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RESIDUAL INTERSECTIONS AND LINEAR POWERS

DAVID EISENBUD, CRAIG HUNEKE, AND BERND ULRICH

Abstract. If I is an ideal in a Gorenstein ring S, and S/I is Cohen-Macaulay,
then the same is true for any linked ideal I′; but such statements hold for
residual intersections of higher codimension only under restrictive hypotheses,
not satisfied even by ideals as simple as the ideal Ln of minors of a generic
2× n matrix when n > 3.

In this paper we initiate the study of a different sort of Cohen-Macaulay
property that holds for certain general residual intersections of the maximal
(interesting) codimension, one less than the analytic spread of I. For example,
suppose that K is the residual intersection of Ln by 2n− 4 general quadratic
forms in Ln. In this situation we analyze S/K and show that In−3(S/K) is
a self-dual maximal Cohen-Macaulay S/K-module with linear free resolution

over S.

The technical heart of the paper is a result about ideals of analytic spread
1 whose high powers are linearly presented.

Introduction

Let S be a Noetherian ring, and let I ⊂ S be an ideal of codimension g. Let
J = (a1, . . . , as) be an ideal generated by s elements in I, and consider the residual
ideal K := J : I. If codimK ≥ s then K (or S/K) is said to be the s-residual
intersection of I with respect to J , and the residual intersection is called geometric
if, in addition, codim(I +K) > s.

Under strong hypotheses the residual intersection R := S/K is Cohen-Macaulay
and, up to shifts, the canonical module ωR of R is isomorphic to Is−g+1R and IjR
is ωR-dual to Is−g+1−jR for 0 ≤ j ≤ s − g + 1 (see [EU] for a summary of the
situation). For example, these conclusions are true when I is the ideal of maximal
minors of a sufficiently general (n− 1)× n matrix.

However, much of this fails even when I is generated by the maximal minors of a
generic 2×n matrix with n ≥ 4. The main contribution of this paper is to construct
a natural rank 1, self-dual, maximal Cohen-Macaulay module over certain residual
intersections of such ideals and many others. The following special case of our main
result, Theorem 2.1, will convey the flavor:

Theorem 0.1. Let S be a standard graded polynomial ring over a field of charac-
teristic 0, let I ⊂ S be a nonzero homogeneous ideal generated in a single degree δ
with analytic spread �, and let J ⊂ I be generated by �−1 general elements of degree
δ. Suppose that J : I is an (�−1)-residual intersection of I, and set R = S/(J : I).
If all sufficiently high powers of I are linearly presented then, for all ρ � 0, (IR)ρ
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is a maximal Cohen-Macaulay R-module with linear resolution as an S-module, and
is, up to shift, ωR-self-dual.

The restriction to (� − 1)-residual intersections is natural because in that case
IR has analytic spread 1, so all high powers are isomorphic. Thus it makes sense
to speak of their asymptotic structure.

The idea of the proof of Theorem 0.1 is to reduce to the case of analytic spread
1, and then use the fact that (IR)ρ, for large ρ, can be given the structure of
a commutative algebra. The key point is to show that the condition of linear
presentation is preserved in the reduction.

In Corollary 2.7 we show that if I ⊂ S is any homogeneous ideal generated in
degree ≤ δ, and J ⊂ I is generated by dimS − 1 sequentially general elements
of degree t > δ, then for ρ � 0 the S-module (I≥t)

ρ(S/(J : I)) is perfect of
codimension dimS − 1, and has linear, symmetric minimal free resolution.

Theorem 0.1 applies, in particular, to the ideal of maximal minors of a generic
2× n matrix, and more can be said in that case, as in Section 3:

Theorem 0.2. Let S = k[x1, . . . , xn, y1, . . . , yn] be a polynomial ring over a field
k of characteristic 0. Suppose that I ⊂ S is the ideal of 2× 2 minors of the generic
matrix (

x1 . . . xn

y1 . . . yn

)
.

The ideal I has analytic spread � = 2n− 3.
Let J be an ideal generated by �−1 general quadrics in I. The ring R := S/(J : I)

is unmixed of codimension 2n − 4, with isolated singularity. If k is algebraically

closed, then J : I is the intersection of 1
n−1

(
2(n−2)
n−2

)
linear prime ideals.

The canonical module ωR is isomorphic to (IR)n−3(2n− 10). Furthermore, for
all ρ ≥ n− 3, the module (IR)ρ is isomorphic up to shift to ωR, and is a maximal
Cohen-Macaulay R-module that has a linear resolution as an S-module and is ωR-
self-dual up to shift.

Examples suggest that part of the conclusion of Theorem 0.1 holds much more
generally:

Conjecture 0.3. Let S be a standard graded polynomial ring over an infinite field,
let I ⊂ S be a nonzero homogeneous ideal generated in a single degree δ with
analytic spread �, and let J ⊂ I be generated by � − 1 general elements of degree
δ. Set R = S/(J : I). If I is unmixed and J : I is a geometric (� − 1)-residual
intersection of I, then (IR)ρ is a maximal Cohen-Macaulay R-module for all ρ � 0.

Further examples suggest that Conjecture 0.3 might hold without the assumption
that R is obtained as a residual intersection. In addition, the self-duality seems to
hold in more general circumstances:

Conjecture 0.4. Let R be a standard graded algebra over a field. Assume that
R is reduced and equidimensional, and that ωR is generated in a single degree. If
ωR has analytic spread 1 (in the sense that a homogeneous ideal isomorphic to a
shift of ωR has analytic spread 1), then some power of ωR (as a fractional ideal) is
ωR-self-dual up to a shift.

Examples we have seen also support another version:
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Question 0.5. Let R be a standard graded ring over a field, and let I ⊂ R be a
homogeneous ideal of positive codimension. Suppose that:

(1) R is reduced and the truncation I ′ of I in the degree of the highest generator
of I has analytic spread 1;

(2) Some power of I is isomorphic to a shift of a power of ωR.

Are the high powers of I ′ always ωR-self-dual up to a shift?

We shall see in Section 6 that none of the hypotheses can be dropped. Conjec-
ture 0.3 has surprising consequences:

Proposition 0.6. Suppose that S = k[x1, . . . , xd] is a standard graded polynomial
ring over an infinite field, and I ⊂ S is an ideal generated by forms of a single
degree. If Conjecture 0.3 is true then:

(1) Suppose that I is generically a complete intersection of codimension g gen-
erated by g + 1 elements. If I is unmixed, then S/I is Cohen-Macaulay.

(2) If I ⊂ S is an unmixed ideal of linear type (that is, the Rees algebra R(I)
of I is equal to the symmetric algebra of I), then

R(I)(x1,...,xd)R(I)

is Cohen-Macaulay.

The assertion of item (1) is true (independent of Conjecture 0.3) both when
I has codimension 2 [EG, Theorem 2.1], and also when S/I is locally of depth
≥ 1

2 dim(S/I)P at every prime P containing I (Theorem 5.1 below). In Section 5
we prove Proposition 0.6, and note special cases where the conjectures are verified.

1. The module of interest

The analytic spread of an ideal plays an important role in this theory. If R is a
positively graded algebra over a field k, with maximal homogeneous ideal m, and
I ⊂ R is an ideal generated by forms of a single degree δ, then the analytic spread
may be defined as:

�(I) := dim k[Iδ] = dim(k ⊕ I/mI ⊕ I2/mI2 ⊕ · · · ).
Assuming that k is infinite, �(I) is the smallest number of generators of a homoge-
neous ideal over which I is integral, and such an ideal may be taken to be the ideal
generated by �(I) general forms in I of degree δ. The reduction number r(I) of I is
the smallest integer r ≥ 0 so that Ir+1 = aIr for some homogeneous �(I)-generated
ideal a.

If s < �(I) and K := I : J is an s-residual intersection of I with respect to
a homogeneous ideal J generated by s elements, so that codimK ≥ s, then I
cannot be integral over J , so if R is equidimensional then, by [M, Theorem 4.1],
codimK = s. However, this may not be the case when s ≥ �(I).

Now assume that k is infinite. When s < �(I) and J is generated by s general
forms of degree δ in I, Proposition 1.2 implies that the modules Iρ(S/K) are
nonzero. These, for ρ � 0 and s = �(I)− 1, are the modules that are of interest to
us.

