


a “social force”, which is a combination of external and internal

forces. These forces include factors like social interactions, repul-

sion from obstacles, and attraction towards a destination. Apart

from the social force assumption, another widely used assumption

is that pedestrians make decisions mainly by following neighbour-

ing velocities and avoiding collision, such as the velocity obstacle

model [41].

In contrast to the physics-basedmethod, the data-drivenmethod

does not assume any prior knowledge of the underlying process

governing the pedestrian dynamics. Instead, it utilizes machine

learning methods to uncover the underlying patterns directly from

the observed data. For example, graph neural networks, such as

message passing networks [5], are widely used to capture spatial

interactions. For temporal dynamics, Long Short-Term Memory

(LSTM) [1] networks and attention mechanisms [14, 42] are broadly

employed. Notably, neural ordinary di�erential equations (Neural

ODE) [6] has demonstrated its pro�ciency in capturing dynamic

system patterns, particularly in its ability to extrapolate and address

the long-term prediction challenge.

Both the physics-based and data-driven methods have their pros

and cons. The former is data-e�cient and interpretable but may

struggle with generalizing to unobserved data. The latter is gener-

alizable but may be incapable of o�ering deductive insights. Also,

its performance relies on huge amounts of training samples, which

is sometimes inaccessible for real-world data. The fusion of these

two method categories, known as physics-informed deep learn-

ing (PIDL) [11, 32], combines the merits of both the physics-based

and data-driven methods and supplements their respective limi-

tations. PIDL has been applied to multiple applications, such as

car-following modeling [24, 27], crowd simulation [44], and tra�c

state estimation [17, 25, 35–37]. While promising, the performance

of PIDL requires the assumption of the underlying physics, which is

usually not available in the real-world scenario. The problem of un-

known underlying physics prior knowledge is worse formulti-agent

systems [13]. A potential remedy is symbolic regression, which is

capable of inferring the mathematical equations that govern the

dynamics. Symbolic regression has demonstrated its e�cacy across

diverse domains, such as materials science [3, 4] and astronomy[8].

This paper proposes, physics-informed graph neural ordi-

nary di�erential equations (PI-NeuGODE), for simultaneous

prediction of multi-agent spatiotemporal trajectories accounting

for the topological interaction over a long-term horizon. Under

this framework, neural ODEs are trained to make long-term pre-

diction of individual trajectories interacting over graphs, of which

the derivatives are substituted by physics-informed deep neural

networks (DNN) complemented by symbolic regression.

2 BACKGROUND AND RELATEDWORK

2.1 Long-term prediction using neural ODEs

Neural ordinary di�erential equations (neural ODEs) are devel-

oped to predict continuous-time long-term dynamics, with con-

stant memory cost and high computational e�ciency [6]. Since

its inception, neural ODEs have become a powerful tool to model

complex dynamical systems. The underlying idea is to parameterize

the derivative of a system’s state with a neural network (NN).

A neural ODE consists of an ordinary di�erential equation (ODE)

of the form:
3G

3C
= 5\ (G (C), C, \ ), (1)

where G (C) is the system state at time C , 3G
3C

is the time derivative,

5\ (G (C), C, \ ) is parameterized by an NN with parameters \ . The

loss function to train the NN is de�ned as:

!(G (C)) = !(G (C0)) +
∫ C

C0

5\ (G (C), C, \ )3C

= !($��(>;E4 (G (C0), 5\ , C0, C, \ )). (2)

A numerical integration method, such as the Euler method or the

Runge-Kutta method, is used to solve the di�erential equation and

produce a prediction.

2.1.1 Message passing neural networks (MPNNs). MPNNs are a

class of graph neural networks (GNNs) that leverage the principles

of message passing algorithms to perform graph-based tasks. In

MPNNs, each node passes messages to its neighbours, and these

messages are used to update the node representations and aggregate

information from the surrounding nodes.

