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Abstract. For a genus 2 curve C over Q whose Jacobian A admits only trivial
geometric endomorphisms, Serre’s open image theorem for abelian surfaces

asserts that there are only finitely many primes ` for which the Galois action

on `-torsion points of A is not maximal. Building on work of Dieulefait, we give
a practical algorithm to compute this finite set. The key inputs are Mitchell’s

classification of maximal subgroups of PSp4(F`), sampling of the characteristic

polynomials of Frobenius, and the Khare–Wintenberger modularity theorem.
The algorithm has been submitted for integration into Sage, executed on all

of the genus 2 curves with trivial endomorphism ring in the LMFDB, and the

results incorporated into the homepage of each such curve.

1. Introduction

Let C/Q be a smooth, projective, geometrically integral curve (referred to here-
after as a nice curve) of genus 2, and let A be its Jacobian. We assume throughout
that A admits no nontrivial geometric endomorphisms; that is, we assume that
End(AQ) = Z, and we refer to any such abelian variety as typical1. We also say that

a nice curve is typical if its Jacobian is typical. Let GQ ∶= Gal (Q/Q), let ` be a

prime, and let A[`] ∶= A(Q)[`] denote the `-torsion points of A(Q). Let

ρA,` ∶ GQ → Aut (A[`])

denote the Galois representation on A[`]. By fixing a basis for A[`], and observ-
ing that A[`] admits a nondegenerate Galois-equivariant alternating bilinear form,
namely the Weil pairing, we may identify the codomain of ρA,` with the general
symplectic group GSp4(F`).

In a letter to Vignéras [Ser00, Corollaire au Théorème 3], Serre proved an open
image theorem for typical abelian varieties of dimensions 2 or 6, or of odd dimen-
sions, generalizing his celebrated open image theorem for elliptic curves [Ser72].
More precisely, the set of nonsurjective primes `, namely those for which ρA,`(GQ)
is a proper subgroup of GSp4(F`), is finite.

1991 Mathematics Subject Classification. 11F80 (primary), 11G10, 11Y16 (secondary).
1Abelian varieties with extra endomorphisms define a thin set (in the sense of Serre) in the

moduli space Ag of principally polarized abelian varieties of dimension g and as such are not the

typically arising case.

1



2 BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT

In the elliptic curve case, Serre subsequently provided a conditional upper
bound, in terms of the conductor of E, on this finite set [Ser81, Théorème 22];
this bound has since been made unconditional [Coj05, Kra95]. There are also al-
gorithms to compute the finite set of nonsurjective primes [Zyw22], and practical
implementations in Sage [CL12].

Serre’s open image theorem for typical abelian surfaces was made explicit by
Dieulefait [Die02] who described an algorithm that returns a finite set of primes
containing the set of nonsurjective primes. In a different direction, Lombardo
[Lom16, Theorem 1.3] provided an upper bound for the largest nonsurjective prime
involving the stable Faltings height of A.

In this paper we develop two algorithms that together provide the exact deter-
mination of the nonsurjective primes for C, yielding the main result of our paper
as follows.

Theorem 1.1. Let C/Q be a typical genus 2 curve whose Jacobian A has
conductor N .

(1) Algorithm 3.1 produces a finite list PossiblyNonsurjectivePrimes(C) that provably
contains all nonsurjective primes.

(2) Given B > 0, Algorithm 4.1 produces a sublist LikelyNonsurjectivePrimes(C;B)
of PossiblyNonsurjectivePrimes(C) that contains all the nonsurjective primes. If
B is sufficiently large, then the elements of LikelyNonsurjectivePrimes(C;B) are
precisely the nonsurjective primes of A.

The two common ingredients in Algorithms 3.1 and 4.1 are Mitchell’s 1914
classification of maximal subgroups of PSp4(F`) [Mit14] and sampling of charac-
teristic polynomials of Frobenius elements. Indeed, ρA,` is nonsurjective precisely
when its image is contained in one of the proper maximal subgroups of GSp4(F`).
The (integral) characteristic polynomial of Frobenius at a good prime p is computa-
tionally accessible since it is determined by counting points on C over Fpr for r ≤ 2.
The reduction of this polynomial modulo ` gives the characteristic polynomial of
the action of the Frobenius element on A[`]. By the Chebotarev density theorem,
the images of the Frobenius elements for varying primes p equidistribute over the
conjugacy classes of ρA,`(GQ) and hence let us explore the image.

Algorithm 3.1 makes use of the fact that if the image of ρA,` is nonsurjec-
tive, then the characteristic polynomials of Frobenius at auxiliary primes p will
be constrained modulo `. Using this idea, Dieulefait worked out the constraints
imposed by each type of maximal subgroup for ρA,`(GQ) to be contained in that
subgroup. Our Algorithm 3.1 combines Dieulefait’s conditions, with some modest
improvements, to produce a finite list PossiblyNonsurjectivePrimes(C).

Algorithm 4.1 then weeds out the extraneous surjective primes from the list
PossiblyNonsurjectivePrimes(C). Given `, we need to generate enough different ele-
ments in the image to rule out containment in any proper maximal subgroup. The
key input is a purely group-theoretic condition (Proposition 4.2) that guarantees
that a subgroup is all of GSp4(F`) if it contains particular types of elements. This
algorithm is probabilistic and depends on the choice of a parameter B which, if suf-
ficiently large, provably establishes nonsurjectivity. The parameter B is a cut-off
for the number of Frobenius elements (referred to as Frobenius witnesses) that we
use to sample the conjugacy classes of ρA,`(GQ).

As an illustration of the interplay between theory and practice, analyzing the
“worst case” run time of each step in Algorithm 3.1 yields a new theoretical bound,
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conditional on the Generalized Riemann Hypothesis (GRH), on the product of all
nonsurjective primes in terms of the conductor.

Theorem 1.2. Let C/Q be a typical genus 2 curve with conductor N . Assuming
the Generalized Riemann Hypothesis (GRH), we have, for any ε > 0,

∏
` nonsurjective

`≪ exp(N1/2+ε),

where the implied constant is absolute and effectively computable.

While we believe this bound to be far from asymptotically optimal, it is the first
bound in the literature expressed in terms of the (effectively computable) conductor.

Naturally one wants to find the sufficiently large value of B in Theorem 1.1(2),
which the next result gives, conditional on GRH.

Theorem 1.3. Let C/Q be a typical genus 2 curve, and let q be the largest non-
surjective prime for C. Then, assuming GRH, the set LikelyNonsurjectivePrimes(C;B)
is precisely the set of nonsurjective primes of C provided that

(1) B ≥ (4 [(2q11 − 1) log rad(2qNA) + 22q11 log(2q)] + 5q11 + 5)2 .

The proof of Theorem 1.3 involves an explicit Chebotarev bound due to Bach
and Sorenson [BS96] that assumes GRH. An unconditional version of Theorem
1.3 can be given using an unconditional Chebotarev result (for instance [KW22]),
though the bound for B will be exponential in q. In addition, if we assume both
GRH and the Artin Holomorphy Conjecture (AHC), then a version of Theorem

1.3 holds with the improved asymptotic bound B ≫ q11 log2(qNA), but without an
explicit constant, see Remark 19.

Unfortunately, the bound from Theorem 1.3 is prohibitively large to use in
practice. By way of illustration, consider the typical genus 2 curve of smallest
conductor, which has a model

y2 + (x3 + 1)y = x2 + x,

and label 249.a.249.1 in the L-functions and modular forms database (LMFDB)
[LMF22]. The output of Algorithm 3.1 is the set {2,3,5,7,83}. Applying Algo-
rithm 4.1 with B = 100 rules out the prime 83, so in particular 7 is a bound on the
largest nonsurjective prime for C. Noting that the expression on the right hand
side of Equation 1 grows with q, we can apply Theorem 1.3 with q = 7 to obtain the
value B = 3.578×1023 for which LikelyNonsurjectivePrimes(C;B) coincides with the
set of nonsurjective primes associated with C. With this value of B, our implemen-
tation of the algorithm was still running after 24 hours, after which we terminated
it. Even if the version of Theorem 1.3 that relies on AHC could be made explicit,
the value of q11 log2(qNA) in this example is on the order of 1011, which would still
be a daunting prospect.

To execute the combined algorithm on all typical genus 2 curves in the LMFDB
- which at the time of writing constitutes 63,107 curves - we have decided to take
a fixed value of B = 1000 in Algorithm 4.1. The combined algorithm then takes
about 4 hours on MIT’s Lovelace computer, a machine with 2 AMD EPYC 7713
2GHz processors, each with 64 cores, and a total of 2TB of memory. The result
of this computation of nonsurjective primes for these curves is available to view on
the homepage of each curve in the LMFDB. In addition, the combined algorithm

https://www.lmfdb.org/Genus2Curve/Q/249/a/249/1
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has been run on a much larger set of 1,743,737 curves provided to us by Andrew
Sutherland. See Section 6 for the results of this computation. The largest Frobenius
witness required for the smaller LMFDB dataset was 89, and for Sutherland’s larger
dataset was 863, so we chose B = 1000 to have our implementation work for both
datasets.

Remark 1. It would be interesting to know if there is a uniform upper bound
on the largest prime ` that could occur as a nonsurjective prime for the Jacobian
of a typical genus 2 curve defined over Q, analogous to the conjectural bound of
37 for the largest nonsurjective prime for elliptic curves defined over Q (see e.g.
[BPR13, Introduction]). Such a bound (if it exists) must be at least 31, as shown
by example (12) in Section 6.

Algorithm 4.1 samples the characteristic polynomial of Frobenius Pp(t) for each
prime p of good reduction for the curve up to a particular bound and applies Tests
4.4 and 4.5 to Pp(t). Assuming that ρA,` is surjective, we expect that the outcome
of these tests should be independent for sufficiently large primes. More precisely,

Theorem 1.4. Let C/Q be a typical genus 2 curve with Jacobian A and suppose
` is an odd prime such that ρA,` is surjective. There is an effective bound B0

such that for any B > B0, if we sample the characteristic polynomials Pp(t) of
Frobenius for n primes p ∈ [B,2B] chosen uniformly and independently at random,

the probability that none of these pass Tests 4.4 or 4.5 is less than 3 ⋅ ( 9
10
)n.

Remark 2. In fact, for each prime ` satisfying the conditions of Theorem 1.4,
there is an explicit constant c` ≤ 9

10
tending to 3

4
as `→∞ which may be computed

using Corollary 5.3 such that the bound 3 ⋅ ( 9
10
)n in Theorem 1.4 can be replaced

by 3 ⋅ cn` . While Theorem 1.4 allows us to consider these probabilities in theory, in
practice the bound B0 also arises from applying the Effective Chebotarev density
theorem, so is therefore at least as large as as the bound from Theorem 1.3, and is
therefore similarly infeasible.

The combined algorithm to probabilistically determine the nonsurjective primes
of a typical genus 2 curve over Q has been implemented in Sage [Sag20], and it
will appear in a future release of this software2. Until then, the implementation is
available at the following repository:

https://github.com/ivogt161/abeliansurfaces

The README.md file contains detailed instructions on its use. This repository also
contains other scripts in both Sage and Magma [BCP97] useful for verifying some
of the results of this work; any filenames used in the sequel will refer to the above
repository.

