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Abstract—Function approximation has experienced significant
success in the field of reinforcement learning (RL). Despite
a handful of progress on developing theory for nonstationary
RL with function approximation under structural assumptions,
existing work for nonstationary RL with general function ap-
proximation is still limited. In this work, we investigate two
different approaches for nonstationary RL with general function
approximation: confidence-set based algorithm and UCB-type
algorithm. For the first approach, we introduce a new complexity
measure called dynamic Bellman Eluder (DBE) for nonstationary
MDPs, and then propose a confidence-set based algorithm SW-
OPEA based on the complexity metric. SW-OPEA features the
sliding window mechanism and a novel confidence set design for
nonstationary MDPs. For the second approach, we propose a
UCB-type algorithm LSVI-Nonstationary following the popular
least-square-value-iteration (LSVI) framework, and mitigate the
computational efficiency challenge of the confidence-set based
approach. LSVI-Nonstationary features the restart mechanism
and a new design of the bonus term to handle nonstationarity.
The two proposed algorithms outperform the existing algorithms
for nonstationary linear and tabular MDPs in the small variation
budget setting. To the best of our knowledge, the two approaches
are the first confidence-set based algorithm and UCB-type algo-
rithm in the context of nonstationary MDPs.

Index Terms—Nonstationary MDPs, general function approx-
imation, Eluder dimension, LSVI.

I. INTRODUCTION

Reinforcement learning (RL) focuses on the problem of
maximizing the cumulative reward through interactions with
an unknown environment. RL has witnessed a great success in
practical applications, including robotics [2], [3], games [4]–
[7], and autonomous driving [8]. The unknown environment
in RL is commonly modeled as a Markov decision process
(MDP), where the set of states S describes all possible status
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of the environment. At a state s ∈ S , an agent takes an action
a from an action set A to interact with the environment, after
which the environment transits to the next state s′ ∈ S drawn
from some unknown transition distributions, and then the agent
receives an immediate reward. The interaction between the
agent and the environment takes place episodically, where each
episode consists of H steps. The notion called regret has been
typically employed to measure the performance of RL algo-
rithms, which measures how much worse an agent performs
following its current policy comparison to the optimal policy in
hindsight. The goal of the agent is to strategically interact with
the environment to balance the exploration and exploitation
tradeoff to minimize the regret.

Most existing RL studies adopt a static MDP model, in
which both the reward and the transition kernel are time-
invariant across episodes. However, stationary environment
is insufficient to model enormous sequential decision prob-
lems such as online advertisement auctions [9], [10], traffic
management [11], health care operations [12], and inventory
control [13]. In contrast, nonstationary RL takes variations
in rewards and transitions into consideration and is able to
characterize larger classes of problems of interest [14]. In
general, it is impossible to design algorithms that achieve
sublinear regret for MDPs with drastically changing rewards
and transitions in the worst case [15]. Therefore, one funda-
mental issue in the theoretical study of nonstationary RL is to
investigate the maximum nonstationarity an agent can tolerate
to adapt to the nonstationary dynamics of an MDP in order to
achieve sublinear regret.

Without additional assumptions on the structure of the MDP,
there is a line of extensive studies on nonstationary tabular
MDPs [15]–[28]. However, the performance of nonstationary
tabular MDPs suffers from large state and action spaces, which
limits its applicability in scenarios with exponentially large
or continuous state spaces. Therefore, function approximation
has become a prominent tool to cope with this challenge.
Several works have developed RL algorithms for nonstationary
MDPs under structural assumptions, such as state-action set
forming a metric space [29], linear MDPs [30], [31], linear
mixture MDPs [32]. Although the developed algorithms are
much more efficient than the algorithms designed for tabular
setting, these algorithms require strong structural assumptions
on the function approximation (such as a well-designed feature
extractor in linear MDPs), which severely restricts the range
of situations where these approaches can be employed. This
naturally leads to the following open question:

Can we design an algorithm that achieves a “desired”
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regret performance1 for nonstationary MDPs under general
function approximation?

In this paper, we give an affirmative answer to the above
question by investigating two different approaches and address
the following challenges: First, we need to identify an appro-
priate complexity metric for nonstationary MDPs that covers
many existing problems of interest. Second, We need to design
an algorithm that can handle nonstationarity without addi-
tional structural assumptions on transition kernels and rewards.
Third, it is non-trivial to establish a dynamic regret bound
of the proposed algorithm that potentially improves those for
nonstationary tabular and linear MDPs. The contributions of
our work is summarized based on two different approaches as
follows.

Confidence-set based algorithm. We propose a new com-
plexity metric named the Dynamic Bellman Eluder (DBE) di-
mension for nonstationary MDPs, which generalizes the Bell-
man Eluder (BE) dimension designed for static MDPs [33],
and subsumes a broad class of RL problems including low
BE dimension problems in static RL and nonstationary tabular
and linear MDPs in nonstationary RL. We then design a new
confidence-set based algorithm SW-OPEA for nonstationary
MDPs, by greedily selecting the candidate value function in
the confidence region. Our design novelty lies in the con-
struction of the confidence region, which features the sliding
window mechanism, and incorporates local variation budget in
order to accurately capture the distribution mismatch between
the current episode and all episodes in the sliding window.
Such a design ensures the optimal state-action value function
in current episode to lie within the confidence region, and
hence the optimism principle remains valid.

We theoretically characterize the dynamic regret of SW-
OPEA. To demonstrate the advantage of SW-OPEA , we
compare our regret bound of SW-OPEA to that of previously
proposed UCB-type algorithms [30] for nonstationary linear
and tabular MDPs. The comparison shows that our confidence-
set based algorithm performs better in terms of the linear
feature dimension d̃ and the horizon H , where the depen-
dency on H also matches with the minimax lower bound
given in [30], while performs slightly worse in the average
variation budget. Therefore, the comparison suggests that our
algorithm outperforms their algorithm in the small variation
scenario. Our analysis features a few new developments. (a)
We develop a distribution shift lemma to handle transition
kernel variations over time. (b) We come up with new auxiliary
random variables to form appropriate martingale differences
and obtain the concentration results. (c) We use an auxiliary
MDP to help bound the difference of two expectations under
different underlying models.

UCB-type algorithm. To mitigate the computational inef-
ficiency of the confidence-set based algorithm, we propose
a UCB-type algorithm LSVI-Nonstationary for nonstationary
MDPs with general function approximation, which adopts
LSVI with upper confidence bound to handle the exploration
and exploitation tradeoff. In order to handle nonstationarity,

1The performance of the algorithm relies on the variation budget of rewards
and transitions. Mildly changed rewards and transitions results in a sublinear
regret while drastically changed rewards and transitions leads to linear regret.

our algorithm features the restart mechanism, and incorporat-
ing the local variation budget in the design of the bonus term to
ensure the optimism of the learned state-action value function.

We use the Eluder dimension to measure the complexity
of the state-value function class F for nonstationary MDPs.
We then theoretically characterize the dynamic regret of the
proposed UCB-type algorithm, which depends on the Eluder
dimension of function class F . Our newly proposed UCB-
type algorithm matches with the performance of SW-OPEA in
terms of horizon H , average variation budget in transitions LP

and average variation budget in rewards Lr, while performing
slightly worse in the number of states and actions |S|, |A|
under tabular MDPs and the same in the linear feature d̃ in
linear MDPs. Our result suggests the benefit of UCB-type
algorithm over confidence-set based algorithm.

Our main technical development for this approach lies in the
single step optimization error for the least-square optimization
in our UCB-type algorithm. We do not take the distribution
drift in transitions and rewards into consideration, which
may lead to non-trivial estimation error. In our analysis, we
explicitly capture a non-trivial term due to the nonstationarity
of the environment. We show that by compensating such a
term involving local variation budget into the standard term
due to concentration, the difference between the least-square
predictor and the one-step backup estimate rkh + P k

hV
k
h+1 is

still bounded.

A. Related Work

Static Regret of Nonstationary MDPs: Static regret in
nonstationary MDPs have been considered extensively in the
past [15]–[25]. Static regret has also been studied for non-
stationary MDPs with function approximation. In particular,
[31] characterizes the static regret for the weighted least
squares value iteration method. [34] studies the nonstationary
RL setting with general function approximation, where the
static regret is captured through a more general notion called
decision-estimation coefficient (DEC).
Dynamic Regret of Nonstationary MDPs: Many studies
in the past have been focused on the metric of dynamic
regret, which quantifies the performance difference between
the learning policy and the optimal policy at each step. For
nonstationary tabular MDPs, value-based approaches have
been proposed in [26], [28], where they respectively propose
a sliding window strategy and a restart mechanism to han-
dle nonstationarity. Further, [27] adopte a different method
based on policy optimization. For nonstationary MDPs with
function approximation, [30] and [32] focus on linear func-
tion approximation and linear-mixture function approximation,
respectively, and [29] consider a kernel-based approach for
nonstationary MDPs when state-action set forms a metric
space. Further, [35] propose a unified approach to nonsta-
tionary MDPs that relies on an oracle algorithm with optimal
regret for stationary MDPs to develop a useful algorithm for
nonstationary MDPs.
Static MDPs with General Function Approximation: MDPs
with general function approximation have been well studied
in the static setting, where the transition kernel and reward
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function do not change over time. [36] and [37] first introduce
the notion of Eluder dimension to characterize the complexity
of the function class, and study the performance based on
such a metric. Later on, the notion Eluder dimension has been
extended to Bellman Eluder dimension [33], and other notions
have also been proposed, including Admissible Bellman Char-
acterization (ABC) [38] and decision-estimation coefficient
(DEC) [39]. Another line of research is based on low-rank con-
ditions, including Bellman rank [40], [41], witness rank [42],
and bilinear class [43]. Closest to our work here are the studies
by [33] and [44]. For the confidence-set based algorithm, we
generalize the Bellman Eluder dimension [33] for static MDPs
to dynamic Eluder dimension for nonstationary MDPs, while
for the UCB-type algorithm, we extend the study of UCB-type
of approach in static MDPs [44] to nonstationary MDPs. Both
of our approaches feature new elements in algorithm design
and analysis tailored to nonstationary MDPs.

