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Abstract— This paper considers the decentralized (discrete)
optimal transport (D-OT) problem. In this setting, a network of
agents seeks to design a transportation plan jointly, where the
cost function is the sum of privately held costs for each agent.
We reformulate the D-OT problem as a constraint-coupled
optimization problem and propose a single-loop decentralized
algorithm with an iteration complexity of O(1/ϵ) that matches
existing centralized first-order approaches. Moreover, we pro-
pose the decentralized equitable optimal transport (DE-OT)
problem. In DE-OT, in addition to cooperatively designing a
transportation plan that minimizes transportation costs, agents
seek to ensure equity in their individual costs. The iteration
complexity of the proposed method to solve DE-OT is also
O(1/ϵ). This rate improves existing centralized algorithms,
where the best iteration complexity obtained is O(1/ϵ2).

I. INTRODUCTION

Optimal Transport (OT) problem is a well-studied problem

tracing back to the early work of Monge [1] and Kan-

torovich [2]. It has recently gained interest in the machine

learning community due to its wide-ranging applications

(see [3] and references therein). In the standard OT setting,

there is one cost function, and the goal is to design a

minimal-cost plan that transports “mass” from one proba-

bility distribution to another. The key challenge of OT in

modern applications is the computational aspect since the

probability distributions are typically high-dimensional.

Recently, Scetbon et al. [4] and Huang et al. [5] studied

a variant of the OT problem, known as Equitable Opti-

mal transport (EOT), and they showed that EOT is related

to problems in economics such as fair cake-cutting prob-

lem and resource allocation. In EOT problem, there are N
agents, each with a cost function, and the goal is to design

a plan that minimizes the sum of the agents’ transportation

costs under the constraint that the cost is shared equally.

Existing works on OT and EOT consider a centralized

approach in which a single agent/server designs the trans-

portation plan. Motivated using a decentralized optimization

framework to solve large-scale optimization, we study a

decentralized variant of OT and EOT problems in this paper.
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Decentralized OT (D-OT). Given two discrete probability

distributions p = (pi)
n
i=1, q = (qj)

n
j=1 ∈ ∆n and a cost

matrix C ∈ R
n×n
+ with Cij g 0 corresponds to the unit

cost of moving from pi to qj , the Kantorovich formulation

of (discrete) OT is equivalent to solving the following linear

programming (LP) problem

min
X∈R

n×n

+

∑

i,j

CijXij s.t. X1n = p and X⊺1n = q. (1)

Here the optimization variable X and the objective function

ïC,Xð :=
∑

i,j CijXij are referred to as the transporta-

tion plan and the transportation cost, respectively, and the

constraint X1n = p and X⊺1n = q is referred to as the

marginal constraint. Since the OT problem is an LP with

2n equality constraints and n2 variables, finding an exact

solution is infeasible in practice for large n. In general, we

aim to find an ϵ-approximate solution X̂ such that and

ïC, X̂ð − ïC,X∗ð+
∥∥∥X̂1n − p

∥∥∥+
∥∥∥X̂⊺1n − q

∥∥∥ f ϵ, (2)

where X∗ is a minimizer. Given an ϵ-approximate solution,

one can find an O(ϵ)-approximate solution satisfying the

marginal constraint using [6, Lemma 7]. In this paper, we

consider a decentralized variant of OT (D-OT), in which

Problem (2) is solved by n agents collboratively over a

network. In particular, agent k has access to the kth column

ck of C and they work on optimizing the corresponding

column xk of X . Furthermore, each agent can exchange

information only with its immediate neighbors. We formally

formulate D-OT as a decentralized finite sum problem:

min
xi∈R

n

+

n∑

i=1

c⊺i xi s.t.

n∑

i=1

xi = p and x⊺

i 1n = qi, (3)

where qi is entry i of q.

Decentralized Equitable Optimal Transport (DE-OT).

