with Appen Mobile.
4. Please make sure it’s a single object per image.
5. Please make sure it’s a well-lit environment and the object is clearly visible in the photos.
6. Please make the object occupy at least 25% of the image.
7. Objects captured are foregrounded and not occluded.
8. Objects should not be blurred, e.g., motion blur.
9. No effects or filters added (cropping is acceptable).

10. Please try to avoid capturing people in the images (it’s OK if people are blurry in the background and
far from the camera).

11. Please try to avoid capturing vehicle license plates in images.

Figure 2: Image collection instructions given to workers.

Figure 3: Sample images of two object classes in different regions within GeoDE (and ImageNet in
the bottom row, for comparison). Note the variety of stoves and houses across geographic regions
in GeoDE – and also the fact that the stoves are more used (thus arguably more realistic) than in
ImageNet. Product labels on images in the figure have been blurred.

5 Comparing GeoDE to current datasets

We compare GeoDE with three datasets: the canonical ImageNet [8], the more geographically diverse
(but still webscraped) GeoYFCC [10] and finally, the recently curated DollarStreet dataset [25].

Qualitative. In Fig. 3, we show a subset of 60 GeoDE images of “stoves” and “houses” (more in the
appendix). Compared to images from ImageNet, we see a larger variety of stoves: e.g., induction
coils, single and two burner stoves. The stoves also appear more used than those in ImageNet.
Similarly, for “house,” we see a larger range in terms of materials used and size. In the Secs. 6 and 7
we examine the impact of this diversity on visual recognition models.

Statistics. GeoYFCC [10] (license: CC) is a webscraped dataset subsampled from YFCC100M [30]
to be geographically diverse; thus, by raw counts it is a much larger dataset compared to both
DollarStreet and GeoDE, with over 1M images from 62 countries. However, looking at the regions
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West Asia Africa East Asia Southeast Asia Americas Europe

Plate
of food

Store-
front

Figure 4: We visualize the TSNE plots for several of object classes per region for GeoYFCC (light
blue) and GeoDE (dark blue). While the features do overlap slightly, on the whole, they are very
different for dataset distributions, even within each (region, object) tuple. (See Fig. 5 for DollarStreet)

Africa Americas Europe Africa Americas Europe

Plate
of
food

Stove

Figure 5: We visualize the TSNE plots for several of object classes per region for DollarStreet (cyan)
and GeoDE (dark blue). We see that these features overlap significantly more than that of GeoYFCC,
however, there are still objects with different distributions (e.g. “Stove” in Americas).

(Fig. 1) reveals imbalances, with most countries from Europe. Moreover, this dataset does not have
curated labels, just tags, and the distribution among tags is also long-tailed (the top 20 of 1,197 tags
comprise 34% of the dataset). Comparatively, GeoDE is balanced across both regions and classes.
DollarStreet [25] is a much smaller dataset with only 38,479 photos, comparable to GeoDE with
61,940 photos. DollarStreet has more classes but with fewer images per class compared to GeoDE:
DollarStreet averages only 133 images per each of its 289 classes (with 382 images on average for its
40 most common classes), while GeoDE average 1,548 images per each of its 40 classes.

Object appearance. Finally, we attempt to quantify the differences in the appearance of images
collected through different methods, by comparing GeoDE with GeoYFCC [10] and DollarStreet [25].
We extract features for each dataset using a ResNet50 model [17] trained with self-supervised learning
SwAV [5] on the PASS dataset [2] (license: CC-BY). We train linear classifiers to predict the dataset
given an image; the classifier achieves an accuracy of 96.3% when trying to distinguish between
GeoYFCC and GeoDE, and an accuracy of 96.1% when trying to distinguish between DollarStreet
and GeoDE. However, this could be the result of having different distributions of regions (in the
case of GeoYFCC) and different objects (for both). To understand how the dataset distributions are
different beyond just the class/region frequencies we obtain low-dimensional TSNE embeddings [33]
with images that restricted to a certain (region, object) pair (Figs. 4 and 5). We see a much more
pronounced difference between GeoDE and GeoYFCC, likely due to effects of web-scraping.

6 GeoDE as an evaluation dataset

We now analyze the use of GeoDE as an evaluation dataset, by using it to evaluate two canonical
models: the recent CLIP [24] and an ImageNet [8]-trained model.

Implementation details. For the CLIP model, we use the weights provided for the ViT-B/32 model.
We use text prompts for all 40 object categories as described in the zero-shot recognition setup of [24].
To train a model on ImageNet [8], we first match the classes of GeoDE and ImageNet. We find the
relevant synsets for each GeoDE class in WordNet [20], and include all images of that synset. For two
object categories (“backyard” and “toothpaste/toothpowder”) we do not find any matching categories,
and so we ignore these categories in the quantitative analysis. We split our filtered ImageNet [8]
dataset into train (38,353 images), validation (12,794 images), and test (12,795 images) datasets.
As in Sec. 5 we extract features using a ResNet50 model [17] trained with self-supervised learning
SwAV [5] on PASS [2], and retrain the final layer.