B. Relationship Between Trustworthy RL and Nonstationary
RL

The goal of trustworthy reinforcement learning is to de-
sign algorithms competent in solving challenging real-world
problems, including robustly handling perturbations, satisfying
safety constraint, and generalizing to unseen environments.
Nonstationary RL studied in this work is closely related to
those three aspects. First, nonstationarity naturally occurs in
robust MDPs. In classical robust RL setting, we aim to find
a policy that maximizes thet worst-case performance against
uncertainty variable U , where uncertainty U could be either
state s, action a, reward r, or transition P . When environment
discrepancies are considered, i.e., uncertain variable follows
U = (P, r), and they satisfy the variation budget constraint,
our algorithms provide candidate policies for robust MDPs
with performance guarantee. Second, nonstationary MDPs
can be viewed as a special case of safe RL problems. The
nonstationarity, characterized by the variation budgets, serves
as the constraint on the total variations of rewards and tran-
sitions, and our algorithms provide safe policies (satisfying
variation budget constraints) with good performances. Third,
nonstationary MDPs can help understand generalization in RL.
Consider the scenario where testing environments are drawn
from time-variant nonstationary distributions, and the agents
are expected to learn how to leverage past experience and
identify new environment. The nonstationary RL could serve
as a general framework to study such a problem, and help
understand generalization in RL.
Notation: For a set S , ∆(S) represents a collection of
distributions over S . For a positive integer N , we use [N ] to
denote the set of positive integers {1, 2, . . . , N}. For positive
integers m,n, define {·}[m:n] = ∅ if m > n. Let f, h be a
function of n, f(n) = Õ(h(n)) is equivalently to that there
exists positive k such that f(n) = O(h(n) logk(h(n))). Given
a dataset D = {(xi, ai, qi)}|D|

i=1 ⊆ S × A × R, for a function

f : S × A 7→ R, define ∥f∥D =
(∑|D|

i=1(f(xi, ai)− qi)
2
) 1

2

.
For a set of state-action pairs Z ⊆ S × A, for a function

f : S × A, define ∥f∥Z =
(∑

(x,a)∈Z(f(xi, ai))
2
) 1

2

. For

a set of functions F ⊆ {f : S × A 7→ R}, we define
the width function of the state-action pair as w(F ;x, a) =
supf,f ′∈F (f − f ′)(x, a).

II. PRELIMINARIES

A. Nonstationary MDPs

Our setting can be formulated as a nonstationary finite-
horizon episodic Markov decision process, captured by a tuple
(S,A, H,K, P, r, x1). Here, S is the state space, A is the
action space, H is the length of each episode, K is the
total number of episodes, P = {P k

h }(k,h)∈[K]×[H−1] where
P k
h : S × A 7→ △(S) is the transition kernel at step h in the

k-th episode, r = {rkh}(k,h)∈[K]×[H] where rkh : S×A 7→ [0, 1]
is the mean reward function at step h in the k-th episode, and
x1 is the fixed initial state.

The agent interacts with the nonstationary MDP sequen-
tially. At the beginning of k-th episode, the agent chooses
a policy πk = {πk

h}h∈[H] where πk
h : S 7→ △(A). At step

h, the agent observes the state xk
h, takes an action following

akh ∼ πk
h(·|xk

h), obtains a reward r̃kh (we also use rkh if there
is no ambiguity) with mean rkh(x

k
h, a

k
h), and the MDP evolves

into the next state xk
h+1 ∼ P k

h (x
k
h, a

k
h). The process ends after

receiving the last reward rkH . We define the state and state-
action value functions of policy π = {πh}h∈[H] recursively
via the following equation

Qπ
h;(∗,k)(x, a) = rkh(x, a) + (P k

hV
π
h+1;(∗,k))(x, a),

V π
h;(∗,k)(x) = ⟨Q

π
h;(∗,k)(x, ·), π

k
h(·|x)⟩A, VH+1;(∗,k) = 0,

where (∗, k) represents the true model in the k-th
episode, P k

h is the operator defined as (Pk
hf)(x, a) :=

E
[
f(x′)|x′ ∼ P k

h (x
′|x, a)

]
for any function f : S 7→ R. Here

⟨·, ·⟩A denotes the inner product over action space A and the
subscript A is omitted when appropriate.

The learning objective is to find the optimal policy via
interactions with the environment to minimize the dynamic
regret

D− Regret(K) :=
∑K

k=1

(
V π(∗,k)

1;(∗,k) − V πk

1;(∗,k)

)
(x1),

which quantifies the performance difference between the learn-
ing policy and the benchmark policy {π(∗,k)}k∈[K] where
π(∗,k) = argmaxπ V

π
1;(∗,k)(x1).

B. Function Approximation

Consider a function class F = F1×F2× . . .×FH , where
Fh ⊆ {f : S × A 7→ [0, H − h + 1]} is the candidate
function class to approximate Q

π(∗,k)

h;(∗,k). For convenience, we
set fH+1 = 0, and therefore FH+1 = {f(s, a) = 0 : (s, a) ∈
S ×A}.

Assumption 1 (Realizability). Q∗
h;(∗,k) ∈ Fh for all (k, h) ∈

[K]× [H].

Realizability assumption requires that the optimal state-
action value function in each episode is contained in
the function class F with no approximation error, i.e.,
(Q∗

1;(∗,k), · · · , Q
∗
H;(∗,k)) ∈ F for k ∈ [K].



4

Given functions f = (f1, f2, · · · , fH) where fh ∈ (S ×
A 7→ [0, H − h+ 1]), define

(T k
h fh+1)(x, a) := rkh(x, a) + (P k

h fh+1)(x, a),

(P k
h fh+1)(x, a) = Ex′∼Pk

h (·|x,a)[max
a′∈A

fh+1(x
′, a′)],

where T k
h is the Bellman operator at step h in episode k.

Note that the optimal state-action value function satisfies
Q∗

h;(∗,k)(x, a) = (T k
h Q∗

h+1;(∗,k))(x, a) for all valid x, a, h.
Moreover, we define T k

h Fh+1 = {T k
h fh+1 : fh+1 ∈ Fh+1}.

Assumption 2 (Completeness). T k
h Fh+1 ⊆ Fh for all

(k, h) ∈ [K]× [H].

For the completeness assumption, we require that after
applying the Bellman operator T k

h of any episode k to a
function fh+1 in the function class Fh+1 at step h + 1, the
resulting function lies in the function class Fh at previous step
h.

C. Complexity Measures

In this section, we introduce two complexity measures for
a class of functions. One is Eluder dimension and the other
one is distributional Eluder dimension.

The definition of Eluder dimension was first proposed
in [45], and is based on the ϵ-independence of points, as
illustrated in the following definition.

Definition 1 (Eluder Dimension). Let ϵ ≥ 0 and Z =
{(xi, ai)}ni=1 ⊆ S ×A be a sequence of state-action pairs.

• A state-action pair (x, a) ∈ S × A is ϵ-dependent
on Z with respect to F if any f, f ′ ∈ F satisfying2

∥f − f ′∥Z ≤ ϵ also satisfies |f(x, a)− f ′(x, a)| ≤ ϵ.
• An (x, a) is ϵ-independent on Z with respect to F if (x, a)

is not ϵ-dependent on Z .
• The Eluder dimension dimE(F , ϵ) of a function class
F is the length of the longest sequence of elements in
S × A such that, for some ϵ′ ≥ ϵ, every element is ϵ′-
independent of its predecessors.

It has been shown in [36] that dimE(F , ϵ) ≤ |S||A| for
tabular MDPs, and dimE(F , ε) ≤ Õ(d̃) for linear MDPs
where d̃ is the feature dimension.3

We extend the notion of ϵ-independence of points to ϵ-
independence of distributions, and obtain the definition of
distributional Eluder dimension [33].

Definition 2 (Distributional Eluder Dimension). Let ϵ ≥ 0
and {νi}ni=1 ⊆ ∆(S × A) be a sequence of probability
distributions.