Proposition-Definition 1.1. Suppose that R is a positively graded algebra over
an infinite field k, that I ⊂ R is generated by forms of a single degree δ, and that
I has analytic spread ≤ 1. Let R = R/(0 : I∞) and I = IR.
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(1) For ρ � 0 the module Iρ(ρδ) is, up to homogeneous isomorphism, indepen-

dent of ρ and Iρ maps isomorphically to I
ρ
. If I contains a non-zerodivisor

of R, the latter is true for all ρ ≥ 0.

Let M := M(I) be the stable value of Iρ(ρδ).

(2) E := EndR(M) ∼= M as graded R-modules.
(3) Let a ∈ I be a general homogeneous element of degree δ. Write I and a for

the images of I and a in R. The element a is a non-zerodivisor on R and
as a graded ring,

E ∼= R[a−1I] = a−ρI
ρ
for ρ � 0,

which is the coordinate ring of the blowup of R along I.
(4) If R is reduced away from V (I), then

R = Rred/(0 : (IRred)
∞) = R/(

√
0 : I∞)

is reduced.

Proof. First note that for a as in item (3), the element a is a non-zerodivisor on R
as I has positive grade.

(1) Let ε be an integer so large that 0 : I∞ = 0 : Iε. By the Artin-Rees Lemma,

Iρ ∩ (0 :R Iε) ⊂ Iε (0 :R Iε) = 0 for large ρ. Thus Iρ maps isomorphically to I
ρ
.

Because I has analytic spread ≤ 1, the element a generates a reduction of I.
Thus, since a is general, the multiplication map

a : I
ρ
(ρδ) → I

ρ+1
((ρ+ 1)δ)

is surjective for ρ ≥ r(I), and since a is a non-zerodivisor on R the map is injective
as well. This proves that M is independent of ρ � 0.

If a is a non-zerodivisor on R, then multiplication by a on R is a monomorphism,
and decreasing induction on ρ shows that Iρ maps isomorphically to I

ρ
for ρ ≥ 0.

(2) We have EndR(M) = EndR(M). Writing Q for the total ring of quotients of R
and taking ρ � 0, we have

I
ρ
= aρI

ρ
:Q aρR ⊃ aρI

ρ
:Q I

ρ ⊃ I
ρ

because aR is a reduction of I. Thus

I
ρ
= aρI

ρ
:Q I

ρ
.

Further aρI
ρ
:Q I

ρ ∼= EndR(I
ρ
)(−ρδ), proving the assertion.

(3) Because aR is a principal reduction of I, the blowup has only one affine chart,

R[a−1I]. Further a−1I ⊂ a−2I
2 ⊂ · · · , and this sequence of fractional ideals

stabilizes when aI
r
= I

r+1
. Thus for ρ � 0 we have

R[a−1I] = a−ρI
ρ
= I

ρ
:Q I

ρ ∼= E.

(4) If R is reduced away from V (I), then R is reduced locally at each of its asso-
ciated primes, hence reduced. �

The next result provides a different description of (IR)ρ in a general setting:

Proposition 1.2. Let S be a Noetherian algebra over an infinite field k, and let
I be an ideal of S. Let J be an ideal generated by a sequence of general k-linear
combinations of generators of I. Let R = S/(J : I) and R = S/(J : I∞).
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The natural surjection

Iρ/JIρ−1 → (IR)ρ

is an isomorphism for ρ � 0.

Proof. Let ε be an integer so large that H := J : I∞ = J : Iε. For ρ � 0 the
Artin-Rees Lemma gives Iρ ∩ H ⊂ IεH ⊂ J . Furthermore, the generators of J
are a superficial sequence for I, so [SH, Lemma 8.5.11] gives Iρ ∩ J = JIρ−1. Thus
Iρ ∩H = JIρ−1 as required. �

Suppose that S = k[x1, . . . , xd] is a positively graded polynomial ring over an
infinite field k, and let I be an ideal generated by forms of a single degree δ. If
the analytic spread of I is � and J is generated by � − 1 general forms of degree δ
then, setting R = S/(J : I), the ideal IR has analytic spread ≤ 1, so we may apply
Proposition-Definition 1.1. In this case the module M = M(IR) can be expressed
as (Iρ/JIρ−1)(ρδ), as we see from Proposition 1.2.

2. Ideals whose powers have linear presentation

The following is our main general result.

Theorem 2.1. Let S be a standard graded polynomial ring over an infinite field k.
Let I ⊂ S be a nonzero ideal generated by forms of a single degree δ. Let � := �(I)
be the analytic spread of I. Let J ⊂ I be generated by � − 1 general homogeneous
elements of degree δ in I. Set

R = S/(J : I), R = S/(J : I∞), I = IR .

Let a ∈ I be a general form of degree δ and let M = M(IR) be as in Proposition-
Definition 1.1.

If R is reduced away from V (I) and all sufficiently high powers of I are linearly
presented, then

(1) R is equidimensional of dimension dimS − �+ 1, M is a maximal Cohen-
Macaulay R-module and an Ulrich module, and M is ωR-self-dual up to a
shift.

(2) dimR = dimR if and only if J : I is an (� − 1)-residual intersection of I,
that is, codim(J : I) ≥ �−1. In this case, M is a maximal Cohen-Macaulay
R-module and an Ulrich module, and M is ωR-self-dual up to a shift.

(3) As a graded R-module, EndR(M) ∼= M = (IR)ρ(ρδ) ∼= I
ρ
(ρδ) for ρ � 0.

As a graded ring, EndR(M) is isomorphic to the blow-up

R̃ := R[a−1I ]

of R along I and is regular. In particular, R̃ is the normalization of R, and
the conductor of R is Raρ :R I

ρ
for ρ � 0.

We postpone the proof of Theorem 2.1 until the end of this section.
If the characteristic of k is zero and the forms generating J are sequentially

general elements of I, then R is automatically reduced away from V (I) by Bertini’s
Theorem ([F, (4.8) Korollar]). We provide a direct proof of a slightly stronger result
that does not require sequentially general elements:

Theorem 2.2. Let S be a finitely generated algebra over a field k of characteristic
0, let I ⊂ S be an ideal, and assume that S is regular away from V (I). Let J ⊂ I
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be generated by s general k-linear combinations of a set of generators of I. Then
locally away from V (I), the ring S/J is regular of codimension s.

Proof. Write I = (f1, . . . , fn). Replacing S by any of its localizations Sfi we may
assume that S is regular, and passing to any of the connected components of SpecS
we further suppose that S is a domain, say of dimension d.

Let T be the polynomial ring in sn new variables, and let J̃ ⊂ S̃ := T ⊗k S be
the ideal generated by the s generic linear combinations of the fi using the new

variables as coefficients. Set R̃ := S̃/J̃ . If λ is a rational closed point in Asn
k with

coordinate ring k(λ), we set Rλ = k(λ) ⊗T R̃. We must show that for general λ,
the ring Rλ is regular of codimension s locally away from V (IRλ).

Let K be the quotient field of T and let RK := K ⊗T R̃. It is easy to see that
locally away from V (IRK) the ring RK is regular of codimension s. Thus, since

K is a field of characteristic 0, the module ΩK(RK) = K ⊗T ΩT (R̃) is free of rank
d − s locally away from V (IRK). It follows that for some t the ideal (IRK)t is

contained in Fittd−s(K ⊗T ΩT (R̃). Hence for general λ we have

(IRλ)
t ⊂ Fittd−s

(
k(λ)⊗T ΩT (R̃)

)
= Fittd−s

(
Ωk(Rλ)

)
.

This implies that locally away from V (IRλ) the module Ωk(Rλ) is generated by
d−s elements. Since locally dimRλ ≥ d−s, we see that Rλ is regular of dimension
exactly d− s locally away from V (IRλ). �

We say that an ideal I satisfies Gs if IP is generated by at most codimP elements
for all primes P of codimension < s containing I.

Remark 2.3. If I satisfies G�−1, then the ideal J : I in Theorem 2.1 is an (� − 1)-
residual intersection.