We now describe the EOT formulation by [4] using the above

notations. In this setting, we have N agents with each agent k
being given a cost matrix Ck ∈ R

n×n
+ where Ck

ij corresponds

to the unit cost of moving from pi to qj . The EOT problem

aims to find a transportation plan (Xk)Nk=1 such that the

transportation cost ïCk, Xkð among all the agents are equal

to each other, and the sum of the cost is minimized:

min
Xk∈R

n×n

+

N∑

k=1

ïCk, Xkð

s.t. ïCk, Xkð = ïCl, X lð for all k, l ∈ [N ],
(

N∑

k=1

Xk

)
1n = p and

(
N∑

k=1

Xk

)⊺

1n = q.

(4)



The algorithms proposed in [4], [5] consider a centralized

setting, where X1, . . . , XN are designed by a central au-

thority who has perfect information of C1, . . . , CN . In this

paper, we consider a decentralized variant of EOT (DE-OT),

in which agent k ∈ [N ] knows only Ck, and works only on

local optimization variable Xk such that collectively (Xk)
solves (4). Like D-OT, each agent can communicate only

with their immediate neighbors in some network. Our goal

is to find an ϵ-approximate solution
(
X̂k
)

such that the sum

of optimality gap (5), marginal constraint violation (6), and

equitable constraint violation (7) is at most ϵ, i.e.,

N∑

k=1

ïCk, X̂kð −
N∑

k=1

ïCk, (X∗)kð (5)

+

∥∥∥∥∥

(
N∑

k=1

X̂k

)
1n − p

∥∥∥∥∥+
∥∥∥∥∥

(
N∑

k=1

X̂k

)⊺

1n − q

∥∥∥∥∥ (6)

+
1

N

N∑

k=1

∥∥∥∥∥ïC
k, X̂kð −

1

N

N∑

k=1

ïCk, X̂kð

∥∥∥∥∥ f ϵ. (7)

The main contributions of this paper are as follows.

• We provide the first study of D-OT problem (3) and

the first study of DE-OT problem (4), and show their

equivalence with instances of distributed constraint-

coupled optimization (DCCO) problems.

• We propose a single-loop decentralized algorithm that

finds ϵ-approximate solutions to Problem (3) in O(1/ϵ)
iterations. This iteration complexity matches existing

centralized first-order approaches.

• We propose a single-loop decentralized algorithm that

finds ϵ-approximate solution to Problem (4) in O(1/ϵ)
iterations, This iteration complexity improves over ex-

isting centralized algorithms. Furthermore, our algo-

rithm guarantees that the equitable constraint is satisfied

at a rate of O(1/k), while the existing centralized

algorithms do not have such guarantees.

This paper is organized as follows. In Section II, we

describe existing approaches for decentralized and equi-

table OT problems. Section III shows the reformulation

of Problems (3) and (4) as distributed constrained-coupled

optimization problems. Section IV introduces our single-loop

decentralized algorithm that finds ϵ-approximate solutions in

O(1/ϵ) iterations. We conclude with numerical results in

Section V, and discussions and future work in Section VI.

II. EXISTING APPROACHES FOR DECENTRALIZED AND

EQUITABLE OT PROBLEMS

The related work on optimal transport is extensive (e.g.,

see [7] and the references therein); we only provide a brief

outline here, emphasizing the most closely related works.

Algorithms for (centralized) OT. Traditional LP algo-

rithms are not scalable due to their arithmetic complex-

ity of Õ(n3). In comparison, the approach of solving the

entropic-regularized OT [8] have initiated a productive line

of research. Existing algorithms to solve this approximation

problem include Sinkhorn [8] and Greenkhorn [6] which

have a complexity of Õ(n2/ϵ2) [9], as well as first-order

methods such as primal-dual methods [9]–[11] with a com-

plexity of Õ(n2.5/ϵ), alternating minimization with a com-

plexity of Õ(n2.5/ϵ), dual extrapolation [12] with a com-

plexity of Õ(n2/ϵ), and extragradient [13] with a complexity

of Õ(n2/ϵ). However, the entropy term causes the plan to be

fully dense, which can be undesirable in certain applications.

Consequently, there has been a growing interest [14], [15] in

Euclidean-regularized OT since it results in sparse transporta-

tion plans. Additionally, algorithms for Euclidean-regularized

OT tend to be more robust than entropic-regularized OT

when a small regularization parameter is used.

