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Abstract. Noisy labels hurt deep learning-based supervised image clas-
sification performance as the models may overfit the noise and learn cor-
rupted feature extractors. For natural image classification training with
noisy labeled data, model initialization with contrastive self-supervised
pretrained weights has shown to reduce feature corruption and improve
classification performance. However, no works have explored: i) how
other self-supervised approaches, such as pretext task-based pretrain-
ing, impact the learning with noisy label, and ii) any self-supervised
pretraining methods alone for medical images in noisy label settings.
Medical images often feature smaller datasets and subtle inter-class vari-
ations, requiring human expertise to ensure correct classification. Thus,
it is not clear if the methods improving learning with noisy labels in nat-
ural image datasets such as CIFAR would also help with medical images.
In this work, we explore contrastive and pretext task-based self-
supervised pretraining to initialize the weights of a deep learning
classification model for two medical datasets with self-induced noisy
labels—NCT-CRC-HE-100K tissue histological images and COVID-QU-

Ex chest X-ray images. Our results show that models initialized with
pretrained weights obtained from self-supervised learning can effectively
learn better features and improve robustness against noisy labels.

Keywords: medical image classification · label noise · learning with
noisy labels · self-supervised pretraining · warm-up obstacle · feature
extraction

1 Introduction

Medical image classification using supervised learning relies on large amounts
of representative data with accurately annotated labels to achieve good gener-
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alization. However, recent practices of crowd-sourcing for data labeling or auto-
matically generating labels from patients’ medical reports using algorithms, and
the high variability among expert annotators introduce higher levels of label
noise in medical datasets. Moreover, supervised deep learning is highly suscep-
tible to label noise as the models can easily overfit the noisy labels, leading to
corrupt representation learning and compromising generalizability [18,19,24,39].
Correcting label noise in large medical image datasets is expensive and requires
extensive human resources and time-consuming protocols. Several methods for
learning with noisy labels (LNL) have been introduced in natural image datasets
to minimize the influence of label noise on the training [2,8,12,25,32,34]. Similar
methods, with adjustments, have also been applied to medical image classifica-
tion [15,26,36,44].

Many LNL methods rely on a warm-up phase, a small number of initial
epochs during which the model is trained directly using all the noisy training
data [8,15,25,27]. While the warm-up phase is important to kickstart the model
and learn basic features important for proper separation of noisy labels from
clean labels at a later phase [41,42], the high noise rate makes it challenging to
avoid memorizing wrong labels and learning poor feature extractors. Zheltonozh-
skii et al. [42] referred to this issue as the “warm-up obstacle”. One may use
supervised pretraining to learn good feature extractors and train with noisy
labels to mitigate the warm-up obstacle. However, this approach presents chal-
lenges in medical datasets due to the limited availability of large labeled datasets
that closely align with the given new dataset. Alternatively, if existing medical
datasets already contain valuable metadata such as gender and age information,
one may pretrain to predict such auxiliary information before proceeding with
training on the main task involving noisy labels. Such an approach could mini-
mize feature corruption, as the auxiliary tasks are relatively straightforward and
less likely to contain label noise. However, if the datasets lack such metadata,
another approach is to use self-supervised learning techniques for pretraining to
learn feature extractors, without relying on any labels.

Some studies have demonstrated the benefits of contrastive learning-based
self-supervised pretraining to improve robustness against noisy labels in natural
image datasets [41,42]. However, no extensive study has been conducted to inves-
tigate which self-supervised pretraining is suitable for a specific scenario, there-
fore providing no such prior knowledge that can be adapted and used in med-
ical image classification. Additionally, medical images come with some caveats
that make it challenging to apply various self-supervised techniques in medical
datasets (discussed in Sect. 2.2).

In this work, we investigate contrastive learning and propose simple and
intuitive pretext task-based self-supervised pretraining approaches to improve
robustness against noisy labels in the medical image classification problem. We
show that self-supervised pretraining can significantly improve the robustness
against noisy labels in the existing classification framework. Furthermore, we
explored the implications of this pretraining approach on existing LNL methods
by pretraining the models before the warm-up phase.
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Fig. 1. Our approach involves two phases: I. Pretrain the model with pretext task-
based self-supervised technique (left), and II. Retrain the pretrained model on medical
image classification with noisy labels using LNL approaches (right).

