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RESIDUAL INTERSECTIONS AND LINEAR POWERS

DAVID EISENBUD, CRAIG HUNEKE, AND BERND ULRICH

ABSTRACT. If I is an ideal in a Gorenstein ring S, and S/I is Cohen-Macaulay,
then the same is true for any linked ideal I’; but such statements hold for
residual intersections of higher codimension only under restrictive hypotheses,
not satisfied even by ideals as simple as the ideal L,, of minors of a generic
2 X n matrix when n > 3.

In this paper we initiate the study of a different sort of Cohen-Macaulay
property that holds for certain general residual intersections of the maximal
(interesting) codimension, one less than the analytic spread of I. For example,
suppose that K is the residual intersection of L, by 2n — 4 general quadratic
forms in L. In this situation we analyze S/K and show that I"~3(S/K) is
a self-dual maximal Cohen-Macaulay S/K-module with linear free resolution
over S.

The technical heart of the paper is a result about ideals of analytic spread
1 whose high powers are linearly presented.

INTRODUCTION

Let S be a Noetherian ring, and let I C S be an ideal of codimension g. Let
J = (a1, ...,as) be an ideal generated by s elements in I, and consider the residual
ideal K := J : I. If codim K > s then K (or S/K) is said to be the s-residual
intersection of I with respect to J, and the residual intersection is called geometric
if, in addition, codim(I + K) > s.

Under strong hypotheses the residual intersection R := S/K is Cohen-Macaulay
and, up to shifts, the canonical module wg of R is isomorphic to I*"9t'R and I’R
is wp-dual to I*79T'7IR for 0 < j < s — g+ 1 (see [EU] for a summary of the
situation). For example, these conclusions are true when I is the ideal of maximal
minors of a sufficiently general (n — 1) X n matrix.

However, much of this fails even when I is generated by the maximal minors of a
generic 2 X n matrix with n > 4. The main contribution of this paper is to construct
a natural rank 1, self-dual, maximal Cohen-Macaulay module over certain residual
intersections of such ideals and many others. The following special case of our main
result, Theorem 2.1, will convey the flavor:

Theorem 0.1. Let S be a standard graded polynomial ring over a field of charac-
teristic 0, let I C S be a nonzero homogeneous ideal generated in a single degree §
with analytic spread £, and let J C I be generated by £—1 general elements of degree
0. Suppose that J : I is an (€ — 1)-residual intersection of I, and set R = S/(J : I).
If all sufficiently high powers of I are linearly presented then, for all p >0, (IR)?
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is a maximal Cohen-Macaulay R-module with linear resolution as an S-module, and
18, up to shift, wg-self-dual.

The restriction to (¢ — 1)-residual intersections is natural because in that case
IR has analytic spread 1, so all high powers are isomorphic. Thus it makes sense
to speak of their asymptotic structure.

The idea of the proof of Theorem 0.1 is to reduce to the case of analytic spread
1, and then use the fact that (IR)?, for large p, can be given the structure of
a commutative algebra. The key point is to show that the condition of linear
presentation is preserved in the reduction.

In Corollary 2.7 we show that if I C S is any homogeneous ideal generated in
degree < §, and J C I is generated by dim .S — 1 sequentially general elements
of degree t > §, then for p > 0 the S-module (I>,)”(S/(J : I)) is perfect of
codimension dim S — 1, and has linear, symmetric minimal free resolution.

Theorem 0.1 applies, in particular, to the ideal of maximal minors of a generic
2 x n matrix, and more can be said in that case, as in Section 3:

Theorem 0.2. Let S = k[z1,...,Zn,Y1,---,Yn] be a polynomial ring over a field
k of characteristic 0. Suppose that I C S is the ideal of 2 x 2 minors of the generic

matriz
I . Ip
Yi oo Yn)

The ideal I has analytic spread { = 2n — 3.

Let J be an ideal generated by {—1 general quadrics in I. The ring R := S/(J : I)
is unmized of codimension 2n — 4, with isolated singularity. If k is algebraically
closed, then J : I is the intersection of ﬁ(%::f)) linear prime ideals.

The canonical module wg is isomorphic to (IR)"~3(2n — 10). Furthermore, for
all p > n — 3, the module (IR)* is isomorphic up to shift to wr, and is a mazimal
Cohen-Macaulay R-module that has a linear resolution as an S-module and is wg-
self-dual up to shift.

Examples suggest that part of the conclusion of Theorem 0.1 holds much more
generally:

Conjecture 0.3. Let S be a standard graded polynomial ring over an infinite field,
let I C S be a nonzero homogeneous ideal generated in a single degree & with
analytic spread ¢, and let J C I be generated by ¢ — 1 general elements of degree
0. Set R=S/(J :I). If I is unmized and J : I is a geometric (£ — 1)-residual
intersection of I, then (IR)? is a mazimal Cohen-Macaulay R-module for all p > 0.

Further examples suggest that Conjecture 0.3 might hold without the assumption
that R is obtained as a residual intersection. In addition, the self-duality seems to
hold in more general circumstances:

Conjecture 0.4. Let R be a standard graded algebra over a field. Assume that
R is reduced and equidimensional, and that wg is generated in a single degree. If
wr has analytic spread 1 (in the sense that a homogeneous ideal isomorphic to a
shift of wg has analytic spread 1), then some power of wgr (as a fractional ideal) is
wr-self-dual up to a shift.

Examples we have seen also support another version:



RESIDUAL INTERSECTIONS AND LINEAR POWERS 1335

Question 0.5. Let R be a standard graded ring over a field, and let I C R be a
homogeneous ideal of positive codimension. Suppose that:

(1) Risreduced and the truncation I’ of I in the degree of the highest generator
of I has analytic spread 1;
(2) Some power of T is isomorphic to a shift of a power of wg.

Are the high powers of I’ always wg-self-dual up to a shift?

We shall see in Section 6 that none of the hypotheses can be dropped. Conjec-
ture 0.3 has surprising consequences:

Proposition 0.6. Suppose that S = k[x1,...,x4] is a standard graded polynomial
ring over an infinite field, and I C S is an ideal generated by forms of a single
degree. If Congecture 0.3 is true then:

(1) Suppose that I is generically a complete intersection of codimension g gen-
erated by g + 1 elements. If I is unmized, then S/I is Cohen-Macaulay.

(2) If I C S is an unmized ideal of linear type (that is, the Rees algebra R(I)
of I is equal to the symmetric algebra of I), then

RU) (@1,eza)R(I)
is Cohen-Macaulay.

The assertion of item (1) is true (independent of Conjecture 0.3) both when
I has codimension 2 [EG, Theorem 2.1], and also when S/I is locally of depth
> 2 dim(S/I)p at every prime P containing / (Theorem 5.1 below). In Section 5
we prove Proposition 0.6, and note special cases where the conjectures are verified.

1. THE MODULE OF INTEREST

The analytic spread of an ideal plays an important role in this theory. If R is a
positively graded algebra over a field k, with maximal homogeneous ideal m, and
I C R is an ideal generated by forms of a single degree ¢, then the analytic spread
may be defined as:

((I) := dimk[I5] = dim(k @ I/mI @& I?/mI* & - - -).

Assuming that k is infinite, ¢(T) is the smallest number of generators of a homoge-
neous ideal over which I is integral, and such an ideal may be taken to be the ideal
generated by ¢(I) general forms in I of degree §. The reduction number r(I) of I is
the smallest integer 7 > 0 so that "™ = al” for some homogeneous £(I)-generated
ideal a.

If s < £(I) and K := I : J is an s-residual intersection of I with respect to
a homogeneous ideal J generated by s elements, so that codim K > s, then [
cannot be integral over J, so if R is equidimensional then, by [M, Theorem 4.1],
codim K = s. However, this may not be the case when s > ¢(I).