Outline of this paper. In Section 2, we begin by reviewing the properties
of the characteristic polynomials of Frobenius with a view towards computational
aspects. We also recall the classification of maximal subgroups of GSp4(F`). In
Section 3, we explain Algorithm 3.1 and establish Theorem 1.1(1); that is, for each
of the maximal subgroups of GSp4(F`) listed in Section 2.4, we generate a list of
primes that provably contains all primes ` for which the mod ` image of Galois is
contained in this maximal subgroup. Theorem 1.2 is proved in subsection 3.3. In

2see https://github.com/sagemath/sage/issues/30837 for the ticket tracking this
integration.

https://github.com/ivogt161/abeliansurfaces
https://github.com/sagemath/sage/issues/30837
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Section 4, we first prove a group-theoretic criterion (Proposition 4.2) for a subgroup
of GSp4(F`) to equal GSp4(F`). Then, for each ` in the finite list from Section 3, we
ascertain whether the characteristic polynomials of the Frobenius elements sampled
satisfy the group-theoretic criterion; Theorem 1.1(2) and Theorem 1.3 also follow
from this study. In Section 5 we prove Theorem 1.4 concerning the probability
of output error, assuming that Frobenius elements are uniformly distributed in
ρA,`(GQ). Finally, in Section 6, we close with remarks concerning the execution of
the algorithm on the large dataset of genus 2 curves mentioned above, and highlight
some interesting examples that arose therein.
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2. Preliminaries

2.1. Notation. Let A be an abelian variety of dimension g defined over Q.
Associated to A is a positive integer N = NA called the conductor (see e.g. [BK94,
Section 2]). We write Nsq for the largest integer such that N2

sq ∣ N .
Let ` be a prime. The `-adic Tate module T`A ≃ lim←ÐA[`

n] of A is a free Z`-
module of rank 2g. For each prime p, we write Frobp ∈ Gal(Q/Q) for an absolute
Frobenius element associated to p. By a good prime p for an abelian variety A, we
mean a prime p for which A has good reduction, or equivalently p ∤ NA. If p is a
good prime for A, then the trace ap of the action of Frobp on T`A is an integer.
See Section 2.2 for a discussion of the characteristic polynomial of Frobenius.

An abelian variety A with geometric endomorphism ring Z is called typical. A
typical genus 2 curve is a nice curve whose Jacobian is a typical abelian surface.

Let V be a 4-dimensional vector space over F` endowed with a nondegenerate
skew-symmetric bilinear form ⟨⋅, ⋅⟩. A subspace W ⊆ V is called isotropic (for ⟨⋅, ⋅⟩)
if ⟨w1,w2⟩ = 0 for all w1,w2 ∈ W . A subspace W ⊆ V is called nondegenerate (for
⟨⋅, ⋅⟩) if ⟨⋅, ⋅⟩ restricts to a nondegenerate form on W . The general symplectic group
of (V, ⟨⋅, ⋅⟩) is the subgroup of GL(V ) defined by

GSp(V, ⟨⋅, ⋅⟩) ∶= {M ∶ ∃ mult(M) ∈ F×` ∶ ⟨Mv,Mw⟩ =mult(M)⟨v,w⟩ ∀ v,w ∈ V }.

The map M ↦mult(M) is a surjective homomorphism from GSp(V, ⟨⋅, ⋅⟩) to F×`
called the similitude character; its kernel is the symplectic group, denoted Sp(V, ⟨⋅, ⋅⟩).
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Usually the bilinear form is understood from context, and we drop ⟨⋅, ⋅⟩ from the
notation.

By a subquotient W of a Galois module U , we mean a Galois module W that
admits a surjection U ′↠W from a subrepresentation U ′ of U .

Since we are chiefly concerned with the sets LikelyNonsurjectivePrimes(C;B)
and PossiblyNonsurjectivePrimes(C) for a fixed curve C, we will henceforth, for ease
of notation, drop the C from the notation for these sets.

2.2. Integral characteristic polynomial of Frobenius. The theoretical
result underlying the whole approach is the following.

Theorem 2.1 (Weil, see [ST68, Theorem 3]). Let A be an abelian variety of
dimension g defined over Q and let p be a prime of good reduction for A. There
exists a monic integral polynomial Pp(t) ∈ Z[t] of degree 2g with constant coefficient
pg such that for any ` ≠ p, the polynomial Pp(t) is the characteristic polynomial of

the action of Frobp on T`A. Every root of Pp(t) has complex absolute value p1/2.

The polynomials Pp(t) are computationally accessible by counting points on C
over Fpr , r = 1,2. See [Poo17, Chapter 7] for more details. In fact, Pp(t) can be
accessed via the frobenius_polynomial command in Sage. In particular, we
denote the trace of Frobenius by ap. By the Grothendieck-Lefschetz trace formula,
if A = JacC, p is a prime of good reduction for C, and λ1, . . . , λ2g are the roots of

Pp(t), then #C(Fpr) = pr + 1 −∑2g
i=1 λ

r
i .

2.3. The Weil pairing and consequences on the characteristic poly-
nomial of Frobenius. The nondegenerate Weil pairing gives an isomorphism of
Galois modules:

(2) T`A ≃ (T`A)∨ ⊗Z` Z`(1).

The Galois character acting on Z`(1) is the `-adic cyclotomic character, which we
denote by cyc`. The integral characteristic polynomial for the action of Frobp on
Z`(1) is simply t−p. The integral characteristic polynomial for the action of Frobp
on (T`A)∨ is the reversed polynomial

P ∨p (t) = Pp(1/t) ⋅ t2g/pg

whose roots are the inverses of the roots of Pp(t).
We now record a few easily verifiable consequences of the nondegeneracy of the

Weil pairing when dim(A) = 2.

Lemma 2.2.

(i) The roots of Pp(t) come in pairs that multiply out to p. In particular, Pp(t)
has no root with multiplicity 3.

(ii) Pp(t) = t4 − apt3 + bpt2 − papt + p2 for some ap, bp ∈ Z.
(iii) If the trace of an element of GSp4(F`) is 0 mod `, then its characteristic

polynomial is reducible modulo `. In particular, this applies to Pp(t) when
ap ≡ 0 mod `.

(iv) If A[`] is a reducible GQ-module, then Pp(t) is reducible modulo `.

Proof. Parts (i) and (ii) are immediate from the fact that the non-degenerate
Weil pairing allows us to pair up the four roots of Pp(t) into two pairs that each
multiply out to p.
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For part (iii), suppose that M ∈ GSp4(F`) has tr(M) = 0. Then the character-
istic polynomial PM(t) of M is of the form t4 + bt2 + c2. When the discriminant of
PM is 0 modulo `, the polynomial PM has repeated roots and is hence reducible.
So assume that the discriminant of PM is nonzero modulo `. When ` ≠ 2, the result
follows from [Car56, Theorem 1]. When ` = 2, a direct computation shows that
the characteristic polynomial of a trace 0 element of GSp4(F2) is either (t + 1)4 or
(t2 + t + 1)2, which are both reducible.

Part (iv) is immediate from Theorem 2.1 since Pp(t) mod ` by definition is the
characteristic polynomial for the action of Frob p on A[`]. �

2.4. Maximal subgroups of GSp4(F`). Mitchell [Mit14] classified the max-
imal subgroups of PSp4(F`) in 1914. This can be used to deduce the following clas-
sification of maximal subgroups of GSp4(F`) with surjective similitude character.

Lemma 2.3 (Mitchell). Let V be a 4-dimensional F`-vector space endowed with
a nondegenerate skew-symmetric bilinear form ω. Then any proper subgroup G of
GSp(V,ω) with surjective similitude character is contained in one of the following
types of maximal subgroups.

(1) Reducible maximal subgroups
(a) Stabilizer of a 1-dimensional isotropic subspace for ω.
(b) Stabilizer of a 2-dimensional isotropic subspace for ω.

(2) Irreducible subgroups governed by a quadratic character
Normalizer G` of the group M` that preserves each summand in a direct

sum decomposition V1 ⊕ V2 of V into two 2-dimensional subspaces, where V1

and V2 are jointly defined over F` and either:
(a) both nondegenerate for ω; or
(b) both isotropic for ω.
Moreover, M` is an index 2 subgroup of G`.

(3) Stabilizer of a twisted cubic
GL(W ) acting on Sym3W ≃ V , where W is a dimension 2 F`-vector space.

(4) Exceptional subgroups See Table 7 for explicit generators for the groups
described below.
(a) When ` ≡ ±3 mod 8: group with image G1920 in PGSp(V,ω) of order 1920.
(b) When ` ≡ ±5 mod 12 and ` ≠ 7: group with image G720 in PGSp(V,ω) of

order 720.
(c) When ` = 7: group with image G5040 in PGSp(V,ω) of order 5040.

See Lemma 2.5 for a detailed description of the groups G` and M` in case (2) above.

Remark 3. We have chosen to label the maximal subgroups in the classifica-
tion using invariant subspaces for the symplectic pairing ω on V , following the more
modern account due to Aschbacher (see [Lom16, Section 3.1]; for a more compre-
hensive treatment see [KL90]). For the convenience of the reader, we record the
correspondence between Mitchell’s original labels and ours below.

Remark 4. The maximal subgroups in (1) are the analogues of the Borel
subgroup of GL2(F`). The maximal subgroups in (2) when the two subspaces V1, V2

in the direct sum decomposition are individually defined over F` are the analogues
of normalizers of the split Cartan subgroup of GL2(F`). When the two subspaces
V1, V2 are not individually defined over F` instead, the maximal subgroups in (2)
are analogues of the normalizers of the non-split Cartan subgroups of GL2(F`).
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Mitchell’s label Label in Lemma 2.3
Group having an invariant point and plane 1a

Group having an invariant parabolic congruence 1b
Group having an invariant hyperbolic or elliptic congruence 2a

Group having an invariant quadric 2b

Table 1. Dictionary between maximal subgroup labels in
[Die02]/[Mit14] and Lemma 2.3

Remark 5. We briefly explain why the action of GL2(F`) on Sym3(F2
`) pre-

serves a nondegenerate symplectic form. It suffices to show that the restriction to
SL2(F`) fixes a vector in ⋀2 Sym3(F2

`). If V has basis {x, y}, then an invariant
vector is x3 ∧ y3 − 3x2y ∧ xy2.

Remark 6. One can extract explicit generators of the exceptional maximal
subgroups from Mitchell’s original work3. Indeed [Mit14, the proof of Theorem 8,
page 390] gives four explicit matrices that generate a G1920 (which is unique up to
conjugacy in PGSp4(F`)). Mitchell’s description of the other exceptional groups
is in terms of certain projective linear transformations called skew perspectivities
attached to a direct sum decomposition V = V1 ⊕ V2 into 2-dimensional subspaces.
A skew perspectivity of order n with axes V1 and V2 is the projective linear transfor-
mation that scales V1 by a primitive nth root of unity and fixes V2. This proof also
gives the axes of the skew perspectivities of order 2 and 3 that generate the remain-
ing exceptional groups [Mit14, pages 390-391]. Table 7 lists generators of (one
representative of the conjugacy class of) each of the exceptional maximal subgroup
extracted from Mitchell’s descriptions.

In the file exceptional.m publicly available with our code, we verify that
Magma’s list of conjugacy classes of maximal subgroups of GSp4(F`) agree with
those described in Lemma 2.3 for 3 ≤ ` ≤ 47.

Remark 7. The classification of exceptional maximal subgroups of PSp4(F`)
is more subtle than that of PGSp4(F`), because of the constraint on the similitude
character of matrices in PSp4(F`). While the similitude character is not well-defined
on PGSp4(F`) (multiplication by a scalar c ∈ F×` scales the similitude character by
c2) it is well-defined modulo squares. The group PSp4(F`) is the kernel of this
natural map:

1→ PSp4(F`)→ PGSp4(F`)
multÐÐ→ F×` /F×2

` ≃ {±1}→ 1.

An exceptional subgroup of PGSp4(F`) gives rise to an exceptional subgroup
of PSp4(F`) of either the same size or half the size depending on the image of mult
restricted to that subgroup, which in turn depends on the congruence class of `. For
this reason, the maximal exceptional subgroups of PSp4(F`) in Mitchell’s original
classification (also recalled in Dieulefait [Die02, Section 2.1]) can have order 1920
or 960 and 720 or 360 depending on the congruence class of `, and 2520 (for
` = 7). Such an exceptional subgroup gives rise to a maximal exceptional subgroup
of PGSp4(F`) only when mult is surjective (i.e., its intersection with PSp4(F`) has

3Mitchell’s notation for PGSp4(F`) is Aν(`) and for PSp4(F`) is A1(`).
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index two), which explains the restricted congruence classes of ` for which they
arise.