Our contributions can be summarized as follows: 1) To our knowledge, we
are the first to investigate the use of only self-supervised pretraining to improve
robustness in the presence of noisy labels for medical image classification; 2) We
propose the use of pretext task-based self-supervised pretraining in classification
with noisy labels, which hasn’t been studied even with natural image datasets;
3) Using two representative datasets, namely X-ray and histopathology images,
induced with label noise at various rates, we show that self-supervised pretraining
alone improves the feature extractor, thus helping overcome the warm-up obsta-
cle in LNL methods, yielding significantly improved performance while reducing
the label memorization.

2 Related Works

2.1 Learning with Noisy Labels in Medical Images

Several methods have been proposed to robustly train medical image classifiers
with noisy labels [16]. Pham et al. [30] used label smoothing to reduce the impact
of noisy labels in thoracic disease classification. Dgani et al. [4] introduced a noise
layer and modified the network architecture to address unreliable labels in breast
classification. Le et al. [22] used a sample reweighting technique to robustly train
a pancreatic cancer detection model with noisy labels, while Xue et al. [35] used
a similar reweighting technique for skin lesion classification with noisy datasets.

Ju et al. [15] used dual-uncertainty estimation to tackle two cases: label
noise due to disagreement among experts and single-target label noise, in skin
lesions, prostate cancer, and retinal disease. Ying et al. [37] improved COVID-19
chest X-ray classification through techniques like PCA, low-rank representation,
neighborhood graph regularization, and k-nearest neighbor. Similarly, Zhou et al.
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[44] employed consistency regularization and disentangled distribution learning
for multi-label disease classification and severity grading in chest X-rays and
diabetic retinopathy. Xue et al. [36] combined a student-teacher network with
a co-training strategy to improve prostrate cancer grading, skin classification,
chest X-ray classification, and histopathology cancer detection, in different label
noise settings. Liu et al. [26] proposed co-correcting, a curriculum learning-based
label correction strategy, for robust training with noisy labels in metastatic tissue
classification and melanoma classification.

Despite incorporating some concepts from self-supervised learning, no
research has explored the impact of just self-supervised pretraining on enhancing
robustness against noisy labels.

2.2 Self-supervised Pretraining

Several self-supervised techniques have emerged recently [7], encompassing
simple pretext task-solving approaches [5,6,40], contrastive learning methods
[3,10,38], and generative approaches [9,28,43]. Generative approaches have
shown promise but face challenges due to training instability and high compu-
tational resource requirements. Additionally, the majority of recent generative
approaches necessitate a Transformer as the backbone, and investigating the
robustness of a Transformer-based architecture against label noise, in compari-
son to a CNN, is a distinct topic of discussion. Furthermore, recent mask image
modeling-based generative approaches that learn by randomly masking a certain
portion of the image may inadvertently miss crucial features. This issue could be
problematic for medical datasets that rely on subtle image cues [13] and requires
a separate investigation. Therefore, for this work, we considered focusing solely
on contrastive learning, which is widely used, and the pretext task-based app-
roach, which is simple but unexplored, leaving generative approaches for future
investigation.

In this study, we chose three pretext tasks: Rotation prediction, Jigsaw puzzle,
and Jigmag puzzle, and a contrastive approach: SimCLR. Rotation prediction [6]
trains a model to predict the rotation degree of an image in various orientations.
Jigsaw puzzle [29] requires training a model to learn to predict the arrangement
of shuffled, non-overlapping patches in an image. Jigmag puzzle [20], originally
proposed for histopathology images, learns to predict the arrangement of patches
obtained from magnifying an image at various factors. SimCLR utilizes a con-
trastive loss to compare the representations of different augmented views of the
same input, aiming to bring closer the augmented views (positive pairs) of the
same image while keeping the augmented views of other images (negative pairs)
far apart in the representation space. The benefit of pretraining depends on the
suitability of the pretraining task with the main task [23].