Mathematically, MPNNs are modeled as functions that operate

on a graph � = (+ , �), where + is the set of nodes and � is the

set of edges. Each node is initialized with states G8 (C0), where 8 ∈
{1, . . . , # } and # is the totoal number of agents. At iteration C , the

node state G8 (C + 1) is updated as follows:

G8 (C + 1) = 5D (G8 (C),
∑

9∈{1,...,# }
(8, 9 ) ∈�

<8 9 (C)), (3)

where 5D (·) is the node update function, and<8 9 (C) is the message

passed from node 9 to node 8 at iteration C . The messages<8 9 (C)
are computed as follows:

<8 9 (C) = 5< (G8 (C), G 9 (C), 48 9 ), (4)

where 48 9 is the edge information between nodes 8 and 9 and 5< (·)
is the message passing function. The process continues until a

stopping criterion is met, such as a maximum number of iterations

or convergence.

2.1.2 Graph neural ODE (GODE). GODE leverages the strengths of

graph neural networks (GNNs) and neural ODEs to model the com-

plex interactions in dynamic systems. MPNN captures the spatial

correlation between nodes, while the neural ODE captures the tem-

poral evolution of the system. These two components are coupled

by replacing 5 in Eq. 1 with the message passing process de�ned

in Eq. 4:

¤G8 (C) = 5\ (G8 (C), 5< (G8 (C), G 9 (C), 48 9 (C)), C, \ ). (5)

Further details on the implementation of this approach will be

discussed in Sec. 3.

2.2 Physics-informed deep learning (PIDL)

PIDL [32] leverages the pros of both physics-based and data-driven

approaches while compensating for the cons of each. Physics-based

approach refers to scienti�c hypotheses of what underlying physics

governs observations, like the �rst principle, which is data-e�cient

and interpretable but may not well capture complex data patterns.



In contrast, the data-driven approach does not bear any prior knowl-

edge of how things work and how di�erent quantities are correlated.

Instead, they rely on machine learning techniques such as deep neu-

ral networks (DNN) to learn and infer patterns from huge amounts

of training samples, but require inductive bias for unseen data. Re-

cent years have seen a rapidly growing trend of applying PIDL to

dynamical systems in science and engineering, for its power in

robust prediction [2, 9, 20].

To incorporate PIDL into neural ODE, the derivative of a dynam-

ical system contains both the known (represented by physics) and

unknown information (represented by PUNN). [28, 38] further in-

corporates stochasticity into the prediction. These studies, however,

are not focused on social dynamics but more on physical processes.

2.3 Symbolic regression

Symbolic regression aims to discover mathematical expressions to

match a given dataset [34]. When combined with DNNs informed

by physics, symbolic regression demonstrates its robustness in

discovering part of physics equations [30, 33, 40, 44].

The mathematical functions are usually represented as a general

expression with variables and operators. The task of symbolic re-

gression is to �nd the optimal values of the coe�cients that result

in the best �t of the function to the observed data. To perform

symbolic regression, some optimization algorithm is applied to the

function and the coe�cients are iteratively adjusted until the best

�t is obtained. Metrics, such as mean squared error or correlation

coe�cient, are used to determine the goodness of �t of the function

to the observed data.

2.4 Related work and contributions

In a nutshell, there are studies that have integrated PIDL into sym-

bolic regression [30, 33, 40, 44, 44], PIDL into neural ODEs [28, 38],

or GNN into neural ODEs [7, 18, 31, 45]. However, none has bridged

all three methodologies into one uni�ed framework, which is the

focus of this paper. The closely related studies are [18, 43, 44]. [18]

combined two neural ODEs, one for temporal processing and the

other for spatial processing, for spatiotemporal tra�c forecasting.

However, the existing domain knowledge that uses ODEs/PDEs for

tra�c evolution is not accounted for. [44] applied PIDL, symbolic

regression, and GNN to crowd modeling, and a student-teacher co-

training algorithm was developed for multiple-step rollout, which

helps generalize the original single-step prediction. The same issue

exists in [43], where the one-step prediction is repeatedly con-

ducted to achieve the long-term prediction. In contrast, our paper

employs neural ODE for multiple-step prediction, which is more

computationally e�cient and scalable.

Ourmain contributions are: (1) we develop a uni�ed frame-

work of integrating PIDL and symbolic regression into graph neural

ODEs, which can capture multi-agent, long-term prediction of so-

cial dynamics. (2) we develop an algorithm to train the data-driven

component (i.e., GODE) and the physics-informed components (i.e.,

PIDL) simultaneously, rather than calibrate the physics models

prior to the model training, and (3) the e�ciency of the proposed

algorithms is demonstrated on two types of dynamics, platooning

and crowding, using both hypothetical and real-world datasets.