Now assume that k is infinite. When s < £(I) and J is generated by s general
forms of degree § in I, Proposition 1.2 implies that the modules I?(S/K) are
nonzero. These, for p > 0 and s = £(I) — 1, are the modules that are of interest to
us.

Proposition-Definition 1.1. Suppose that R is a positively graded algebra over
an infinite field k, that I C R is generated by forms of a single degree ¢, and that
T has analytic spread < 1. Let R= R/(0: I*°) and I = IR.
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(1) For p > 0 the module I?(pd) is, up to homogeneous isomorphism, indepen-
dent of p and I” maps isomorphically to T”. 1f I contains a non-zerodivisor
of R, the latter is true for all p > 0.

Let M := M (I) be the stable value of I?(pd).

(2) E:=Endr(M) = M as graded R-modules.

(3) Let a € I be a general homogeneous element of degree 6. Write I and @ for
the images of I and a in R. The element @ is a non-zerodivisor on R and
as a graded ring,

E=R[aT) =a 1" for p> 0,

which is the coordinate ring of the blowup of R along 1.
(4) If R is reduced away from V(I), then

R = Rica/(0: (IRed)™®) = R/(V0 : I®)
is reduced.

Proof. First note that for a as in item (3), the element @ is a non-zerodivisor on R
as I has positive grade.

(1) Let € be an integer so large that 0 : I = 0 : I°. By the Artin-Rees Lemma,
IPN(0:5 I€) C I€(0 :5 I€) = 0 for large p. Thus I” maps isomorphically to 1"

Because I has analytic spread < 1, the element @ generates a reduction of I.
Thus, since a is general, the multiplication map

a:1°(p0) = T"" ((p +1)9)
is surjective for p > r(I), and since @ is a non-zerodivisor on R the map is injective
as well. This proves that M is independent of p > 0.

If a is a non-zerodivisor on R, then multiplication by @ on R is a monomorphism,
and decreasing induction on p shows that I” maps isomorphically to 1’ for p=0.
(2) We have Endg(M) = Endg(M). Writing @ for the total ring of quotients of R
and taking p > 0, we have

I'=aT .qa*Roa'T :q1T" > T
because @R is a reduction of I. Thus
T —aT o T.
Further a?T’ :o T" = Endﬁ(fp)(— pd), proving the assertion.
(3) Because @R is a principal reduction of I, the blowup has only one affine chart,
R[a~'I]. Further a'T C a T C .-+, and this sequence of fractional ideals
stabilizes when @I’ = T' . Thus for p > 0 we have

Ra ‘TN =a*T"=1":q1"=E.
(4) If R is reduced away from V(I), then R is reduced locally at each of its asso-
ciated primes, hence reduced. (I

The next result provides a different description of (IR)” in a general setting:

Proposition 1.2. Let S be a Noetherian algebra over an infinite field k, and let
I be an ideal of S. Let J be an ideal generated by a sequence of general k-linear
combinations of generators of I. Let R=S/(J: 1) and R=S/(J: I*).
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The natural surjection
I°)JI1°~ — (IR)"
is an isomorphism for p > 0.

Proof. Let € be an integer so large that H := J : I = J : I°. For p > 0 the
Artin-Rees Lemma gives I N H C I°H C J. Furthermore, the generators of J
are a superficial sequence for I, so [SH, Lemma 8.5.11] gives I* N J = JI?~!. Thus
I"NH = JIP~! as required. O

Suppose that S = k[z1,...,24] is a positively graded polynomial ring over an
infinite field k, and let I be an ideal generated by forms of a single degree §. If
the analytic spread of I is ¢ and J is generated by ¢ — 1 general forms of degree §
then, setting R = S/(J : I), the ideal IR has analytic spread < 1, so we may apply
Proposition-Definition 1.1. In this case the module M = M(IR) can be expressed
as (I?/JIP~1)(pd), as we see from Proposition 1.2.

2. IDEALS WHOSE POWERS HAVE LINEAR PRESENTATION
The following is our main general result.

Theorem 2.1. Let S be a standard graded polynomial ring over an infinite field k.
Let I C S be a nonzero ideal generated by forms of a single degree 6. Let € := £(I)
be the analytic spread of I. Let J C I be generated by ¢ — 1 general homogeneous
elements of degree 6 in I. Set

R=S/(J:I), R=S/(J:I°), I=1IR.

Leta € I be a general form of degree § and let M = M(IR) be as in Proposition-
Definition 1.1.

If R is reduced away from V (I) and all sufficiently high powers of I are linearly
presented, then

(1) R is equidimensional of dimension dimS — ¢+ 1, M is a mazimal Cohen-
Macaulay R-module and an Ulrich module, and M is wg-self-dual up to a
shift.

(2) dim R = dim R if and only if J : I is an (¢ — 1)-residual intersection of I,
that is, codim(J : I) > €—1. In this case, M is a mazimal Cohen-Macaulay
R-module and an Ulrich module, and M is wr-self-dual up to a shift.

(3) As a graded R-module, Endr(M) = M = (IR)?(pd) = I"(pé) for p > 0.
As a graded ring, Endg (M) is isomorphic to the blow-up

R :=Rla 'T]

of R along T and is regular. In particular, R is the normalization of R, and
the conductor of R is Ra’ g 1’ for p> 0.

We postpone the proof of Theorem 2.1 until the end of this section.

If the characteristic of k is zero and the forms generating J are sequentially
general elements of I, then R is automatically reduced away from V' (I) by Bertini’s
Theorem ([F, (4.8) Korollar]). We provide a direct proof of a slightly stronger result
that does not require sequentially general elements:

Theorem 2.2. Let S be a finitely generated algebra over a field k of characteristic
0, let I C S be an ideal, and assume that S is regular away from V(I). Let J C I



1338 DAVID EISENBUD, CRAIG HUNEKE, AND BERND ULRICH

be generated by s gemeral k-linear combinations of a set of generators of I. Then
locally away from V (I), the ring S/J is reqular of codimension s.

Proof. Write I = (f1,..., fn). Replacing S by any of its localizations Sy, we may
assume that S is regular, and passing to any of the connected components of Spec .S
we further suppose that S is a domain, say of dimension d.

Let T be the polynomial ring in sn new variables, and let JcS:=T ® S be
the ideal generated by the s generic linear combinations of the f; using the new
variables as coefficients. Set R := S/ J. If X is a rational closed point in A7" with
coordinate ring k()), we set Ry = k(\) @7 R. We must show that for general A,
the ring Ry is regular of codimension s locally away from V(IR}).

Let K be the quotient field of T and let R := K ®p R. Tt is easy to see that
locally away from V(IRg) the ring Rk is regular of codimension s. Thus, since
K is a field of characteristic 0, the module Qg (Rx) = K @7 Qp(R) is free of rank
d — s locally away from V(IRk). It follows that for some ¢ the ideal (/Rk)" is
contained in Fitty_ (K ®1 QT(ﬁ) Hence for general A\ we have

(IR))! C Fittg—s (k(\) @1 Qr(R)) = Fitta_(Q(Ry)).

This implies that locally away from V(IR)) the module Qf(Ry) is generated by
d— s elements. Since locally dim Ry > d— s, we see that R) is regular of dimension
exactly d — s locally away from V (IR)). |

We say that an ideal I satisfies G if Ip is generated by at most codim P elements
for all primes P of codimension < s containing I.

Remark 2.3. If T satisfies Gy_1, then the ideal J : I in Theorem 2.1 is an (¢ — 1)-
residual intersection.