Remark II.1. While this paper focuses on theoretical com-

plexities, we remark that an algorithm with a better com-

plexity may not necessarily be faster in practice than another

algorithm with a worse complexity. For instance, the methods

with iteration complexity of O(1/ϵ) above are generally

slower than Sinkhorn [8] and Greenkhorn [6] in practice.

Likewise, Sinkhorn and Greenkhorn are slower than off-the-

shelf LP solver for small regularization constant ϵ.

Algorithms for (centralized) EOT. The authors in [4],

[5] did not solve the EOT Problem (4) directly, and instead

solved the following formulation. which are equivalent [4,

Proposition 1] when the entries of the cost matrices are the

same (e.g., all non-negative):

min
Xk∈R

n×n

+

max
p=(pk)∈∆N

+

N∑

k=1

pkïC
k, Xkð

s.t.

(
N∑

k=1

Xk

)
1n = p and

(
N∑

k=1

Xk

)⊺

1n = q.

(8)

In particular, [4] proposed to solve an entropy-regularized

approximation to (8) and designed a projected alternating

maximization (PAM) algorithm to solve its dual. The iter-

ation complexity of this approach is shown by [5] to be

O(1/ϵ2). The authors in [5] also gave an accelerated version

of PAM, but they did not manage to show an improved

iteration complexity. We note that these algorithms require

projection onto simplex at each iteration, making it hard to

be implemented in a decentralized manner.

Decentralization for OT. The work in [16]–[18] consid-

ered a decentralized optimal transport problem with an agent

for each row and an agent for each column, with the row and

column agents connected through a bipartite graph. Different

from their framework, each agent in D-OT works on one

column of the plan, and the connected undirected network

can be arbitrary.

III. REFORMULATION TO DCCO

In this section, we reformulate Problems (3) and (4) into

distributed constraint-coupled optimization (DCCO) prob-

lems [19], [20], where a set of agents cooperatively minimize

the sum of objective functions subject to a coupling affine



equality constraint

min
xi

N∑

i=1

fi(xi) + gi(xi) s.t.

N∑

i=1

Aixi = b, (9)

where fi is smooth and convex, while gi is convex but

possibly non-smooth.

A. Reformulating D-OT as a DCCO problem

We use the following notations to be consistent with the

optimization literature. Agents are indexed using i (instead

of k), while the decision variable of agent i and the ith

column of the cost matrix C are denoted by xi and ci. With

these notations, we reformulate D-OT to a DCCO problem.

Lemma III.1. The OT problem (1) is equivalent to

min
xi

n∑

i=1

c⊺i xi + º≥0(xi) s.t.

n∑

i=1

Mixi =

[
p
q

]
, (10)

where the indicator function º≥0(y) is defined by

º≥0(y) :=

{
0 if y g 0

∞ otherwise,
(11)

and the matrix Mi ∈ R
2n×n is the ith column-block of

[M1, . . . ,Mn] = M :=




In In · · · In
1⊺

n 0⊺

n · · · 0⊺

n

0⊺

n 1⊺

n · · · 0⊺

n

...
...

. . .
...

0⊺

n 0⊺

n · · · 1⊺

n



. (12)

Proof. The objective function and non-negativity constraint

of (1) are encoded in the objective function of (10). The

marginal constraint also follows directly from the definition

of M and the linearity of matrix multiplication.

Note that it follows immediately that an ϵ-optimal solution

(in terms of objective function value) that is also ϵ-close to

being feasible is an ϵ-approximate solution for D-OT.

Remark III.2. Since rank(M) = 2n−1 we can remove the

last row of both sides in the affine coupling constraint.

Proposition III.3. Problem (1) is equivalent to

min
xi

n∑

i=1

c⊺i xi + º≥0(xi) s.t.

n∑

i=1

M̃ixi =

[
p
q̃

]
, (13)

where M̃i and q̃ are obtained from Mi and q with the last

row removed.