• A distribution µ ∈ ∆(S × A) is ϵ-dependent on
{ν1, . . . , νn} with respect to F if any f ∈ F satisfying√∑

i(Eνi
f)2 ≤ ϵ also satisfies |Eµf | ≤ ϵ.

• A µ is ϵ-independent on {ν1, . . . , νn} with respect to F
if µ is not ϵ-dependent on {ν1, . . . , νn}.

2∥·∥Z is formally defined in Section I Notation.
3The proofs for the nonstationary setting are essentially the same as the

proof for the stationary setting therein, and we do not differentiate the two
settings.

• The distributional Eluder dimension dimE(F ,Π, ϵ) of a
function class F and distribution class Π is the length
of the longest sequence of elements in Π such that,
for some ϵ′ ≥ ϵ, every element is ϵ′-independent of its
predecessors.

III. CONFIDENCE-SET BASED ALGORITHM

To the best of our knowledge, the proposed SW-OPEA
is the first confidence-set based algorithm in the context
of nonstationary MDPs. At high level, confidence-set based
algorithm consists of three key steps: optimistic planning, data
collection and confidence set updating. Compared to static
MDPs, we adopt sliding window mechanism and incorporate
local variation budgets in transitions and rewards to com-
pensate for the distribution mismatch between the current
episode and all episodes in the sliding window to handle
nonstationarity. Despite of the new technical developments for
the analysis, our algorithm for nonstationary MDPs remains
concise and simple.

A. Dynamic Eluder Dimension

In this section, we first review the Bellman Eluder (BE)
dimension for static MDPs, and propose a new complexity
metric Dynamic Eluder (DBE) dimension for nonstationary
MDPs. Both BE dimension and DBE dimension are based
on the distributional Eluder dimension (see Definition 2).
However, compared to Bellman Eluder dimension, the new
Dynamic Eluder Dimension nicely captures the nonstationarity
of the problem.

The definition of Bellman Eluder dimension was first intro-
duced in [33] for static MDPs.

Definition 3 (Bellman Eluder dimension (BE)). Let (I −
Th)F := {fh − Thfh+1 : f ∈ F , k ∈ [K]} be the set of
Bellman residuals in all episodes induced by F at step h, and
Π = {Πh}h∈[H] be a collection of H probability measure
families over S × A. The ϵ-Bellman Eluder dimension of F
with respect to Π is defined as

dimBE(F ,Π, ϵ) := max
h∈[H]

dimDE ((I − Th)F ,Πh, ϵ) .

For nonstationary MDPs, the Bellman operators Th varies
over episodes, and hence we introduce our new complexity
measure called dynamic Bellman Eluder dimension for non-
stationary MDPs.

Definition 4 (Dynamic (Bellman) Eluder (DBE) dimension).
Let (I−T̄h)F := {fh−T k

h fh+1 : f ∈ F , k ∈ [K]} be the set
of Bellman residuals in all episodes induced by F at step h,
and Π = {Πh}h∈[H] be a collection of H probability measure
families over S ×A. The dynamic Bellman Eluder dimension
of F with respect to Π is defined as

dimDBE(F ,Π, ϵ) := max
h∈[H]

dimDE

(
(I − T̄h)F ,Πh, ϵ

)
.

We focus on the following choice of distribution family
D∆ = {D∆,h}h∈[H] where D∆,h = {δ(s,a) : s ∈ S, a ∈ A},
i.e., the collections of probability measures that put measure 1
on as single state-action pair.
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The DBE dimension is the distributional Eluder dimension
on the function class (I − T̄h)F in all episodes, maximizing
over step h ∈ [H], which can be viewed as an extension of
BE dimension to nonstationary MDPs. The main difference be-
tween DBE dimension and BE dimension is that the Bellman
operator T k

h is time-varying, and we include all the Bellman
residues induced by T k

h for k ∈ [K] in the function class.
In general, the DBE dimension could be substantially larger
than the BE dimension due the fact that the class of functions
can be significantly larger. However, we can show that, if the
variations in both transitions and rewards are relatively small
compared to a universal gap, then the DBE dimension equals
to the BE dimension with respect to one MDP instance of
the nonstationary MDP [1]. Moreover, the DBE dimension
of nonstationary linear MDPs scales linearly with the linear
feature dimension Õ(d̃) [1].

B. Algorithm SW-OPEA

In this section, we propose our confidence-set based al-
gorithm SW-OPEA for nonstationary MDPs with general
function approximation.

Overview of GOLF [33]: We first give a brief introduction
of GOLF in Algorithm 1 for static MDPs with general
function approximation. There are three key components:
Optimistic planning (line 3), data collection (line 4), and
updating confidence set Bk (line 6). The key step is to
construct the confidence set Bk, and GOLF maintains a local
regression constraint using collected data Dh at this step
LDh

(fh, fh+1) ≤ infg∈Gh
LDh

(g, fh+1) + β, where β is a
confidence parameter, and LDh

is the squared loss proxy to the
squared Bellman error at step h. It was shown that the regret
of GOLF is Õ(H

√
dK), where d = dimBE(F ,D∆, 1/

√
K)

is the BE dimension.

Algorithm 1 GOLF (sketch)
1: Input: D1, · · · ,DH ← ∅, B0 ← F .
2: for episode k from 1 to K do
3: Choose πk = πfk , where fk =

argmaxf∈Bk−1 f1(x1, πf (x1)).
4: Collect a trajectory (x1, a1, r1, · · · , xH , aH , rH , xH+1)

by following πk.
5: Augment Dh = Dh ∪ {(xh, ah, rh, xh+1)}, ∀h ∈ [H].
6: Update Bk = {f ∈ F : LDh

(fh, fh+1) ≤
infg∈Gh

LDh
(g, fh+1) + β, ∀h ∈ [H]}, where

LDh
(ξh, ζh+1) =

∑
(s,a,r,s′)∈Dh

(ξh(x
t
h, a

t
h)− r

−maxa′∈A ζh+1(x
t
h+1, a

′)
)2

7: end for

At a high level, SW-OPEA differentiates from the GOLF
algorithm [33] for static MDPs with general function ap-
proximation in its novel designs to handle the nonstationarity
of transition kernels and rewards. Specifically, SW-OPEA
features the sliding window mechanism and incorporates local
variation budget in order to accurately capture the distribution
mismatch between the current episode and all episodes in
the sliding window. Such a design ensures the optimal state-
action value function in the current episode to lie within the

confidence region, and hence the optimism principle remains
valid.

Algorithm 2 Sliding Window OPtimistic Exploration and
Approximation (SW-OPEA)

1: Input: D1, · · · ,DH ← ∅, B0 ← F , local variation
budgets ∆w

P (k, h), ∆
w
R(k, h).

2: for episode k from 1 to K do
3: Choose πk = πfk , where fk =

argmaxf∈Bk−1 f1(x1, πf (x1)).
4: Collect a trajectory (xk

1 , a
k
1 , r

k
1 , · · · , xk

H , akH , rkH , xk
H+1)

by following πk.
5: Augment Dh = Dh ∪ {(xk

h, a
k
h, x

k
h+1)}, ∀h ∈ [H].

6: Update Bk = {f ∈ F : LDh
(fh, fh+1) ≤

infg∈Gh
LDh

(g, fh+1) + β + 2H2∆w
P (k, h) +

2H∆w
R(k, h), ∀h ∈ [H]}, where LDh

(ξh, ζh+1)
is defined in (1).

7: end for

The pseudocode of SW-OPEA is presented in Algorithm 2.
SW-OPEA initializes the dataset {Dh}h∈[H] to be empty sets,
and confidence set B0 to be F . Then, in each episode, SW-
OPEA performs the following two steps:

Optimistic planning step (Line 3) greedily selects the most
optimistic state-action value function fk from the confidence
set Bk−1 constructed in the last episode, and chooses the
corresponding greedy policy πk associated with fk.

Sliding window squared Bellman error is defined as

LDh
(ξh, ζh+1) =

k∑
t=1∨(k−w)

(
ξh(x

t
h, a

t
h)− rth

−max
a′∈A

ζh+1(x
t
h+1, a

′)

)2

. (1)

Note that in episode k, we use bandit reward rth in the
construction of the sliding window squared Bellman error,
and LDh

tends to be small as long as the transition kernel
difference between episode k and t is small. Furthermore,
based on the “forgetting principle” [46], we adopt the sliding
window in the squared loss (1), where the data used to
estimate the squared loss at episode k relies on the latest
w+1 observations (when iteration number is sufficiently large)
during episode 1∨(k−w) to k instead of all prior observations.
The rationale is that under nonstationarity setting, the historical
observations far in the past are obsolete, and they are not as
informative for the evaluation of the squared loss.

Confidence set updating step (Line 4-6) first executes
policy πk and collects data for the current episode, and then
updates the confidence set based on the new data.