We selected these pretext tasks because Rotation prediction and Jigsaw puz-

zle are commonly used in the literature, while Jigmag puzzle was specifically
proposed to address the subtlety of medical images. Other pretext tasks, such
as Colorization [21], were deemed unsuitable for our grayscale X-ray image and
stained histopathology image datasets. SimCLR was chosen for the contrastive
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approach due to its simplified framework, which eliminates the need for special
memory buffers or specialized architectures.

3 Datasets

3.1 COVID-QU-Ex

This dataset is a collection of chest X-ray images obtained from various patients
[33] categorized into three groups: COVID infection, Non-COVID infection, and
Normal. The dataset consists of a total of 27,132 training images, with 8,561
classified as Normal, 9,010 as Non-COVID-19, and 9,561 as COVID-19 cases.
Additionally, there is an exclusive test set containing 6,788 images for evaluation.

3.2 NCT-CRC-HE-100K

This dataset has 100,000 histopathological image patches of size 224 × 224
extracted from stained tissue slides [17] featuring nine classes, such as adipose,
lymphocytes, mucus, etc. The test set uses a different CRC-VAL-HE-7K dataset
consisting of 7,180 images, featuring all nine classes of the training set.

4 Experimental Setup

4.1 Random Label Noise

To evaluate how a deep learning classifier performs on high label noise, we ran-
domly flipped all the labels in the training set such that the original labels
are assigned to any other labels within the close-set with some probability [14].
Assuming a training dataset {(xi, yi)}

n
i ∈ D, which contains n samples, xi is a

data point belonging to the set X ∈ R
d, and yi is its corresponding class label

from a close-set classes C = {c0, c1, .., c4}. For any sample (xi, yi), we change its

label yi to ŷi
p
∼ C \ yi, where p is the noise probability and C \ yi denotes any

label of close-set classes other than the true label. The label noise is symmetri-
cal for all the classes within the close set. We conducted experiments using four
different noise rates p ∈ {0.5, 0.6, 0.7, 0.8}.

As depicted in Fig. 2, the impact of noisy labels on test performance varies
across datasets; NCT-CRC-HE-100K remains robust to noise below 0.5, whereas
COVID-QU-Ex is affected at lower rates also.

4.2 Methodology

Our approach involves two stages: i) pretrain a model using self-supervised learn-
ing on the given dataset to learn meaningful feature extractors, and ii) train the
pretrained model for medical image classification on the same dataset with noisy
labels (Fig. 1). We primarily focus on the first stage, experimenting with four self-
supervised tasks. In the second stage, we experimented with cross-entropy alone,
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(a) NCT-CRC-HE-100K (b) COVID-QU-Ex

Fig. 2. Test performance as a function of training label noise rate (noise probability
p) ranging from scale 0 to 1, with the shaded region indicating variability across three
experimental trials. BEST indicates the highest test accuracy achieved, while LAST
denotes the average test accuracy achieved in the last five epochs.

followed by two state-of-the-art LNL approaches, Co-teaching [8] and DivideMix
[25].

Co-teaching selectively samples clean examples by ranking the training loss,
while DivideMix utilizes a Gaussian Mixture Model (GMM) to categorize exam-
ples into clean and noisy groups based on the training loss of each sample.
DivideMix also applies the MixMatch [1] semi-supervised learning approach by
treating noisy labels as unlabeled examples. Notably, Co-teaching focuses on
clean sample selection, while DivideMix does both clean sample selection and
noisy label correction, but both use dual networks and utilize a warm-up phase.

Evaluation: Following [8,25], we evaluate the best test classification accuracy
(BEST) and the average test accuracy of the last five epochs (LAST). The test
set serves as a pseudo-test set, accessing the model’s maximum performance
with BEST, while LAST measures if the model has overfitted to noisy labels
(see Fig. 2).

4.3 Implementation Details

Self-supervised Pretraining: We utilized the ResNet18 architecture for all
experiments. For Rotation prediction, images were resized and underwent strong
data augmentations: random horizontal flips, small rotations (10◦), sharpness
adjustment, equalization, and auto contrast. The model had to predict the rota-
tion angle from four possible angles (0◦, 90◦, 180◦, 270◦).