B. Reformulating DE-OT as a DCCO problem

Similar to the notation changing in Section III-A, we will

also do that for the EOT reformulation: Agents are indexed

using i, with the local decision variable and the cost matrix

of agent i denoted by xi ∈ R
n2

+ and ci ∈ R
n2

respectively

(instead of Xi ∈ R
n×n and Ci ∈ R

n×n). The reformulation

for DE-OT is not as straightforward as compared to D-

OT due to the equitable constraint. In particular, we must

find a way to represent the equitable constraint into a

coupling affine equality constraint. To achieve this, we use

the Laplacian matrix L ∈ R
N×N of the network to help us,

thanks to the property: Lx = 0 ⇐⇒ x ∈ span(1).
Furthermore, since rank(L) = N − 1, we can remove its

last row, similar to the case in Proposition III.3. Let L̃ =[
L̃∗,1 · · · L̃∗,N

]
∈ R

(N−1)×N be the first N − 1 rows

of the Laplacian matrix L associated with the network, where

L̃∗,i is its ith column. Note that L̃ has a full row rank.

Proposition III.4. Problem (4) is equivalent to

min
xi

N∑

i=1

c⊺i xi + º≥0(xi) s.t.

N∑

i=1

[
M̃
Ei

]
xi =




p
q̃

0N−1


 , (14)

where the indicator function º≥0 and and vector q̃ are as

defined in Lemma III.1 and Propostion III.3, while matrix M̃
is the first 2n−1 rows of matrix M from (12) and matrices Ei

are defined as follows:

Ei :=
(
L̃∗,i

)
c⊺i = L̃



0(i−1)×n2

c⊺i
0(N−i)×n2


 ∈ R

(N−1)×n2

. (15)

Proof. The verification for the objective function, non-

negativity constraint, and marginal constraint is similar to the

proof of Lemma III.1. The equitable constraint is enforced

since
[
c⊺1x1; · · · ; c

⊺

NxN

]
is a constant vector if and only if

N∑

i=1

Ei xi = L̃




N∑

i=1



0i−1

c⊺i xi

0N−i




 = L̃






c⊺1x1

...

c⊺NxN





 = 0,

since null(L̃) = span (1).

We intentionally use the same notations to denote different

things in the reformulations (13) and (14) because of their

similarity. Indeed, we can abstract them into the form of

min
x=(xi)∈R

Nd

f(x) := c⊺x+ º≥0(x) =

N∑

i=1

c⊺i xi + º≥0(xi)

s.t. Ax =

N∑

i=1

Aixi = b.

(16)

where the number of agents N , the vector b and matrices

Ai, and dimension d of xi and ci are problem-dependent.

C. DCCO algorithms to solve reformulated OT and EOT

Reformulating D-OT (3) and DE-OT (4) into (16) allows

us to apply existing algorithms for DCCO (e.g., [19]–[25]) to

solve it. In particular, we have corresponding fi(xi) = c⊺i xi

which is smooth and (non-strongly) convex, and gi = º≥0

which is non-smooth. Before describing the algorithms, we

explicitly state the assumption of the network.

Network assumption. In problem (16), the network con-

necting the agents is an undirected graph G = (V,E), where

V is the set of agents and E is the set of edges. An edge

(i, j) ∈ E if and only if agents i and j are neighbors.

For each agent i, we define the set of its neighbors as

Ni = {j ∈ V | (i, j) ∈ E}. We assume the network



TABLE I: Algorithms for Problem (16).

Paper Convergence rate Singe-loop

[19] Asymptotic No

[20], [21] O(1/k), ergodic No

[22] O(1/k), non-ergodic No

[23], [25] Asymptotic Yes

satisfies the following standard assumption in decentralized

optimization, which implies that any two agents can influence

each other in the long run.

Assumption III.5. The graph G is connected and static.

The algorithms in [20]–[22] can be used to solve prob-

lem (16), with a convergence rate of O(1/k), where k is the

iteration number. However, using algorithms in [20]–[22] to

solve problem (16) requires solving a quadratic program at

each iteration. In contrast, the primal-dual-based algorithms

such as those in [23], [25] are single-loop (i.e., do not require

an inner subroutine), but they can establish only an asymp-

totic convergence for non-smooth problems. The continuous-

time algorithm in [24] is also single-loop, but its performance

may not carry over to discretized implementation. In Table I,

we summarize discrete-time algorithms that can be used to

solve problem (16).

We adapt [21, Algorithm 1] for (16), which yields Algo-

rithm 1. Note that setting Äi = 0 recovers [20, Algorithm 3],

which has the following performance guarantee1.