The key novel ingredient of SW-OPEA lies in the construc-
tion of the confidence set Bk. For each h ∈ [H], SW-OPEA
maintains a local regression constraint using the collected data
Dh

LDh
(fh, fh+1) ≤ inf

g∈Gh

LDh
(g, fh+1) + β

+ 2H2∆w
P (k, h) + 2H∆w

R(k, h),
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where β is a confidence parameter, and ∆w
P ,∆

w
R are the local

variation budgets defined by

∆w
P (k, h) =

k∑
t=1∨(k−w)

sup
x∈S,a∈A

∥∥(P k
h − P t

h)(·|x, a)
∥∥
1
. (2)

∆w
R(k, h) =

k∑
t=1∨(k−w)

sup
x∈S,a∈A

|(rkh − rth)(x, a)|. (3)

Since the transition kernel varies across episodes, we in-
clude an additional term of the local variation budget ∆w

P (k, h)
and ∆w

R(k, h) in the definition of Bk. Intuitively, the local
variation budget ∆w

P (k, h) and ∆w
R(k, h) captures the cu-

mulative transition kernel and reward differences between
current episode and all previous episode in the sliding window.
Therefore, by compensating a term involving ∆w

P (k, h) and
∆w

R(k, h) in the confidence set Bk, we ensure that the optimal
state-action value function in the k-th episode Q∗

h;(∗,k) still
lies in the confidence set Bk with high probability.

C. Theoretical Guarantees

In this section, we provide our main theoretical result for
SW-OPEA, and defer the proof sketch that highlights our novel
developments in the analysis to Appendix A.

We first state the following generalized completeness as-
sumption [33], [47], [48]. Let G = G1 × · · · × GH be
an auxiliary function class provided to the learner where
Gh ⊆ (S ×A 7→ [0, H − h+ 1]).

Assumption 3 (Generalized completeness). T k
h Fh+1 ⊆ Gh

for all (k, h) ∈ [K]× [H].

If we choose G = F , then Assumption 3 is equivalent
to the standard completeness assumption (see Assumption 2).
Without loss of generality, we assume F ⊆ G, which implies
G = F ∪ G.

Moreover, to quantify the nonstationarity, we define the
variation in rewards of adjacent episodes and the variation
in transition kernels of adjacent episodes as

∆R(K) =
K∑

k=1

H∑
h=1

sup
x∈S,a∈A

|(rkh − rk−1
h )(x, a)|, (4)

∆P (K) =
K∑

k=1

H∑
h=1

sup
x∈S,a∈A

∥∥(P k
h −P k−1

h )(·|x, a)
∥∥
1
, (5)

where we define P 0
h = P 1

h and r0h = r1h for all h ∈ [H].
The dynamic regret of our algorithm SW-OPEA is charac-

terized in the following theorem.

Theorem 1. Under Assumption 1 and Assumption 3, there
exists an absolute constant c such that for any δ ∈ (0, 1], K ∈
N, if we choose β = cH2 log KH|G|

δ in SW-OPEA, then with
probability at least 1−δ, for all k ∈ [K], when k ≥ min{w+
1, dimDBE(F ,D∆,h,

√
1/w)} , D− Regret(k) equals

∆R(k) +H∆P (k) +O
(
H
√
w +

H2k√
w

√
d log[KH|G|/δ]

+
H2k√

w

√
d sup

t∈[k]

∆w
P (t, h) +

H3/2k√
w

√
d sup

t∈[k]

∆w
R(t, h)

)
,

where d = dimDBE(F ,D∆,h,
√
1/w).

Note that the last term depends on the sliding window size
w, and we can further optimize w if an upper bound of the
local variation budget ∆w

P (t, h) and ∆w
R(t, h) is given. Below

we give an example for optimizing sliding window size w.
Before we proceed, we first define the average variation

budget L as

LP = max
h∈[H],t<k

∑k−1
s=t supx,a ∥(P

s+1
h − P s

h)(·|x, a)∥1
k − t

, (6)

Lr = max
h∈[H],t<k

∑k−1
s=t supx,a |(r

s+1
h − rsh)(x, a)|

k − t
. (7)

Clearly, we have LP , Lr ≤ 1 and ∆w
P (k, h) ≤ LPw

2,
∆w

R(k, h) ≤ Lrw
2. LP , Lr can be viewed as the the greatest

average variation of transition kernels and rewards across
adjacent episodes over any period of episodes maximized over
step h ∈ [H]. Then the following corollary characterizes the
dynamic regret by optimizing the window size w based on LP

and Lr.

Corollary 1. Under the conditions of Theorem 1 and |G| >
10, with probability at least 1 − δ, the following argument
holds: if

√
LP +

√
Lr√
H

> 1
K

(√
log |G| − 1

H
√
d

)
, select w =

⌈
√

log |G|
√
LP+

√
Lr√
H

+ 1

HK
√

d

⌉, the dynamic regret is upper-bounded by

Õ
(
H

3
2K

1
2 d

1
4 (log |G|) 1

4 +H2KL
1
4

P d
1
2 (log |G|) 1

4

+H
7
4KL

1
4
r d

1
2 (log |G|) 1

4 +∆R +H∆P

)
; (8)

otherwise, select w = K and the dynamic regret is
upper-bounded by Õ

(
H2K

1
2 d

1
2 (log |G|) 1

2

)
, where d =

dimDBE(F ,D∆,h,
√

1/w).

We remark that |G| appearing in the log term can be replaced
by its ϵ-covering number NG(ϵ) to handle the classes with infi-
nite cardinality. In both Theorem 1 and Corollary 2, we do not
omit log |G| in Õ since for many function classes, log |G| (or
logNG(ϵ)) can contribute to a polynomial factor. For example,
for d̃ dimensional linear function class, logNG(ϵ) = Õ(d̃)
where d̃ is the linear feature dimension.

Our first term in (8) corresponds to the regret of the static
MDP while the remaining term arises due to the nonstationar-
ity. As a result, when transitions and rewards remain the same
over time, our result reduces to Õ

(
H2K

1
2 d

1
2 (log |G|) 1

2

)
,

which matches with the static regret of GOLF in [33]4.
Advantage of SW-OPEA: To understand the advantage of

SW-OPEA over existing algorithms for nonstationary MDPs,
we take nonstationary linear MDPs as an example. When
specializing to nonstationary linear and tabular MDPs, our re-
sult becomes Õ

(
H

3
2T

1
2 d̃+HTd̃

3
4L

1
4

P +H
3
4T d̃

3
4L

1
4
r

)
where

T = HK, d̃ is the feature dimension for linear MDPs and
d̃ equals |S||A| for tabular MDPs, and Lr is the average
variation budget in rewards. For nonstationary linear MDPs,

4The additional H here is due to the definition of rh ∈ [0, 1], whereas
[33] assumes

∑
h rh ≤ 1.
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the result in [30] is not comparable to ours due to the different
definitions of the variation budget of transition kernels. To
make a fair comparison, we convert their bound on the
dynamic regret to be that for tabular MDPs, which gives
Õ
(
H

3
2T

1
2 d̃

3
2 +H

4
3 d̃

3
2T L̃

1
3

P +H
4
3 d̃

4
3TL

1
3
r

)
. The first term

corresponds to the regret of static linear MDPs and our result
has better dependency on the feature dimension d̃. For the
second term due to the nonstationarity of transition kernels,
our bound is better in terms of the horizon H and feature
dimension d̃ while worse in terms of the average variation
budget of transitions LP (note that LP ≤ 1).5 Similarly for
the last term caused by the nonstationary of rewards, our result
performs better in in terms of the horizon H and feature
dimension d̃ while worse in terms of the average variation
budget of rewards Lr (note that Lr ≤ 1).

It is also interesting to compare our result with the mini-
max dynamic regret lower bound Ω

(
H

1
2T

1
2 d̃+H

1
3T d̃

2
3 L̃

1
3

P

)
developed in [30] for linear MDPs with nonstation-
ary transitions. For such a case, our result becomes
Õ
(
H

3
2T

1
2 d̃+HTd̃

3
4L

1
4

P

)
. The first term is the regret un-

der stationary MDPs and the second term arises due to
the nonstationarity of transitions. We can see that our first
term corresponding to static MDPs matches with the lower
bound both in terms of T and d̃, whereas the upper bound
in [30] matches with the lower bound only in T . For the
nonstationarity term, our dependency on H and d̃ is closer
to the lower bound than that in [30], whereas our dependency
on the variation budget is close but does not match with the
lower bound.

IV. UCB-TYPE ALGORITHM

In this section, we investigate a new UCB-type algorithm
LSVI-Nonstationary. Our proposed algorithm falls into the
popuplar LSVI framework, which uses LSVI with upper con-
fidence bound to handle exploration and exploitation tradeoff.
While designing the bonus term is simple in static tabular and
linear MDPs, it becomes difficult in nonstationary MDPs with
general function approximation. Our algorithm features the
restart mechanism and incorporate the local variation budget
in the design of the bonus term to handle nonstationarity.
Moreover, it alleviates the computational inefficiency in the
confidence-set based approach to select the optimistic state-
action value functions in each step altogether.

We begin with the bounded complexity assumption [44] on
the function class F and the state-action pairs S ×A.