Theorem 2.4 (Examples). The following classes of ideals in a polynomial ring in
d variables over a field of characteristic 0 all satisfy the hypotheses and conclusions
of parts (1)-(3) of Theorem 2.1:

(1) ideals of m xm minors of m xn matrices A of linear forms such that either
codimI,,(A) =d or

codim I (A) > min{(m — k+ 1)(n —m) + 1,d} for2 <k <m;

(2) strongly stable monomial ideals generated in one degree;

(3) products of ideals of linear forms;

(4) polymatroidal ideals;

(5) monomial ideals generated in degree 2 and having linear resolution;

(6) linearly presented ideals of dimension 0, and ideals of dimension 1 that have
a linear resolution for the first [(d —1)/2] steps;

(7) truncations Is, of homogeneous ideals I at degree t if I is generated in
degrees < t and I has a homogeneous reduction generated in degrees < t—1;

(8) linearly presented ideals of fiber type, such as linearly presented ideals sat-
isfying Gg that are perfect of codimension 2 or Gorenstein of codimension
3.

More precisely, in the first 5 cases every power of the ideal in question actually
has a linear resolution; in cases 6 and 7 all large powers have linear resolution; and
in case 8 all powers are linearly presented.



RESIDUAL INTERSECTIONS AND LINEAR POWERS 1339

Proof. First notice that R is reduced away from V' (I) according to Theorem 2.2.

(1) See Theorem 4.1, the second case of which is [BCV, Theorem 3.7].

(2)—-(4) These assertions are copied from the list in [BCV, p. 42], and were proven
in [CH].

(5) See [HHZ, Theorem 3.2].

(6) See [EHU, Theorem 7.1 and Corollary 7.7].

(7) See Proposition 2.5.

(8) Symmetric powers of linearly presented ideals are always linearly presented; and
fiber type implies that the additional relations on the generators of the powers all
have degree 0. The given classes of ideals are of this type by [MU, Theorem 1.3] and
[KPU, Theorem 9.1], respectively. In the case of perfect codimension 2 ideals, all
the powers have linear resolution by item (1) and the Hilbert-Burch Theorem. O

Proposition 2.5. Suppose that I is a homogeneous ideal in a standard graded
polynomial Ting over a field. Suppose further that I is generated in degrees < & and
that I has a homogeneous reduction generated in degrees < a.

If t > max{d,a + 1}, then the high powers of the truncated ideal I' := I, all
have linear resolution.

Proof. It t > ¢ then (I»;)? = (I”)>y,. Moreover, for large p the regularity of I”
grows as a linear function bounded by ap + b, see [K, Theorem 5].

Thus if t > max{d,a + 1} then I'” = (I”)>, and, for p > 0, I'” has regularity
<tpsince t > a+ 1. O

Remark 2.6. We do not know of an ideal whose high powers have linear presentation
but not linear resolution. Linearly presented ideals of fiber type may provide such
examples.

The following consequence of Theorem 2.1 gives some evidence for a positive
answer to Question 0.5.

Corollary 2.7. Suppose that I is a nonzero homogeneous ideal in a standard graded
polynomial ring S in d variables over an infinite field k. Let t be such that I is
generated in degrees < t. Let J be an ideal generated by d — 1 sequentially general
forms of degree t in I, write R =S/(J : I), and set I' = Is;.

The conclusions of Theorem 2.1 hold if we replace § by t, £ by d, IR by I'R,
I=1IR by I'R, and M(IR) by M(I'R).

In particular, as an S-module, M (I'R) is perfect of grade d— 1, and its minimal
graded free resolution is linear and symmetric.

Proof. We wish to apply Theorem 2.1 to the ideal I’ and the ring R’ := S/(J : I').
First, since I in generated in degrees < t, it follows that £(I’) = d and that all
sufficiently high powers of I’ are linearly presented, see Proposition 2.5.

Next, we show that R’ is reduced away from V(I"). If the characteristic is zero,
this follows from Theorem 2.2. Otherwise, let {x,} be the variables of S and
{fu} be a spanning set of Iy, and apply [FOV, Theorem 3.4.13] to the scheme
Proj S\ V(I') and the generating set {x, f,} of I'. It follows that if a; is a general
k-linear combination of these generators, then S/(ay) is regular away from V(I').
Iterating, we see that R' = S/ ((a1,...,aq-1) : I') is regular away from V(I").

Note that R maps onto R’, whereas J : [® = J : [I'® so R =R := S/(J : I'™).
Thus, applying Theorem 2.1 to the ideal I’ and the ring R’ yields the result. O
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To prove Theorem 2.1 we reduce to the case £ = 1 by factoring out a general
(¢ — 2)-residual intersection and proving that the hypothesis of linearly presented
powers is preserved. We then use the following more general result:

Theorem 2.8. Let S be a standard graded polynomial ring over an infinite field,
let R be a homogeneous factor ring of S, and let I C R be an ideal.
Suppose that:
e [ is generated by forms of a single degree § and has analytic spread 1.
o R is reduced away from V(I).
o All sufficiently high powers of I are linearly presented as S-modules.
Set R=R/(0:1°) and I = IR. Leta € I be a general element of degree &, and
let
R:= R[a '
be the blowup of R along I. Let M := M(I) be as in Proposition-Definition 1.1.
We have:
(1) M is a direct sum of mazimal Cohen-Macaulay modules on the components
of]?i and M has a linear resolution as an S-module.
(2) R is equidimensional if and only if M is a mazimal Cohen-Macaulay module
over R. In this case M is wg-self-dual up to a shift, and an Ulrich module
over R. Furthermore, M is also wg-self-dual if and only if dim R = dim R.
(3) As a graded R-module, Endg(M) = M = I1°(pd) = T"(p0) = R for p > 0.
As a graded ring, Endg(M) = ]Ai;, and this ring is regular. In particular R
is the normalization of R, and the conductor of R is Ra” B 1’ for p> 0.

Part (3) of the theorem includes the assertion that M is a commutative algebra.
Lemma 2.9 enables us to exploit this fact:

Lemma 2.9. Let S be a standard graded polynomial ring over a field k. Suppose
that T is a non-negatively graded S-algebra that is finite, generated in degree 0,
and linearly presented as a module over S. If Ty is reduced, then T is a product of
standard graded polynomial rings over fields containing k.

Proof. The ring Ty is finite over k and hence Artinian. Thus T, decomposes as
a product of fields e; Ty, where the e; are orthogonal idempotents. Since it is a
summand of 7', the S-module e;T is also linearly presented, so it suffices to consider
the case when Ty = K is a field. Let S=K ®p S, and note that T is naturally a
cyclic §—module, generated in degree 0.

We next show that T is linearly presented as an S-module. Let F' be a minimal
homogeneous S-free resolution for 7. Using a homogeneous S-module splitting
S = S™ we see that F is also an S-free resolution, which we call F. Choosing
bases in F and corresponding bases in F', we see that the entries in the matrix
representations of the maps in F' have the same positive degrees as occur in ﬁ, and
thus F' is minimal. Since the initial map of F' is linear by hypothesis, the initial
map of F is linear.

Thus T is a cyclic, linearly presented S-module. Therefore T may be written as

S /m, where m is an ideal generated by linear forms, so T is a polynomial ring over
K. |

Proof of Theorem 2.8. Since £(I) = 1 the ideals I and T are not nilpotent, so /(1) =
1 and the ring R is nonzero. This ring is reduced by Proposition-Definition 1.1(4).
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(3) Note that M is generated in degree 0 as an S-module and is linearly presented
Further, by Proposition-Definition 1.1, M = R is an S- algebra. Since R is re-
duced, Lemma 2.9 shows that R is regular. The rest of part (3) now follows from
Proposition-Definition 1.1.
(1) This follows from (3): We have M = R. Any regular ring is Cohen-Macaulay.
By Lemma 2.9, Ris a product of rings, each of which is obtained from S by
extending the ground field and factoring out linear forms. Such a ring has a linear
resolution as an S-module.
(2) Thering R is the normalization of R. So R is equidimensional if and only if each
component of R has maximal dimension as an R-module. By (1), this condition is
equivalent to the condition that M is a maximal Cohen-Macaulay module over R.
Set d := dim R. If each component of R has maximal dimension as an R-module,
then each such component is a polynomial ring in d variables over a field containing
k by Lemma 2.9. Thus, ertmg wg for the direct sum of the canonical modules of
these components, we have wg = R(—d).