Proposition III.6. Let Assumption III.5 hold. For all ci ∈
R

d, the sequence (xk) generated by Algorithm 1 with Äi =
0 and any parameter Äi > 0 converges to the optimal

solution x∗ of Problem (16). Furthermore,

|f(x̄k)− f(x∗)|+
∥∥Ax̄k − b

∥∥
2
= O(1/k), (17)

where x̄k = 1
k

∑k
t=1 x

t.

Remark III.7. As in Remark II.1, we note that algorithms

with “poor” theoretical properties may perform well in

practice and vice versa. For instance, since most entries

of a high-dimensional transportation plan are near-zero,

performing a proximal gradient steps at every iteration (e.g.,

[23], [25]) might lead to numerical instability. In contrast,

solving a quadratic program at each iteration (with off-the-

shelf solvers) could be advantageous in practice.

IV. EUCLIDEAN REGULARIZED D-OT AND DE-OT

Based on Section III-C, no existing discrete-time single-

loop DCCO algorithm could directly solve problem (16)

with an explicit non-asymptotic convergence rate. This is

not unexpected since our objective function is non-strongly

convex and non-smooth. In this section, we develop a single-

loop algorithm for (16), which has also O(1/ϵ) iteration

1Setting Äi = 0 forces yk
i
= xk

i
, making yk

i
and zk

i
redundant.

complexity. Our first step is to perturb (16) with a squared-

Euclidean norm regularizer to make it strongly convex.

min
xi∈Rd

n∑

i=1

c⊺i xi+
¸

2
∥xi∥

2+ º≥0(xi) s.t.

N∑

i=1

Aixi = b. (18)

This problem is an ¸
2 -approximation of problem (16) in terms

of the objective function value: If x∗ and x̂ are minimizers of

problems (16) and (18) respectively, then f(x̂)−f(x∗) f ¸
2 .

Remark IV.1. In the centralized OT literature, it is common

to use entropic regularization (see Section II). The entropic-

regularized problem can be written compactly as

min
x∈R

Nd

c⊺x+H(x) s.t. Ax = b, (19)

where H(·) is the entropy function. If ∥x∥ is unbounded,

then problem (19) is not strongly convex. Consequently, the

(decentralized) dual problem of (19) is not smooth. If we set

∥x∥ = 1, then the corresponding smooth dual problem

min
¼1=···=¼N

¸ log

(
N∑

i=1

∥∥∥∥exp
(
−ci −A⊺

i ¼i

¸

)∥∥∥∥
1

)
+¸+

1

N
¼⊺

i q,

(20)

is not separable, making it unsuitable for current decentral-

ized optimization methods.

A. PDC-ADMM

In this section, we provide an algorithm to solve (18) with

an O(1/k) ergodic convergence rate. The algorithm is an

inexact variant of Algorithm 1, which is adapted from [21,

Algorithm 1] from Section III-C. In [21], the author apply

their Algorithm 1 to solve problems of the form

min
xi∈Si,yi≥0

N∑

i=1

fi(xi)

s.t.

N∑

i=1

Aixi = b and Bixi + yi − vi = 0 for all i,

(21)

which is a special case of Problem (9). Matching it with (18),

we have fi(xi) = c⊺i xi +
¸
2∥xi∥

2, which is strongly convex

and smooth, Si = R
d, Bi = −Id, and vi = 0:

min
x=(xi)∈R

Nd,
y=(yi)≥0

f(x) :=

N∑

i=1

c⊺i xi +
¸

2
∥xi∥

2

s.t. Ax =

N∑

i=1

Aixi = b and y − x = 0.

(22)

Compared to the formulation in (18) where the non-

negativity constraint xi ∈ R
d
+ is represented using an

indicator function º≥0(xi) in the objective function, problem

formulation (22) represents this constraint as an equality

constraint −xi+yi = 0 using a non-negative variable yi g 0.