Theorem 2.4 (Examples). The following classes of ideals in a polynomial ring in
d variables over a field of characteristic 0 all satisfy the hypotheses and conclusions
of parts (1)–(3) of Theorem 2.1:

(1) ideals of m×m minors of m×n matrices A of linear forms such that either
codim Im(A) = d or

codim Ik(A) ≥ min{(m− k + 1)(n−m) + 1, d} for 2 ≤ k ≤ m;

(2) strongly stable monomial ideals generated in one degree;
(3) products of ideals of linear forms;
(4) polymatroidal ideals;
(5) monomial ideals generated in degree 2 and having linear resolution;
(6) linearly presented ideals of dimension 0, and ideals of dimension 1 that have

a linear resolution for the first �(d− 1)/2� steps;
(7) truncations I≥t of homogeneous ideals I at degree t if I is generated in

degrees ≤ t and I has a homogeneous reduction generated in degrees ≤ t−1;
(8) linearly presented ideals of fiber type, such as linearly presented ideals sat-

isfying Gd that are perfect of codimension 2 or Gorenstein of codimension
3.

More precisely, in the first 5 cases every power of the ideal in question actually
has a linear resolution; in cases 6 and 7 all large powers have linear resolution; and
in case 8 all powers are linearly presented.
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Proof. First notice that R is reduced away from V (I) according to Theorem 2.2.

(1) See Theorem 4.1, the second case of which is [BCV, Theorem 3.7].
(2)–(4) These assertions are copied from the list in [BCV, p. 42], and were proven
in [CH].
(5) See [HHZ, Theorem 3.2].
(6) See [EHU, Theorem 7.1 and Corollary 7.7].
(7) See Proposition 2.5.
(8) Symmetric powers of linearly presented ideals are always linearly presented; and
fiber type implies that the additional relations on the generators of the powers all
have degree 0. The given classes of ideals are of this type by [MU, Theorem 1.3] and
[KPU, Theorem 9.1], respectively. In the case of perfect codimension 2 ideals, all
the powers have linear resolution by item (1) and the Hilbert-Burch Theorem. �

Proposition 2.5. Suppose that I is a homogeneous ideal in a standard graded
polynomial ring over a field. Suppose further that I is generated in degrees ≤ δ and
that I has a homogeneous reduction generated in degrees ≤ a.

If t ≥ max{δ, a + 1}, then the high powers of the truncated ideal I ′ := I≥t all
have linear resolution.

Proof. If t ≥ δ then (I≥t)
ρ = (Iρ)≥tρ. Moreover, for large ρ the regularity of Iρ

grows as a linear function bounded by aρ+ b, see [K, Theorem 5].
Thus if t ≥ max{δ, a + 1} then I ′ρ = (Iρ)≥tρ and, for ρ � 0, I ′ρ has regularity

≤ tρ since t ≥ a+ 1. �

Remark 2.6. We do not know of an ideal whose high powers have linear presentation
but not linear resolution. Linearly presented ideals of fiber type may provide such
examples.

The following consequence of Theorem 2.1 gives some evidence for a positive
answer to Question 0.5.

Corollary 2.7. Suppose that I is a nonzero homogeneous ideal in a standard graded
polynomial ring S in d variables over an infinite field k. Let t be such that I is
generated in degrees < t. Let J be an ideal generated by d− 1 sequentially general
forms of degree t in I, write R = S/(J : I), and set I ′ = I≥t.

The conclusions of Theorem 2.1 hold if we replace δ by t, � by d, IR by I ′R,
I = IR by I ′R, and M(IR) by M(I ′R).

In particular, as an S-module, M(I ′R) is perfect of grade d−1, and its minimal
graded free resolution is linear and symmetric.

Proof. We wish to apply Theorem 2.1 to the ideal I ′ and the ring R′ := S/(J : I ′).
First, since I in generated in degrees < t, it follows that �(I ′) = d and that all
sufficiently high powers of I ′ are linearly presented, see Proposition 2.5.

Next, we show that R′ is reduced away from V (I ′). If the characteristic is zero,
this follows from Theorem 2.2. Otherwise, let {xu} be the variables of S and
{fv} be a spanning set of It−1, and apply [FOV, Theorem 3.4.13] to the scheme
ProjS \ V (I ′) and the generating set {xufv} of I ′. It follows that if a1 is a general
k-linear combination of these generators, then S/(a1) is regular away from V (I ′).
Iterating, we see that R′ = S/ ((a1, . . . , ad−1) : I

′) is regular away from V (I ′).
Note that R maps onto R′, whereas J : I∞ = J : I ′∞, so R = R′ := S/(J : I ′∞).

Thus, applying Theorem 2.1 to the ideal I ′ and the ring R′ yields the result. �
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To prove Theorem 2.1 we reduce to the case � = 1 by factoring out a general
(� − 2)-residual intersection and proving that the hypothesis of linearly presented
powers is preserved. We then use the following more general result:

Theorem 2.8. Let S be a standard graded polynomial ring over an infinite field,
let R be a homogeneous factor ring of S, and let I ⊂ R be an ideal.

Suppose that:

• I is generated by forms of a single degree δ and has analytic spread 1.
• R is reduced away from V (I).
• All sufficiently high powers of I are linearly presented as S-modules.

Set R = R/(0 : I∞) and I = IR. Let a ∈ I be a general element of degree δ, and
let

R̃ := R[a−1I ]

be the blowup of R along I. Let M := M(I) be as in Proposition-Definition 1.1.
We have:

(1) M is a direct sum of maximal Cohen-Macaulay modules on the components

of R̃ and M has a linear resolution as an S-module.
(2) R is equidimensional if and only if M is a maximal Cohen-Macaulay module

over R. In this case M is ωR-self-dual up to a shift, and an Ulrich module

over R. Furthermore, M is also ωR-self-dual if and only if dimR = dimR.

(3) As a graded R-module, EndR(M) ∼= M = Iρ(ρδ) ∼= I
ρ
(ρδ) ∼= R̃ for ρ � 0.

As a graded ring, EndR(M) ∼= R̃, and this ring is regular. In particular R̃

is the normalization of R, and the conductor of R is Raρ :R I
ρ
for ρ � 0.

Part (3) of the theorem includes the assertion that M is a commutative algebra.
Lemma 2.9 enables us to exploit this fact:

Lemma 2.9. Let S be a standard graded polynomial ring over a field k. Suppose
that T is a non-negatively graded S-algebra that is finite, generated in degree 0,
and linearly presented as a module over S. If T0 is reduced, then T is a product of
standard graded polynomial rings over fields containing k.

Proof. The ring T0 is finite over k and hence Artinian. Thus T0 decomposes as
a product of fields eiT0, where the ei are orthogonal idempotents. Since it is a
summand of T , the S-module eiT is also linearly presented, so it suffices to consider

the case when T0 = K is a field. Let S̃ = K ⊗k S, and note that T is naturally a

cyclic S̃-module, generated in degree 0.

We next show that T is linearly presented as an S̃-module. Let F̃ be a minimal

homogeneous S̃-free resolution for T . Using a homogeneous S-module splitting

S̃ = Sm we see that F̃ is also an S-free resolution, which we call F . Choosing

bases in F̃ and corresponding bases in F , we see that the entries in the matrix

representations of the maps in F have the same positive degrees as occur in F̃ , and
thus F is minimal. Since the initial map of F is linear by hypothesis, the initial

map of F̃ is linear.

Thus T is a cyclic, linearly presented S̃-module. Therefore T may be written as

S̃/m, where m is an ideal generated by linear forms, so T is a polynomial ring over
K. �
Proof of Theorem 2.8. Since �(I) = 1 the ideals I and I are not nilpotent, so �(I) =
1 and the ring R is nonzero. This ring is reduced by Proposition-Definition 1.1(4).
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(3) Note that M is generated in degree 0 as an S-module and is linearly presented.

Further, by Proposition-Definition 1.1, M = R̃ is an S-algebra. Since R̃ is re-

duced, Lemma 2.9 shows that R̃ is regular. The rest of part (3) now follows from
Proposition-Definition 1.1.

(1) This follows from (3): We have M ∼= R̃. Any regular ring is Cohen-Macaulay.

By Lemma 2.9, R̃ is a product of rings, each of which is obtained from S by
extending the ground field and factoring out linear forms. Such a ring has a linear
resolution as an S-module.
(2) The ring R̃ is the normalization of R. So R is equidimensional if and only if each

component of R̃ has maximal dimension as an R-module. By (1), this condition is
equivalent to the condition that M is a maximal Cohen-Macaulay module over R.