The rest of this paper is organized as follows: Sec. 3 introduces

the integrated methodology framework and presents the algorithm.

Secs. 4-5 demonstrate the performance of our algorithms on two

scenarios, human driving and platooning (via a neighbouring in-

teraction), and crowding (via a graph interaction). Sec. 6 concludes

and points out future directions.

3 METHODOLOGY

3.1 Problem statement

Denote the system state as - (C) = {G8 (C)}#8=1, which contains the

states of all agents. The movement of an agent at each time step

C is assumed to be governed by some underlying control signal.

Thus, the spatiotemporal trajectory is the result of the consecutive

control signals or decision-making processes. Consider the multi-

agent scenario, this process can be depicted as:

- (C) = - (C0) +
∫ C

C0
5 (- (C), C, \ )3C, (6)

where 5 (·) is the underlying decision-making model that is inac-

cessible. The trajectory prediction problem is to �nd a surrogate

decision-making model 5\ such that the predicted state error is

minimized:

min\
∫ C

C0
(- (C) − -̂ (C))2

B .C . -̂ (C) = - (C0) +
∫ C

C0
5\ (- (C), C, \ )3C .

(7)

We focus on two problems of the spatiotemporal trajectory pre-

dictions, i.e., the initial value problem (IVP) and the sequence-to-

sequence (seq2seq) learning problem. Each problem is detailed

below.

(1) IVP involves making predictions based on only the initial

states of the system, represented by- (C0), and the boundary
conditions. This approach can be viewed as a trajectory

prediction problem with limited data, as it only takes into

account the initial states but not the historical information

of the system.

(2) Seq2seq prediction utilizes historical observations of the sys-

tem to make predictions about future states. In this approach,

the observed trajectory is divided into segments, with the

goal of using the previous segments to predict the next ones.

The IVP and seq2seq problems will be demonstrated using the

platoon modeling and pedestrian trajectory prediction experiments,

respectively. Both numerical and real-world datasets will be used

in both experiments.

3.2 Model architecture

The proposed method, as depicted in Fig. 2, consists of two compo-

nents. The �rst component is the data-driven component, which

incorporates a neural ODE model, encoded with a message-passing

type graph neural network. The second component is the physics-

informed component, which includes a partially learned physics

equation obtained through symbolic regression. The integration of

these two components allows for a well-balanced solution between

data-driven and physics-based approaches.

3.2.1 Graph neural ODEs (GODE). The GODE structure is illus-

trated in Fig. 2. To simplify the notation, we utilize the symbols





3.3 Training Algorithm

The �nal loss function is de�ned as

!>BB\,_ = U · !> (\ ) + V · !2 (\, _), (11)

where U, V are weights of the observation loss and the physics loss,

respectively. The detailed training algorithm is shown in Alg. 1.

Algorithm 1 Training Algorithm for PI-NeuGODE.

Required: Training iterations �C4A ; Learning rate ;A ; Loss function

weights U , V .

Input: The observation data {(- (C), C ∈ T> } and collocation points

{(- (C), C ∈ T2 }.
1: for : ∈ {0, ..., �C4A } do
2: Sample the sequence states - (1 : C, C + 1 : C +) ), from the

batch.

// generate PUNN solutions

3: I (C) = �=2>34A (- (C))
4: I (C +) ) = I (C) +

∫ C

C+) 5\ (I (C), C, \ )3C
5: -̂ (C +) ) = �42>34A (I (C +) ))
6: Generate -̃ (C + 1 : ) ) similarly using the collocation data

// generate PICG solutions

7: -̄ (C +) ) = - (C) +
∫ C

C+) 5_ (- (C), C, _)3C
// update the PUNN

8: Calculate !\ by Eq. 8, !2 by Eq. 10

9: \:+1 ← \: − ;A · Adam(\: ,∇\ (U!> + V!2 ))
// update the PICG

10: Conduct symbolic regression by minimizing !2
11: end for

In the subsequent sections, we present a comprehensive evalua-

tion of the proposed model through two experiments. Firstly, we

assess its performance in solving the IVP problem in the context of

vehicle platoon modeling, utilizing both numerical and real-world

data. The numerical experiment is designed to verify the ability of

the proposed model to accurately identify the ground-truth equa-

tion in a controlled environment. This is followed by a validation

experiment, which uses real-world data to demonstrate the model’s

e�cacy in capturing real-world dynamics. Finally, we demonstrate

the proposed model’s ability to solve the seq2seq problem by apply-

ing it to the pedestrian trajectory prediction problem, using both

numerical and real-world data. We will also present the speci�c

architectures employed for each problem.