Assumption 4. For any ε > 0, the following statements hold:
• There exists an ε-cover C(F , ε) ⊆ F with size
|C(F , ε)| ≤ N (F , ε), such that for any f ∈ F , there
exists f ′ ∈ C(F , ε) with ∥f − f ′∥∞ ≤ ε;

• There exists an ε-cover C(S × A, ε) with size C(S ×
A, ε) ≤ N (S ×A, ε), such that for any (x, a) ∈ S ×A,
there exists (x′, a′) ∈ C(S×A, ε) with supf∈F |f(x, a)−
f(x′, a′)| ≤ ε.

5Strictly speaking, their average variation budget L̃P is not comparable to
LP , and the argument holds approximately.

This assumption essentially requires both the function class
and the state-action pairs have bounded covering numbers. It
is acceptable for the covers to have exponential size since
the regret bound scales logarithmically on both N (F , ·) and
N (S × A, ·). For the tabular case when S,A are finite,
logN (F , ε) = Õ(|S||A|) and logN (S×A, ε) = log(|S||A|).
For the linear MDPs with feature dimension d̃, logN (F , ε) =
Õ(d̃) and logN (S ×A, ε) = log(d̃).

A. Algorithm LSVI-Nonstationary

In this section, we describe our proposed UCB-type al-
gorithm LSVI-Nonstationary for nonstationary MDPs with
general function approximation.

Overview of F -LSVI [45]: We begin with UCB-type algo-
rithm F -LSVI in Algorithm 3 for static MDPs6 with general
function approximation. At the beginning of each episode
k, we set Qk

H+1 = 0, and calculate Qk
H , Qk

H−1, . . . , Q
k
1

iteratively (line 8-10). Then, the greedy policy with respect
to Qk

h to collect data for the k-th episode. The procedure is
repeated until all K episodes are finished. The key ingredient
is the design of the bonus term bkh in line 9 based on sensitivity
sampling to tightly characterize the estimation error, so that
the optimistic Q function estimated (line 10) always upper
bounds the optimal action-value function. The regret of F -
LSVI was shown to be Õ(

√
d̃3H3K) in tabular MDPs where

d̃ = |S||A|, and Õ(
√

d̃4H3K) in linear MDPs where d̃ is the
feature dimension.

Algorithm 3 F -LSVI (sketch)
1: Input: failure probability δ ∈ (0, 1), number of episodes

K.
2: for episode k = 1, 2, . . . ,K do
3: Receive initial state sk1 ∼ µ.
4: Qk

H+1(·, ·)← 0 and V k
H+1(·)← 0.

5: Zk
h = {(xℓ

h, a
ℓ
h)}ℓ∈[1:k−1].

6: for h = H,H − 1, . . . , 1 do
7: Dk

h = {(xℓ
h, a

ℓ
h, r̃

ℓ
h + V k

h+1(x
ℓ
h+1))}ℓ∈[1,k−1].

8: fk
h ← argminf∈Fh

∥f∥2Dk
h

.
9: bkh ← bonus(Fh, f

k
h ,Zk

h , δ).
10: Qk

h(·, ·) ← min{fk
h (·, ·) + bkh(·, ·), H} and V k

h (·) =
maxa∈A Qk

h(·, a).
11: πk

h(·)← argmaxa∈A Qk
h(·, a).

12: end for
13: for h = 1, 2, . . . ,H do
14: Take action akh ← π̃k

h(x
k
h) and observe xk

h+1 ∼
P k
h (·|xk

h, a
k
h) and r̃kh ∼ rkh(x

k
h, a

k
h).

15: end for
16: end for

From a high level point of view, our algorithm features
two key ingredients: least-square value iteration (LSVI) and
a restart mechanism. Our algorithm uses LSVI with upper
confidence bound to handle the exploration and exploitation

6The algorithm presented here is slightly different from its original ver-
sion [45] in using function class Fh instead of F for estimating value function
at step h.
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tradeoff, where we incorporate the local variation budget in the
design of bonus term to ensures the optimism of the learned
state-action value function. Moreover, we use the epoch restart
mechanism to adapt to the nonstationarity of the environment.
Those ingredients make our design significantly different from
the F -LSVI algorithm [45] for static MDPs.

Algorithm 4 LSVI-Nonstationary
1: Input: failure probability δ ∈ (0, 1), number of episodes

K and epoch size W .
2: for j = 1, 2, . . . , ⌈KW ⌉ do
3: τ ← (j − 1)W + 1.
4: for episode k = τ, . . . ,min{τ +W,K} do
5: Receive initial state sk1 ∼ µ.
6: Qk

H+1(·, ·)← 0 and V k
H+1(·)← 0.

7: Zk
h = {(xℓ

h, a
ℓ
h)}ℓ∈[τ :k−1].

8: for h = H,H − 1, . . . , 1 do
9: Dk

h = {(xℓ
h, a

ℓ
h, r̃

ℓ
h + V k

h+1(x
ℓ
h+1))}ℓ∈[τ,k−1].

10: fk
h ← argminf∈Fh

∥f∥2Dk
h

.
11: bkh ← bonus(Fh, f

k
h ,Zk

h , δ, j) (Algorithm 6).
12: Qk

h(·, ·)← min{fk
h (·, ·)+bkh(·, ·), H} and V k

h (·) =
maxa∈A Qk

h(·, a).
13: πk

h(·)← argmaxa∈A Qk
h(·, a).

14: end for
15: for h = 1, 2, . . . ,H do
16: Take action akh ← π̃k

h(x
k
h) and observe xk

h+1 ∼
P k
h (·|xk

h, a
k
h) and r̃kh ∼ rkh(x

k
h, a

k
h).

17: end for
18: end for
19: end for

The pseudocode of LSVI-Nonstationary is presented in
Algorithm 4. Our algorithm runs in epochs with length W .
Within each episode, we follow these steps: Firstly, we es-
timate the state-action value function through a least-square
problem using historical data from the current epoch. Next,
we create an upper confidence bound for the state-action
value function and select the policy that maximizes this upper
confidence bound. A new trajectory is then collected by
following the greedy policy. Finally, we periodically restart the
algorithm to handle the nonstationarity of the environment.

Least-square value iteration: At the beginning of each
episode k, we maintain a replay buffer of existing samples
{xℓ

h, a
ℓ
h, r

ℓ
h}ℓ∈[τ :k−1], where τ is the first episode of the

epoch containing episode k. Let Qk
H+1 = 0, and we set

Qk
H , Qk

H−1, . . . , Q
k
1 iteratively as follows (line 10-12). For

h = H,H − 1, . . . , 1,

fk
h (·, ·) = arg min

f∈Fh

k−1∑
ℓ=τ

(
f(xℓ

h, a
ℓ
h)− rℓh −max

a
Qk

h+1(x
τ
h+1, a)

)2

,

Qk
h(·, ·) = min{fk

h (·, ·) + bkh(·, ·), H},

where bkh(·, ·) is the bonus function to be defined shortly. After
obtaining Qk

h(·, ·), we then use the greedy policy with respect
to Qk

h to collect data (line 13) for the kth episode. Note
that the least-square problem does not take into consideration
the distribution drift in transitions and rewards, which may
potentially result in significant estimation errors. However, our
analysis shows that these estimation errors can adapt to the

nonstationarity. Specifically, we incorporate such estimation
errors into the design of the bonus term to ensure the state-
action value estimate is an optimistic upper bound of the
optimal state-action value function.

Stable upper-confidence bonus function: With more col-
lected data, the least-square solution is expected to provide a
better approximation to the optimal state-action value function.
To encourage exploration, we add additional bonus function
bkh(·, ·) to guarantee that with high probability, Qk

h+1(·, ·) is
an optimistic upper bound of the optimal state-action value
function. The design of bonus term bkh has two features:
First, we leverage the importance sampling technique [45] to
prioritize important data in the replay buffer so that the bonus
function bkh is stable even when the replay buffer has large
cardinality. Second, the distribution drift of the transitions and
the rewards is characterized in the design of bonus term bkh
in order to obtain the optimistic upper bound of the optimal
state-action value function.

We define bonus function to be the width function bkh(·, ·) =
w(Fk

h ; ·, ·), where Fk
h is defined as the confidence set so that

the estimation error of the one-step backup (rkh+P k
hV

k
h+1)(·, ·)

lies within Fk
h with high probability. By the definition of

width function, bkh(·, ·) provides an upper bound on the con-
fidence interval of the state-action value estimate, since the
width function maximizes the difference between all pairs
of state-action value functions within the confidence set.
Specifically, we define the confidence set as Fk

h = {f ∈
Fh :

∥∥f − fk
h

∥∥2
Zk

h

≤ β + H∆k
h} where β is the confidence

parameter properly selected so that (rkh +P k
hV

k
h+1)(·, ·) ∈ Fk

h

with high probability, Zk
h consists of the collected samples

(line 5), and ∆k
h is the local variation budget defined by ∆k

h =

k−1∑
ℓ=τ

sup
x,a
|(rkh − rℓh)(x, a)|+H

k−1∑
ℓ=τ

sup
x,a

∥∥(P k
h − P ℓ

h)(·|x, a)
∥∥
1
.