Set d := dimR. If each component of R̃ has maximal dimension as an R-module,
then each such component is a polynomial ring in d variables over a field containing
k by Lemma 2.9. Thus, writing ω

˜R for the direct sum of the canonical modules of

these components, we have ω
˜R
∼= R̃(−d).

On the other hand, ω
˜R
∼= HomR(R̃, ωR). Thus as graded R-modules,

HomR(M,ωR)
∼= Hom

˜R(M,ω
˜R)

∼= Hom
˜R(R̃, ω

˜R)
∼= R̃(−d) ∼= M(−d).

If dimR = dimR, these statements follow for R in place of R, and the converse is
obvious.

The fact that M is Ulrich follows from the linearity statement in (1). �

Lemma 2.10 shows that the linearity hypothesis in Theorem 2.1 is preserved in
the reduction to Theorem 2.8.

Lemma 2.10. Let S be a standard graded polynomial ring over an infinite field, and
let I ⊂ S be an ideal generated by forms of degree δ. Let a1, . . . , an be homogeneous
elements of I of degree ≤ δ + 1. For 0 ≤ ν ≤ n, set Jν = (a1, . . . , aν) ⊂ S.

If the high powers of I have linear presentation, then for all 0 ≤ ν ≤ n and all
sufficiently large ρ the module Iρ/JνI

ρ−1 has linear presentation as an S-module.

Remark 2.11. If a1, . . . , an are chosen sequentially generally, the same proof, to-
gether with Proposition 1.2, shows that if the high powers of I have linear resolution
then for all 0 ≤ ν ≤ n and all sufficiently large ρ the module Iρ/JνI

ρ−1 has linear
resolution as an S-module.

Proof. We do induction on ν, the case ν = 0 being the hypothesis. We assume the
result for ν. For ρ � 0 and 0 ≤ ν ≤ n− 1 the sequences

(Iρ−1/JνI
ρ−2)(−δ′)

aν+1−−−→ Iρ/JνI
ρ−1 → Iρ/Jν+1I

ρ−1 → 0

are exact, where δ ≤ δ′ := deg aν+1 ≤ δ + 1. Using the minimal homogeneous
generators of the middle term Iρ/JνI

ρ−1, we get a possibly non-minimal set of
generators of Iρ/Jν+1I

ρ−1 having degree ρδ, with relations of degrees ρδ + 1 and
(ρ− 1)δ + δ′ ≤ ρδ + 1. This implies that Iρ/Jν+1I

ρ−1 has linear presentation. �

Proof of Theorem 2.1. Write d = dimS and let a1, . . . , a�−1 be the � − 1 general
elements of I that generate J . We apply Theorem 2.8 to the ideal IR ⊂ R, and
verify the hypotheses as follows:

• �(IR) = 1: In fact �(IR) ≤ 1 because the general elements a1, . . . , a�−1 are
part of a minimal generating set for a minimal reduction of I. If �(IR) = 0
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then (IR)ρ = 0 for ρ � 0, and hence Proposition 1.2 shows that Iρ =
JIρ−1, which is impossible since J is generated by fewer than �(I) elements
of I (see also [S, Theorem 4]).

• M is linearly presented as an S-module: By Proposition 1.2, M ∼=
(Iρ/JIρ−1)(ρδ) for ρ � 0. By Lemma 2.10, this is linearly presented as an
S-module.

We begin by showing that R is equidimensional of dimension d− �+ 1:
Since IR is not nilpotent it follows that R �= 0. Any minimal prime of the ring

R arises from a minimal prime Q of the ideal K := J : I that does not contain I,
and we need to show that codimQ = �− 1 or, equivalently, codimKQ = �− 1. But
KQ = JQ since I �⊂ Q. Finally, the generators a1

1 , . . . , a�−1

1 of JQ form a regular
sequence on SQ, because the general elements a1, . . . , a�−1 of I are a filter regular
sequence with respect to I and Q �⊃ I.

Thus codimKQ = codim JQ = � − 1. Together with item (2) of Theorem 2.8,
this gives the assertion of item (1).

We now prove item (2). We have seen in the previous step that d − � + 1 =
dimR ≤ dimR. Thus dimR = dimR if and only if codimK ≥ �− 1.

Finally, item (3) of Theorem 2.8 now implies (3). �

3. The minors of a 2× n matrix of linear forms

Throughout this section we assume n ≥ 3.
We say that an ideal I of a Noetherian ring S is s-residually S2 if, for every i ≤ s

and every i-residual intersection K of I, the ring S/K satisfies Serre’s condition S2;
see [CEU] for more information.

Theorem 3.1. Let T be a local Gorenstein ring containing a field of characteristic
0. Suppose that I ⊂ S = T [[x1,1, . . . , x2,n]] is the ideal of 2 × 2 minors of the
generic matrix (

x1,1 . . . x1,n

x2,1 . . . x2,n

)
.

Let � = �(I), which is equal to 2n − 3 by Proposition 4.2. The ideal I is (� − 2)-
residually S2. In particular, if s ≤ �−1 and K is an s-residual intersection of I, then
K is unmixed of codimension exactly s. If, in addition, the residual intersection is
geometric, then the image of I in S/K contains a non-zerodivisor.

Proof. Note that I satisfies G2n. By [RWW, Theorem 4.3], Extn+j−1
S (S/Ij , S) = 0

for 2 ≤ j ≤ n− 3 = (�− 2)− codim I +1 (this is where we require characteristic 0).
The same vanishing holds trivially for j = 1. By [CEU, Corollary 4.2], this implies
that I is (�− 2)-residually S2.

From [CEU, Proposition 3.1] we know that I is (�− 1)-parsimonious. Note that
K is a proper ideal because s is less than the minimal number of generators of I.
Thus we may apply [CEU, Proposition 3.3(a)] and conclude that K is unmixed of
codimension exactly s. If, in addition, K is a geometric residual intersection, then
codim(I +K) ≥ s+ 1, so I is not in any associated prime of K. �

Corollary 3.2. Suppose that I is the ideal of 2 × 2 minors of a 2 × n matrix A
over a local Gorenstein ring T containing a field of characteristic 0, and assume
that codim I = n− 1. If s ≤ 2n− 4 and K is an s-residual intersection of I, then
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every minimal prime of K has codimension exactly s. If, in addition, the residual
intersection is geometric, then I is in no minimal prime of K.

Proof. We may assume that the entries of A are in the maximal ideal of T , since
otherwise I is a complete intersection and the result follows, for instance, from [HU1,
Theorem 5.1].

Let J ⊂ I be an ideal with s generators such that K = J : I. Let T̃ =

T �x1,1, . . . , x2,n�, and let π : T̃ → T be the T -algebra map sending xi,j to the (i, j)
entry Ai,j of A. Note that the kernel of π is generated by the regular sequence

αi,j = xi,j −Ai,j . Let Ĩ be the ideal of 2× 2 minors of the generic 2× n matrix(
x1,1 . . . x1,n

x2,1 . . . x2,n

)
,

so that π(Ĩ) = I. Let J̃ ⊂ Ĩ be an ideal with s generators such that π(J̃) = J , and

let K̃ = J̃ : Ĩ.
Since T̃ /Ĩ is Cohen-Macaulay, and the codimension of Ĩ is equal to that of I, the

2n elements α1,1, . . . , α2,n form a regular sequence on T̃ /Ĩ. It now follows from

[HU1, Lemma 4.1] that

√
π(K̃) =

√
K. Thus

codim K̃ ≥ codimπ(K̃) = codimK ≥ s,

so K̃ is an s-residual intersection of Ĩ. As s ≤ 2n− 4, Theorem 3.1 implies that K̃
is unmixed of codimension exactly s.

Since codimπ(K̃) ≥ s, it follows that the sequence α1,1, . . . , α2,n is part of a sys-

tem of parameters of T̃ /K̃, and thus all minimal primes of π(K̃) have codimension
exactly s.

Using

√
π(K̃) =

√
K again, we see that all minimal primes of K have codimen-

sion exactly s.
The last statement follows immediately. �

Theorem 3.3. Suppose that I is the ideal of 2 × 2 minors of a 2 × n matrix A
of linear forms in a polynomial ring S over a field of characteristic 0, and suppose
that the entries of A span a vector space of dimension c.