4 EXPERIMENTS: PLATOON MODELING

We �rst brie�y introduce the problem formulation as follows: In

a Platoon Modeling (PM) problem, a platoon of vehicles forms a

multi-agent system, where each vehicle decides to accelerate, brake

or cruise depending on its relation with its leader. Denote the state

of the 8th vehicle at time step C as G8 (C) = [?8 (C), E8 (C)], where ?8 (C)
is the longitudinal position and E8 (C) is the velocity. The dynamic

of the followers can be depicted as :
{

¤?8 (C) =

3?8 (C )
3C

= E8 (C)
¤E8 (C) =

3E8 (C )
3C

= 5D,8 (G8−1, G8 )
, 8 ∈ {1, ..., # }. (12)

where 5D,8 is the control strategy of the 8th agent given the states

of its leader and itself. Given the trajectory of the �rst leading

Figure 3: Structure of GODE for platoon modeling as an IVP.

vehicle G0 (1 : C +) ), the task of the PM is to predict the trajectory

of all its followers. Thus, the state of the PM system at time C is

- (C) = {G8 (C)}#8=1 ∈ R
#×2.

The PM is an example of IVP, where only the initial state - (1)
and the platoon leader’s trajectory G0 (1 : C + ) ) are known. A

platoon can be represented as a chain-like graph, where each vehicle

only has one neighbouring vehicle, which is its immediate leader.

4.1 GODE Structure

Fig. 3 illustrates the GODE structure that is modi�ed for the PM.

The initial states of a vehicle and its leader are used as input to

update the state of the follower. This GODE framework for IVP

does not require an encoder or decoder as only one-time-step state

information is used. The direct output of the network 5\ already

contains meaningful information, as it represents the derivatives of

the vehicle states. In the neural ODESolver, a neural network 5\ is

trained to learn the mapping from the features of two consecutive

vehicles to estimated acceleration 0̂ of the follower. The estimated

acceleration 0̂ is used to update the state of the platoon by the Euler

method.

4.2 Dataset

Numerical Dateset: In our numerical experiment, the platoon

data is generated by the intelligent driving model (IDM) [39], a

well-known model in the transportation domain. The IDM models

the longitudinal motion of vehicles on a highway, considering their

acceleration and deceleration behavior based on their speed and the

gap to the leading vehicle. We assume each vehicle in the platoon

follows the IDM equation. The complete form of the IDM equation



is shown below:

{
¤G8 (C) = E8 (C)

¤E8 (C) = 0max

[

1 −
(

E8 (C )
Edes

)4

−
(

B0+E8 (C ))0+E8 (C )ΔE8 (C )/2
√
0max1

B8 (C )

)2
]

8 ∈ {1, ..., # },
(13)

where, G8 (C) is the position of the 8th vehicle at time step C , E8 (C)
is the velocity, B8 = G8−1 − G8 is the gap to the leading vehicle, and

ΔE8 = E8−1−E8 is the velocity di�erence. This equation has 5 param-

eters: Edes is the desired velocity, )0 is the desired time headway, B0
is the minimum spacing in congested tra�c, 0max is the maximum

acceleration allowed, and 1 is the comfortable deceleration, respec-

tively. All vehicles are assumed to share the same set of parameters,

i.e., [Edes,)0, B0, 0max, 1] = [30</B, 0.75 B, 2.15<, 2</B2, 4</B2].
More numerical dataset details are included in the supplementary

material.

Real-world Dataset: The real-world data is from the Next Gener-

ation SIMulation (NGSIM) dataset1, which is an open dataset that

collects vehicle trajectories every 0.1 seconds. We focus on the US

Highway 101. More dataset details are shown in the supplementary

material.