We now record a lemma that directly follows from the structure of maximal
subgroups described above. This lemma will be used in Section 4 to devise a
criterion for a subgroup of GSp4(F`) to be the entire group. For an element T in
GSp4(F`), let tr(T ), mid(T ), mult(T ) denote the trace of T , the middle coefficient
of the characteristic polynomial of T , and the similitude character applied to T
respectively4. For a scalar λ, we have

tr(λT ) = λ tr(T ), mid(λT ) = λ2 mid(T ), mult(λT ) = λ2 mult(T ).
Hence the quantities tr(T )2/mult(T ) and mid(T )/mult(T ) are well-defined on
PGSp4(F`). For ` > 2 and ∗ ∈ {720,1920,5040}, define
(3)

C`,∗ ∶= {(
tr(T )2

mult(T )
,

mid(T )
mult(T )

) ∣ T ∈ exceptional subgroup of projective order ∗}

Lemma 2.4.

(1) In cases 2a and 2b of Lemma 2.3:
(a) every element in G` ∖M` has trace 0, and,

(b) the group M` stabilizes a non-trivial linear subspace of F
4

` .
(2) Every element that is contained in a maximal subgroup corresponding to the

stabilizer of a twisted cubic has a reducible characteristic polynomial.
(3) For ∗ ∈ {1920,720}, the set C`,∗ defined in (3) equals the reduction modulo ` of

the elements of the set C∗ below.

C1920 = {(0,−2), (0,−1), (0,0), (0,1), (0,2), (1,1), (2,1), (2,2), (4,2), (4,3), (8,4), (16,6)}

C720 = {(0,1), (0,0), (4,3), (1,1), (16,6), (0,2), (1,0), (3,2), (0,−2)}

We also have

C7,5040 = {(0,0), (0,1), (0,2), (0,5), (0,6), (1,0), (1,1), (2,6), (3,2), (4,3), (5,3), (6,3)}.

Proof.

(1) In cases 2a and 2b of Lemma 2.3, since any element of the normalizer
G` that is not in M` switches elements in the two subspaces V1 and V2

(i.e. maps elements in the subspace V1 in the decomposition V1 ⊕ V2 to
elements in V2 and vice-versa), it follows that any element in G` ∖M` has
trace zero.

(2) The conjugacy class of maximal subgroups corresponding to the stabi-

lizer of a twisted cubic comes from the embedding GL2(F`)
ιÐ→ GSp4(F`)

induced by the natural action of GL2(F`) on the space of monomials of
degree 3 in 2 variables. If M is a matrix in GL2(F`) with eigenvalues λ,µ
(possibly repeated), then the eigenvalues of ι(M) are λ3, µ3, λ2µ,λµ2 and
hence the characteristic polynomial of ι(M) factors as (T 2 − (λ3 +µ3)T +
λ3µ3)(T 2 − (λ2µ + λµ2)T + λ3µ3) over F` which is reducible over F`.

(3) This follows from the description of the maximal subgroups given in Ta-
ble 7. Each case (except G5040 that only occurs for ` = 7) depends
on a choice of a root of a quadratic polynomial. In the associated file

4Explicitly, the characteristic polynomial of T is therefore t4 − tr(T )t3 + mid(T )t2 −
mult(T ) tr(T )t +mult(T )2.
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exceptional statistics.sage, we generate the corresponding finite
subgroups over the appropriate quadratic number field to compute C∗. It
follows that the corresponding values for the subgroup G∗ in GSp4(F`)
can be obtained by reducing these values modulo `. Since the group G5040

only appears for ` = 7, we directly compute the set C7,5040. �

Remark 8. The condition in Lemma 2.4(3) is the analogue of the condition
[Ser72, Proposition 19 (iii)] to rule out exceptional maximal subgroups of GL2(F`).

We end this subsection by including the following lemma, to further highlight
the similarities between the above classification of maximal subgroups of GSp4(F`)
and the more familiar classification of maximal subgroups of GL2(F`). This lemma
is not used elsewhere in the article and is thus for expositional purposes only.

Lemma 2.5.

(1) The subgroup M` in the case (2a) when the two nondegenerate subspaces V1

and V2 are individually defined over F` is isomorphic to

{(m1,m2) ∈ GL2(F`)2 ∣ det(m1) = det(m2)}.
In particular, the order of M` is `2(` − 1)(`2 − 1)2.

(2) The subgroup M` in the case (2b) when the two isotropic subspaces V1 and V2

are individually defined over F` is isomorphic to

{(m1,m2) ∈ GL2(F`)2 ∣ mT
1 m2 = λI, for some λ ∈ F×` }.

In particular, the order of M` is `(` − 1)2(`2 − 1).
(3) The subgroup M` in the case (2a) when the two nondegenerate subspaces V1

and V2 are not individually defined over F` is isomorphic to

{m ∈ GL2(F`2) ∣ det(m) ∈ F×` }.
In particular, the order of M` is `2(` − 1)(`4 − 1).

(4) The subgroup M` in the case (2b) when the two isotropic subspaces V1 and V2

are not individually defined over F` is isomorphic to GU2(F`2), i.e.,

{m ∈ GL2(F`2) ∣ mT ι(m) = λI, for some λ ∈ F×` },
where ι denotes the natural extension of the Galois automorphism of F`2/F` to
GL2(F`2). In particular, the order of M` is `(`2 − 1)2.

Proof. Given a direct sum decomposition V1 ⊕ V2 of a vector space V over
Fq, we get a natural embedding of Aut(V1) ×Aut(V2) (≅ GL2(Fq)2) into Aut(V )
(≅ GL4(Fq)), whose image consists of automorphisms that preserve this direct
sum decomposition. We will henceforth refer to elements of Aut(V1) × Aut(V2)
as elements of Aut(V ) using this embedding. To understand the subgroup M` of
GSp4(Fq) in cases (1) and (2) where the two subspaces in the direct sum decom-
position are individually defined over Fq, we need to further impose the condition
that the automorphisms in the image of the map Aut(V1) × Aut(V2) → Aut(V )
preserve the symplectic form ω on V up to a scalar.

In (1), without any loss of generality, the two nondegenerate subspaces V1 and
V2 can be chosen to be orthogonal complements under the nondegenerate pairing ω,
and so by Witt’s theorem, in a suitable basis for V1⊕V2 obtained by concatenating
a basis of V1 and a basis of V2, the nondegenerate symplectic pairing ω has the
following block-diagonal shape:
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J ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0

0 1
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The condition that an element (m1,m2) ∈ Aut(V1)⊕Aut(V2) preserves the sym-
plectic pairing up to a similitude factor of λ is the condition (m1,m2)TJ(m1,m2) =
λJ , which boils down to det(m1) = λ = det(m2).

Similarly, in (2), without any loss of generality, by Witt’s theorem, in a suitable
basis for V1⊕V2 obtained by concatenating a basis of the isotropic subspace V1 and
a basis of the isotropic subspace V2, the nondegenerate symplectic pairing ω has
the following block-diagonal shape.

J ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0

0 −1
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The condition that an element (m1,m2) ∈ Aut(V1)⊕Aut(V2) preserves the sym-
plectic pairing up to a similitude factor of λ is the condition (m1,m2)TJ(m1,m2) =
λJ , which again boils down to mT

1 m2 = λI.

If we have a subspace W defined over Fq2 but not defined over Fq, and we let W

denote the conjugate subspace and further assume that W ⊕W gives a direct sum
decomposition of V , then we get a natural embedding of Aut(W ) (≅ GL2(Fq2)) into
Aut(V ) (≅ GL4(Fq)) whose image consists of automorphisms that commute with
the natural involution of V ⊗Fq2 induced by the Galois automorphism of Fq2 over Fq.
The proofs of cases (3) and (4) are analogous to the cases (1) and (2) respectively, by

using the direct sum decomposition W ⊕W and letting m2 = ι(m1). The condition
that det(m1) = det(m2) in (1) becomes the condition det(m1) = det(m2) = detm1 =
det(m1), or equivalently, that det(m1) ∈ Fq in (3). Similarly, the condition that
mT

1 m2 = λI in (2) becomes the condition that mT
1 ι(m1) = λI in (4). �

2.5. Image of inertia and (tame) fundamental characters. Dieulefait
[Die02] used Mitchell’s work described in the previous subsection to classify the
maximal subgroups of GSp4(F`) that could occur as the image of ρA,` . This was
achieved via an application of a fundamental result of Serre and Raynaud that
strongly constrains the action of inertia at `, and which we now recall.

Fix a prime ` > 3 that does not divide the conductor N of A. Let I` be an inertia
subgroup at `. Let ψn∶ I` → F×`n denote a (tame) fundamental character of level n.
The n Galois-conjugate fundamental characters ψn,1, . . . , ψn,n of level n are given

by ψn,i ∶= ψ`
i

n . Recall that the fundamental character of level 1 is simply the mod
` cyclotomic character cyc`, and that the product of all fundamental characters of
a given level is the cyclotomic character.

Theorem 2.6 (Serre [Ser72], Raynaud [Ray74], cf. Theorem 2.1 in [Die02]).
Let ` be a semistable prime for A. Let V /F` be an n-dimensional Jordan–Hölder
factor of the I`-module A[`]. Then V admits a 1-dimensional F`n-vector space
structure such that ρA,`∣I` acts on V via the character

ψd1n,1⋯ψ
dn
n,n
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with each di equal to either 0 or 1.

On the other hand, the following fundamental result of Grothendieck constrains
the action of inertia at semistable primes p ≠ `.

Theorem 2.7 (Grothendieck [GRR72, Exposé IX, Prop 3.5]). Let A be an
abelian variety over a number field K. Then A has semistable reduction at p not
above ` if and only if the action of Ip ⊂ GK on T`A is 2-step unipotent (i.e.
(ρA,`(g) − I)2 = 0 for all g ∈ Ip).

Combining these two results allows one fine control of the determinant of a
subquotient of A[`]; this will be used in Section 3.

Corollary 2.8. Let A/Q be an abelian surface, and let X` be a Jordan–Hölder

factor of the F`[GQ]-module A[`]⊗ F`. If ` is a semistable prime, then

detX` ≃ ε ⋅ cycx`

for some character ε∶GQ → F
×
` that is unramified at ` and some 0 ≤ x ≤ dimX`.

Moreover, ε120 = 1.

Proof. The first part follows immediately from Theorem 2.6. For the fact that
ε120 = 1, we will show that ε120 is unramified everywhere; the result will then follow
from the fact that there are no nontrivial unramified characters of GQ. Since ε is
unramifed at `, so too is ε120, so it suffices to show that ε120 is unramified at primes
p ≠ `. From [LV14a, Theorem 7.2] we know that every abelian surface attains
semistable reduction over an extension K/Q with [K ∶ Q] dividing 120; therefore
by Theorem 2.7 we have that the action of Ip ⊂ GK on T`A is 2-step unipotent for
any prime p ∣ p of K. Hence the action of the 120th power of any element of Ip is
unipotent, and thus has trivial determinant. �

We can now state Dieulefait’s classification of maximal subgroups of GSp4(F`)
that can occur as the image ρA,`(GQ) for a semistable prime ` > 7.

Proposition 2.9 ([Die02]). Let A be the Jacobian of a genus 2 curve defined
over Q with Weil pairing ω on A[`]. If ` > 7 is a semistable prime, then ρA,`(GQ)
is either all of GSp(A[`], ω) or it is contained in one of the maximal subgroups of
Types (1) or (2) in Lemma 2.3.

See also [Lom16, Proposition 3.15] for an expanded exposition of why the
image of GQ cannot be contained in maximal subgroup of Type (3) for a semistable
prime ` > 7.

Remark 9. However, if ` is a prime of additive reduction, or if ` ≤ 7, then the
image of GQ may also be contained in any of the four types of maximal subgroups
described in Lemma 2.3. Nevertheless, by [LV22, Theorem 6.6], for any prime
` > 24, we have that the exponent of the projective image is bounded exp(PρA,`) ≥
(` − 1)/12. Since exp(G1920) = 2 exp(S6) = 120 and exp(G720) = exp(S5) = 60, the
exceptional maximal subgroups cannot occur as ρA,`(GQ) for ` > 1441.