If I has codimension min{n− 1, c}, then the hypotheses and conclusions of The-

orem 2.1 hold for I, and the ring R in Theorem 2.1 is Rred = R/
√
0. In addition,

the equivalent conditions of Theorem 2.1(2) are satisfied.

Proof. Theorem 2.4(1) implies that the hypotheses and conclusions of Theorem 2.1
hold for I.

The ideal I satisfies Gc, and � := �(I) ≤ c. Thus K := J : I is a geometric
(�−1)-residual intersection. Hence the equivalent conditions of Theorem 2.1(2) are
satisfied.

If codim I = n − 1, then Corollary 3.2 shows that I is not contained in any
minimal prime of K. On the other hand, if codim I = c then c = �, so K is a
complete intersection of codimension c − 1, and again I is not contained in any
minimal prime of K.

Since R is reduced away from V (I), it follows in both cases that

R = R/(0 : I∞) = R/(
√
0 : I∞) = R/

√
0 .

�
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In the case of a generic 2× n matrix, we can be very explicit.

Theorem 3.4. Let S = k[x1, . . . , xn, y1, . . . , yn] be a polynomial ring over a field k
of characteristic 0. Suppose that I ⊂ S is the ideal of 2 × 2 minors of the generic
matrix (

x1 . . . xn

y1 . . . yn

)
.

The ideal I has analytic spread � := �(I) = 2n−3 and reduction number r := r(I) =
n− 3 by Proposition 4.2.

Let J be an ideal generated by � − 1 general quadrics a1, . . . , a�−1 in I. Set
R = S/(J : I), R = R/(0 : I∞), and M = M(IR). In addition to the assertions of
Theorem 2.1 we have:

(1) R has an isolated singularity, and R = R.

(2) If a is a general quadric in I and ρ ≥ r then (IR)r(2r)
aρ−r

−−−→ (IR)ρ(2ρ) is
an isomorphism, so M = (IR)r(2r).

(3) M ∼= ωR(4).

(4) If k is algebraically closed, then J : I is the intersection of 1
n−1

(
2(n−2)
n−2

)
lin-

ear prime ideals of codimension 2n− 4. These may be described as follows:
the quadratic forms a1, . . . , a2n−4 may be regarded as linear forms in k[I2],
which may be identified with the homogeneous coordinate ring of the Grass-
mannian G(2, n) of (n − 2)-dimensional subspaces of kn = 〈x1, . . . , xn〉.
Since the ai are general, the space cut out by these forms intersects the

Grassmannian in 1
n−1

(
2(n−2)
n−2

)
reduced points. Each of these points cor-

responds to a subspace 〈L1(x), . . . , Ln−2(x)〉, which yields a linear prime
ideal

(L1(x), . . . , Ln−2(x), L1(y), . . . , Ln−2(y))

that is a minimal prime of J : I.

Proof. For i ≤ � − 1 we set Ji = (a1, . . . , ai). Since I satisfies G2n, the ideal
Ji : I is a geometric i-residual intersection of I and is unmixed of codimension i by
Theorem 3.1.

(1) By Theorem 3.1 the image of I in R contains a non-zerodivisor. Thus R = R.
We now form the generic (�− 1)-residual intersection by tensoring with a poly-

nomial ring T in (� − 1)
(
n
2

)
new variables, and forming the residual intersection

of I with respect to � − 1 generic linear combinations of the minors. All minimal
primes of this residual intersection have codimension � − 1 according to Theo-
rem 3.1. By [HU2, Theorem 2.4(b)], applied to the punctured spectrum of S,
the ring of the generic (� − 1)-residual intersection is nonsingular in codimension
3. Since the characteristic is 0, one sees as in the second half of the proof of
Theorem 2.2 that the fiber over a general rational closed point of Spec T is also
nonsingular in codimension 3. This fiber, which is a domain in codimension 3, sur-
jects onto R = S/ ((a1, . . . , a�−1) : I), where a1, . . . , a�−1 are linear combinations
of the minors corresponding to the general rational closed point of SpecT . As the
codimensions of these two rings are the same, namely � − 1, and R is equidimen-
sional, the map is an isomorphism locally in codimension 3 in SpecR. Hence R is
also nonsingular in codimension 3, and since R has dimension 4, its singularity is
isolated.
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(2) Let a ∈ I be a general quadric. By Theorem 3.1 the element a is a non-
zerodivisor on R. The ideal IR has analytic spread at most 1, and as IR contains
a non-zerodivisor it has analytic spread exactly 1. Since a1, . . . , a�−1 are general,
[SH, Theorem 8.6.6] shows that the reduction number of IR is at most r = r(I).
Thus if ρ ≥ r, then aρ−r : (IR)r(2r) → (IR)ρ(2ρ) is a surjection by the same
reference, hence an isomorphism, and so M = (IR)r(2r).
(3) Let Mj,i := Ij/JiI

j−1(2j), which is generated in degree 0. We will show that
M ∼= Mr,�−1

∼= Mρ,�−1 for all ρ ≥ r. Moreover, we will show that Mr+1,�−1
∼=

ωR(4). For this we must estimate the depth of Mr,�−1, and for this in turn we first
prove that certain syzygies of Mj,i have low degree.

Lemma 3.5. We adopt the notation of the proof above. If 1 ≤ j ≤ r and 0 ≤ i ≤
n+ j−1, then depthMj,i ≥ 4 and the m-th free module in a minimal graded S-free
resolution of Mj,i is generated in degree m for all m > i.

Proof. Note that if n ≤ 3 then r = 0, so the statement is vacuous. We thus assume
n ≥ 4.

We first consider the case j = 1. Set g := codim I = n − 1. We must treat
the cases with i ≤ n = g + 1. For i ≤ g the ideal Ji is a complete intersection
of codimension i. Since S/I is Cohen-Macaulay, the link S/(Jg : I) is also Cohen-
Macaulay. Thus by [U, Proposition 1.7(b)], the depth of S/Jg+1 is at least dimS−
g − 1 = n. In each of these cases the length of the minimal graded free resolution
of Ji(2) is at most i − 1. On the other hand, the minimal graded free resolution

of I(2) has length n− 2 and is linear. Thus the long exact sequence in TorS• (k,−)
proves both statements of the lemma for M1,i = (I/Ji)(2).

We now do induction on i, assuming that j ≥ 2.
If i = 0, then Mj,i = Ij(2j). By [ABW, Theorem 5.4 and the beginning of its

proof] the minimal graded free resolution of Ij is linear and of length at most 2n−4
for every j, as required.

We now suppose i > 0. Consider the sequence

0 → Mj−1,i−1
α−→ Mj,i−1 −→ Mj,i → 0 ,

where α is multiplication by ai. It follows from the definitions that the sequence is
right exact. We will show that it is exact.

Since I is a complete intersection on the punctured spectrum, [U, Lemma 2.7(a)]
with s := �− 1 shows that the left-hand map in this sequence is a monomorphism
locally on the punctured spectrum because r ≤ 2n− 4− (n− 1) + 1. By induction
Mj−1,i−1 has positive depth, so the sequence is also left exact as claimed.

Let α̃ : F• → G• be the map of minimal graded free resolutions induced by α.
The minimal graded free resolution H• of Mj,i is a direct summand of the mapping
cone of α̃. Hence it follows by induction that Hm is generated in degree m for all
m > i.

Finally, we must show that the length of H• is at most 2n− 4. By the induction
hypothesis, the length is at most 2n − 3. Further, H2n−3 is a direct summand of
F2n−4. Moreover, F2n−4 is generated in degree 2n−4 because 2n−4 = n+ r−1 ≥
n+j−1 > i−1. Thus H2n−3 is generated in degree 2n−4. Since H• is the minimal
graded free resolution of a module generated in degree zero, it follows that H2n−3

is in fact 0, as required. �
Continuing with the proof of part (3), we have a natural surjection of R-modules

π : Mr,�−1 = (Ir/JIr−1)(2r) � (IR)r(2r) = M . Recall that J : I is a geometric
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(�− 1)-residual intersection. Moreover, on the punctured spectrum I is a complete
intersection, hence by [U, Lemma 2.7(c)] with s := �−1, the kernel of π is 0 locally
on the punctured spectrum, again because r ≤ 2n− 4− (n− 1) + 1. On the other
hand, Mr,�−1 has depth ≥ 1 by Lemma 3.5, so the kernel is 0 and we see that π is
an isomorphism.