4.3 Setting

Baselines: In this study, we compare the performance of our pro-

posed model with several baseline models including SocialGAN

[15] and SocialLSTM [1]. The SocialGAN model is a generative

adversarial network (GAN) based approach for modeling the inter-

actions between pedestrians in a crowd. The SocialLSTMmodel is a

long short-term memory (LSTM) network that is trained to predict

the future trajectories of individuals in a crowd by incorporating

the interactions between individuals. Furthermore, we also consider

the simple baseline of independent decision-making, which is IDM,

where each vehicle acts as an independent agent following its own

trajectory computed by Eq. 13.

Evaluation Metrics: In this study, we evaluated the performance

of our proposed model using mean squared error (MSE) and mean

absolute error (MAE). Detailed settings are included in the supple-

mentary material.

4.4 Results

Performance Comparison: In Tab. 1, we make a comparison of

four models: PI-NeurODE, SocialGAN, SocialLSTM, and IDM by

looking into MSE and MAE. We leverage noise-free and noisy data

to evaluate all models. It is shown that our proposed PI-NeuGODE

outperforms other models on both data sets. The results show that

among all four models, PI-NeuGODE has the lowest MSE and MAE

(marked in bold), while IDM has the highest MSE and MAE for the

NGSIM data.

E�ect of Varying Training Size: To demonstrate the general-

izability of our model with limited labeled data, we visualize the

performance of PI-NeuGODE and SocialGAN when varying train-

ing size of the car-following dataset in Fig. 4. We can see that the

results of PI-NeuGODE do not deteriorate as drastically as those

of socialGAN as we reduce the training size. This is because PI-

NeuGODE uses both labeled and unlabeled instances in training,

1www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

Table 1: Evaluation of di�erent models for the platoon mod-

eling problem

Model
Noise-free Noisy NGSIM

MSE MAE MSE MAE MSE MAE

SocialGAN 1.45 1.27 2.45 1.60 3.38 2.12

SocialLSTM 2.56 1.78 4.56 2.39 3.51 2.69

IDM 1.28 1.31 1.89 1.50 4.64 2.93

PI-NeuGODE 1.23 1.16 1.34 1.18 2.62 1.46

Figure 4: E�ect of the training size.

leading to the learning of more generalizable solutions compared

to socialGAN that only uses labeled instances.

Recovered Physics: For the numerical data, the discovered physics

is of the same form of Eq. 13, and the estimated coe�cients are:

[Edes,)0, B0, 0max, 1] = [28.45</B, 0.70 B, 4.25<, 2.14</B2, 3.24</B2]
For the symbolic regression of the NGSIM platooning trajectory,

the operator set is [+,−, ∗, /,
√

(), ()2, ()3, ()4]. To control the com-

plexity of the learned equation, we add a constraint that the power

operator, i.e., ()2, ()3, ()4, can only be used once and cannot be used

with each other. The discovered equation is:

¤E8 (C) = 0.063(0.042B8 (C) − 0.072E8 (C))2
−0.041E8 (C)2 − 0.083E8 (C)ΔE8 (C) + 0.14,

(14)

where the variable shares the samemeaning as in Eq. 13. For compar-

ison, we apply the symbolic regression to the NGSIM data directly,

and the optimal learned equation is a constant ¤E8 (C) = 0.025. This

is because the real-world data is noisy, and exploring high-order

operators tends to cause high empirical risk. From this result, we

can see that the neural network serves as a �lter to smooth the

real-world data, allowing subtle patterns to be learned through

symbolic regression.

Visualization: Fig. 5a and 5b plot the trajectories for a platoon of

vehicles predicted by SocialGAN and PI-NeuGODE, respectively.

The red line is the trajectory of the leading car. The solid and

dashed blue lines represent the actual and predicted trajectories

of the following cars, respectively. It is shown that PI-NeuGODE

outperforms SocialGAN when predicting trajectories for the next 5

seconds. The gap between solid blue lines keeps increasing, as the

predicted time progresses, as seen in Fig. 5a. This trend is invisible

in Fig. 5b. Thus, compared to SocialGAN, PI-NeuGODE has a higher
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