2.6. A consequence of the Chebotarev density theorem. Let K/Q be a
finite Galois extension with Galois group G = Gal(K/Q) and absolute discriminant
dK . Let S ⊆ G be a nonempty subset that is closed under conjugation. By the
Chebotarev density theorem, we know that

(4) lim
x→∞

∣{p ≤ x ∶ p is unramified in K and Frobp ∈ S}∣
∣{p ≤ x}∣

= ∣S∣
∣G∣

.
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Let p be the least prime such that p is unramified in K and Frobp ∈ S. There are ef-
fective versions of the Chebotarev density theorem that give bounds on p. The best
known unconditional bounds are polynomials in dK [LMO79, AK19, KW22].
Under GRH, the best known bounds are polynomials in log dK . In particular Bach
and Sorenson [BS96] showed that under GRH,

(5) p ≤ (4 log dK + 2.5[K ∶ Q] + 5)2.
The present goal is to give an effective version of the Chebotarev density theo-

rem in the context of abelian surfaces. We will use a corollary of (5) that is noted
in [MW21] which allows for the avoidance of a prescribed set of primes by taking
a quadratic extension of K. We do this because we will take K = Q(A[`]), and p
being unramified in K is not sufficient to imply that p is a prime of good reduction
for A. Lastly, we will use that by [Ser81, Proposition 6], if K/Q is finite Galois,
then

(6) log dK ≤ ([K ∶ Q] − 1) log rad(dK) + [K ∶ Q] log([K ∶ Q]),
where radn =∏p∣n p denotes the radical of an integer n.

Lemma 2.10. Let A/Q be a typical principally polarized abelian surface with
conductor NA. Let q be a prime. Let S ⊆ ρA,q(GQ) be a nonempty subset that is
closed under conjugation. Let p be the least prime of good reduction for A such that
p ≠ q and ρA,q(Frobp) ∈ S. Assuming GRH, we have

p ≤ (4 [(2q11 − 1) log rad(2qNA) + 22q11 log(2q)] + 5q11 + 5)2 .

Proof. Let K = Q(A[q]). Then the image of ρA,q is Gal(K/Q), the extension
K/Q is Galois and

[K ∶ Q] ≤ ∣GSp4(Fq)∣ = q4(q4 − 1)(q2 − 1)(q − 1) ≤ q11.

As rad(dK) is the product of primes that ramify in Q(A[q]), the criterion of Néron-
Ogg-Shafarevich for abelian varieties [ST68, Theorem 1] implies that rad(dK) di-

vides rad(qNA). Let K̃ ∶= K(
√
m) where m ∶= rad(2NA). Note that the primes

that ramify in K̃ are precisely 2, q, and the primes of bad reduction for A. Thus
rad(dK̃) = rad(2qNA). Moreover [K̃ ∶ Q] ≤ 2q11 and by (6),

log(dK̃) ≤ (2q
11 − 1) log rad(2qNA) + 22q11 log(2q).

Applying [MW21, Corollary 6] to the field K̃, we get that (under GRH) there
exists a prime p satisfying the claimed bound, that does not divide m, and for
which ρA,q(Frobp) ∈ S. �

3. Finding a finite set containing all nonsurjective primes

In this section we describe Algorithm 3.1 referenced in Theorem 1.1(1), which
is a reformulation of the algorithm of Dieulefait [Die02] with some modest im-
provements. This algorithm produces a finite list PossiblyNonsurjectivePrimes that
provably includes all nonsurjective primes `. We also prove Theorem 1.2.

Since our goal is to produce a finite list (from which we will later remove
extraneous primes) it is harmless to include the finitely many bad primes as well
as 2,3,5,7. Using Proposition 2.9, it suffices to find conditions on ` > 7 for which
ρA,`(GQ) could be contained in one of the maximal subgroups of type (1) and (2)
in Lemma 2.3. We first find primes ` for which ρA,` has (geometrically) reducible
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image (and hence is contained in a maximal subgroup in case (1) of Lemma 2.3 or
in a subgroup M` in case (2)). To treat the geometrically irreducible cases, we then
make use of the observation from Lemma 2.4 1a that every element outside of an
index 2 subgroup has trace 0.

Algorithm 3.1. Given a typical genus 2 curve C/Q with conductor N and
Jacobian A, compute a finite list PossiblyNonsurjectivePrimes of primes as follows.

(1) Initialize PossiblyNonsurjectivePrimes = [2,3,5,7].
(2) Add to PossiblyNonsurjectivePrimes all primes dividing N .

(3) Add to PossiblyNonsurjectivePrimes the good primes ` for which ρA,` ⊗ F` could
be reducible via Algorithms 3.3, 3.6, and 3.10.

(4) Add to PossiblyNonsurjectivePrimes the good primes ` for which ρA,` ⊗ F` could
be irreducible but nonsurjective via Algorithm 3.13.

(5) Return PossiblyNonsurjectivePrimes.

At a very high-level, each of the subalgorithms of Algorithm 3.1 makes use of
a set of auxiliary good primes p. We compute the integral characteristic polynomial
of Frobenius Pp(t) and use it to constrain those ` ≠ p for which the image could
have a particular shape.

Remark 10. Even though robust methods to compute the conductor N of a
genus 2 curve are not implemented at the time of writing, the odd-part Nodd of N
can be computed via genus2red function of PARI and the genus2reduction
module of SageMath, both based on an algorithm of Liu [Liu94]. Moreover,
[BK94, Theorem 6.2] bounds the 2-exponent of N above by 20 and hence N can
be bounded above by 220Nodd. While these algorithms can be run with only the
bound 220Nodd, doing so substantially increases the run-time of the limiting Algo-
rithm 3.10.

We now explain each of these steps in detail.

3.1. Good primes that are not geometrically irreducible. In this sec-

tion we describe the conditions that ` must satisfy for the base-extension A[`] ∶=
A[`]⊗F` F` to be reducible. In this case, the representation A[`] is an extension

(7) 0→X` → A[`]→ Y` → 0

of a (quotient) representation Y` by a (sub) representation X`. Recall that Nsq

denotes the largest square divisor of N .

Lemma 3.2. Let ` be a prime of good reduction for A and suppose that A[`]
sits in the sequence (7). Let p ≠ ` be a good prime for A and let f denote the order
of p in (Z/NsqZ)×. Then there exists 0 ≤ x ≤ dimX` (respectively, 0 ≤ y ≤ dimY`)

such that the value of detX` (respectively, detY`) evaluated at Frobgcd(f,120)
p is

pgcd(f,120)x (respectively, pgcd(f,120)y).

Proof. Since ` is a good prime and X` is composed of Jordan–Hölder factors

of A[`], Corollary 2.8 constrains its determinant. We have detX` = ε cycx` for some

character ε∶GQ → F
×
` unramified at `, and 0 ≤ x ≤ dimX`, and ε120 = 1. Hence the

value of detX` evaluated at Frob120
p is cyc`(Frobp)120x = p120x.

In fact, we can do slightly better. Since detA[`] ≃ cyc2
` , we have detY` ≃

ε−1 cyc2−x
` . Since the conductor is multiplicative in extensions, we conclude that

https://fossies.org/linux/pari/src/functions/elliptic_curves/genus2red
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/interfaces/genus2reduction.html
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cond(ε)2 ∣ N . By class field theory, the character ε factors through (Z/ cond(ε)Z)×,
and hence through (Z/NsqZ)×, sending Frobp to p mod Nsq. Since pf ≡ 1 mod

Nsq, we have that ε(Frobp)gcd(f,120) = 1, and the value of detX` evaluated at

Frobgcd(f,120)
p is pgcd(f,120)x. Exchanging X` and Y`, we deduce the result for Y`. �

This is often enough information to find all ` for which A[`] has a nontrivial
subquotient. Namely, by Theorem 2.1, every root of Pp(t) has complex absolute

value p1/2. Thus the gcd(f,120)-th power of each root has complex absolute value

pgcd(f,120)/2, and hence is never integrally equal to 1 or pgcd(f,120). Since Lemma 3.2
guarantees that this equality must hold modulo ` for any good prime ` for which

A[`] is reducible with a 1-dimensional subquotient, we always get a nontrivial

condition on `. Some care must be taken to rule out ` for which A[`] only has
2-dimensional subquotient(s).

3.1.1. Odd-dimensional subquotient (cf. [Die02, Section 3.1]). Let p be a good

prime. Given a polynomial P (t) and an integer f , write P (f)(t) for the polyno-
mial whose roots are the fth powers of roots of P (t). Universal formulas for such
polynomials in terms of the coefficients of P (t) are easy to compute, and are im-
plemented in our code in the case where P is a degree 4 polynomial whose roots
multiply in pairs to pα, and f ∣ 120.

Algorithm 3.3 (cf. [Die02, Section 3.1]). Given a typical genus 2 Jacobian
A/Q of conductor N , let f denote the order of p in (Z/NsqZ)× and write f ′ =
gcd(f,120). Compute an integer Modd as follows.

(1) Choose a nonempty finite set T of auxiliary good primes p ∤ N .
(2) For each p, compute

Rp ∶= P (f
′)

p (1).
(3) Let Modd = gcdp∈T (pRp) over all auxiliary primes.

Return the list of prime divisors ` of Modd.

Remark 11. Algorithm 3.3 offers a modest improvement on [Die02, Section
3.1]), where the exponent f is used (without taking the gcd with 120.)

Proposition 3.4. Any good prime ` for which A[`] has an odd-dimensional
subrepresentation is returned by Algorithm 3.3.

Proof. Since A[`] is 4-dimensional and has an odd-dimensional subrepresen-
tation, it has a 1-dimensional subquotient. For any p ∈ T , Lemma 3.2 shows that

the value of detX` evaluated at Frobf
′
p is either pf

′
or 1. Thus, the action of Frobf

′
p

on A[`] has an eigenvalue that is equal to pf
′

or 1 in F`, and so P
(f ′)
p (t) has a root

that is equal to 1 or pf
′

in F`. Since the roots of P (f
′)(t) multiply in pairs to pf

′
,

we have P
(f ′)
p (pf

′
) = p2f ′P

(f ′)
p (1). Hence ` divides p ⋅ P (f

′)
p (1) = pRp. �

Using Theorem 2.1, we can give a theoretical bound on the “worst case” of this
step of the algorithm using only one auxiliary prime p. Of course, taking the greatest
common divisor over multiple auxiliary primes will likely remove extraneous factors,
and in practice this step of the algorithm runs substantially faster than other steps.

Proposition 3.5. Algorithm 3.3 terminates. More precisely, if p is good, then

0 ≠ ∣Modd∣≪ p241,
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where the implied constant is absolute.

Proof. This follows from the fact that the coefficient of ti in P
(f ′)
p (t) has

magnitude on the order of p(2−i/2)f
′

and f ′ ≤ 120. �

3.1.2. Two-dimensional subquotients. We now assume that A[`] is reducible,
but does not have any odd-dimensional subquotients. In particular, it has an irre-
ducible subrepresentation X` of dimension 2, with irreducible quotient Y` of dimen-

sion 2. If A[`] is reducible but indecomposable, then X` is the unique subrepresenta-

tion of A[`] and Y ∨` ⊗cyc` is the unique subrepresentation of (A[`])∨⊗cyc`. The iso-

morphism T`A ≃ (T`A)∨⊗cyc` from (2) yields an isomorphism A[`] ≃ (A[`])∨⊗cyc`
and hence X` ≃ Y ∨` ⊗ cyc`. Otherwise, A[`] ≃X` ⊕ Y` and so the nondegeneracy of
the Weil pairing gives

X` ⊕ Y` ≃ (X∨` ⊗ cyc`)⊕ (Y ∨` ⊗ cyc`) .
Therefore either:

(a) X` ≃ Y ∨` ⊗ cyc` and Y` ≃X∨` ⊗ cyc`, or

(b) X` ≃X∨` ⊗ cyc` and Y` ≃ Y ∨` ⊗ cyc` and A[`] ≃X` ⊕ Y`.
We call the first case related 2-dimensional subquotients and the second case self-dual
2-dimensional subrepresentations. We will see that the ideas of Lemma 3.2 easily
extend to treat the related subquotient case; we will use the validity of Serre’s

conjecture to treat the self-dual case. In the case that A[`] is decomposable, the
above two cases correspond respectively to the index 2 subgroup M` in cases (2a)
(the isotropic case) and (2b) (the nondegenerate case) of Lemma 2.3.