Let a ∈ I be a general quadric, and consider the diagram

Mr,�−1 (IR)r(2r)

Mρ,�−1 (IR)ρ(2ρ)

∼=
π

aρ−r aρ−r

with ρ ≥ r. By item (2) the right-hand vertical map is an isomorphism. It follows
that the left-hand vertical map is a monomorphism. For ρ ≥ r = r(I) we have
again by [SH, Theorem 8.6.6] that

Iρ = (J, a)ρ−rIr = JIρ−1 + aρ−rIr,

so the left-hand vertical map is also a surjection. Thus all the maps in the square
are isomorphisms, so M ∼= Mr,�−1

∼= Mρ,�−1.
By Theorem 3.1 none of the associated primes of Ji : I contains I for i ≤ �− 1.

It follows that the inclusion

Ji : I ⊂ (Ji−1 : I, ai) : I

is an equality, since, after localizing at any associated prime P of Ji : I, both ideals
become equal to (Ji)P .

Again by Theorem 3.1 the left-hand side, and thus also the right-hand side, has
codimension exactly i. This verifies the hypothesis of [EU, Theorem 4.1], and thus
there is a natural homogeneous map

μ :
(
I(�−1)−g+1/J�−1I

(�−1)−g
)
(2(�− 1)− 2n) −→ ωS/(J�−1:I) = ωR

that is an isomorphism on the punctured spectrum since I is locally a complete
intersection there. (Though [EU, Theorem 4.1] was proven in the local case, the
twists can be recovered from the proof.)

We have �− 1− g + 1 = n− 2 = r + 1 and 2(�− 1)− 2n = 2(r + 1)− 4, so the
source of μ is Mr+1,�−1(−4) ∼= Mr,�−1(−4) ∼= M(−4). Since this module has depth
≥ 2 by Lemma 3.5, it follows that μ is an isomorphism, proving (3).
(4) We next prove that the linear prime ideals described in (4) contain J : I. A
point z on the Grassmannian corresponds to a 2× n matrix of rank 2, which, after
coordinate transformation, may be taken to be(

0 . . . 0 1 0
0 . . . 0 0 1

)
.

The Plücker coordinates of z are then

pμ,ν =

{
1 if (μ, ν) = (n− 1, n)

0 otherwise .

We may write the ai in the form
∑

λi
μ,νpμ,ν . To say the point z is on the linear

section defined by the ai means that the coefficients λi
n−1,n are all 0. Thus the ai

are in the ideal L := (x1, . . . , xn−2, y1, . . . , yn−2), which is the prime corresponding
to z. Finally, this implies that J : I ⊂ L because I �⊂ L. In particular this shows
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that the multiplicity of R is at least the degree of the Grassmannian, which is
1

n−1

(
2(n−2)
n−2

)
.

The degree 2r component of the graded module (IR)r is a homomorphic image
of the degree r component of the standard graded k-algebra k[I2]/(a1, . . . , a2n−4).
The ai are general linear forms in k[I2], the coordinate ring of the Grassmannian in
the Plücker embedding. Because this ring is Cohen-Macaulay of dimension 2n− 3,
the ring k[I2]/(a1, . . . , a2n−4) is a one-dimensional Cohen-Macaulay ring of multi-
plicity equal to the degree of the Grassmannian, and thus the minimal number of
generators of (IR)r is bounded by the degree of the Grassmannian. On the other
hand, by Theorem 2.1(2), the R-module M = (IR)r(2r) is an Ulrich module of
rank 1, which shows that the minimal number of generators of (IR)r is equal to
the multiplicity of R.

We deduce that the multiplicity of R is equal to the number of linear minimal
primes as above. Since R is unmixed of codimension 2n− 4, this shows that J : I
is the intersection of these linear primes, proving (4). �

4. Determinantal ideals

Theorem 3.7 of Bruns, Conca and Varbaro [BCV] gives a large family of de-
terminantal ideals whose powers have linear resolutions, reproduced in part (2) of
Theorem 4.1.

Theorem 4.1. Suppose that A is an m×n matrix of linear forms in a polynomial
ring over a field, with m ≤ n, and suppose that the entries of A generate a vector
space of dimension c. Let I be the ideal of m×m minors of A. If either

(1) codim I = c, or
(2) codim I = n−m+ 1 and for 2 ≤ k ≤ m− 1 the ideal of k× k minors of A

has codimension ≥ min{(m− k + 1)(n−m) + 1, c},
then every power of I has a linear resolution.

Since the powers of the ideal of the Veronese surface also have linear resolutions
([BCV, Proposition 3.12]), the powers of the ideal of every geometrically integral
scheme of minimal degree have linear resolutions.

It seems plausible that if I is the ideal of maximal minors of a matrix of linear
forms and I itself has linear presentation (respectively, linear resolution), then
all its powers do too. In the case m = 2, the condition for I itself to have linear
presentation or resolution is known in terms of the Kronecker classification of linear
2×n matrices; see [CJ] and [ZN]. In fact, the condition that high powers have linear
resolution appears to be more general still: for example, let I be the ideal of 2× 2
minors of the matrix (

0 x1 · · · x5 | y0 y1 y2
x1 · · · x5 0 | y1 y2 y3

)
.

According to Macaulay2 [M2], the Betti tables of the first 3 powers of I (in
characteristic 101) are:

3: . . 3 17 40 50 35 13 2

4: 414 2542 7124 11752 12385 8494 3688 924 102

5: . . . . 2 10 20 20 10 2

6: 2544 17028 50967 88676 97776 69804 31458 8172 936

and the 4th power also has linear resolution, suggesting that higher powers will too.
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Proof of Theorem 4.1. Suppose first that codim I = c, so that in particular c ≤
n − m + 1. We may harmlessly assume that the entries of A span the space of
all linear forms and that the ground field is infinite. We may write the ambient
polynomial ring S as T/J where T is a polynomial ring in mn variables in such
a way that A is the specialization of a generic matrix B. For a general choice of
intermediate specialization T ′ of dimension n−m+ 1 with

T � T ′ � S ,

the ideal ofm×mminors I ′ of the specialization B′ of B to T ′ will have codimension
n − m + 1. It follows that the minimal resolution of I ′ is the Eagon-Northcott
complex, and thus the

(
n
m

)
minors of B′ are linearly independent. Since the vector

space dimension of the degree m component of T ′ is also
(
n
m

)
, the ideal I ′ is the

m-th power of the maximal homogeneous ideal of T ′. Specializing further to S we
see that I is the m-th power of the maximal homogeneous ideal.

The sufficiency of (2) is [BCV, Theorem 3.7]. �

Generic matrices. The analytic spread and reduction number of an ideal of maxi-
mal minors of a generic matrix are known; for the reader’s convenience we reproduce
the result.

Proposition 4.2. Let X be the generic m × n matrix of variables of the ring
S = k[x1,1, . . . , xm,n], with m ≤ n, and let I = Im(X ) be the ideal of m × m
minors. The analytic spread of I is �(I) = m(n − m) + 1 and, when the ground
field k is infinite and m < n, the reduction number of I is r(I) = �(I)− n.

Proof. Let m ⊂ S be the ideal generated by the entries xi,j of X . The special fiber
ring F(I) := S/m⊕ I/mI ⊕ I2/mI2 · · · of I is the homogeneous coordinate ring of
the Grassmannian G(m,n) in its Plücker embedding. Since G(m,n) is a variety of
dimension m(n−m), the analytic spread of I is �(I) = dimF(I) = m(n−m) + 1.

Now assume that the ground field is infinite. The reduction number r(I) of F(I)
is the maximal degree of a socle element after reducing F(I) modulo a general linear
system of parameters [SH, Theorem 8.6.6]. Because the homogeneous coordinate
ring of the Grassmannian is Cohen-Macaulay, we can relate this to the degree of the
generators of the canonical module. The canonical module of the Grassmannian
G(m,n) for m < n is OG(−n) in the Plücker embedding (see for example [EH,
Proposition 5.25]). Thus modulo a general sequence of �(I) = m(n − m) + 1
linear forms, the socle is in degree �(I) − n, and the reduction number is thus
r(I) = �(I)− n. �

It is interesting to ask when an ideal of maximal minors has an (�− 1)-residual
intersection, so that part (2) of Theorem 2.1 applies. We thank Monte Cooper and
Edward Price for pointing out an error in a previous version of the next proposition,
and providing a correction.