On the other hand, wg = HomR(E, wg). Thus as graded R-modules,
Homz(M, wg) = Homz(M,ws) = Homz(R,wz) = R(—d) = M(—d).

If dim R = dim R, these statements follow for R in place of R, and the converse is
obvious.
The fact that M is Ulrich follows from the linearity statement in (1). O

Lemma 2.10 shows that the linearity hypothesis in Theorem 2.1 is preserved in
the reduction to Theorem 2.8.

Lemma 2.10. Let S be a standard graded polynomial ring over an infinite field, and
let I C S be an ideal generated by forms of degree §. Let ay, ..., a, be homogeneous
elements of I of degree <§+ 1. For 0 <v <mn, set J, = (a1,...,a,) CS.

If the high powers of I have linear presentation, then for all 0 < v <n and all
sufficiently large p the module I°/J,I°~1 has linear presentation as an S-module.

Remark 2.11. If aq, ..., a, are chosen sequentially generally, the same proof, to-
gether with Proposition 1.2, shows that if the high powers of I have linear resolution
then for all 0 < v < n and all sufficiently large p the module IP/J,,IP’1 has linear
resolution as an S-module.

Proof. We do induction on v, the case v = 0 being the hypothesis. We assume the
result for v. For p > 0 and 0 < v < n — 1 the sequences

(1P~ J, 1P72)(=8") 225 12 J, 1P~ = 1P ) J iy 1P~ — 0
are exact, where § < ¢ = dega,+1 < 0 + 1. Using the minimal homogeneous
generators of the middle term I?/J,I°~! we get a possibly non-minimal set of

generators of I1?/J, 11771 having degree pd, with relations of degrees pd + 1 and
(p—1)d + & < pd + 1. This implies that I?/.J,,1I1P~! has linear presentation. [

Proof of Theorem 2.1. Write d = dim S and let aq, ..., ag_1 be the { — 1 general

elements of I that generate J. We apply Theorem 2.8 to the ideal IR C R, and
verify the hypotheses as follows:

o ((IR) =1: In fact /(IR) < 1 because the general elements a4, ..., as_1 are

part of a minimal generating set for a minimal reduction of I. If {(IR) =0
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then (IR)? = 0 for p > 0, and hence Proposition 1.2 shows that I* =
JIP~1 which is impossible since J is generated by fewer than £(I) elements
of I (see also [S, Theorem 4]).

e M is linearly presented as an S-module: By Proposition 1.2, M 22
(Ir)JIP=1)(pd) for p > 0. By Lemma 2.10, this is linearly presented as an
S-module.

We begin by showing that R is equidimensional of dimension d — ¢ + 1:

Since IR is not nilpotent it follows that R # 0. Any minimal prime of the ring
R arises from a minimal prime @ of the ideal K := .J : I that does not contain I,
and we need to show that codim @) = ¢ —1 or, equivalently, codim Kg = £ —1. But
Kq = Jg since I ¢ Q. Finally, the generators %, ..., all’l of Jg form a regular
sequence on Sg, because the general elements aq, ..., ag—; of I are a filter regular
sequence with respect to I and Q 2 I.

Thus codim K¢g = codim Jg = ¢ — 1. Together with item (2) of Theorem 2.8,
this gives the assertion of item (1).

We now prove item (2). We have seen in the previous step that d — £+ 1 =
dim R < dim R. Thus dim R = dim R if and only if codim K > ¢ — 1.

Finally, item (3) of Theorem 2.8 now implies (3). O

3. THE MINORS OF A 2 X n MATRIX OF LINEAR FORMS

Throughout this section we assume n > 3.

We say that an ideal I of a Noetherian ring S is s-residually Ss if, for every ¢ < s
and every i-residual intersection K of I, the ring S/ K satisfies Serre’s condition Sa;
see [CEU] for more information.

Theorem 3.1. Let T be a local Gorenstein ring containing a field of characteristic
0. Suppose that I C S = T|[z11,...,T2,]] is the ideal of 2 x 2 minors of the

generic matrix
<£L’171 . 1’1,n)
x2,1 . T2.n )
Let £ = £(I), which is equal to 2n — 3 by Proposition 4.2. The ideal I is (£ — 2)-
residually So. In particular, if s < £—1 and K is an s-residual intersection of I, then

K is unmized of codimension exactly s. If, in addition, the residual intersection is
geometric, then the image of I in S/K contains a non-zerodivisor.

Proof. Note that I satisfies Ga,. By [RWW, Theorem 4.3], ExtgH*l(S/Ij, S)=0
for2<j<n—-3=({—2)—codimI+1 (this is where we require characteristic 0).
The same vanishing holds trivially for j = 1. By [CEU, Corollary 4.2], this implies
that T is (¢ — 2)-residually Ss.

From [CEU, Proposition 3.1] we know that I is (¢ — 1)-parsimonious. Note that
K is a proper ideal because s is less than the minimal number of generators of I.
Thus we may apply [CEU, Proposition 3.3(a)] and conclude that K is unmixed of
codimension exactly s. If, in addition, K is a geometric residual intersection, then
codim(I + K) > s+ 1, so I is not in any associated prime of K. O

Corollary 3.2. Suppose that I is the ideal of 2 X 2 minors of a 2 X n matriz A
over a local Gorenstein ring T containing a field of characteristic 0, and assume
that codiml =n — 1. If s < 2n — 4 and K is an s-residual intersection of I, then
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every minimal prime of K has codimension exactly s. If, in addition, the residual
intersection is geometric, then I is in no minimal prime of K.

Proof. We may assume that the entries of A are in the maximal ideal of T, since
otherwise [ is a complete intersection and the result follows, for instance, from [HU1,
Theorem 5.1].

Let J C I be an ideal with s generators such that K = J : I. Let T =
Tlx11,. .-, 22n], and let 7 : T — T be the T-algebra map sending ; ; to the (¢, j)
entry A;; of A. Note that the kernel of 7 is generated by the regular sequence
o5 =5 — A j. Let I be the ideal of 2 x 2 minors of the generic 2 X n matrix

<LL‘171 . xl,n)
21 .- T2.n ’
so that 7T(I~) = I. Let J C I be an ideal with s generators such that 71'(.7) =J, and
let K =.J:1.

Since f/ Iis Cohen-Macaulay, and the codimension of Iis equal to that of I, the
2n elements o 1, ..., o, form a regular sequence on f/ I. Tt now follows from

[HU1, Lemma 4.1] that 1/ (K) = /K. Thus
codim K > codim 7r(l~{) = codim K > s,

so K is an s-residual intersection of I. As s < 2n — 4, Theorem 3.1 implies that K
is unmixed of codimension exactly s.

Since codim ﬁ(IN{) > s, it follows that the sequence a1 1, ..., ag ,, is part of a sys-
tem of parameters of T'/K, and thus all minimal primes of (K) have codimension

exactly s.

Using 4/ W(IN( ) = VK again, we see that all minimal primes of K have codimen-
sion exactly s.
The last statement follows immediately. O

Theorem 3.3. Suppose that I is the ideal of 2 X 2 minors of a 2 X n matriz A
of linear forms in a polynomial ring S over a field of characteristic 0, and suppose
that the entries of A span a vector space of dimension c.

If I has codimension min{n — 1, ¢}, then the hypotheses and conclusions of The-
orem 2.1 hold for I, and the ring R in Theorem 2.1 is Rpeq = R/\/(_) In addition,
the equivalent conditions of Theorem 2.1(2) are satisfied.