For Jigsaw puzzle solving, we performed similar strong augmentations and
divided the resized input image into a 3 × 3 grid of patches. The patches were
resized to 64×64 pixels, normalized with patch mean and standard deviation, and
randomly shuffled to create one of the 1000 chosen permutations1. Then, they

1 https://github.com/bbrattoli/JigsawPuzzlePytorch.

https://github.com/bbrattoli/JigsawPuzzlePytorch
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were passed through the ResNet18 feature extractor and concatenated before
being fed into a fully connected output layer that predicted the input permuta-
tion.

For Jigmag puzzle solving, we applied the aforementioned augmentations and
randomly magnified the input image at different locations using nine magnifica-
tion factors ranging from 1 to 5. The magnified patches were resized, normalized,
and randomly rearranged into one of the 1000 chosen permutations similar to the
Jigsaw puzzle. A fully connected softmax layer after the ResNet feature extrac-
tor predicted the input permutation. We used SimCLR [3] implemented in2,
setting the default parameters. The input images were resized and augmented
with random horizontal flips, color jitter, and Gaussian blur. Table 1 summa-
rizes all training hyperparameter settings. All the methods were trained until
convergence, with the number of epochs and learning rates chosen accordingly.
For instance, Rotation prediction performed best with an SGD learning rate of
0.01 compared to other settings, while Jigsaw and Jigmag converged effectively
using a batch size of 128.

Table 1. Hyperparameters used for training various self-supervised methods.

Datasets Method Input size Batch Epochs Wt decay Lr Optim Sheduler

NCT-CRC-HE-100K Rotation 224 × 224 256 70 10−4 0.01 SGD Cosine Annealing

Jigsaw 64 × 64 128 50 10−4 0.001 Adam Cosine Annealing

Jigmag 64 × 64 128 50 10−4 0.001 Adam Cosine Annealing

SimCLR 224 × 224 256 100 10−4 0.001 Adam Cosine Annealing

COVID-QU-Ex Rotation 224 × 224 256 70 10−4 0.01 SGD Cosine Annealing

Jigsaw 64 × 64 128 60 10−4 0.001 Adam Cosine Annealing

Jigmag 64 × 64 128 60 10−4 0.001 Adam Cosine Annealing

SimCLR 224 × 224 256 200 10−4 0.001 Adam Cosine Annealing

Learning with Noisy Labels: In this stage, we took the ResNet18 feature
extractor initialized with from self-supervised training, added a fully connected
output layer, and retrained the entire model with noisy labels. In the first set
of experiments, we trained the model using standard cross-entropy loss without
any modifications. The training process involved a batch size of 256, an SGD
optimizer with a momentum of 0.9, weight decay of 10−4, an initial learning rate
of 0.01, and 50 training epochs. In the second set of experiments, we used two
LNL methods.

2 https://github.com/sthalles/SimCLR.

https://github.com/sthalles/SimCLR
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For Co-teaching, we followed the original paper’s [8] recommendations and
set the warm-up epochs to 10, τ = p and c = 1, where p is the label noise
rate in data. As for DivideMix, we slightly adjusted the original hyperparame-
ters [25], setting the warm-up epochs to 10, M = 2, T = 0.2, α = 4, τ = 0.2,
and λu = 0 for p = {0.5, 0.6, 0.7}, while λu was changed to 0.25 for p = 0.8.
Both methods maintained other training hyperparameters the same as the stan-
dard cross-entropy approach, except for DivideMix, where a batch size of 128
was used. To avoid confirmation bias, both Co-teaching and DivideMix original
implementations initialize the dual networks with different weights. Similarly,
in our approach, we adopt this strategy by initializing the dual networks with
two distinct pretrained weights obtained from separate self-supervised training
under the same settings.

All our experiments were implemented in Python 3.8 using the PyTorch
12.1.1 framework and trained on an A100 GPU (40 GB). We ran 3 experimental
trials for each case to report the mean and standard deviation.

5 Results

Self-supervised Pretraining Improves Robustness Against Noisy
Labels: In Fig. 3, we compared models trained with standard cross-entropy
(CE) loss, using weights initialized from the self-supervised pretraining against
PyTorch’s default randomized He initialization [11].

The results demonstrate that self-supervised pretrained models significantly
improve in terms of the BEST and LAST accuracy, particularly at high noise
rates in the NCT-CRC-HE-100K. Specifically, SimCLR achieved better perfor-
mance in both BEST and LAST accuracy at all noise rates, while Jigsaw and
Jigmag also notably improve the LAST accuracy at p = {0.6, 0.7, 0.8}.