Proposition 4.3. Let X be the generic m × n matrix of variables of the ring
k[x1,1, . . . , xm,n], with m ≤ n, and let I = Im(X ) be the ideal of m × m minors.
Let � = �(I), which is m(n−m) + 1 by Proposition 4.2.

(1) The ideal I satisfies G� if and only if one of the following holds:
• m ≤ 2;
• n ≤ m+ 2;
• n = m+ 3 and m ≤ 5.
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(2) The ideal I satisfies G�−1 if and only if it satisfies G� or
• n = 7 and m = 3;
• n = m+ 3 and m ≤ 6.

(3) I does not have any (� − 1)-residual intersection if one of the following
holds:

• n = m+ 3 and m = 10 or 11 or m ≥ 14;
• n = m+ 4 and m ≥ 6;
• n ≥ m+ 5 and m ≥ 3.

Proof. For every prime P ∈ V (I) one has P ∈ V (It+1(X )) \ V (It(X )) for some t
with 0 ≤ t ≤ m− 1, and the minimal number of generators of IP is exactly

(
n−t
m−t

)
.

Thus the condition Gs holds for I if and only if(
n− t

m− t

)
≤ codim It+1(X ) = (m− t)(n− t)

whenever codim It+1(X ) ≤ s − 1. Given this, the verification of items (1) and (2)
is not difficult.

If I admits an (�−1)-residual intersection, then locally in codimension �−2, the
ideal I can be generated by �− 1 elements. In other words,(

n− t

m− t

)
≤ �− 1 = m(n−m)

whenever codim It+1(X ) = (m − t)(n − t) ≤ � − 2. Again, part (3) follows easily
from this. �

5. Implications and special cases of the conjectures

5.1. Implications of Conjecture 0.3.

Proof of Proposition 0.6. We may assume that k is infinite. Write � = �(I).

(1) The result is trivial if I is a complete intersection, so we assume that it is not. In
this case, � > g by [CN]. Thus � = g+1. It follows that the ideal J : I of Conjecture
0.3 is a link, hence unmixed of codimension g, and the ideal IR ⊂ R := S/(J : I) is
principal. As I is generically a complete intersection, the link is geometric and IR
is generated by a single non-zerodivisor. If (IR)ρ were a maximal Cohen-Macaulay
R-module for some ρ > 0, then R = S/(J : I) is Cohen-Macaulay, hence so is S/I
because the unmixed ideal I is also a link of J : I.
(2) We may assume that I �= 0. Because I is of linear type, � is the minimal
number of generators of I. Let φ be a homogeneous presentation matrix of I with
respect to a general choice of homogeneous generators f1, . . . , f� of I. The ideal
P defining the symmetric algebra of I as a quotient of S′ := k[T1, . . . , T�] ⊗k S is
generated by the entries of the row vector (T1, . . . , T�) · φ.

Let S′′ = k(T1, . . . , T�)⊗k S. Over S′′, the row vector (T1, . . . , T�) · φ is the last
row of a presentation matrix of IS′′ with respect to some homogeneous generators
g1, . . . , g�. Thus PS′′ has the form (g1, . . . , g�−1) : IS

′′. Since f1, . . . , f� were chosen
generally over k, they are general over k(T1, . . . , T�)by [PTUV, Lemma 2.5(a)], and
it follows that g1, . . . , g� are general over k(T1, . . . , T�).

By hypothesis, Sym(I) = R(I), a domain of dimension d + 1. Thus PS′′ is a
geometric (� − 1)-residual intersection of IS′′, and I(S′′/PS′′) is generated by a
non-zerodivisor. By Conjecture 0.3, Iρ(S′′/PS′′) is a maximal Cohen-Macaulay
module over S′′/PS′′ for some ρ > 0. Since this is a principal ideal generated by a
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non-zerodivisor, S′′/PS′′ = Sym(I)⊗S′ S′′ = R(I)⊗S′ S′′ is Cohen-Macaulay, and
it follows that R(I)(x1,...,xd)R(I) is too. �

5.2. Special cases of the conjectures. The next result has been proven with an
additional hypothesis in [H1, Theorem 2.6].

Theorem 5.1. Let S be a local Gorenstein ring and let I ⊂ S be an almost complete
intersection ideal such that S/I is equidimensional. If depth(S/I)P ≥ 1

2 dim(S/I)P
for every P ∈ V (I), then S/I is Cohen-Macaulay.

Proof. We may assume that I is not a complete intersection. Let J ⊂ I be a
complete intersection of the same codimension as I such that I/J is cyclic, and
consider K = J : I. Our assumptions imply that I is unmixed. Therefore I = J : K
and it suffices to prove the Cohen-Macaulayness of S/K.

Notice that ωS/K
∼= I/J ∼= S/K. Thus by [HO, Theorem 1.6] or [H2, Lemma

5.8] it suffices to show that

depth(S/K)P ≥ 1 +
1

2
dim(S/K)P

for every P ∈ V (K) with dim(S/K)P ≥ 2. We may assume that P ∈ V (I)
since otherwise (S/K)P = (S/J)P is Cohen-Macaulay. But then depth(S/I)P ≥
1
2 dim(S/I)P and dim(S/I)P = dim(S/K)P . Now the exact sequence

0 → S/K ∼= I/J −→ S/J −→ S/I → 0

shows that depth(S/K)P ≥ 1 + 1
2 dim(S/K)P , as required. �

Notice that an almost complete intersection ideal I ⊂ S satisfies the assumptions
of Theorem 5.1 if I is unmixed and S/I is almost Cohen-Macaulay, which means
that depthS/I ≥ dimS/I − 1.

Corollary 5.2. If I ⊂ S = k[x1, . . . , xd] is an unmixed monomial almost complete
intersection, then S/I is Cohen-Macaulay.

Proof. The Taylor resolution shows that the projective dimension of the polynomial
ring modulo a monomial ideal is bounded by the minimal number of generators
of the ideal; thus any monomial almost complete intersection is almost Cohen-
Macaulay. �

Corollary 5.3. With hypotheses as in Theorem 5.1, suppose in addition that the
residue field of S is infinite and that I is generically a complete intersection. Let
J be an ideal generated by g := codim I general elements of I, and let K = J : I.
For all ρ the module Iρ(S/K) is an ωs/k-self-dual maximal Cohen-Macaulay S/K-
module. In particular, Conjecture 0.3 is true under these additional hypotheses.

Proof. We may assume that I is not a complete intersection. Thus by [CN] the
analytic spread of I is g + 1, and K is a geometric link of I. By Theorem 5.1,
the ring S/K is Gorenstein, and I(S/K) is generated by a non-zerodivisor. The
conclusion is now immediate. �

When J : I is a (g + 1)-residual intersection, I/J itself has good properties:

Proposition 5.4. Let S be a local Gorenstein ring with infinite residue field and
let I ⊂ S be generically a complete intersection of codimension g such that S/I is
Cohen-Macaulay. Let J � I be generated by g + 1 general elements of I and set
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K = J : I. The module I/J is ωS/K-self-dual and is a Cohen-Macaulay module of
dimension dimS − g − 1 = dimS/K.

Proof. We note that the ideal K = J : I has codimension ≥ g + 1, hence is a
(g+1)-residual intersection of I. Since S/I is Cohen-Macaulay and I is generically
a complete intersection, K has codimension exactly g+1 ([U, Proposition 1.7(a)]).
A result of van Straten and Warmt implies that I/J is ωS/K-self-dual; see Theorem
2.1 of [EU] where Huneke’s simplified proof is given.