3.1.3. Related two-dimensional subquotients (cf. [Die02, Section 3.2]). Let p be
a good prime. Let Pp(t) ∶= t4 − at3 + bt2 − pat + p2 be the characteristic polynomial

of Frobp acting on A[`]. Suppose that α and β are the eigenvalues of Frobp acting
on the subrepresentation X`. Then, since X` ≃ Y ∨` ⊗ cyc`, the eigenvalues of the
action of Frobp on Y` are p/α and p/β. The action of Frobp on detX` is therefore
by a product of two of the roots of Pp(t) that do not multiply to p. Note that there
are four such pairs of roots of Pp(t) that do not multiply to p. Let Qp(t) be the
quartic polynomial whose roots are the products of pairs of roots of Pp(t) that do
not multiply to p. By design, the roots of Qp(t) have complex absolute value p,
but are not equal to p. (It is elementary to work out that

Qp(t) = t4 − (b − 2p)t3 + p(a2 − 2b + 2p)t2 − p2(b − 2p)t + p4

and is a quartic whose roots multiply in pairs to p2.)

Algorithm 3.6 (cf. [Die02, Section 3.2]). Given a typical genus 2 Jacobian
A/Q of conductor N , let f denote the order of p in (Z/NsqZ)× and write f ′ =
gcd(f,120). Compute an integer Mrelated as follows.

(1) Choose a finite set T of auxiliary good primes p ∤ N ;
(2) For each p, compute the product

Rp ∶= Q(f
′)

p (1)Q(f
′)

p (pf
′
)

(3) Let Mrelated = gcdp∈T (pRp).
Return the list of prime divisors ` of Mrelated.

Remark 12. Algorithm 3.6 offers a modest improvement on the procedure
described in [Die02, Section 3.2]) by taking the gcd of f with 120.
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Proposition 3.7. Any good prime ` for which A[`] has related two-dimensional
subquotients is returned by Algorithm 3.6.

Proof. Proceed similarly as in the proof of Proposition 3.4 — in particu-

lar, ` divides Q
(f ′)
p (1), Q(f

′)
p (pf

′
), or Q

(f ′)
p (p2f ′) and hence ` divides pRp since

Q
(f ′)
p (p2f ′) = p4f ′Q

(f ′)
p (1). �

A theoretical “worst case” analysis yields the following.

Proposition 3.8. Algorithm 3.6 terminates. More precisely, if q is the small-
est surjective prime for A, then a good prime p for which Rp is nonzero is bounded
by a function of q. Assuming GRH,

p≪ q22 log2(qN),
where the implied constants are absolute and effectively computable. Moreover, for
such a prime p,

∣Mrelated∣≪ p961 ≪ q21142 log1922(qN),
where the implied constants are absolute.

Proof. By Serre’s open image theorem for genus 2 curves, such a prime q
exists. Since there exists an element of GSp4(Fq) with irreducible characteristic
polynomial, by Lemma 2.10 there exists a prime p (bounded as claimed) such that
Rp is nonzero modulo q. Finally,

Mrelated ≤ pRp = pQ(f
′)(1)Q(f

′)(pf
′
)≪ p8f ′+1 ≪ p961,

since the coefficient of ti in Q(f
′)(t) has magnitude on the order of p(4−i)f

′
and

f ′ ≤ 120. �

3.1.4. Self-dual two-dimensional subrepresentations (cf. [Die02, Section 3.3]).
In this case, both subrepresentations X` and Y` are absolutely irreducible 2-dimensional
Galois representations with determinant the cyclotomic character cyc`. It follows
that the representations are odd (i.e., the determinant of complex conjugation is
−1.) Therefore, by the Khare–Wintenberger theorem (formerly Serre’s conjecture
on the modularity of mod-` Galois representations) [Kha06, KW09a, KW09b],
both X` and Y` are modular; that is, for i = 1,2, there exist newforms fi ∈
Snew
ki
(Γ1(Ni), εi) such that

X` ≅ ρf1,` and Y` ≅ ρf2,`.
Furthermore, by the multiplicativity of Artin conductors, we obtain the divisibility
N1N2 ∣ N .

Lemma 3.9. Both f1 and f2 have weight two and trivial Nebentypus; that is,
k1 = k2 = 2, and ε1 = ε2 = 1.

Proof. From Theorem 2.6, we have that X`∣I` and Y`∣I` must each be conju-
gate to either of the following subgroups of GL2(F`):

(1 ∗
0 cyc`

) or (ψ2 0
0 ψ`2

) .

The assertion of weight 2 now follows from [Ser87, Proposition 3]. (Alterna-
tively, one may use Proposition 4 of loc. cit., observing that X` and Y` are finite
and flat as group schemes over Z` because ` is a prime of good reduction.)
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From Section 1 of loc. cit., the Nebentypus εi of fi satisfies, for all p ∤ `N ,

detX`(Frobp) = p ⋅ εi(p),

where this equality is viewed inside F
×
` . The triviality of εi follows. �

We therefore have newforms fi ∈ Snew
2 (Γ0(Ni)) such that

(8) A[`] ≃ ρf1,` ⊕ ρf2,`.

We may assume without loss of generality that N1 ≤
√
N . Let p ∤ N be an auxiliary

prime. We obtain from equation (8) that the integral characteristic polynomial of
Frobenius factors:

Pp(t) ≡ (t2 − ap(f1)t + p)(t2 − ap(f2)t + p) mod `;

here we use the standard property that, for f a normalised eigenform with trivial
Nebentypus, ρf,`(Frobp) satisfies the polynomial equation t2 − ap(f)t + p for p ≠ `.
In particular, we have

Res(Pp(t), t2 − ap(f1)t + p) ≡ 0 mod `.

This serves as the basis of the algorithm to find all primes ` in this case.

Algorithm 3.10 ([Die02, Section 3.3]). Given a typical genus 2 Jacobian A/Q
of conductor N , compute an integer Mself-dual as follows.

(1) Compute the set S of divisors d of N with d ≤
√
N .

(2) For each d ∈ S:
(a) choose a finite set T of auxiliary primes p ∤ N ;
(b) for each auxiliary prime p, compute the Hecke L-polynomial

Qd(t) ∶=∏
f

(t2 − ap(f)t + p),

where the product is taken over the finitely many newforms in Snew
2 (Γ0(d));

(c) compute the resultant

Rp(d) ∶= Res(Pp(t),Qd(t));

(d) Take the greatest common divisor

M(d) ∶= gcd
p∈T
(pRp(d)).

(3) Let Mself-dual ∶=∏d∈SM(d).
Return the list of prime divisors ` of Mself-dual.

Proposition 3.11. Any good prime ` for which A[`] has self-dual 2-dimensional
subrepresentations is returned by Algorithm 3.10.

Proof. As explained before Algorithm 3.10, there exists N1 ∈ S and a newform
f1 ∈ Snew

2 (Γ0(N1)) such that Res(Pp(t), t2−apf1t+p) ≡ 0 mod ` for every p ∈ T ∖{`}.
In particular, pRp(N1) ≡ 0 mod `, so ` divides M(N1) and Mself-dual. �

We can again do a “worst case” theoretical analysis of this algorithm to conclude
the following. As this indicates, this is by far the limiting step of the algorithm.
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Proposition 3.12. Algorithm 3.10 terminates. More precisely, if q is the
smallest surjective prime for A, then a good prime p for which Rp(d) is nonzero is

bounded by a function of q. Assuming GRH, p ≪ q22 log2(qN), where the implied
constant is absolute and effectively computable. Moreover, for such a prime p, we
have

∣Rp(d)∣≪ (2p1/2)8 dimSnew
2 (Γ0(d)) ≪ (4p)(d+1)/3,

and so all together

∣Mself-dual∣≪ (4p)N
1/2+ε

,

where the implied constants are absolute.

Proof. As in Proposition 3.8, we use Serre’s open image theorem and the
Effective Chebotarev Theorem. If Rp(d) is zero integrally, then in particular
Rp(d) ≡ 0 mod q and Pp(t)mod q has a factor in common with a quadratic polyno-
mial is therefore reducible modulo q. Since GSp4(Fq) contains elements that do not
have reducible characteristic polynomial, Lemma 2.10 implies that such elements
are the image of Frobp for p bounded as claimed.

The resultant Rp(d) is the product of the pairwise differences of the roots of

Pp(t) and Qd(t), which all have complex absolute value p1/2. Hence the pairwise dif-

ferences have absolute value at most 2p1/2. Moreover dimSnew
2 (Γ0(d)) ≤ (d+ 1)/12

by [Mar05, Theorem 2]. Since there are 8 dimSnew
2 (Γ0(d)) such terms multiplied

to give Rp(d), the bound for Rp(d) follows. Since Mself-dual = ∏ d∣N
d≤
√
N

pRp(d), it

suffices to bound

∑
d∣N
d≤
√
N

d + 4

3
≤ ∑

d∣N
d≤
√
N

√
N + 4

3
≤ σ0(N)

√
N + 4

3
.

Since σ0(N)≪ N ε by [Apo76, (31) on page 296], we obtain the claimed bound. �

Remark 13. The polynomial Qd(t) in step (2) of Algorithm 3.10 is closely
related to the characteristic polynomial Hd(z) of the Hecke operator Tp acting on
the space S2(Γ0(d)), which may be computed via modular symbols computations.
One may recover Qd(t) from Hd(z) by first homogenizing H with an auxiliary
variable t (say) to obtain Hd(z, t), and setting z = p + t2 (an observation we made
in conjunction with Joseph Wetherell).

Remark 14. In our computations of nonsurjective primes for the database of
typical genus 2 curves with conductor at most 220 (including those in the LMFDB),
we only needed to use polynomials Qd(t) for level up to 210 (since step (1) of the

Algorithm has a
√
N term). We are grateful to Andrew Sutherland for providing us

with a precomputed dataset of the characteristic polynomials of the Hecke operators
for these levels, resulting from the creation of an extensive database of modular
forms going well beyond what was previously available [BBB+21].

Remark 15. Our Sage implementation uses two auxiliary primes in Step 2(b) of
the above algorithm. Increasing the number of such primes yields smaller supersets
at the expense of longer runtime.
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3.2. Good primes that are geometrically irreducible. Let φ be any qua-
dratic Dirichlet character φ∶ (Z/NZ)× → {±1}. Our goal in this subsection is to find
all good primes ` governed by φ, by which we mean that

tr(ρA,`(Frobp)) ≡ ap ≡ 0 mod `

whenever φ(p) = −1. (Recall that −ap is the coefficient of t3 in Pp(t).)
We will consider the set of all quadratic Dirichlet character φ∶ (Z/NZ)× → {±1}.

Using the structure theorem for finite abelian groups and the fact that φ factors
through (Z/NZ)×/(Z/NZ)×2, this set has the structure of an F2-vector space of
dimension

d(N) ∶= ω(N) +

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ∶ v2(N) = 0

−1 ∶ v2(N) = 1

0 ∶ v2(N) = 2

1 ∶ v2(N) ≥ 3,

where ω(m) denotes the number of prime factors of m and v2(m) is the 2-adic
valuation of m. In particular, d(N) ≤ ω(N) + 1.

Algorithm 3.13 ([Die02, Sections 3.4-3.5]). Given a typical genus 2 Jacobian
A/Q of conductor N , compute an integer Mquad as follows.

(1) Compute the set S of quadratic Dirichlet characters φ∶ (Z/NZ)× → {±1}.
(2) For each φ ∈ S:

(a) Choose a nonempty finite set T of “auxiliary” primes p ∤ N for which
ap ≠ 0 and φ(p) = −1.

(b) Take the greatest common divisor

Mφ ∶= gcd
p∈T
(pap),

over all auxiliary primes p.
(3) Let Mquad ∶=∏φ∈SMφ.

Return the list of prime divisors ` of Mquad.

Proposition 3.14. Any good prime ` for which ` is governed by a quadratic
character is returned by Algorithm 3.13.