Note that the complexity of a bonus function could be high
as it is defined by the dataset Zk

h whose size can be as large as
W . We adopt importance sampling technique in [45] to reduce
the size of the dataset. Moreover, the data samples in Zk

h

are collected from nonstationary environment, we include an
additional term of local variation budget ∆k

h in the definition
of Fk

h . Intuitively, the local variation budget ∆k
h captures the

discrepancy between current episode k and previous episodes
in the current epoch. By incorporating a term involving ∆k

h in
the design of Fk

h , we ensure the true action-value function of
the kth episode lies within the confidence set Fk

h with high
probability. The formal definition of bonus term bkh and the
selection of β is deferred to Appendix B.

Restart mechanism: We use epoch restart mechanism to
handle the nonstationary environment. Specifically, we restart
every W episodes as illustrated in the outer loop of Algo-
rithm 4 (line 4), and the estimate of the state-action value
function are calculated only by the samples collected in the
current epoch, independent of all previous epochs. Note that
while in general the epoch length W can vary for different
epochs, we consider a fixed length and the corresponding
dynamic regret upper bound in this work.
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Compared to the confidence-set based algorithm SW-OPEA,
which relies on an computational inefficient oracle to select
the optimistic state-action value function within the confidence
set. Instead, our algorithm is based on the popular UCB-based
approach, which simplified the algorithm design and can be
potentially implemented computationally efficiently [45].

B. Theoretical Guarantees

In this section, we provide the theoretical guarantee for
Algorithm 4, and defer proofs to Appendix C.

For clarity, assume K/W is an integer throughout this
section. The variation budget of an epoch w ∈ [1 : K/W ]
is defined as

∆
(w)
h =

wW∑
ℓ=w(W−1)+1

sup
x,a
|(rkh − rℓh)(x, a)|

+H
wW∑

ℓ=w(W−1)+1

sup
x,a

∥∥(P k
h − P ℓ

h)(·|x, a)
∥∥
1
.

The dynamic regret of LSVI-Nonstationary is characterized
in the following theorem.

Theorem 2 (Dynamic regret of LSVI-Nonstationary). Under
Assumption 1, Assumption 2 and Assumption 4, with proba-
bility at least 1 − δ, LSVI-Nonstationary achieves a dynamic
regret bound of D− Regret(K) =

Õ

4H2Kdm
W

+
KH2

√
W

√
ι+
√
dmHW

H∑
h=1

K/W∑
w=1

√
∆

(w)
h


where dm = suph dimE(Fh, 1/W ) and

ι ≤ c sup
h

log3(T/δ) dim2
E(Fh, δ/16W

2)

ln(N (Fh, δ/576W )/δ) ln(N (S ×A, 1

16
√
W/δ

)W/δ).

for some absolute constant c > 0.

Note that the last term depends on the length of the restart
epoch W , and the dynamic regret upper bound can be further
optimized by setting appropriate W . We adopt the same
definition of the average variation budget in transitions LP

and rewards Lr defined in (6) and (7).
The following corollary characterize the dynamic regret

by optimizing the restart epoch length W based on the
average variation budget L for both nonstationary tabular and
nonstationary linear MDPs.

Corollary 2. Consider the same condition as in Theorem 2.
For tabular MDPs with d̃ = |S||A|, let Fh be the entire
function space of S × A 7→ [0, H − h + 1] for h ∈ [H].
Since S,A are finite, for ε > 0, we have dimE(Fh, ε) ≤ d̃,
log(N (F , ε)) = Õ(d̃), and log(N (S × A, ε)) = O(log(d̃)),
and the dynamic regret is bounded by

Õ
(
H

3
2T

1
2 d̃

3
2 +HTd̃L

1
4

P +H
3
4T d̃L

1
4
r

)
.

For linear MDPs with feature dimension d̃, dimE(Fh, ε) ≤
Õ(d̃), log(N (F , ε)) = Õ(d̃), and log(N (S ×A, ε)) = Õ(d̃),
and the dynamic regret is bounded by

Õ
(
H

3
2T

1
2 d̃

3
2 +HTd̃

5
4L

1
4

P +H
3
4T d̃

5
4L

1
4
r

)
.

Compare to SW-OPEA: Under nonstationary MDPs with
general function approximation, we compare the dynamic
regret upper bound of our UCB-type algorithm to the dy-
namic regret bound of the confidence-set based algorithm SW-
OPEA. For both nonstationary tabular and linear MDPs, SW-
OPEA gives Õ

(
H

3
2T

1
2 d̃+HTd̃

3
4L

1
4

P +H
3
4T d̃

3
4L

1
4
r

)
, where

d̃ equals |S||A| for tabular MDPs and equals the feature
dimension for linear MDPs. We see that the dynamic regret
bound of UCB-type algorithm matches that of confidence-set
based algorithm in horizon H as well as average variation
budgets LP and Lr while perform slightly worse in terms of
d̃. Similarly to the static MDPs [45], a more refined analysis
specialized to the tabular and linear setting can potentially
improve the dynamic regret bound. We would like to point
out that our algorithm and analysis handles the nonstationary
MDPs with general function approximation, which is much
harder than and contains the nonstationary tabular and linear
MDPs.

V. CONCLUSION

In this paper, we investigate two approaches for the
nonstationary MDPs with general function approximation:
confidence-set based algortihm and UCB-type algorithm.
Based on the notion of dynamic Eluder dimension, the
confidence-set based algorithm SW-OPEA incorporates the
sliding window mechanism, and a novel design for the con-
fidence set. The dynamic regret of SW-OPEA is shown to
outperform the existing algorithms in nonstationary linear and
tabular MDPs in the small variation budget regime. To alleviate
the computational inefficiency challenge for the oracle used
to select the optimistic state-action value function within
an confidence set in the confidence-set based algorithm, we
further propose a different UCB-type algorithm, which follows
the popular LSVI framework. To handle nonstationarity, the
UCB-type algorithm LSVI-Nonstationary features the restart
mechanism, and the novel design of the bonus term to en-
sure the optimism of the learned state-action value function.
LSVI-Nonstationary performs no worse than the confidence-
set based algorithm SW-OPEA, while considerably simplifies
the algorithm design. Our future directions include studying
the unknown variation budget scenario and establishing lower
bound for nonstationary MDPs with general function approx-
imation.
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APPENDIX A
We provide a sketch of the proof of Theorem 1, and the

details of the proof of Theorem 1 and the proof of Corollary
1 can be found in [1]. The preliminary step is to decompose
the dynamic regret of SW-OPEA into three terms as follows:

D− Regret(k) ≤ H

+

k∑
t=1

H∑
h=1

E
(xh,ah)∼(πt,(∗,t−1))

[(rt−1
h − rth)(xh, ah)]︸ ︷︷ ︸

(I)

+

k∑
t=1

H∑
h=1

[
E

(xh,ah)∼(πt,(∗,t−1))
− E
(xh,ah)∼(πt,(∗,t))

]
[rth(xh, ah)]︸ ︷︷ ︸

(II)

+

k∑
t=1

(
V π(∗,t−1)

1;(∗,t−1) − V πt

1;(∗,t−1)

)
(x1)︸ ︷︷ ︸

(III)

. (9)

Term (I) can be bounded by ∆R(k) by the definition of the
variation budget of rewards (4). In the sequel, we aim to bound
(II) in step II and bound (III) in the remaining steps.

Step I: We introduce a novel auxiliary MDP to help
bound term (II). For a fixed tuple (k, h) ∈ [K] × [H],
we design an episodic MDP (S,A, H, P k, r̃, x1) with reward
r̃h′ = rkh(x, a)1{h′ = h} and the corresponding state value
function of policy {πh′}h′∈[H] is defined as Ṽ π

h′;,(∗,k). Then,
by Lemma C.1 in [1], we have

(II) ≤
[
Ṽ πk

1;(∗,k−1)− Ṽ πk

1;(∗,k)

]
(x1)≤

h−1∑
i=1

sup
x,a

∥∥∥(P k
h −P k−1

h )(·|x, a)
∥∥∥
1
.

Replacing k by t, and summing over t ∈ [k], h ∈ [H] gives

(II) ≤
k∑

t=1

H∑
h=1

sup
x,a

h−1∑
i=1

∥∥(P t−1
i − P t

i )(·|x, a)
∥∥
1

≤
H∑

h=1

(
k∑

t=1

H∑
i=1

sup
x,a

∥∥(P t−1
i − P t

i )(·|x, a)
∥∥
1

)
≤ H∆P (k).

Step II: This step together with the next step establishes
important properties to bound term (III) in step IV.

First, we develop the following crucial probability distri-
bution shift lemma, which will handle the transition kernel
variation in nonstationary MDPs.

Lemma 1 (Lemma D.2 in [1]). Suppose P and Q are two
probability distributions of a random variable x, then∣∣∣∣∣( E

x∼P
f(x) + Eg1(y)− C

)2
−
(

E
x∼Q

f(x) + Eg2(y)− C

)2
∣∣∣∣∣

≤ (2fm + 2gm + 2|C|)fmTV(P,Q),

where fm = supx |f(x)|, gm = maxi=1,2 supy gi(y).