Let Jg ⊂ J be the ideal generated by g general elements of J . We obviously have
Jg : J ⊃ Jg : I ⊃ (Jg : J)K. Every associated prime of Jg : I has codimension g,
and hence does not contain K. Thus, Jg : J = Jg : I. Therefore, J/Jg ∼= S/(Jg : I),
which has depth dimS−g. It follows that depthS/J ≥ dimS−g−1, so depth I/J ≥
dimS − g − 1; that is, I/J is a maximal Cohen-Macaulay S/K-module. �
Remark 5.5. If in addition to the hypotheses of Proposition 5.4 the ideal I satisfies
Gg+2, then the module I/J is naturally isomorphic to I(S/K); this follows because
K is a geometric (g+1)-residual intersection of I due to the Gg+2 assumption, and
so J = I ∩K by [U, Proposition 1.7(c)].

Remark 5.6. There are certainly further phenomena to explain in these directions.
For example, let I be the ideal of 2 × 2 minors of the generic 3 × 3 matrix over
a field k of characteristic 0, and let S be the polynomial ring in 9 variables over
k. We have S/I is Gorenstein, codim I = 4, and �(I) = 9 according to [CN] (or
because I is of linear type by [H3, Theorem 2.4]).

For s with codim I = 4 ≤ s ≤ 8 = �(I) − 1, let Ks = Js : I and Rs = S/Ks,
where Js is generated by s general forms of degree 2 in I.

By Brodmann’s inequality [B, (2) Theorem] the rings S/Iρ have depth 0 for
ρ � 0. They have linear resolution for all ρ ≥ 2 according to [R, Theorem 5.1].
The modules IRs are maximal Cohen-Macaulay Rs-modules and:

• depthR4 = 5; so this ring is a Cohen-Macaulay almost complete intersec-
tion;

• depthR5 = 1 and depthR6 = 0;
• R7 and R8 are Gorenstein rings of dimensions 2 and 1, respectively.

The statement about IRs and the statements in the last two bullets are the result
of Macaulay2 computations [M2], though Theorems 2.1(1) and 2.2 already imply
that R8/0 : (IR8)

∞ is Gorenstein.

6. Necessity of the hypotheses

We next give examples showing that the hypotheses in Conjecture 0.3 cannot
simply be dropped. The following examples were discovered and checked using the
program Macaulay2 [M2].

Example 6.1. We first consider the ideal K of a smooth rational quartic curve in
P3
Q as a general link: Let K ′ ⊂ Q[x1, . . . , x4] be the ideal of the smooth rational

quartic curve in P3
Q, and let J ′ ⊂ K ′ be the ideal generated by two general cubic

forms in K ′. Let I ′ = J ′ : K ′, which is the ideal of a smooth genus 1 quintic curve
in P3

Q. It turns out that I
′ is minimally generated by 5 cubic forms. If a is a general

cubic in I ′ and I := (J ′, a), then I is minimally generated by 3 forms of degree
3 and is a complete intersection locally in codimension 2, and �(I) = 3 by [CN].
Finally, let J be the ideal generated by two general cubics in I.
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The ideal K := J : I is again the ideal of a smooth rational quartic, and thus
neither R := S/K nor any power of the principal ideal IR is Cohen-Macaulay.

Here all the assumptions of Conjecture 0.3 are satisfied except that I is not
unmixed. Note that IR is not unmixed either.

Example 6.2. Let k be an infinite field, and let X ⊂ Pd−1
k be an abelian surface

embedded by a complete linear series of high degree. Let S = k[x1, . . . , xd] be

the homogeneous coordinate ring of Pd−1
k , and let IX be the homogeneous ideal of

X. The canonical module ω of S/IX is isomorphic to S/IX as a graded module,
and S/IX is not Cohen-Macaulay because H1(OX) �= 0. Let I be a homogeneous
geometric link of IX , so that I is an unmixed but not Cohen-Macaulay almost
complete intersection that is generically a complete intersection. Again �(I) =
1 + codim I by [CN]

Let K be any homogeneous link of I with respect to a subset of a system of
homogeneous minimal generators, chosen sufficiently generally. Set R = S/K.
Since I is an almost complete intersection, the ideal IR is generated by a single
non-zerodivisor. The canonical module of R is isomorphic to IR, up to shift – that
is, R is a quasi-Gorenstein ring.

Since IR is generated by a non-zerodivisor and R is not Cohen-Macaulay, no
power of IR can be a Cohen-Macaulay module (though all powers of IR are ωR-
self-dual up to a shift).

Here all the assumptions of Conjecture 0.3 are satisfied except possibly that I is
not generated in a single degree.

Now specialize to the case where X is the Segre embedding of the product of
two smooth cubic curves in P2

Q. In fact I is not generated in a single degree.

Example 6.3. Let S = Q[x1, . . . , x7] and let

I = (x1x4x
4
7, x5x

2
6x

3
7, x1x4x

2
5x

2
6, x

2
1x3x4x5x6).

The ideal I has codimension 2 and analytic spread 4. If J is generated by 3 general
forms of degree 6 in I, then K := J : I is a 3-residual intersection. Set R = S/K.
Because IR is principal but not nilpotent by Proposition 1.2, the same proposition
shows that the high powers of IR are isomorphic, up to a shift, to S/(J : I∞),
which is not Cohen-Macaulay. It is interesting to note that R is Cohen-Macaulay.

Here all the assumptions of Conjecture 0.3 are satisfied except that I has em-
bedded components and K is not a geometric residual intersection of I.

The following examples show that none of the hypotheses listed in Conjecture 0.4
and Question 0.5 can simply be dropped.

Example 6.4. Let H ⊂ Q[x1, x2, x3] be the ideal of maximal minors of the matrix⎛⎜⎜⎝
x2
1 x2

1 x2
2x3

x2
2 x2

2 x1x2x3

x2
2 x2

3 x1x2x3

x2
3 0 x3

1

⎞⎟⎟⎠ .

Let R be the ring defined by the link of H with respect to the minors deleting the
first and second rows. The ring R is Cohen-Macaulay and generically a complete
intersection of dimension 1. The canonical ideal I is a fractional ideal generated in a
single degree, but no power of I is ωR-self-dual up to a shift. (Note that because R
is 1-dimensional only powers up to the reduction number of I need to be checked.)
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Here all the assumptions of Conjecture 0.4 are satisfied except that R is not
reduced.

Example 6.5. Let R be the homogeneous coordinate ring of 11 points in P2
Q, 6 of

which are general and 5 are on a line. The ring R is reduced and 1-dimensional,
but the canonical ideal I has no ωR-self-dual power up to a shift. Here all the
assumptions of Conjecture 0.4 are satisfied except that I is not equigenerated.

In this case the fractional ideal I is generated in degrees −3 and −2. If we take
I ′ to be the truncation of I in degree −2, then the square of I ′ is ωR-self-dual up
to a shift, as is every higher power, giving a positive answer for Question 0.5 in this
case.

Example 6.6. Let R be the homogeneous coordinate ring of 5 points in P2
Q, of

which 3 lie on one line and 3 on another line (the point of intersection is one of the
5 points):

[1 : 0 : 0], [0 : 1 : 0], [1 : 1 : 0], [1 : 1 : 1], [0 : 0 : 1].

The ideal
I = (x2

1 + x2
2 + x2

3, x2x3)R

is equigenerated, but has no ωR-self-dual power up to a shift.
Here all the assumptions of Question 0.5 are satisfied except that I and the

canonical ideal have no power in common up to a shift.
Curiously, the minimal graded R-free resolutions of I and a shift of the canonical

ideal of R have the same graded betti numbers for at least 10 steps. However, I and
I2 are both generated by 2 elements, whereas the square and cube of the canonical
ideal require 3 generators.

Example 6.7. Let S = Q[x1, . . . , x7] and let

I = (x3x5x
4
7, x2

2x
2
6x

2
7, x2x3x4x5x

2
6, x1x2x3x4x5x6).

The codimension of I is 2, its analytic spread is 4, and I satisfies G4.
If J is generated by 3 general forms of degree 6 in I, then K := J : I is a

geometric 3-residual intersection, necessarily of codimension 3 by [M, Theorem 4.1]
as 3 < 4 = �(I). The ring R := S/K is Cohen-Macaulay, hence reduced by
Theorem 2.2, but R is not Gorenstein.

Since IR is principal, generated by a non-zerodivisor, no power of IR can be
ωR-self-dual up to a shift.

Here, as in Example 6.6, all the assumptions of Question 0.5 are satisfied except
that IR and the canonical ideal of R have no power in common up to a shift.
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