Proof. Theorem 2.4(1) implies that the hypotheses and conclusions of Theorem 2.1
hold for I.

The ideal I satisfies G, and ¢ := £(I) < ¢. Thus K := J : I is a geometric
(¢ —1)-residual intersection. Hence the equivalent conditions of Theorem 2.1(2) are
satisfied.

If codimI = n — 1, then Corollary 3.2 shows that I is not contained in any
minimal prime of K. On the other hand, if codim/ = ¢ then ¢ = ¢, so K is a
complete intersection of codimension ¢ — 1, and again I is not contained in any
minimal prime of K.

Since R is reduced away from V'(I), it follows in both cases that

R=R/(0:I®)=R/(V0:I®) = R/V0.
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In the case of a generic 2 X n matrix, we can be very explicit.

Theorem 3.4. Let S = k[z1,...,2Zn,Y1,-..,Yn] be a polynomial ring over a field k
of characteristic 0. Suppose that I C S is the ideal of 2 x 2 minors of the generic

matrix
r1 ... ey
Yi oo Yn)

The ideal I has analytic spread £ := {(I) = 2n—3 and reduction number r := r(I) =
n — 3 by Proposition 4.2.

Let J be an ideal generated by ¢ — 1 general quadrics ay, ..., ag—1 in I. Set
R=S/(J:I), R=R/(0:1®), and M = M(IR). In addition to the assertions of
Theorem 2.1 we have:

(1) R has an isolated singularity, and R = R.

(2) If a is a general quadric in I and p > r then (IR)"(2r) LN (IR)*(2p) is
an isomorphism, so M = (IR)"(2r).

(4) If k is algebraically closed, then J : I is the intersection of ﬁ (2(77_722)) lin-
ear prime ideals of codimension 2n — 4. These may be described as follows:
the quadratic forms aq, ..., asn—4q may be regarded as linear forms in k[Is],
which may be identified with the homogeneous coordinate ring of the Grass-
mannian G(2,n) of (n — 2)-dimensional subspaces of k™ = (x1,...,2p).
Since the a; are general, the space cut out by these forms intersects the
Grassmannian in ﬁ(ﬂ,?ff)) reduced points. Fach of these points cor-

responds to a subspace (L1(x),...,Ly—_o(x)), which yields a linear prime

ideal

(La(z), - Lna(@), L1(y), -+, Ln—2(y))

that is a minimal prime of J : I.

Proof. For i < £ — 1 we set J; = (a1,...,a;). Since I satisfies Ga,, the ideal
J; I is a geometric i-residual intersection of I and is unmixed of codimension ¢ by
Theorem 3.1.

(1) By Theorem 3.1 the image of I in R contains a non-zerodivisor. Thus R = R.

We now form the generic (¢ — 1)-residual intersection by tensoring with a poly-
nomial ring T in (¢ — 1)(%) new variables, and forming the residual intersection
of I with respect to £ — 1 generic linear combinations of the minors. All minimal
primes of this residual intersection have codimension ¢ — 1 according to Theo-
rem 3.1. By [HU2, Theorem 2.4(b)], applied to the punctured spectrum of S,
the ring of the generic (¢ — 1)-residual intersection is nonsingular in codimension
3. Since the characteristic is 0, one sees as in the second half of the proof of
Theorem 2.2 that the fiber over a general rational closed point of SpecT is also
nonsingular in codimension 3. This fiber, which is a domain in codimension 3, sur-
jects onto R = S/ ((a1,...,a¢—1) : I), where aq, ..., ag—; are linear combinations
of the minors corresponding to the general rational closed point of SpecT'. As the
codimensions of these two rings are the same, namely ¢ — 1, and R is equidimen-
sional, the map is an isomorphism locally in codimension 3 in SpecR. Hence R is
also nonsingular in codimension 3, and since R has dimension 4, its singularity is
isolated.
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(2) Let a € I be a general quadric. By Theorem 3.1 the element a is a non-
zerodivisor on R. The ideal IR has analytic spread at most 1, and as IR contains
a non-zerodivisor it has analytic spread exactly 1. Since aq, ..., ag_1 are general,
[SH, Theorem 8.6.6] shows that the reduction number of TR is at most r = r(I).
Thus if p > 7, then a*~" : (IR)"(2r) — (IR)?(2p) is a surjection by the same
reference, hence an isomorphism, and so M = (IR)"(2r).

(3) Let M;,; := I7/J;1771(25), which is generated in degree 0. We will show that
M= M,, 1 = M,,_1 for all p > r. Moreover, we will show that M, .1 =
wg(4). For this we must estimate the depth of M, 1, and for this in turn we first
prove that certain syzygies of M, ; have low degree.

Lemma 3.5. We adopt the notation of the proof above. If 1 < j <r and 0 <1 <
n+j—1, then depth M ; > 4 and the m-th free module in a minimal graded S-free
resolution of M ; is generated in degree m for all m > i.

Proof. Note that if n < 3 then r = 0, so the statement is vacuous. We thus assume
n > 4.

We first consider the case j = 1. Set g := codiml = n — 1. We must treat
the cases with « < n = g+ 1. For ¢ < g the ideal J; is a complete intersection
of codimension 4. Since S/I is Cohen-Macaulay, the link S/(J, : I) is also Cohen-
Macaulay. Thus by [U, Proposition 1.7(b)], the depth of S/Jy41 is at least dim S —
g — 1 =n. In each of these cases the length of the minimal graded free resolution
of J;(2) is at most ¢ — 1. On the other hand, the minimal graded free resolution
of I(2) has length n — 2 and is linear. Thus the long exact sequence in Tor? (k, —)
proves both statements of the lemma for M ; = (I/J;)(2).

We now do induction on ¢, assuming that j > 2.

If 4 = 0, then M;; = I7(2j). By [ABW, Theorem 5.4 and the beginning of its
proof] the minimal graded free resolution of I/ is linear and of length at most 2n —4
for every j, as required.

We now suppose ¢ > 0. Consider the sequence

0— Mj,171‘,1 i) Mjﬁifl — Mj,i — 0,
where « is multiplication by a;. It follows from the definitions that the sequence is
right exact. We will show that it is exact.

Since I is a complete intersection on the punctured spectrum, [U, Lemma 2.7(a)]
with s := ¢ — 1 shows that the left-hand map in this sequence is a monomorphism
locally on the punctured spectrum because r < 2n —4 — (n — 1) + 1. By induction
M;_1 ;-1 has positive depth, so the sequence is also left exact as claimed.

Let a : Fy — G4 be the map of minimal graded free resolutions induced by «.
The minimal graded free resolution H, of M ; is a direct summand of the mapping
cone of a. Hence it follows by induction that H,, is generated in degree m for all
m > 1.

Finally, we must show that the length of H, is at most 2n — 4. By the induction
hypothesis, the length is at most 2n — 3. Further, Hs,_3 is a direct summand of
F5,,_4. Moreover, Fy, 4 is generated in degree 2n — 4 because 2n—4 =n+r—1>
n+j—1>i—1. Thus Hs, 3 is generated in degree 2n —4. Since H, is the minimal
graded free resolution of a module generated in degree zero, it follows that Hs, 3
is in fact 0, as required. O

Continuing with the proof of part (3), we have a natural surjection of R-modules
T Mgy =I"/JI""Y)(2r) - (IR)"(2r) = M. Recall that J : I is a geometric
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(¢ — 1)-residual intersection. Moreover, on the punctured spectrum I is a complete
intersection, hence by [U, Lemma 2.7(c)] with s := £ — 1, the kernel of 7 is 0 locally
on the punctured spectrum, again because r < 2n —4 — (n — 1) + 1. On the other
hand, M, ¢—; has depth > 1 by Lemma 3.5, so the kernel is 0 and we see that 7 is
an isomorphism.