Next, we show that Q∗
(∗,k), the optimal state-action value

function at step h, lies in the confidence set Bk for all
k ∈ [K] with high probability. The argument is proved by
the martingale concentration and the confidence set we design.
Technically, we define

#k,h(x
t
h, a

t
h) = rkh(x

t
h, a

t
h) + E

x′∼P t
h
(·|xt

h
,at

h
)
max
a′∈A

Qh+1;(∗,k)(x
′, a′),

to form an appropriate martingale difference, which is similar
to the h-th step Bellman update of the state-action value
function in episode k except that the expectation is taken with
respect to P t

h instead of P k
h . By Lemma 1, the cumulative

mismatch during the sliding window between #k,h(x
t
h, a

t
h)

and the h-step Bellman update of state-action value function
in episode k is captured by the local pathlength ∆w

P (k, h) and
∆w

R(k, h). Finally, by the design of confidence set Bk, we can
show that Q∗

(∗,k) ∈ B
k.

Given Q∗
(∗,k) ∈ B

k for all k ∈ [K], the optimistic planning
step (Line 3) guarantees that V ∗

1;(∗,k−1)(x1) ≤ supa f
k
1 (x1, a)

for every episode k ∈ [K]. Combining the optimism and the
generalized policy loss decomposition (Lemma C.8 in [1]), we
have

(III) ≤
k∑

t=1

(
max
a∈A

f t
1(x1, a)− V πt

1;(∗,t−1)(x1)

)

≤
H∑

h=1

k∑
t=1

E
(xh,ah)∼(πt,(∗,t−1))

[(f t
h − T t−1

h f t
h+1)(xh, ah)]. (10)

Step III: We will show the sharpness of our confidence set
Bk. Under the construction of Bk, fk selected from Bk−1 is
guaranteed to have small loss LDh

(fk
h , f

h+1
h ). Note that the

data used in episode k are collected by executing πi for one
episode for all i ∈ [1 ∨ (k − w), k], by the concentration and
the completeness assumption. We can show in Lemma D.4 in
[1] that with high probability, for all (k, h) ∈ [K]× [H],

k−1∑
t=1∨(k−w−1)

[
fk
h (x

t
h, a

t
h)− rth − E

x′∼Pk−1
h

(xt
h
,at

h
)

max
a′∈A

fk
h+1(x

′, a′)
]2

≤ 6H2∆w
P (k − 1, h) + 6H∆w

R(k − 1, h) +O(β). (11)

Technically, we define the following helpful random variable

#f
k,h(x

t
h, a

t
h) = rkh(x

t
h, a

t
h) + E

x′∼P t
h(x

t
h,a

t
h)
max
a′∈A

fh+1(x
′, a′)

to form an appropriate martingale and obtain the martingale
concentration result. Then, applying our probability distribu-
tion shift lemma (Lemma 1), the definition of Bk and the
completeness assumption gives (11).

Step IV: We establish the relationship between (10) and
(11). Specifically, we aim to upper bound (10) given (11)
holds. Note that their forms are similar except that the latter is
the squared Bellman error, and the data (st, at) is taken under
policy πi for i ∈ [1 ∨ (k − w) : k − 1]. It turns out that the
DBE dimension plays an important role in connecting these
two terms, as summarized in the following lemma.

Lemma 2 (Lemma 5.5 in [1]). Given a function class Φ
defined on X with |ϕ(x)| ≤ C for all (g, x) ∈ Φ × X ,
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and a family of probability measures Π over X . Suppose
{ϕk}k∈[K] ⊆ Φ and {µk}k∈[K] ⊆ Π satisfy that for all
k ∈ [K],

∑k−1
t=1∨(k−w−1)(Ex∼µt

[ϕk(x)])
2 ≤ β. Then for all

k ∈ [K] and ω > 0,
∑k

t=1∨(k−w) |Ex∼µt
[ϕt(x)]| is upper

bounded by

O
(√

dimDE(Φ,Π, θ)β[k ∧ (w + 1)]

+ min{w + 1, k, dimDE(Φ,Π, θ)}C + [k ∧ (w + 1)]θ
)
.

Based on the DBE dimension and Lemma 2, we are ready
to bound (III) via term (10) . By choosing Φ to be the function
class of Bellman residuals, and µk to be the distribution under
policy πk, term (III) is upper bounded by

H∑
h=1

k∑
t=1

E
(xh,ah)∼(πt,(∗,t−1))

[(f t
h − T t−1

h f t
h+1)(xh, ah)]

≤ O
(
H
√
w +

H2k√
w

√
dimDBE(F ,D∆,

√
1/K) log

KH|F|
δ

+
Hk√
w

√
dimDBE(F ,D∆,

√
1/K)

H∑
h=1

√
sup
k∈[K]

∆w
P (k, h)

)
.

Combining all the steps, the dynamic regret of our algo-
rithm SW-OPEA is

D− Regret(k) ≤ ∆R(k) +H∆P (k) +O
(
H
√
w

H2k√
w

√
d log[KH|G|/δ] + H2k√

w

√
d supt∈[k] ∆

w
P (t, h)

)
where we suppress the first term H in (9) since it is dominated
by the fourth term herein.

APPENDIX B
THE STABLE BONUS FUNCTION VIA IMPORTANCE

SAMPLING

The framework of subsampling a given dataset in RL was
first established by [45], which builds upon the sensitivity
sampling technique [49]–[51]. For sake of completeness, we
provide the formal definition of sensitivity and important
results to be used in our analysis, and the proofs are omitted
as they are similar to those in [45].

We begin with the definition of sensitivity function.

Definition 5 ([45]). For a given set of state-action pairs Z ⊆
S × A and a function class F , for each z ∈ Z , define the
λ-sensitivity of (s, a) with respect to Z and F as

sensitivityZ,F,λ(x, a) = sup
f,f ′∈F,∥f−f ′∥2Z≥λ

(f(x, a)− f ′(x, a))2

∥f − f ′∥2Z
.

λ-sensitivity measures the importance of data points in Z
which contributes the most to ∥f − f ′∥2Z for f, f ′ ∈ F when-
ever ∥f − f ′∥2Z ≥ λ. The algorithm to subsample the dataset
is provided in Algorithm 5, where the sampling probability
for each state-action pair is proportional to the sensitivity.

The next lemma shows the relations between the subsam-
pled dataset and the original dataset.

Algorithm 5 Sensitivity-Sampling(F ,Z, λ, ε, δ)
1: Input: function class F , reference function f̄ ∈ F , set

of state-action pairs Z ⊆ S × A, and failure probability
δ ∈ (0, 1).

2: Initialize Z ′ ← ∅.
3: For each z ∈ Z , let pz to be the smallest real number

such that 1/pz is an integer and

pz ≥ min{1,sensitivityZ,F,λ(z)·
72 ln(4N (F , ε/72 ·

√
λδ/|Z|/δ))/ε2}.

4: For each z ∈ Z , independently add 1/pz copies of z into
Z ′ with probability pz .

5: return Z ′.

Lemma 3 (Proposition 1 in [45]). With probability at least
1− δ, the size of Z ′ returned by Algorithm 6 satisfies |Z ′| ≤
4|Z|/δ, the number of distinct elements in Z is at most

1728 dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln(|Z|)
ln(4N (F , ε/72 ·

√
λδ/|Z|)/δ)/ε2,

and for any f, f ′ ∈ F ,

(1− ε) ∥f − f ′∥2Z − 2λ ≤ ∥f − f ′∥2Z′

≤ (1 + ε) ∥f − f ′∥2Z + 8|Z|λ/δ.

Equipped with the subsampling procedure, we are able to
formally define the stable bonus function in Algorithm 6. In
line 10, the variation budget ∆(w)

h is defined as

∆
(w)
h =

wW∑
ℓ=w(W−1)+1

sup
x,a
|(rkh − rℓh)(x, a)|

+H
wW∑

ℓ=w(W−1)+1

sup
x,a

∥∥(P k
h − P ℓ

h)(·|x, a)
∥∥
1
.

At a high level, we first subsample the given dataset Z , and
define the confidence set based on the newly subsampled
dataset and the reference function. Note that the subsampled
dataset will be discarded if its size is too large, which is
guaranteed to happen with low probability.

Based on Lemma 3, we have the following lemma, which
is adapted from Proposition 2 in [45] for nonstationary MDPs
with restart epoch W .

Lemma 4. For Algorithm 6, suppose |Z| ≤W , the following
statements hold:

• With probability at least 1− δ/(16T ),

w(F ;x, a) ≤ ŵ(x, a) ≤ w(F ;x, a),

where F = {f ∈F :
∥∥f−f∥∥2Z≤β(F , δ)}, and F={f ∈

F :
∥∥f−f∥∥2Z≤9β(F , δ)+12}.

• ŵ(·, ·) ≤ W for a function set W with

log |W| ≤6912 dimE(F , δ/(16W 2)) log(16(H + 1)2W 2/δ)

· lnW ln(64TN (F , δ/(576W )/δ)

· log
(
N (S ×A, 1/(8

√
4W/δ · 4W/δ))

)
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Algorithm 6 Bonus(F , f̄ ,Z, δ, j)
1: Input: function class F , set of state-action pairs Z ⊆ S×
A, accuracy parameters λ, ε > 0 and failure probability
δ ∈ (0, 1).