In solving (21), Algorithm 1 of [21] solves an expen-

sive subproblem at each iteration. In the same paper, the

author gives an inexact update, which has a low-complexity

implementation (see [21, Eq. (38)-(39)]). Adapting this for



problem (22) gives us a single-loop algorithm, which is

obtained by replacing the update of (xk
i , y

k
i ) in Line 9 of

Algorithm 1 with the following closed-form updates:

yk+1
i :=

(
1−

1

´iÄi

)
yki +

1

´iÄi

(
xk
i − Äiz

k
i

)
(23)

xk+1
i := xk

i −
1

´i

(
ci + ¸xk

i +
1

Äi

(
xk
i − yk+1

i − Äiz
k
i

)
+

A⊺

i

2Ä|Ni|

(
Aix

k+1
i −

1

N
b− pki + Ä

∑

j∈Ni

(
¼k
j + ¼k

i

)))
,

(24)

where ´i > 0 is a penalty parameter. The performance

guarantee of the inexact variant of Algorithm 1 is as given,

which follows immediately from [21, Theorem 2].

Theorem IV.2. Let Assumption III.5 hold. Consider the

inexact variant of Algorithm 1 obtained by replacing Line 9

with (23) and (24). Then the sequence (xk,yk) generated

by Algorithm 1 with parameters Ä, ´i, Äi > 0 satisfying

´iÄi g 1 and
(
´i −

´i

´iÄi − 1
− 1
)
Id −

1

2Ä|Ni|
A⊺

i Ai { 0,

(25)

converges to the optimal solution (x∗,y∗ = x∗) of Prob-

lem (22). Furthermore,

|f(x̄k)−f(x∗)|+
∥∥Ax̄k − b

∥∥+∥ȳk− x̄k∥ = O(1/k), (26)

where (x̄k, ȳk) = 1
k

∑k
t=1(x

t,yt).

Remark IV.3. While x̄k may not be non-negative, we can do

a decentralized projection onto simplex, which has a linear

convergence [26]. Furthermore, when
∥∥Ax̄k − b

∥∥ + ∥ȳk −
x̄k∥ < ϵ, then the projected x̂ satisfies ∥x̂− x̄k∥ = O(ϵ).

Corollary IV.4. Let Assumption III.5 hold, and we run the

inexact variant of Algorithm 1 for Problems (3) and (4),

both with parameters Ä, ´i, Äi > 0 satisfying (25). Then for

any ϵ > 0, there exists some K = O(1/ϵ) such that for

all iteration k g K, the simplex projection x̂(k) of x̄k is

an ϵ-approximate solution. The arithmetic cost per iteration

per agent are O(|Ni|n) and O(n2 + |Ni|(2n + N)) for

Problems (3) and (4) respectively.

Proof. By Theorem IV.2, there exists some K such that for

all k g K, we have |f(x̄k)− f(x∗)|+
∥∥Ax̄k − b

∥∥+ ∥ȳk −
x̄k∥ = O(ϵ). We now bound |f(x̂)−f(x∗)|+∥Ax̂− b∥. We

have ∥Ax̂− b∥ = ∥Ax̂−Ax̄k+Ax̄k−b∥ f ∥A∥∥x̂− x̄k∥+∥∥Ax̄k − b
∥∥ = O(ϵ). Similarly, |f(x̂) − f(x∗)| f c⊺(x̂ −

x̄k + x̄k − x∗) f ∥c∥∥x̂ − x̄k∥ + c⊺(x̄k − x∗) = O(ϵ).
Therefore, we can find some K = O(1/ϵ) such that x̂ is

an ϵ-optimal solution. We now bound the arithmetic cost

per iteration per agent for Problem (3), but omit the details

for Problem (4) since they are similar. The additions and

subtractions of vectors are straightforward to bound, with

the tricky part being the matrix multiplication with Ai and

A⊺

i . But since Ai = M̃i is sparse and structured with O(n)
entries, multiplication takes O(n) arithmetic operations.

Remark IV.5. If the underlying network is a star graph,

then the total arithmetic cost per iteration for all agents are

O(n
∑

i |Ni|) = O(n2) and O(Nn2+(2n+N)
∑

i |Ni|) =
O(Nn2 +N2) for Problems (3) and (4) respectively.

Algorithm 1 Exact PDC-ADMM for Problem (22)

1: Input: Each agent i is given a vector ci ∈ R
d and vectors

p and q
2: Each agent i creates matrix Ai and vector b
3: Initialize iteration counter k = 0.