Let a € I be a general quadric, and consider the diagram

My —— (IR)"(2r)

ap_rl Jaﬁr

M1 — (IR)”(2p)

with p > r. By item (2) the right-hand vertical map is an isomorphism. It follows
that the left-hand vertical map is a monomorphism. For p > r = r(I) we have
again by [SH, Theorem 8.6.6] that

1P = (Ja)’ " 1" = JI*" ' + a7,

so the left-hand vertical map is also a surjection. Thus all the maps in the square
are isomorphisms, so M = M, ;1 = M, ;1.

By Theorem 3.1 none of the associated primes of J; : I contains I for i < /¢ — 1.
It follows that the inclusion

Ji: I C(Jimy:1,a;): 1

is an equality, since, after localizing at any associated prime P of J; : I, both ideals
become equal to (J;)p.

Again by Theorem 3.1 the left-hand side, and thus also the right-hand side, has
codimension exactly i. This verifies the hypothesis of [EU, Theorem 4.1}, and thus
there is a natural homogeneous map

we (I(é_l)_g+1/sz1I(€_l)_g)(2(5 —1) = 2n) — ws/(s,_,:1) = WR

that is an isomorphism on the punctured spectrum since I is locally a complete
intersection there. (Though [EU, Theorem 4.1] was proven in the local case, the
twists can be recovered from the proof.)

Wehave f —1—g+1=n—-2=r+1and 2({ —1) —2n =2(r + 1) — 4, so the
source of p is My 41 ¢—1(—4) = M, y—1(—4) = M(—4). Since this module has depth
> 2 by Lemma 3.5, it follows that p is an isomorphism, proving (3).

(4) We next prove that the linear prime ideals described in (4) contain J : I. A
point z on the Grassmannian corresponds to a 2 X n matrix of rank 2, which, after
coordinate transformation, may be taken to be

0O ... 001 0
o ... 00 1)°
The Pliicker coordinates of z are then

Puv = 0 otherwise.

We may write the a; in the form Z)\L)l,pu,,,. To say the point z is on the linear
section defined by the a; means that the coefficients )\fkl’n are all 0. Thus the a;
are in the ideal L := (x1,...,Zn—-2,Y1,...,Yn—2), which is the prime corresponding

to z. Finally, this implies that J : I C L because I ¢ L. In particular this shows
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that the multiplicity of R is at least the degree of the Grassmannian, which is
= (0

The degree 2r component of the graded module (IR)" is a homomorphic image
of the degree r component of the standard graded k-algebra k[I2]/(a1,...,a2,—4).
The a; are general linear forms in k[Iz], the coordinate ring of the Grassmannian in
the Pliicker embedding. Because this ring is Cohen-Macaulay of dimension 2n — 3,
the ring k[l2]/(a1,...,a2,—4) is a one-dimensional Cohen-Macaulay ring of multi-
plicity equal to the degree of the Grassmannian, and thus the minimal number of
generators of (IR)" is bounded by the degree of the Grassmannian. On the other
hand, by Theorem 2.1(2), the R-module M = (IR)"(2r) is an Ulrich module of
rank 1, which shows that the minimal number of generators of (IR)" is equal to
the multiplicity of R.

We deduce that the multiplicity of R is equal to the number of linear minimal
primes as above. Since R is unmixed of codimension 2n — 4, this shows that J : I
is the intersection of these linear primes, proving (4). O

4. DETERMINANTAL IDEALS

Theorem 3.7 of Bruns, Conca and Varbaro [BCV] gives a large family of de-
terminantal ideals whose powers have linear resolutions, reproduced in part (2) of
Theorem 4.1.

Theorem 4.1. Suppose that A is an m X n matriz of linear forms in a polynomial
ring over a field, with m < n, and suppose that the entries of A generate a vector
space of dimension c. Let I be the ideal of m x m minors of A. If either
(1) codimI = ¢, or
(2) codimI =n—m+1 and for 2 <k <m —1 the ideal of k X k minors of A
has codimension > min{(m — k+ 1)(n —m) + 1,¢},

then every power of I has a linear resolution.

Since the powers of the ideal of the Veronese surface also have linear resolutions
([BCV, Proposition 3.12]), the powers of the ideal of every geometrically integral
scheme of minimal degree have linear resolutions.

It seems plausible that if I is the ideal of maximal minors of a matrix of linear
forms and I itself has linear presentation (respectively, linear resolution), then
all its powers do too. In the case m = 2, the condition for I itself to have linear
presentation or resolution is known in terms of the Kronecker classification of linear
2 x n matrices; see [CJ] and [ZN]. In fact, the condition that high powers have linear
resolution appears to be more general still: for example, let I be the ideal of 2 x 2

minors of the matrix
0 =1 - x5 | yo w1 ¥
vy x5 0| oy oy2 owyz)’

According to Macaulay2 [M2], the Betti tables of the first 3 powers of I (in
characteristic 101) are:

3: . . 3 17 40 50 35 13 2

4: 414 2542 7124 11752 12385 8494 3688 924 102
5: . . . . 2 10 20 20 10 2

6: 2544 17028 50967 88676 97776 69804 31458 8172 936

and the 4th power also has linear resolution, suggesting that higher powers will too.
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Proof of Theorem 4.1. Suppose first that codimI = ¢, so that in particular ¢ <
n —m + 1. We may harmlessly assume that the entries of A span the space of
all linear forms and that the ground field is infinite. We may write the ambient
polynomial ring S as T/J where T is a polynomial ring in mn variables in such
a way that A is the specialization of a generic matrix B. For a general choice of
intermediate specialization 7" of dimension n — m + 1 with

T—»T -8,

the ideal of m xm minors I’ of the specialization B’ of B to T’ will have codimension
n —m + 1. It follows that the minimal resolution of I’ is the Eagon-Northcott
complex, and thus the (:1) minors of B’ are linearly independent. Since the vector
space dimension of the degree m component of 7" is also (), the ideal I’ is the
m-th power of the maximal homogeneous ideal of T”. Specializing further to S we
see that I is the m-th power of the maximal homogeneous ideal.

The sufficiency of (2) is [BCV, Theorem 3.7]. O

Generic matrices. The analytic spread and reduction number of an ideal of maxi-
mal minors of a generic matrix are known; for the reader’s convenience we reproduce
the result.

Proposition 4.2. Let X' be the generic m X n matriz of variables of the ring
S = klz11,.. ., Tmnl, with m < n, and let I = I,,(X) be the ideal of m x m
minors. The analytic spread of I is £(I) = m(n —m) + 1 and, when the ground
field k is infinite and m < n, the reduction number of I is r(I) = £(I) —n.

Proof. Let m C S be the ideal generated by the entries x; ; of X. The special fiber
ring F(I) := S/m@/mI@I%/mI? ... of I is the homogeneous coordinate ring of
the Grassmannian G(m,n) in its Pliicker embedding. Since G(m,n) is a variety of
dimension m(n — m), the analytic spread of I is ¢(I) = dim F(I) = m(n —m) + 1.

Now assume that the ground field is infinite. The reduction number r(I) of F(I)
is the maximal degree of a socle element after reducing F(I) modulo a general linear
system of parameters [SH, Theorem 8.6.6]. Because the homogeneous coordinate
ring of the Grassmannian is Cohen-Macaulay, we can relate this to the degree of the
generators of the canonical module. The canonical module of the Grassmannian
G(m,n) for m < n is Og(—n) in the Pliicker embedding (see for example [EH,

Proposition 5.25]). Thus modulo a general sequence of ¢(I) = m(n —m) + 1
linear forms, the socle is in degree ¢(I) — n, and the reduction number is thus
r(I)=4(I) —n. O

It is interesting to ask when an ideal of maximal minors has an (¢ — 1)-residual
intersection, so that part (2) of Theorem 2.1 applies. We thank Monte Cooper and
Edward Price for pointing out an error in a previous version of the next proposition,
and providing a correction.