Results. Fig. 8 (left) shows the accuracy across different regions on these two models. Both models
perform the best on images from Europe and the worst on images from Africa (difference of more
than 7% in both cases). Tab. 4 further breaks out the per-object accuracy for CLIP. While the
average accuracy is 82.8%, classes like “dustbin” (37.3%), “medicine” (54.1%), “cleaning equipment”
(59.0%) and “spices” (63.2%) perform poorly. Fig. 6 shows example errors.
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Table 4: Per-class accuracy (in percentage; increasing order) of CLIP [24] on GeoDE. Objects like
“dustbin”, “medicine” and “cleaning equipment” are poorly recognized, with accuracy as low as 37%.

du
st

bi
n

m
ed

ic
in

e
cl

ea
n.

eq
ui

p.
sp

ic
es

ho
us

e
tre

e
w

as
te

co
nt

.
ca

nd
le

to
y

ba
ck

ya
rd

fe
nc

e
st

re
et

lig
ht

st
al

l
lig

ht
er

st
ov

e
ju

g
fr

on
td

oo
r

ha
nd

so
ap

pl
at

e
of

fo
od

tru
ck

lig
ht

fix
tu

re
w

he
el

ba
rr

ow
st

or
ef

ro
nt

to
ot

hp
as

te
to

ot
hb

ru
sh

fla
g

re
lig

io
us

bl
d

bi
cy

cl
e

ro
ad

si
gn

ha
t

co
ok

in
g

po
t

bo
at

ha
irb

ru
sh

ca
r

m
on

um
en

t
do

g
ba

g
ch

ai
r

bu
s

lig
ht

sw
itc

h

37 54 59 63 63 68 69 71 73 74 75 76 76 77 78 85 85 86 88 88 88 89 89 90 90 91 92 92 93 93 95 95 95 96 96 96 96 97 97 98

Figure 6: Example errors that the CLIP [24] model makes on GeoDE images (the ground truth label
on the left, CLIP prediction at the bottom). There are some systematic errors, e.g., classifying “house”
as a “religious building”, particularly on images from Asia. (product labels in figure are blurred).

In seeking to understand the accuracy variation across geographic regions, we compute the minimum
and maximum per-region accuracy for each object (Fig. 8 right). We also compute the confidence
interval for the expected distribution of per-region accuracy for each object based on the object’s
overall accuracy.4 We find that 31 of 40 objects have a minimum and/or maximum region accuracy
that falls outside the corresponding 95% confidence interval, suggesting that these objects (including
for example “house” and “dustbin”) exhibit significant geographic variation (at least with respect
to the visual distribution learned by CLIP).5 We further note some differences on individual classes.
“Fence” is 88% accurate for images from Europe, but only 60% and 59% for images from Africa and
SE Asia respectively. Similarly, “stove” is 95% accurate in the Americas but only 67% in East Asia.
Visualizing classes using TSNE plots of the features (Fig. 7), we see that these objects are region
specific, e.g, “religious buildings” from East and SE Asia uniquely include buildings like monasteries
and temples; similarly, single- and two-burner “stoves” are primarily from Africa and SE Asia.

7 Impact of training with GeoDE

Finally, we attempt to answer how training with GeoDE can improve the performance of models
trained on web-scraped data. Concretely, we investigate training a model on jointly GeoDE and
subsets of ImageNet [8], and demonstrate the combination improves results across geographic regions.

7.1 Training a model with GeoDE

We would like to understand how training a model with data from GeoDE affects object recognition.
We train a linear model using pre-trained features on a dataset comprised entirely of ImageNet images
and a dataset comprised of both ImageNet and GeoDE images with the same number of images. The
feature extractor is a ResNet50 [16] model trained on PASS [2] using SwAV [5]. 6

Implementation details. We split GeoDE into train (4,970 images per region), validation (between
1,657 and 2,188 images per region), and test (between 1,657 and 2,189 images per region). We use

4We draw 500 random partitions into 6 regions, and compute the resulting per-region accuracies.
5Considering the problem of multiple hypothesis testing, we can apply the Bonferonni correction for 40

objects, with ↵ = 0.05/40 = 0.001, i.e, 99.9% confidence intervals. Still, 21 of 40 objects fall outside their
intervals, confirming that GeoDE as a whole does exhibit statistically significant geographic variation.

6We also try a model trained from scratch and with finetuning, with similar conclusions (supp. mat.).
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spices stove religious building

Figure 7: We show the TSNE plots of objects which have large regional disparities in accuracy in the
CLIP trained model, with images embedded. We see differences based on region, e.g., “religious
buildings” contains a cluster of monasteries and temples, mostly from East and Southeast Asia.