4: Each agent i initialize variables x0
i = y0i = z0i = 0d,

and ¼0
i = p0i = Aixi = 0

5: Each agent i initialize penalty parameters Äi > 0, Äi g 0.

6: Repeat until a predefined stopping criterion is satisfied

7: For all agents i ∈ [N ] (in parallel)

8: Exchange ¼k
i with neighbors Ni

9: Update (xk+1
i , yk+1

i ) := argmin
xi∈R

d

yi∈R
d

+

{
c⊺i xi +

Ä
4|Ni|

∥∥∥∥∥
1
Ä
(Aixi −

1
N
b)− 1

Ä
pki +

∑
j∈Ni

(
¼k
j + ¼k

i

)
∥∥∥∥∥

2

2

+ 1
2Äi

∥∥yi − xi + Äiz
k
i

∥∥2
2

}

10: Update ¼k+1
i :=

1
2|Ni|

(
∑

j∈Ni

(
¼k
j + ¼k

i

)
+ 1

Ä
pk+1
i + 1

Ä

(
Aix

k+1
i − 1

N
b
)
)

11: Update zk+1
i := zki + 1

Äi
(yk+1

i − xk+1
i )

12: Update pk+1
i := pki + Ä

∑
j∈Ni

(
¼k+1
i − ¼k+1

j

)

13: Set k = k + 1
14: Output x̄k

i := 1
k

∑k−1
ℓ=1 xℓ

i for all agents i

V. NUMERICAL SIMULATIONS

We simulate the performance of Algorithm 1 with Äi = 0
(i.e., DC-ADMM) and Tracking-ADMM [19, Algorithm 1]

for the D-OT problem (3) and DE-OT problem (4). For D-

OT, we consider a cost matrix and transport plan of size

n2 = 2500 with N = n = 50 agents. The probability

distributions p and q are randomly generated. The cost matrix

C ∈ R
n×n is generated randomly with Ci,j = ∥xi −

yj∥
2 for some random xi ∼ N

((
1
1

)
,

(
10 1
1 10

))
and

yj ∼ N

((
2
2

)
,

(
2 −0.2

−0.2 2

))
. The undirected network

is also generated randomly. For DE-OT, we consider a cost

matrix and transport plan of size n2 = 400 with N = 10
agents. As before, the probability distributions p and q, and

the undirected network are randomly generated. The only

difference is the cost matrices generation: we first generate a

base cost matrix Cbase using the method from above, and then

generate Ck
i,j = Cbase

i,j +N (0, 10) for each agent k. For the

computations, we first use MATLAB’s built-in LP solver to

solve the centralized problem to obtain an optimal objective

function value f∗ = c⊺x∗. We then use Tracking-ADMM

and DC-ADMM to solve the same instances of D-OT and

DE-OT. In Figure 1, we show the optimality gap f(xk)−f∗



and feasibility violation ∥Axk− b∥ across iterations for both

the D-OT problem (3) and DE-OT problem (4) under the

algorithms. The simulation results show that reformulation

of Problems (3) and (4) into distributed constraint-coupled

optimization (DCCO) allow them to be solved using existing

DCCO algorithms. We also note that Tracking-ADMM has

better performances than Algorithm 1 for both problems in

practice, despite a poorer theoretical guarantee. This is not

surprising, see Remark III.7.
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Fig. 1: Optimality gap f(xk) − f∗ and feasibility violation

∥Axk − b∥ for D-OT and DE-OT under Tracking-ADMM

and DC-ADMM.

VI. CONCLUSION

We studied the problem of decentralized optimal transport

(D-OT) and decentralized equitable optimal transport (DE-

OT), where a group of agents collaboratively compute an

optimal transport plan. In the D-OT setup, each agent has

access to a column of the cost matrix. Meanwhile, in the

DE-OT, each agent has access to a private cost matrix, and

agents try to cooperatively compute a transportation plan

that ensures equity. We showed that these problems can

be reformulated as distributed constrained-coupled problems

and adapted existing work to provide a single-loop algorithm

that has an iteration complexity of O(1/ϵ). Interestingly, our

approach for DE-OT has a better iteration complexity than

existing centralized methods.
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