Proof. Suppose that ` is governed by the quadratic character φ∶ (Z/NZ)× →
{±1}. Then for every good prime p ≠ ` for which φ(p) = −1, the prime ` must divide
the integral trace ap of Frobenius. Hence ` divides Mφ and Mquad. �

Proposition 3.15. Algorithm 3.13 terminates. More precisely, if q is the
smallest surjective prime for A, then a good prime p for which φ(p) = −1 and ap
is nonzero is bounded by a function of q. Assuming GRH, p≪ 22d(N)q22 log2(qN),
where the implied constant is absolute and effectively computable. Moreover, we
have

∏
φ∈S

∏
`

governed
by φ

`≪ (23d(N)q33 log3(qN))2−21−d(N)
≪ 26ω(N)q66 log6(qN),

where the implied constant is absolute and effectively computable.
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Proof. We imitate the proof of [LV14b, Lemma 21] in our setting. Let V be
the d-dimensional F2-vector space of quadratic Dirichlet characters of modulus N
(equivalently, quadratic Galois characters unramified outside of N). Let ρV ∶GK →
V ∨ denote the representation sending Frobp to the linear functional φ↦ φ(p). Since
the character for PGSp4(Fq)/PSp4(Fq) is the abelianization of PρA,q, we conclude
in the same way as [LV14b, Proof of Lemma 21] that for any α ∈ V ∨, there exists
an Xα ∈ GSp4(Fq) with tr(Xα) ≠ 0 such that (α,Xα) is in the image of ρV × ρA,`.

Apply the effective Chebotarev density theorem to the Galois extension corre-
sponding to ρV × ρA,q. This has degree at most 2d(N)∣GSp4(Fq)∣ and is unramified
outside of qN . Therefore, assuming GRH and combining (5) and (6), there exists
a prime

pα ≪ 22d(N)q22 log2(qN)
for which (α,Xα) = (ρV (Frobpα), ρA,q(Frobpα)). Let φ be a character not in the
kernel of α. Any exceptional prime ` governed by φ must divide pαapα , which is
nonzero because it is nonzero modulo q. This proves that the algorithm terminates,
since every φ is not in the kernel of precisely half of all α ∈ V ∨. We now bound the
size of the product of all ` governed by a character in S. If ` is governed by φ, then
` divides the quantity

p∣ap∣ ≤ p3/2 ≪ 23d(N)q33 log3(qN).

Taking the product over all nonzero α in V (of which there are 2d(N) − 1), each `
will show up half the time, so we obtain:

⎛
⎜⎜
⎝
∏

` governed
by φ ∈ S

`

⎞
⎟⎟
⎠

2d(N)−1

≪ (23d(N)q33 log3(qN))
2d(N)−1

,

which implies the result by taking the (2d(N)−1)th root of both sides. �

Putting all of these pieces together, we obtain the following.

Proof of Theorem 1.1(1). If ρA,` is nonsurjective, ` > 7, and ` ∤ N , then
Proposition 2.9 implies that ρA,`(GQ) must be in one of the maximal subgroups
of Type (1) or (2) listed in Lemma 2.3. If it is contained in one of the reducible
subgroups, i.e. the subgroups of Type (1), then ρA,`(GQ) (and, hence, ρA,`(GQ)⊗
F`) is reducible, and so ` is added to PossiblyNonsurjectivePrimes in Step (3) by
Propositions 3.4, 3.7, and 3.11. If ρA,`(GQ) is contained in one of the index 2
subgroups M` of an irreducible subgroup of Type (2) listed in Lemma 2.3, then

again ` is added to PossiblyNonsurjectivePrimes in Step (3), since M` ⊗F` is always
reducible by Lemma 2.4(1b).

Hence we may assume that ρA,`(GQ) is contained in one of the irreducible
maximal subgroups G` of Type (2) listed in Lemma 2.3, but not in the index 2
subgroup M`. The normalizer character

GQ
ρA,`ÐÐ→ G` → G`/M` = {±1}

is nontrivial and unramified outside of N , and so it corresponds to a quadratic
Dirichlet character φ∶ (Z/NZ)× → {±1}. Lemma 2.4(1a) shows that tr(g) = 0 in F`
for any g ∈ G`∖M`. Consequently, ` is governed by φ (in the language of Section 3.2),
so ` is added to PossiblyNonsurjectivePrimes in Step (4) by Proposition 3.14. �
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3.3. Bounds on Serre’s open image theorem. In this section we combine
the theoretical worst case bounds in the Algorithms 3.3, 3.6, 3.10, and 3.13 to give a
bound on the smallest surjective good prime q, and the product of all nonsurjective
primes, thereby establishing Theorem 1.2.

Corollary 3.16. Let A/Q be a typical genus 2 Jacobian of conductor N .
Assuming GRH, we have

∏
` nonsurjective

`≪ exp(N1/2+ε),

where the implied constant is absolute and effectively computable.

Proof. Let q be the smallest surjective good prime for A, which is finite by
Serre’s open image theorem. Multiplying the bounds in Propositions 3.5, 3.8, 3.12,
and 3.15 by the conductor N , the product of all nonsurjective primes is bounded
by a function of q and N of the following shape

(9) ∏
` nonsurjective

`≪ qN
1/2+ε

.

On the other hand, since q is the smallest surjective prime by definition, the product
of all primes less than q divides the product of all nonsurjective primes. Using
[Ser81, Lemme 11], we have

exp(q)≪∏
`<q
` ≤ ∏

` nonsurjective

`≪ qN
1/2+ε

.

Combining the first and last terms, we have q ≪ N1/2+ε log(q), whence q ≪ N1/2+ε.

Plugging this back into (9) yields a bound of (N1/2+ε)N
1/2+ε

. By taking logarithms

and using that logN ≪ N ε, one sees that (N1/2+ε)N
1/2+ε

≪ exp(N1/2+ε), and the
claimed bound follows. �

4. Testing surjectivity of ρA,`

In this section we establish Theorem 1.1(2). The goal is to weed out any
extraneous nonsurjective primes in the output PossiblyNonsurjectivePrimes of Al-
gorithm 3.1 to produce a smaller list LikelyNonsurjectivePrimes(B) containing all
nonsurjective primes (depending on a chosen bound B) by testing the characteris-
tic polynomials of Frobenius elements up to the bound B. If B is sufficiently large
(quantified in Section 5), the list LikelyNonsurjectivePrimes(B) is provably the list
of nonsurjective primes.

Algorithm 4.1. Given B > 0 and the output PossiblyNonsurjectivePrimes of
Algorithm 3.1 for the typical genus 2 curve with equation y2 +h(x)y = f(x), output
a sublist LikelyNonsurjectivePrimes(B) of PossiblyNonsurjectivePrimes as follows.

(1) Initialize LikelyNonsurjectivePrimes(B) as PossiblyNonsurjectivePrimes.
(2) Remove 2 from LikelyNonsurjectivePrimes(B) if the size of the Galois group of

the splitting field of 4f + h2 is 720.
(3) For each good prime p < B, while LikelyNonsurjectivePrimes(B) is nonempty:

(a) Compute the integral characteristic polynomial Pp(t) of Frobp.
(b) For each prime ` in LikelyNonsurjectivePrimes(B), run Tests 4.4(i), (ii), and

(iii) on Pp(t) to rule out ρA,`(GQ) being contained in one of the exceptional
maximal subgroups.
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(c) For each prime ` in LikelyNonsurjectivePrimes(B), run Tests 4.5(i) and (ii)
on Pp(t) to rule out ρA,`(GQ) being contained in one of the nonexceptional
maximal subgroups.

(d) If there exists ` ∈ LikelyNonsurjectivePrimes(B) for which each of the 5 tests
Tests 4.4(i)–(iii) and Tests 4.5(i)–(ii) have succeeded at least once, remove `.

(4) Return LikelyNonsurjectivePrimes(B).

Remark 16. In our implementation of Step 3 of this algorithm, we have chosen
to only use primes p of good reduction for the curve as auxiliary primes, which is a
stronger condition than being a good prime for the Jacobian A. More precisely, the
primes that are good for the Jacobian but bad for the curve are precisely the prime
factors of the discriminant 4f + h2 of a minimal equation for the curve that do not
divide the conductor NA of the Jacobian. At such a prime, the reduction of the
curve consists of two elliptic curves E1 and E2 intersecting transversally at a single
point. Since there are many auxiliary primes p < B to choose from, excluding bad
primes for the curve is not a serious restriction, but allows us to access the charac-
teristic polynomial of Frobenius directly by counting points on the reduction of the
curve. This is not strictly necessary: one could use the characteristic polynomials
of Frobenius for the elliptic curves E1 and E2, which can be computed using the
genus2reduction module of SageMath.

We briefly summarize the contents of this section. In Section 4.1, we first prove
a purely group-theoretic criterion for a subgroup of GSp4(F`) to equal the whole
group. Then in Section 4.2, we explain Test 4.4 and Test 4.5, whose validity follows
immediately from Lemma 2.4(3) and Proposition 4.2 respectively. The main idea
of these tests is to use auxiliary good primes p ≠ ` to generate characteristic poly-
nomials in the image of ρA,`. If we find enough types of characteristic polynomials
to rule out each proper maximal subgroup of GSp4(F`) (cf. Proposition 4.2), then
we can conclude that ρA,` is surjective. In Section 4.3, we prove Theorems 1.1(2)
and 1.3 that justify this algorithm.

4.1. A group-theoretic criterion. We now use the classification of maximal
subgroups of GSp4(F`) described in Section 2.4 to deduce a group-theoretic criterion
for a subgroup G of GSp4(F`) to be the whole group. This is analogous to [Ser72,
Proposition 19 (i)-(ii)].

Proposition 4.2. Fix a prime ` ≠ 2 and a subgroup G ⊆ GSp4(F`) with surjec-
tive similitude character. Assume that G is not contained in one of the exceptional
maximal subgroups described in Lemma 2.3(4). Then G = GSp4(F`) if and only if
there exist matrices X,Y ∈ G such that

(a) the characteristic polynomial of X is irreducible; and
(b) traceY ≠ 0 and the characteristic polynomial of Y has a linear factor with

multiplicity one.

Proof. The ‘only if’ direction follows from Proposition 5.1 below, where we
show that a nonzero proportion of elements of GSp4(F`) satisfy the conditions in
(a) and (b).

Now assume that the group G has elements X and Y as in the statement of
the proposition. We have to show that G = GSp4(F`). By assumption, G is not a
subgroup of a maximal subgroup of type (4). For each of the remaining types of

https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/interfaces/genus2reduction.html
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maximal subgroups in Lemma 2.3, we will use one of the elements X or Y to rule
out G being contained in a subgroup of that type.

(a) By Lemma 2.2 (iv), every element of a subgroup of type (1) has a reducible char-
acteristic polynomial. The same is true for elements of type (3) by Lemma 2.4 (2).
This is violated by the element X, so G cannot be contained in a subgroup of
type (1) or type (3).

(b) Recall the notation used in the description of a type (2) maximal subgroups
in Lemma 2.3. By Lemma 2.4 1a, every element in G` ∖M` has trace 0. By
Lemma 2.2 (iii), an element with irreducible characteristic polynomial auto-
matically has nonzero trace. Hence both X and Y have nonzero traces, and so
cannot be contained in G` ∖M`. We now consider two cases

(i) If the two subspaces are individually defined over F`, then every element
in M` preserves a two-dimensional subspace and hence has a reducible
characteristic polynomial. This is violated by the element X.

(ii) If the two subspaces are permuted by GF` , then the action of M` on
the corresponding subspaces V and V ′ are conjugate. Therefore, ev-
ery F`-rational eigenvalue for the action of Frobp on V , also appears as
an eigenvalue for the action on V ′, with the same multiplicity. This is
violated by the element Y .

Hence G cannot be contained in a maximal subgroup of type (2).

Since any subgroup of GSp4(F`) that is not contained in a proper maximal
subgroup of GSp4(F`) must equal GSp4(F`), we are done. �

Remark 17. [AdRK13, Corollary 2.2] gives a very similar criterion for a sub-
group G of GSp4(F`) to contain Sp4(F`), namely that it contains a transvection,
and also an element with irreducible characteristic polynomial (and hence automat-
ically nonzero trace).