Proposition 4.3. Let X be the generic m X n matriz of variables of the ring
k11, Tmn], with m <n, and let I = I,,(X) be the ideal of m x m minors.
Let £ = (1), which is m(n —m) + 1 by Proposition 4.2.
(1) The ideal I satisfies Gy if and only if one of the following holds:
o m < 2;
e n<m+2;
en=m-+3and m <5.
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(2) The ideal I satisfies Gy—1 if and only if it satisfies Gy or
e n="7and m=3;
en=m+3and m <6.
(3) I does not have any (¢ — 1)-residual intersection if one of the following
holds:
e n=m+3and m =10 or 11 or m > 14;
e n=m-+4 and m > 6;
en>m+5andm> 3.

Proof. For every prime P € V(I) one has P € V(I;11(X)) \ V(I:(X)) for some ¢
with 0 < ¢ <m — 1, and the minimal number of generators of Ip is exactly (:;tt)
Thus the condition G holds for I if and only if

n—t
<codimli41(X)=(m—1t)(n—t
<m—t> < codim Jy41(X) = (m —t)(n —t)
whenever codim I;11(X) < s — 1. Given this, the verification of items (1) and (2)
is not difficult.

If I admits an (¢ — 1)-residual intersection, then locally in codimension ¢ — 2, the
ideal I can be generated by £ — 1 elements. In other words,

(”_i) <l—1=m(n—m)

m —

whenever codim I;11(X) = (m —t)(n —t) < £ — 2. Again, part (3) follows easily
from this. O

5. IMPLICATIONS AND SPECIAL CASES OF THE CONJECTURES
5.1. Implications of Conjecture 0.3.

Proof of Proposition 0.6. We may assume that k is infinite. Write £ = ¢(I).

(1) The result is trivial if I is a complete intersection, so we assume that it is not. In
this case, £ > g by [CN]. Thus ¢ = g+ 1. It follows that the ideal J : I of Conjecture
0.3 is a link, hence unmixed of codimension g, and the ideal IR C R := S/(J : I) is
principal. As I is generically a complete intersection, the link is geometric and IR
is generated by a single non-zerodivisor. If (IR)” were a maximal Cohen-Macaulay
R-module for some p > 0, then R = S/(J : I) is Cohen-Macaulay, hence so is S/I
because the unmixed ideal I is also a link of J : I.

(2) We may assume that I # 0. Because I is of linear type, ¢ is the minimal
number of generators of I. Let ¢ be a homogeneous presentation matrix of I with
respect to a general choice of homogeneous generators fi, ..., fo of I. The ideal
P defining the symmetric algebra of I as a quotient of S’ := k[Ty,...,T;] ® S is
generated by the entries of the row vector (T1,...,Ty) - ¢.

Let 8" = k(Th,...,Ty) ®; S. Over S”, the row vector (171, ...,Ty) - ¢ is the last
row of a presentation matrix of I.S” with respect to some homogeneous generators
g1s---,9¢. Thus PS” has the form (g1,...,9¢—1) : IS”. Since fi, ..., f¢ were chosen
generally over k, they are general over k(T7,...,T;)by [PTUV, Lemma 2.5(a)], and
it follows that g1, ..., g¢ are general over k(T1,...,Ty).

By hypothesis, Sym(I) = R(I), a domain of dimension d 4+ 1. Thus PS” is a
geometric (£ — 1)-residual intersection of IS”, and I(S”/PS") is generated by a
non-zerodivisor. By Conjecture 0.3, I?(S”/PS") is a maximal Cohen-Macaulay
module over S§”/PS” for some p > 0. Since this is a principal ideal generated by a
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non-zerodivisor, S”/PS" = Sym(I) ®s S = R(I) ®s: S” is Cohen-Macaulay, and
it follows that R(I) (s, ,....c,)R(1) IS tOO. O

5.2. Special cases of the conjectures. The next result has been proven with an
additional hypothesis in [H1, Theorem 2.6].

Theorem 5.1. Let S be a local Gorenstein ring and let I C S be an almost complete
intersection ideal such that S/I is equidimensional. If depth(S/I)p > § dim(S/I)p
for every P € V(I), then S/I is Cohen-Macaulay.

Proof. We may assume that I is not a complete intersection. Let J C I be a
complete intersection of the same codimension as I such that I/J is cyclic, and
consider K = J : I. Our assumptions imply that [ is unmixed. Therefore I = J : K
and it suffices to prove the Cohen-Macaulayness of S/K.

Notice that wg/x = I/J = S/K. Thus by [HO, Theorem 1.6] or [H2, Lemma
5.8] it suffices to show that

depth(S/K)p > 1+ %dim(S/K)p

for every P € V(K) with dim(S/K)p > 2. We may assume that P € V(I)
since otherwise (S/K)p = (S/J)p is Cohen-Macaulay. But then depth(S/I)p >
3 dim(S/I)p and dim(S/I)p = dim(S/K)p. Now the exact sequence

0—-S/K=I1/J—S/J— S/I—=0
shows that depth(S/K)p > 1+ 3 dim(S/K)p, as required. O

Notice that an almost complete intersection ideal I C S satisfies the assumptions
of Theorem 5.1 if I is unmixed and S/I is almost Cohen-Macaulay, which means
that depth S/I > dim S/T — 1.

Corollary 5.2. If I C S = k[z1,...,2z4] is an unmized monomial almost complete
intersection, then S/I is Cohen-Macaulay.

Proof. The Taylor resolution shows that the projective dimension of the polynomial
ring modulo a monomial ideal is bounded by the minimal number of generators
of the ideal; thus any monomial almost complete intersection is almost Cohen-
Macaulay. O

Corollary 5.3. With hypotheses as in Theorem 5.1, suppose in addition that the
residue field of S is infinite and that I is generically a complete intersection. Let
J be an ideal generated by g := codim I general elements of I, and let K = J : I.
For all p the module 1?(S/K) is an wg,-self-dual mazimal Cohen-Macaulay S/K -
module. In particular, Conjecture 0.3 is true under these additional hypotheses.

Proof. We may assume that I is not a complete intersection. Thus by [CN] the
analytic spread of I is g + 1, and K is a geometric link of I. By Theorem 5.1,
the ring S/K is Gorenstein, and I(S/K) is generated by a non-zerodivisor. The
conclusion is now immediate. g

When J: T is a (g + 1)-residual intersection, I/J itself has good properties:

Proposition 5.4. Let S be a local Gorenstein ring with infinite residue field and
let I C S be generically a complete intersection of codimension g such that S/I is
Cohen-Macaulay. Let J C I be generated by g + 1 general elements of I and set
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K =J: 1. The module I1/J is wg-self-dual and is a Cohen-Macaulay module of
dimension dim S — g — 1 = dim S/ K.

Proof. We note that the ideal K = J : I has codimension > g + 1, hence is a
(g + 1)-residual intersection of I. Since S/I is Cohen-Macaulay and I is generically
a complete intersection, K has codimension exactly g+ 1 ([U, Proposition 1.7(a)]).
A result of van Straten and Warmt implies that I/.J is wg, i-self-dual; see Theorem
2.1 of [EU] where Huneke’s simplified proof is given.

Let J, C J be the ideal generated by g general elements of J. We obviously have
Jg:J D Jy: 1D (Jy: J)K. Every associated prime of J, : I has codimension g,
and hence does not contain K. Thus, J, : J = J, : I. Therefore, J/J, = S/(J, : I),
which has depth dim S—g. It follows that depth S/J > dim S—g—1, so depth I/J >
dim S — g — 1; that is, I/J is a maximal Cohen-Macaulay S/K-module. O

Remark 5.5. If in addition to the hypotheses of Proposition 5.4 the ideal I satisfies
Gg+2, then the module I/J is naturally isomorphic to I(S/K); this follows because

K is a geometric (g+ 1)-residual intersection of I due to the G442 assumption, and
so J =1N K by [U, Proposition 1.7(c)].

