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Abstract: We overview the enhancement of polarimetric imaging in degraded environments using 
denoising convolutional neural network model with 3D integral imaging. The experimental results 
were compared with total variation denoising in terms of SNR and SSIM. 

 
1. System Overview 

In this paper, we overview our recently reported work [1] on object visualization of polarimetric imaging for 2D 
and 3D integral imaging in degraded environments of low light and under partial occlusions using a denoising 
convolution neural network (DnCNN). Due to its ability to improve the contrast of object scenes from the 
background, passive polarimetric imaging can be used for object recognition and classification [2-4]. However, 
polarimetric imaging in low light conditions can become a challenging task due to the saturation of noise during 
the nonlinear calculation of degree of linear polarization (DoLP). Therefore, improving the signal-to-noise ratio in 
conventional imaging prior to determining the degree of linear polarization (DoLP) is highly desirable. Three-
dimensional integral imaging is a prominent technique that improves the signal-to-noise ratio in low-light 
environments due to being optimal in the maximum likelihood sense for read noise-dominant images [5-7]. Here, 
we overview the performance of DnCNN to improve the quality of passive polarimetric imaging in degraded 
environments of low light under partial occlusions. We compared the reconstructed polarimetric images in low 
light conditions using DnCNN and total variation (TV) denoising by comparing the signal-to-noise ratio (SNR) 
and structural similarity index (SSIM) for both 2D and 3D polarimetric imaging scenarios. Our experimental 
results indicate that the recovered images using DnCNN outperform the recovered images using total variation 
denoising in terms of SNR and SSIM.  

A passive polarimetric integral imaging system as shown in Fig.1 was used to capture the 3D polarimetric 
information of a scene in degraded environments. A rotating linear polarizer filter is attached with a sensor to 
record the Stokes parameters. The Stokes parameters in terms of intensity image are defined as 
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information of a scene in terms of the degree of linear polarization (DoLP). For three-dimensional polarimetric 
integral imaging, a synthetic aperture integral imaging setup was used. The pickup process of polarimetric integral 
imaging is shown in Fig. 1(a) and the reconstruction of 3D polarimetric imaging is done via synthetic aperture 
integral imaging (SAII) by using multiple perspectives of 2D elemental images as shown in Fig. 1(b).  
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Fig.1. Experimental setup for 3D polarimetric integral imaging. (a) Pick up process, (b) reconstruction process. 

 

The computational 3D polarimetric imaging of the scene at depth z is reconstructed according to the following 
equation [8]: 



                         
1 1

,
0 0

1
( , ) , .

( , ) / /

M N
y yx x

z m n
m n x y

n L pm L p
I x y I x y

O x y c z f c z f
  

 

 

    
          

                                          (1) 

In Eq. (1), M and N are the total numbers of elemental images in horizontal (H) and vertical (V) directions, 
respectively. (x, y) is the pixel index and O(x, y) is the overlapping pixel number on (x, y). Iθm,n is the set of 
polarimetric elemental images with multiple directions θ [0º, 45º, 90º, 135º] while the subscripts m, n represent the 
location of the elemental image, and px and py are the camera pitch size in x- and y- directions, respectively. Lx and 
Ly are the total numbers of pixels in each column and row of images. cx × cy is the pixel size of the camera, z is the 
pickup distance between the scene and the camera, f is the focal length of a camera lens, and ε is the additive camera 
noise. 

We trained Denoising convolutional neural network (DnCNN) to enhance the visualization of polarimetric 
imaging. The input for DnCNN consists of a simulated low light noisy polarimetric image, denoted as y = αx + v, in 
which y represents the noisy observation of the ideal polarimetric image x (ground truth), α signifies the degradation 
parameter, and v represents the additive Gaussian noise originating from the camera sensor. It is designed to predict 
the noise at each pixel of the residual image (difference between noisy image and latent clean image) rather than 
directly outputting the denoised image. The residual learning framework is employed to train the residual mapping 
R(y) between the deformation map (residual image) and the degraded input. Consequently, we obtain x = y - R(y). 
The loss function l(Ɵ) in Equation 2 below is the averaged mean square error between the residual images and the 
estimated one from degraded input [9]: 
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The loss function represented by Equation 2 is utilized to learn the adjustable parameters θ within DnCNN. Here, 
(yi, xi) denotes the pair of noisy and clean image patches extracted from the training images, while k signifies the 
total number of image pairs. The trained DnCNN network is tested on different polarimetric scenes under different 
low light conditions with estimated photons per pixel ranging from 2-20 photons/pixel [1]. 

2. Conclusion 

In summary, we overviewed our recently reported work [1] that was based on DnCNN model using 3D 
polarimetric integral imaging for object visualization different conditions of low light ranging from 2-20 
photons/pixel.We compared the recovered polarimetric images in low light conditions using DnCNN and TV 
denoising by comparing SNR and SSIM. The quantitative metrics SNR, and SSIM indicate that DnCNN model 
with 3D polarimetric imaging outperforms the 2D polarimetric imaging as well as recovered images using total 
variation for 2D and 3D polarimetric imaging. B. Javidi acknowledges support by Air Force Office of Scientific 
Research (FA9550-21-1-0333), Office of Naval Research (N000142212375, N00014-22-1-2349), and National 
Science Foundation grant number (2141473). We wish to thank Hamamatsu Photonics K. K. for the C11440-42U 
camera. 
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