4.2. Surjectivity tests.
4.2.1. Surjectivity test for ` = 2.

Proposition 4.3. Let A be the Jacobian of the hyperelliptic curve y2+h(x)y =
f(x) defined over Q. Then ρA,2 is surjective if and only if the size of the Galois
group of the splitting field of 4f + h2 is 720.

Proof. This follows from the fact that GSp4(F2) ≅ S6 which is a group of size
720, and that the representation ρA,2 is the permutation action of the Galois group
on the six roots of 4f + h2. �

4.2.2. Surjectivity tests for ` ≠ 2.
The tests to rule out the exceptional maximal subgroups rely on the existence of

the finite lists C1920 and C720 (independent of `), and C7,5040 given in Lemma 2.4(3).

Test 4.4 (Tests for ruling out exceptional maximal subgroups of GSp4(F`) for
` ≠ 2).
Given a polynomial Pp(t) = t4 − apt + bpt2 − papt + p2 and ` ≥ 2,

(i) Pp(t) passes Test 4.4 (i) if ` ≡ ±1 mod 8 or (a2
p/p, bp/p) mod ` lies outside of

C1920 mod `.
(ii) Pp(t) passes Test 4.4 (ii) if ` ≡ ±1 mod 12 or (a2

p/p, bp/p) mod ` lies outside of
C720 mod `.

(iii) Pp(t) passes Test 4.4 (iii) if ` ≠ 7 or (a2
p/p, bp/p) mod ` lies outside of C7,5040.
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Test 4.5 (Tests for ruling out non-exceptional maximal subgroups for ` ≠ 2).
Given a polynomial Pp(t) = t4 − apt + bpt2 − papt + p2 and ` ≥ 2,

(i) Pp(t) passes Test 4.5 (i) if Pp(t) modulo ` is irreducible.
(ii) Pp(t) passes Test 4.5 (ii) if Pp(t) modulo ` has a linear factor of multiplicity

1 and has nonzero trace.

For any one of the five tests above, say that the test succeeds if a given poly-
nomial Pp(t) passes the corresponding test.

Remark 18. We call an auxiliary prime p a witness for a given prime ` if the
polynomial Pp(t) passes one of our tests for `. The verbose output of our code
prints witnesses for each of our tests for each prime ` in PossiblyNonsurjectivePrimes
but not in LikelyNonsurjectivePrimes(B).

4.3. Justification for surjectivity tests. Considering Tests 4.4 and 4.5, we
define

Cα = {M ∈ GSp4(F`) ∶ PM(t) is irreducible}
Cβ = {M ∈ GSp4(F`) ∶ tr(M) ≠ 0 and PM(t) has a linear factor of multiplicity 1}

Cγ1 = {M ∈ GSp4(F`) ∶ (
tr(M)2

mult(M)
,

mid(M)
mult(M)

) /∈ C`,1920 or ` ≡ ±1 mod 8}

Cγ2 = {M ∈ GSp4(F`) ∶ (
tr(M)2

mult(M)
,

mid(M)
mult(M)

) /∈ C`,720 or ` ≡ ±1 mod 12}

Cγ3 = {M ∈ GSp4(F`) ∶ (
tr(M)2

mult(M)
,

mid(M)
mult(M)

) /∈ C`,5040 or ` ≠ 7}

Cγ = Cγ1 ∩Cγ2 ∩Cγ3 .

Proof of Theorem 1.1(2) and Theorem 1.3. Let B > 0. Since the list
LikelyNonsurjectivePrimes(B) is a sublist of PossiblyNonsurjectivePrimes, which con-
tains all nonsurjective primes by Theorem 1.1(1), any prime which is not in the list
PossiblyNonsurjectivePrimes is surjective. Let ` ∈ PossiblyNonsurjectivePrimes and
not in LikelyNonsurjectivePrimes(B). If ` = 2, then by Proposition 4.3, ρA,2 is sur-
jective. If ` > 2, this means that we found primes p1, p2, p3, p4, p5 ≤ B each distinct
from ` and of good reduction for A for which ρA,`(Frobp1) ∈ Cα, ρA,`(Frobp2) ∈ Cβ ,
ρA,`(Frobp3) ∈ Cγ1 , ρA,`(Frobp4) ∈ Cγ2 , and ρA,`(Frobp4) ∈ Cγ3 . Note that by
(2), the similitude factor mult(ρA,`(Frobp)) is p. Therefore, by Lemma 2.4(3), it
follows that ρA,`(GQ) is not contained in an exceptional maximal subgroup. The
surjectivity of ρA,` now follows from Proposition 4.2.

Finally, we will show that if B is sufficiently large (as quantified by Theo-
rem 1.3), then any prime ` in LikelyNonsurjectivePrimes is nonsurjective. Since
the sets Cα, Cβ , Cγ1 , Cγ2 and Cγ3 are nonempty by Proposition 5.1 below and
closed under conjugation, it follows from Lemma 2.10 that there exist primes
p1, p2, p3, p4, p5 ≤ B as above. �

Remark 19. If we assume both GRH and AHC, Ram Murty and Kumar Murty
[MM97, p. 52] noted (see also [FJ23, Theorem 2.3]) that the bound (5) can be

replaced with p≪ (log dK)2
∣S∣ . Proposition 5.1, which follows, shows that the sets Cα,

Cβ , and Cγ have size at least
∣GSp4(F`)∣

10
. This can be used to prove the ineffective
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version of Theorem 1.3 which relies on AHC noted in the introduction in a manner
similar to the proof of Theorem 1.3.

5. The probability of success
In this section we prove Theorem 1.4, by studying the respective probabilities

α`, β`, and γ` that a matrix chosen uniformly at random from GSp4(F`) is contained
in each of Cα, Cβ , and Cγ defined in Section 4.3.

Proposition 5.1. Let M be a matrix chosen uniformly at random from GSp4(F`)
with ` odd. Then

(i) The probability that M ∈ Cα is given by

α` =
1

4
− 1

2(`2 + 1)
.

(ii) The probability that M ∈ Cβ is given by

β` =
3

8
− 3

4(` − 1)
+ 1

2(` − 1)2
.

(iii) The probability that M ∈ Cγ is

γ` ≥ 1 − 3`

`2 + 1
.

[Shi82] characterizes all conjugacy classes of elements of GSp4(F`) for ` odd,
grouping them into 26 different types. For each type γ, Shinoda further computes
the number N(γ) of conjugacy classes of type γ and the size ∣CGSp4(F`)(γ)∣ of the
centralizer, which is the size ∣CGSp4(F`)(M)∣ of the centralizer of M in GSp4(F`)
for any M in a conjugacy class of type γ. The size ∣C(γ)∣ of any conjugacy class

of type γ can then easily be computed as ∣C(γ)∣ = ∣GSp4(F`)∣
∣CGSp4(F`)(γ)∣

and the probability

that a uniformly chosen M ∈ GSp4(F`) has conjugacy type γ is then given by

(10)
N(γ)∣C(γ)∣
∣GSp4(F`)∣

= N(γ)
∣CGSp4(F`)(γ)∣

.

To prove Proposition 5.1, we will need to examine a handful of types of conju-
gacy classes of GSp4(F`). There is only a single conjugacy type γ whose charac-
teristic polynomials are irreducible. This type is denoted K0 in [Shi82] where it is

shown there that N(K0) = (`−1)(`2−1)
4

and ∣CGSp4(F`)(K0)∣ = (` − 1)(`2 + 1).
While there is only one way for a polynomial to be irreducible, there are several

ways for a quartic polynomial to have a root of odd order. However, only some of
these can occur if f(t) is the characteristic polynomial of a matrix M ∈ GSp4(F`)
and we only need to concern ourselves with the following three possibilities:

(a) f(t) splits completely over F`;
(b) f(t) has two roots over F`, both of which occur with multiplicity one; and
(c) f(t) has two simple roots and one double root over F`.

Cases (a) and (b) correspond to the conjugacy types H0 and J0 in [Shi82]
respectively. There are two types of conjugacy classes for which f(t) has two
simple roots and one double root, which are denoted by E0 and E1 in [Shi82].

Data for the relevant conjugacy class types is given by Table 2, including the
probability that a uniform random M ∈ GSp4(F`) has conjugacy type γ via (10).
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Type γ in [Shi82] N(γ) ∣CGSp4(F`)(γ)∣ Associated Probability

K0 (Irreducible) (`−1)(`2−1)
4

(`2 + 1)(` − 1) 1
4
− 1

2(`2+1)

H0 (Split) (`−1)(`−3)2
8

(` − 1)3 1
8
− 1

2(`−1) +
1

2(`−1)2

J0 (Two Simple Roots) (`−1)3
4

(` + 1)(` − 1)2 1
4
− 1

2(`+1)

E0 (One Double Root) (`−1)(`−3)
2

`(` − 1)2(`2 − 1) 1
2`(`2−1) −

1
`(`−1)(`2−1)

E1 (One Double Root) (`−1)(`−3)
2

`(` − 1)2 1
2`
− 1
`(`−1)

Table 2. Number of conjugacy classes and centralizer sizes for
each conjugacy class type in [Shi82].

Proof of Proposition 5.1. Part (i) is simply the entry in Table 2 in the
last column corresponding to the “K0 (Irreducible)” type.

We now establish part (ii). As indicated in the discussion above Table 2, the
only conjugacy classes of matrices in GSp4(F`) whose characteristic polynomials
have some linear factors of odd multiplicity are those of the types H0, J0,E0,E1.
However, for part (ii) since we are only interested in matrices M also having non-
zero trace, it is insufficient to simply sum over the rightmost entries in the bottom
four rows of Table 2. From [Shi82, Table 2], we see that the elements of E0 and

E1 have trace c(a+1)2
a

for some c, a ∈ F×` with a ≠ ±1. In particular, it follows that
elements of types E0 and E1 have nonzero traces. The elements of type J0 have

trace (c+a)(c+a
`)

c
where c ∈ F×` and a ∈ F`2 ∖ F`. Therefore, the elements of type J0

also have nonzero trace.
It remains to analyze which conjugacy classes of Type H0 have nonzero trace.

Following [Shi82], the (`−1)(`−3)2
8

conjugacy classes of typeH0 correspond to quadru-
ples of distinct elements in a1, a2, b1, b2 ∈ F×` satisfying a1b1 = a2b2 modulo the action
of swapping any of a1 with b1, a2 with b2, or a1, b1 with a2, b2. The eigenvalues
of any matrix in the conjugacy class are a1, a2, b1, and b2. Consequently the ma-
trix has trace zero only if either a2 = −a1 and b2 = −b1 or b1 = −a2 and b2 = −a1.

This accounts for (`−1)(`−3)
4

of the (`−1)(`−3)2
8

conjugacy classes of type H0, leaving
(`−1)(`−3)(`−5)

8
conjugacy classes with non-zero trace. As a result, the probability

that a matrix M ∈ GSp4(F`) chosen uniformly at random has non-zero trace and
totally split characteristic polynomial is

(11)
(` − 1)(` − 3)(` − 5)

8(` − 1)3
= 1

8
− 3

4(` − 1)
+ 1

(` − 1)2
.

To obtain part (ii), we add (11) to the entries in the rightmost column of the final
three rows of Table 2, getting

(1

8
− 3

4(` − 1)
+ 1

(` − 1)2
) + (1

4
− 1

2(` + 1)
) + ( 1

2`(`2 − 1)
− 1

`(` − 1)(`2 − 1)
)+

( 1

2`
− 1

`(` − 1)
) = 3

8
− 3

4(` − 1)
+ 1

2(` − 1)2
.

To prove (iii), note that for any pair (u, v), the cardinality of the set

{t4 − at3 + bt2 − amt +m2 ∶ a, b ∈ F`,m ∈ F×` and (a
2

m
, b
m
) = (u, v)}
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is at most ` − 1. By [Cha97, Theorem 3.5], the number of matrices in GSp4(F`)
with a given characteristic polynomial is at most (` + 3)8. Assuming ` ≠ 7, by
combining these observations, and noting that ∣C`,720 ∪C`,1920∣ ≤ 14, we obtain the
bound

γ` ≥ 1 − 14(` − 1)(` + 3)8

∣GSp4(F`)∣
.