Similar trends are observed in the COVID-QU-Ex, where SimCLR, Jigmag,
and Jigsaw outperform others significantly at p = {0.5, 0.6} in terms of both
BEST and LAST accuracy. At p = {0.7, 0.8}, rotation performs better, but the
improvements are not as good as those observed with SimCLR, Jigsaw, and
Jigmag in the p = {0.5, 0.6} range. However, SimCLR, Jigmag, and Jigsaw
performed worst than the cross entropy in the range p = {0.7, 0.8}.

The choice of the best self-supervised task varies based on the dataset, noise

rate, and evaluation criteria, but the results achieved using self-supervised pre-

training consistently show better performance compared to directly starting train-

ing from PyTorch’s default randomized He initialization.
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Fig. 3. Performance comparison of models trained starting from default weights vs.
trained from weights initialized from self-supervised pretraining, when using standard
cross entropy (CE) loss at different training label noise rates (p), in COVID-QU-Ex

and NCT-CRC-HE-100K. BEST denotes the best test accuracy, while LAST denotes
the average test accuracy achieved of the last five epochs. The experiments were run
for three experimental trials to report the error bar.

Self-supervised Pretraining for LNL Methods: We compared LNL meth-
ods trained from PyTorch’s default He initialization with those trained using
weights initialized from a self-supervised pretraining in Fig. 4. The results show
that the LNL methods already achieved good performance in the NCT-CRC-

HE-100K, with only a small room for improvement at a lower noise rate. At
higher noise rates, SimCLR achieved the highest BEST and LAST accuracy, fol-
lowed by Rotation prediction. Initializing LNL with Jigsaw and Jigmag didn’t
improve the performance, but rather degraded it.

In the COVID-QU-Ex, we observed an improvement in classification perfor-
mance in the noise range p = {0.5, 0.6} for both Coteaching and DivideMix
when using pretrained weights from the SimCLR and Rotation prediction task.
However, beyond p = {0.7, 0.8}, the scores exhibited high variability, making
it difficult to identify the best performance. SimCLR struggled with high noise
rates, possibly due to excessive contrastive learning augmentations that over-
looked vital subtle features valuable for discerning classes at high label noise.
But, this speculation needs further study. Additionally, in COVID-QU-Ex, we
noticed that the clean samples selected by LNL methods were biased towards
one class and ignored the other classes, particularly at high noise levels, making
it intriguing to investigate the cause behind this phenomenon in the future.
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(a) COVID-QU-Ex

(b) NCT-CRC-HE-100K

Fig. 4. Performance comparison of existing LNL methods when initialized with self-
supervised pretraining against baselines at different training label noise rates (p), in (a)
COVID-QU-Ex and (b) NCT-CRC-HE-100K. Cross entropy (CE) denotes the actual
baseline, Coteaching (CT) and Dividemix (DM) are existing LNL methods, and the
term after + represents various self-supervised pretraining methods. BEST denotes
the best test accuracy, while LAST denotes the average test accuracy achieved of the
last five epochs. The shaded region along the line indicates the variability across three
experimental trials.

6 Conclusion

We examined the effectiveness of utilizing self-supervised pretraining alone to
improve the model’s robustness against noisy labels in medical image classifica-
tion. The choice of self-supervised task varied depending on the dataset, noise
rate, and, evaluation criteria, with SimCLR consistently yielding the best results
in most cases with LNL.

This study addresses a gap in the current research by serving as a first demon-
stration of the benefits of various self-supervised pretraining for medical image
classification with noisy labels and offering valuable insights to mitigate the
impact of high label noise. In the future, we plan to investigate additional self-
supervised baselines and further explore how the nature and size of the dataset
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influence the improvements offered by self-supervised pretraining in terms of
robustness against noisy labels.

Additionally, in this work, we have limited the investigation to CNN-based
architecture. It would be interesting to investigate how recent Transformer-based
architectures behave under various levels of label noise, whether off-the-shelf
LNL methods work with Transformer architecture, and how Transformer-based
self-supervised techniques improve robustness against noisy labels.
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