Model WAsia Africa EAsia SEAsia Americas Europe

ImageNet 69.4 62.7 63.3 67.3 68.6 69.9

CLIP 84.0 78.7 79.9 81.9 84.4 85.8

Figure 8: (left) Accuracies (in %) on GeoDE of a model trained on a subset of ImageNet [8] (details
in Sec. 6) and of CLIP [24]. The models perform best on images from Europe, and worst on images
from Africa. (right) We compute the maximum and minimum accuracy of CLIP [24] for each object
across the 6 regions in GeoDE(sorted by overall accuracy). 31 of 40 objects have at least one region
whose accuracy falls outside the 95% CI, suggesting significant differences across regions.

the validation dataset to select training hyperparameters. The training set for our ImageNet only
model is the same 38,353 image training set constructed in Sec. 6. To construct the training set of our
ImageNet and all regions in GeoDE model, we add in the training sets for all 6 regions in GeoDE
while removing the same number of images per class from ImageNet. This procedure gives a training
set of 29,820 GeoDE images and 8,533 ImageNet [8] images. The models are trained using an SGD
optimizer (lr = 0.1, momentum = 0.9) for 500 epochs with cross entropy loss. Models were trained
using a single GPU (RTX1080 or 2080) and took less than 1 hour. Results are reported on the test set.

Results. We first report results on the GeoDE test set, and notice a significant improvement in
accuracy across all regions, as a result of training with both GeoDE and ImageNet (Tab. 5). However,
this improvement could come from the ImageNet + GeoDE dataset matching the domain of the
GeoDE evaluation set and may not generalize to other datasets. Thus, we also test these models on a
different dataset: the DollarStreet dataset [25]. This dataset has been used before as an evaluation
benchmark [7], to understand if current object recognition models can perform well on objects from a
diverse set of regions. Tab. 5 lists the accuracy for the 4 different regions in DollarStreet, along with
the per class accuracies for the object categories that overlap between GeoDE and DollarStreet. We
see an increase in performance across most categories, suggesting that GeoDE is more geo-diverse
than ImageNet and that there is an advantage to using geo-diverse data in the training set.

7.2 Cost-vs-Diversity tradeoffs

The main drawback of GeoDE is the cost of this dataset: images collected in this way cost more
than the standard pipeline of web-scraping and crowd-sourcing annotations. Thus, it is important to
identify which classes and regions contribute most to the overall model. To investigate this, we start
with the filtered ImageNet dataset described above, vary the amount of GeoDE data from a particular
region, and analyze the change in overall regional performance.

Implementation Details. We start with the 38,353 filtered ImageNet images and add a region of
GeoDE’s data back into the dataset and remove the same number of ImageNet images to keep the
number of images and class balance the same. Other training details remain the same as in Sec. 7.1.

Evaluation. As we are evaluating on the GeoDE test set, there are two possible sources of perfor-
mance gain: (1) the model is able to take advantage of the additional regional information from the
GeoDE data; and (2) the GeoDE images were collected using the same collection method as the
test set and from Sec. 5, we saw that there is a difference in the feature space that can be attributed
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Table 5: We compare the performance of a model trained on ImageNet [8] versus one that is trained on
both ImageNet and GeoDE . We report results on the test set of GeoDE as well as the DollarStreet [25]
images. We see an improvement across all regions for both test datasets. We also report the per-class
accuracies for the DollarStreet dataset and see improvement across most objects as well.

Tested on GeoDE Tested on DollarStreet [25]
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Classes with largest % inc. in AP
Africa waste cont., spices, dustbin, clean. equip.
E. Asia relig. blg., spices, dustbin, waste cont.
W. Asia dustbin, hand soap, clean. equip., spices,
Americas dustbin, spices, clean. equip., medicine
SE. Asia waste cont., spices, medicine, clean. equip.

Figure 9: (left) We measure the relative improvement in AP per object when GeoDE images from
that region are included in training. Each vertical line represents an object (sorted by region of max.
improvement). Africa and East Asia see the largest improvement for the most classes. (right) We
highlight the classes with the largest increases in the AP when adding in training images from GeoDE.

to the collection method itself (deliberately taking photos rather than web-scraping). In order to
distinguish between these two sources, we measure the accuracy on both the region in the train set
and accuracy on the images from Europe7. We also measure the increase in AP for specific objects to
better understand which objects benefit most from GeoDE data.

Results. We find that the performance within each specific region and in Europe increase with the
additional GeoDE data. The relative increase in performance for the specific region is larger than the
increase for Europe, showing the value of data for each region, moreover, the improvements do not
saturate, suggesting that more data could lead to further gains. Full results are presented in the supp.
mat. We examine the classes that have the largest increase in average precision (AP) as the regional
GeoDE images are added to the dataset in Fig. 9 (left). We also present the object classes that see the
most improvement in Fig. 9 (right). In general, we see that specific objects such as “spices”, “waste
container” and “cleaning equipment” benefit most from regional GeoDE data.

8 Conclusion

We introduced a new dataset GeoDE which uses crowd-sourcing for image collection, a significant
departure from the popular computer vision dataset collection paradigm of web-scraping for image
collection. Through this collection method, we ensured that this dataset does not contain personally
identifiable information, we own the rights to the images, the image creators were compensated for
their work, and were able to control for geographic diversity and object distribution in the dataset.
We show that GeoDE is a useful dataset for highlighting shortcomings in common models (e.g.,
CLIP) and can improve performance when added to the training dataset. Also, GeoDE shows that
crowd-sourcing is a viable image collection method for creating diverse and responsible datasets.
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7We use Europe as this region had the best performance when using a model trained on just ImageNet.
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