For ` > 17, this implies the claimed bound. For 3 ≤ ` ≤ 17, we directly check the
claim using Magma. �

Lemma 5.2. Let C/Q be a typical genus 2 curve with Jacobian A and suppose `
is an odd prime such that ρA,` is surjective. For any ε > 0, there exists an effective
constant B0 (with B0 > `NA) such that for any B > B0 and each δ ∈ {α,β, γ}, we
have

∣
∣{p prime ∶ B ≤ p ≤ 2B and ρA,`(Frobp) ∈ Cδ}∣

∣{p prime ∶ B ≤ p ≤ 2B}∣
− δ`∣ < ε.

Proof. Let G = Gal(Q(A[`])/Q) and S ⊆ G be any subset that is closed under
conjugation. By taking B to be sufficiently large, we have that B > `NA and can
make

∣
∣{p prime ∶ B ≤ p ≤ 2B and Frobp ∈ S}∣

∣{p prime ∶ B ≤ p ≤ 2B}∣
− ∣S∣
∣G∣
∣

arbitrarily small by (4). Moreover, the previous statement can be made effective
by using an effective version of the Chebotarev density theorem; in particular, the
value B0 must be larger than the bound B from Equation (1). The result then
follows because each of the sets Cα, Cβ , and Cγ is closed under conjugation. �

For positive integers n and B > `NA, let P (B,n) be the probability that n
primes p1, . . . , pn (possibly non-distinct) chosen uniformly at random in the interval
[B,2B] have the property that ρA,`(Frobpi) /∈ Cα for each i, ρA,`(Frobpi) /∈ Cβ for
each i, or ρA,`(Frobpi) /∈ Cγ for each i.

Corollary 5.3. Suppose C and ` are as in Lemma 5.2 and let n be a positive
integer. For any ε > 0, there exists an effective constant B0 (with B0 > `NA) such
that for all B > B0, we have

P (B,n) < (1 − α`)n + (1 − β`)n + (1 − γ`)n + ε.

Proof. For δ ∈ {α,β, γ}, let Xδ be the event that none of the ρA,`(Frobpi) are
contained in Cδ. We then have

P (Xα ∪Xβ ∪Xγ) ≤ P (Xα) + P (Xβ) + P (Xγ)

The result then follows by Lemma 5.2, which shows that there exists a B0 such
that the probabilities of Xα, Xβ , and Xγ can be made arbitrarily close to (1−α`)n,
(1 − β`)n, and (1 − γ`)n respectively. �

Proof of Theorem 1.4. The claim made by Theorem 1.4 is that P (B,n) <
3 ⋅ ( 9

10
)n for B sufficiently large. By Proposition 5.1, we have 1 −α` ≤ 4

5
, 1−β` ≤ 7

8
,

and 1 − γ` ≤ 9
10

for all ` odd. The result then follows from Corollary 5.3 because

(4
5
)n + (7

8
)n + ( 9

10
)n < 3 ⋅ ( 9

10
)n. �
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6. Results of computation and interesting examples

We report on the results of running our algorithm on a dataset of 1,743,737
typical genus 2 curves with conductor bounded by 220 which are part of a new
dataset of approximately 5 million curves currently being prepared for addition
into the LMFDB. Running our algorithm on all of these curves in parallel took
about 35 hours on MIT’s Lovelace computer (see the Introduction for the hardware
specification of this machine). Instructions for obtaining the entire results file may
be found in the README.md file of the repository.

We first show in Table 3 how many of these curves were nonsurjective at par-
ticular primes, indicating also if this can be explained by the existence of a rational
torsion point of that prime order. We found 31 as the largest nonsurjective prime,
which occurred for the curve

(12) y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45

of conductor 72 ⋅ 312 and discriminant 72 ⋅ 319 (the prime 2 was also nonsurjective
here). The Jacobian of this curve does not admit a nontrivial rational 31-torsion
point, so unlike many other instances of nonsurjective primes we observed, this
one cannot be explained by the presence of rational torsion. One could ask if it
might be explained by the existence of a Q-rational 31-isogeny (as suggested by
Algorithm 3.1, since 31 is returned by Algorithm 3.6). This is indeed the case - see
the work of van Bommel, Chidambaram, Costa, and Kieffer [vBCCK23, Section
6.1] in which the authors compute this Jacobian’s isogeny class (among others).

nonsurj. prime # w/ torsion # w/o torsion Example curve

2 1,060,966 437,201 464.a.464.1

3 76,265 95,108 277.a.277.2

5 11,365 10,044 16108.b.64432.1

7 1,857 2,056 295.a.295.2

11 162 203 4288.b.548864.1

13 106 261 439587.d.439587.1

17 22 51 1996.b.510976.1

19 10 20 1468.6012928

23 2 8 6784.1821066133504

29 1 5 79056.59014987776

31 0 1 47089.1295541485872879

Table 3. Nonsurjective primes in the dataset, and whether they
are explained by torsion, with examples from the LMFDB dataset
if available, else a string of the form “conductor.discrimnant”.

We also observed (see Table 4) that the vast majority of curves had less than
3 nonsurjective primes.

It is interesting to compare Tables 3 and 4 to the analogous tables for non-CM
elliptic curves over Q (3,816,674 curves), which are Tables 5 and 6 respectively (we
omit example curves here since they can be readily searched for in the LMFDB).

https://lmfdb.org/Genus2Curve/Q/464/a/464/1
https://lmfdb.org/Genus2Curve/Q/277/a/277/2
https://lmfdb.org/Genus2Curve/Q/16108/b/64432/1
https://lmfdb.org/Genus2Curve/Q/295/a/295/2
https://lmfdb.org/Genus2Curve/Q/4288/b/548864/1
https://lmfdb.org/Genus2Curve/Q/439587/d/439587/1
https://lmfdb.org/Genus2Curve/Q/1996/b/510976/1
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# nonsurj. primes # curves Example curve Nonsurj. primes of example

0 199,183 743.a.743.1 –

1 1,394,671 1923.a.1923.1 5(torsion)

2 148,606 976.a.999424.1 2, 29(torsion)

3 1,277 15876.a.15876.1 2, 3, 5

Table 4. Frequency count of nonsurjective primes in the dataset,
with examples from the LMFDB dataset.

nonsurj. prime # w/ torsion # w/o torsion

2 1,332,490 5,726

3 57,930 213,654

5 1,545 19,211

7 80 4,100

11 0 156

13 0 736

17 0 40

37 0 96

Table 5. Nonsurjective primes for non-CM elliptic curves over Q
in the LMFDB, and whether they are explained by torsion.

# nonsurj. primes # curves

0 2,233,530

1 1,530,524

2 52,620

Table 6. Frequency count of nonsurjective primes for non-CM
elliptic curves over Q in the LMFDB.

We observe a similar pattern regarding the majority of curves nonsurjective
at 2 being explained by torsion, though in the elliptic curve case a much larger
proportion are explained by 2-torsion than for genus 2 curves. This switches for
the nonsurjective prime 3 in both cases, although again for elliptic curves, the
discrepancy is much starker. The zeroes in the torsion column for Table 5 are
explained by Mazur’s torsion theorem. The number of nonsurjective primes between
genus 1 and genus 2 is qualitatively different: the majority of elliptic curves do not
have any nonsurjective primes, while the vast majority of genus 2 curves have
precisely one nonsurjective prime. It is also curious that the elliptic curve dataset
does not contain a curve with 3 nonsurjective primes.

We conclude with a few examples that illustrate where Algorithm 3.1 fails when
the abelian surface has extra (geometric) endomorphisms.

https://lmfdb.org/Genus2Curve/Q/743/a/743/1
https://lmfdb.org/Genus2Curve/Q/1923/a/1923/1
https://lmfdb.org/Genus2Curve/Q/976/a/999424/1
https://lmfdb.org/Genus2Curve/Q/15876/a/15876/1
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Example 6.1. The Jacobian A of the genus 2 curve 3125.a.3125.1 on the
LMFDB given by y2 + y = x5 has End(AQ) = Z but End(AQ) = Z[ζ5]. Let φ
be the Dirichlet character of modulus 5 defined by the Legendre symbol

φ∶ (Z/5Z)× → {±1}, 2↦ −1.

In this case, Algorithm 3.13 fails to find an auxilliary prime p < 1000 for which
ap ≠ 0 and φ(p) = −1. This is consistent with the endomorphism calculation, since
the trace of ρA,`(Frobp) is 0 for all primes p that do not split completely in Q(ζ5)
and any inert prime in Q(

√
5) automatically does not split completely in Q(ζ5).

Example 6.2. The modular curve X1(13) (169.a.169.1) has genus 2 and its
Jacobian J1(13) has CM by Z[ζ3] over Q. As in [MT74, Claim 2, page 45], for any
prime ` that splits as ππ in Q(ζ3), the representation J1(13)[`] splits as a direct
sum Vπ ⊕ Vπ of two 2-dimensional subrepresentations that are dual to each other.
(A similar statement holds for J1(13)[`]⊗F` F`, and so this representation is never
absolutely irreducible.) As expected, Algorithm 3.6 fails to find an auxiliary prime
p < 1000 for which Rp is nonzero.

Example 6.3. The first (ordered by conductor) curve whose Jacobian J admits

real multiplication over Q is the curve 529.a.529.1; indeed, this Jacobian is isogenous
to the Jacobian of the modular curve X0(23). Since there is a single Galois orbit
of newforms - call it f - of level Γ0(23) and weight 2, we have that J is isogenous
to the abelian variety Af associated to f , and thus we expect the integer Mself-dual

output by Algorithm 3.10 to be zero for any auxiliary prime, which is indeed the
case.
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Appendix A. Exceptional maximal subgroups of GSp4(F`)

` type choices generators

` ≡ 5 mod 8 G1920 b2 = −1 in F`

⎛

⎜
⎜
⎜

⎝

1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

1 0 0 b
0 1 b 0
0 b 1 0
b 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

1 0 0 −1
0 1 1 0
0 −1 1 0
1 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

⎞

⎟
⎟
⎟

⎠

` ≡ 3 mod 8 G1920 b2 = −2 in F`

⎛

⎜
⎜
⎜

⎝

1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

0 0 0 b
0 0 b 0
0 b 2 0
b 0 0 2

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

1 0 0 −1
0 1 1 0
0 −1 1 0
1 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

⎞

⎟
⎟
⎟

⎠

` ≡ 7 mod 12 G720 a2
+ a + 1 = 0 in F`

⎛

⎜
⎜
⎜

⎝

a 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

a 0 0 0
0 1 0 0
0 0 a 0
0 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

a 0 −a − 1 a + 1
0 a −a − 1 −a − 1

−a − 1 −a − 1 −1 0
a + 1 −a − 1 0 −1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟
⎟
⎟

⎠

` ≡ 5 mod 12 G720 b2 = −1 in F`

⎛

⎜
⎜
⎜

⎝

−1 0 0 −1
0 −1 −1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

0 0 0 1
0 −1 −1 0
0 1 0 0
−1 0 0 −1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

−b − 1 b 2b −2b + 1
b b − 1 2b + 1 2b
b b − 1 −b − 2 −b

−b − 1 b −b b − 2

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

0 −b −2b 0
b 0 0 2b
−2b 0 0 −b
0 2b b 0

⎞

⎟
⎟
⎟

⎠

` = 7 G5040

a = 2 satisfies

a2
+ a + 1 = 0

⎛

⎜
⎜
⎜

⎝

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

6 0 5 2
0 6 5 5
5 5 4 0
2 5 0 4

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

0 6 0 0
1 0 0 0
0 0 0 6
0 0 1 0

⎞

⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜

⎝

4 6 0 0
6 6 0 0
0 0 4 1
0 0 1 6

⎞

⎟
⎟
⎟

⎠

Table 7. Explicit generators for each exceptional maximal sub-
group in GSp4(F`) (up to conjugacy). The matrices described in
Table 7 depend on an auxiliary choice of a parameter denoted ei-
ther a and b in each case. In each row, any one choice of the
corresponding a and b satisfying the equations described in the
table suffices.
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