Remark 5.6. There are certainly further phenomena to explain in these directions.
For example, let I be the ideal of 2 x 2 minors of the generic 3 x 3 matrix over
a field k of characteristic 0, and let S be the polynomial ring in 9 variables over
k. We have S/I is Gorenstein, codimI = 4, and £(I) = 9 according to [CN] (or
because I is of linear type by [H3, Theorem 2.4]).
For s with codim7 =4 <s<8=/{¢(I)—-1,let Ks = Js: I and Ry, = S/ K,
where J; is generated by s general forms of degree 2 in I.
By Brodmann’s inequality [B, (2) Theorem] the rings S/I” have depth 0 for
p > 0. They have linear resolution for all p > 2 according to [R, Theorem 5.1].
The modules I Ry are maximal Cohen-Macaulay R;-modules and:
e depth R4 = 5; so this ring is a Cohen-Macaulay almost complete intersec-
tion;
e depth R5 = 1 and depth Rg = 0;
e R; and Rg are Gorenstein rings of dimensions 2 and 1, respectively.
The statement about IR, and the statements in the last two bullets are the result
of Macaulay2 computations [M2], though Theorems 2.1(1) and 2.2 already imply
that Rg/0: (IRg)> is Gorenstein.

6. NECESSITY OF THE HYPOTHESES

We next give examples showing that the hypotheses in Conjecture 0.3 cannot
simply be dropped. The following examples were discovered and checked using the
program Macaulay2 [M2].

Example 6.1. We first consider the ideal K of a smooth rational quartic curve in
IP’% as a general link: Let K’ C Q[zq,...,x4] be the ideal of the smooth rational
quartic curve in ]P’;O@, and let J* C K’ be the ideal generated by two general cubic
forms in K'. Let I' = J’ : K’, which is the ideal of a smooth genus 1 quintic curve
in IP’(?@. It turns out that I’ is minimally generated by 5 cubic forms. If a is a general
cubic in I’ and I := (J',a), then I is minimally generated by 3 forms of degree
3 and is a complete intersection locally in codimension 2, and ¢(I) = 3 by [CN].
Finally, let J be the ideal generated by two general cubics in I.
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The ideal K := J : I is again the ideal of a smooth rational quartic, and thus
neither R := S/K nor any power of the principal ideal IR is Cohen-Macaulay.

Here all the assumptions of Conjecture 0.3 are satisfied except that I is not
unmixed. Note that IR is not unmixed either.

Example 6.2. Let k£ be an infinite field, and let X C ]P’f1 be an abelian surface
embedded by a complete linear series of high degree. Let S = k[z1,...,z4] be
the homogeneous coordinate ring of ]P’Zfl, and let Iy be the homogeneous ideal of
X. The canonical module w of S/Ix is isomorphic to S/Ix as a graded module,
and S/Ix is not Cohen-Macaulay because H' (Ox) # 0. Let I be a homogeneous
geometric link of Ix, so that I is an unmixed but not Cohen-Macaulay almost
complete intersection that is generically a complete intersection. Again ¢(I) =
1+ codim I by [CN]

Let K be any homogeneous link of I with respect to a subset of a system of
homogeneous minimal generators, chosen sufficiently generally. Set R = S/K.
Since I is an almost complete intersection, the ideal IR is generated by a single
non-zerodivisor. The canonical module of R is isomorphic to IR, up to shift — that
is, R is a quasi-Gorenstein ring.

Since IR is generated by a non-zerodivisor and R is not Cohen-Macaulay, no
power of IR can be a Cohen-Macaulay module (though all powers of IR are wgr-
self-dual up to a shift).

Here all the assumptions of Conjecture 0.3 are satisfied except possibly that I is
not generated in a single degree.

Now specialize to the case where X is the Segre embedding of the product of
two smooth cubic curves in }P’?@. In fact I is not generated in a single degree.

Example 6.3. Let S = Q[z1,...,z7] and let
4 2.3 2.2 2
I = (12427, X5T5T5, T1T4TETG, ] TIT4T5T6)-

The ideal I has codimension 2 and analytic spread 4. If J is generated by 3 general
forms of degree 6 in I, then K := J : I is a 3-residual intersection. Set R = S/K.
Because IR is principal but not nilpotent by Proposition 1.2, the same proposition
shows that the high powers of IR are isomorphic, up to a shift, to S/(J : I*),
which is not Cohen-Macaulay. It is interesting to note that R is Cohen-Macaulay.

Here all the assumptions of Conjecture 0.3 are satisfied except that I has em-
bedded components and K is not a geometric residual intersection of I.

The following examples show that none of the hypotheses listed in Conjecture 0.4
and Question 0.5 can simply be dropped.

Example 6.4. Let H C Q[z1, 22, 3] be the ideal of maximal minors of the matrix
2 22 23

$% $% L1X2T3

$% $§ L1X2T3

3 0 x3
Let R be the ring defined by the link of H with respect to the minors deleting the
first and second rows. The ring R is Cohen-Macaulay and generically a complete
intersection of dimension 1. The canonical ideal I is a fractional ideal generated in a
single degree, but no power of I is wg-self-dual up to a shift. (Note that because R
is 1-dimensional only powers up to the reduction number of I need to be checked.)
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Here all the assumptions of Conjecture 0.4 are satisfied except that R is not
reduced.

Example 6.5. Let R be the homogeneous coordinate ring of 11 points in Pé, 6 of
which are general and 5 are on a line. The ring R is reduced and 1-dimensional,
but the canonical ideal I has no wg-self-dual power up to a shift. Here all the
assumptions of Conjecture 0.4 are satisfied except that I is not equigenerated.

In this case the fractional ideal I is generated in degrees —3 and —2. If we take
I’ to be the truncation of I in degree —2, then the square of I’ is wg-self-dual up
to a shift, as is every higher power, giving a positive answer for Question 0.5 in this
case.

Example 6.6. Let R be the homogeneous coordinate ring of 5 points in IP%, of
which 3 lie on one line and 3 on another line (the point of intersection is one of the
5 points):
[1:0:0,[0:1:0],[1:1:0],[1:1:1],[0:0:1].
The ideal
I = (22 + 22+ 22 z0n3)R
is equigenerated, but has no wg-self-dual power up to a shift.

Here all the assumptions of Question 0.5 are satisfied except that I and the
canonical ideal have no power in common up to a shift.

Curiously, the minimal graded R-free resolutions of I and a shift of the canonical
ideal of R have the same graded betti numbers for at least 10 steps. However, I and
I? are both generated by 2 elements, whereas the square and cube of the canonical
ideal require 3 generators.

Example 6.7. Let S = Q[z1,...,z7] and let
I— 4 2.2 2 2
= (T3x5T7, TZTELT, TaT3TaT5X5, T1X2T3T4THTE).

The codimension of I is 2, its analytic spread is 4, and I satisfies G4.

If J is generated by 3 general forms of degree 6 in I, then K := J : [ is a
geometric 3-residual intersection, necessarily of codimension 3 by [M, Theorem 4.1]
as 3 < 4 = {(I). The ring R := S/K is Cohen-Macaulay, hence reduced by
Theorem 2.2, but R is not Gorenstein.

Since IR is principal, generated by a non-zerodivisor, no power of IR can be
wr-self-dual up to a shift.

Here, as in Example 6.6, all the assumptions of Question 0.5 are satisfied except
that IR and the canonical ideal of R have no power in common up to a shift.
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