2: Z ′ ← Sensitivity-sampling(F ,Z, δ/(16W ), 1/2, δ).
3: Z ′ ← ∅ if |Z ′| ≥ 4T/δ or the number of distinct elemetns

in Z ′ exceeds

6912 dimE(F , δ/(16W 2)) log(64H2W 2/δ) lnW lnT

· ln(N (F , δ/576W )/δ)

4: Let f̂ ∈ C(F , 1/(8
√
4W/δ)) be such that

∥∥∥f̄ − f̂
∥∥∥
∞
≤

1/(8
√
4W/δ).

5: Ẑ ← ∅.
6: for z ∈ Z ′ do
7: Let ẑ ∈ C(S × A, 1/(8

√
4W/δ)) be such that

supf,f ′∈F |f(z)− f ′(z)| ≤ 1/(8
√
4W/δ).

8: Ẑ ← Ẑ ∪ {ẑ}.
9: end for

10: return ŵ(·, ·) := w(F̂ ; ·, ·), where F̂ = {f ∈ F :∥∥∥f − f̂
∥∥∥2
Ẑ
≤ 3β(F , δ) + 2} where

β(F , δ) =c′
(
H
√

log(T/δ)+logN (Fh, 1/W )+log |Wh|

+

√
H∆

(j)
h

)2

for some absolute constant c′ > 0.

+ log
(
N (S ×A, 1/(8

√
4W/δ))

)
≤C dimE(F , δ/(16W 2)) · log(H2W 2/δ) · lnW

· lnT ln(N (F , δ/576W )/δ)

· log(N (S ×A, 1/(8
√

4W/δ) · 4W/δ)

for some absolute constant C > 0 when T is sufficiently
large.

APPENDIX C
A. Proof of Theorem 2

Step I: We analyze the complexity of the stable bonus
function. The framework of subsampling a given dataset in RL
was first established by [45]. We adapt the analysis therein to
our setting for a given epoch of length W . The main result is
presented in Lemma 4.

Step II: This step shows that the state-action value function
estimate Qk

h(·, ·) in Algorithm 4 is an optimistic upper bound
for the optimal state-action value function. Our new develop-
ment lies in developing the single step optimization error for
nonstationary MDPs, and the construction of the confidence
set.

We first establish the single step optimization error bound
in the following lemma.

Lemma 5 (Single step optimization error). Consider fixed
(k, h) ∈ [K]× [H]. Denote τ as the first episode of an epoch
containing episode k. Let

Zk
h = {(xℓ

h, a
ℓ
h)}ℓ∈[τ :k−1]

as defined in Line 7 of Algorithm 4. For any V : S 7→ [0, H−
h], define

Dk
V ;h = {(xℓ

h, a
ℓ
h, r̃

ℓ
h + V (xℓ

h+1))}ℓ∈[τ,k−1]

and

f̂V ;h = argmin
f∈F
∥f∥2Dk

V ;h
.

For any h ∈ [H], V : S 7→ [0, H − h] and δ ∈ (0, 1), there
is an event Ih,V,δ which holds with probability at least 1− δ,
such that conditioned on Ih,V,δ , for any V ′ : S 7→ [0, H − h]
with ∥V ′ − V ∥∞ ≤ 1/W , we have∥∥∥∥∥f̂V ′(·, ·)−rkh(·, ·)−

∑
s′∈S

P k
h (s

′|·, ·)V ′(s′)

∥∥∥∥∥
Zk

h

≤c
(
H ·

√
log(1/δ)+logN (Fh, 1/W )+

√
H∆k

)
for some absolute constant c > 0, where

∆k
h =

k−1∑
ℓ=τ

sup
x,a
|(rkh − rℓh)(x, a)|+H

k−1∑
ℓ=τ

sup
x,a
|(P k

h − P ℓ
h)(x, a)|.

Proof. Consider a fixed V : S 7→ [0, H −h]. For any f ∈ Fh,
consider

∑k−1
ℓ=τ ξℓh(f) where

ξℓh(f) =2
(
f − rkh − Pk

hV
)
(xℓ

h, a
ℓ
h)·

+
(
rℓh(x

ℓ
h, a

ℓ
h)(Pℓ

hV )(xℓ
h, a

ℓ
h)− r̃ℓh − V (xℓ

h+1)
)
.

For any (ℓ, h) ∈ [k − 1] × [H], define Fℓ
h as the filtration

induced by the sequence

{(xt
h′ , ath′)}(t,h′)∈[ℓ−1]×[H] ∪ {(xℓ

1, a
ℓ
1), . . . , (x

ℓ
h−1, a

ℓ
h−1)}.

Then, E[ξℓh(f)|Fℓ
h] = 0 and

|ξℓh(f)| ≤ 2(H − h+ 1)|(f − rkh − Pk
hV )(xℓ

h, a
ℓ
h)|.

By Azuma-Hoeffding’s inequality, we have

P

[∣∣∣∣∣
k−1∑
ℓ=τ

ξℓh(f)

∣∣∣∣∣ ≥ ε

]
≤ 2e

− ε2

8(H−h+1)∥f−rk
h
−Pk

h
V∥2Zk

h


.

Let

ε=

(
8(H − h+ 1)2log

(
2N (Fh, 1/W )

δ

)∥∥∥f−rkh−Pk
hV

∥∥∥2

Zk
h

)1/2

≤4(H−h+1)
∥∥∥f−rkh−Pk

hV
∥∥∥
Zk

h

√
log(2/δ)+logN (Fh, 1/W ).

Then, with probability at least 1− δ, for all f ∈ C(Fh, 1/W ),∣∣∣∣∣
k−1∑
ℓ=τ

ξℓh(f)

∣∣∣∣∣ ≤ 4(H − h+ 1)
∥∥f − rkh − Pk

hV
∥∥
Zk

h

·
√

log(2/δ) + logN (Fh, 1/W ).

Define the above event to be Ih,V,δ , and we condition on this
event for the rest of the proof.

For all f ∈ Fh, there exists g ∈ C(Fh, 1/W ), such that
∥f − g∥∞ ≤ 1/W , and we have∣∣∣∣∣

k−1∑
ℓ=τ

ξℓh(f)

∣∣∣∣∣ ≤
∣∣∣∣∣
k−1∑
ℓ=τ

ξℓh(g)

∣∣∣∣∣+ 2(H − h+ 1)
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≤ 4(H − h+ 1)
∥∥g − rkh − Pk

hV
∥∥
Zk

h

·
√
log(2/δ) + logN (Fh, 1/W ) + 2(H − h+ 1)

≤ 4(H − h+ 1)(
∥∥f − rkh − Pk

hV
∥∥
Zk

h

+ 1)

·
√
log(2/δ) + logN (Fh, 1/W ) + 2(H − h+ 1).

Consider V ′ : S 7→ [0, H − h] with ∥V ′ − V ∥ ≤ 1/W . We
have∥∥rkh + Pk

hV
′ − rkh − Pk

hV
∥∥
∞ ≤ ∥V

′ − V ∥∞ ≤ 1/W.

Note first that for any f, g ∈ F , we have

∥f∥Dk
V ′;h

− ∥g∥Dk
V ′;h

= ∥f − g∥Zk
h

+ 2

k−1∑
ℓ=τ

(f(xℓ
h, a

ℓ
h)− g(xℓ

h, a
ℓ
h)) · (g(xℓ

h, a
ℓ
h)− r̃ℓh − V ′(xℓ

h+1)).

Replacing g with rkh + Pk
hV

′ gives

∥f∥2Dk
V ′;h

−
∥∥∥rkh + Pk

hV
′
∥∥∥2

Dk
V ′;h

=
∥∥∥f − rkh − Pk

hV
′
∥∥∥2

Zk
h

+ 2

k−1∑
ℓ=τ

(f − rkh − Pk
hV

′)(xℓ
h, a

ℓ
h)

· (rℓh(xℓ
h, a

ℓ
h) + (Pℓ

hV
′)(xℓ

h, a
ℓ
h)− r̃ℓh − V ′(xℓ

h+1)) (I2)

+ 2

k−1∑
ℓ=τ

(f − rkh − Pk
hV

′)(xℓ
h, a

ℓ
h) · (rkh(xℓ

h, a
ℓ
h)

+ (Pk
hV

′)(xℓ
h, a

ℓ
h)− rℓh(x

ℓ
h, a

ℓ
h)− (Pℓ

hV
′)(xℓ

h, a
ℓ
h)) (I3)

For the second term I2, we have

I2 ≥ 2
k−1∑
ℓ=τ

(f − rkh − Pk
hV )(xℓ

h, a
ℓ
h)(r

k
h(x

ℓ
h, a

ℓ
h)

+ (Pk
hV )(xℓ

h, a
ℓ
h)− r̃ℓh − V (xℓ

h+1))− 4(H − h+ 1)

=

k−1∑
ℓ=τ

ξℓh(f)− 4(H − h+ 1)

≥ −4(H − h+ 1)(
∥∥f − rkh − Pk

hV
′∥∥

Zk
h

+ 2)

·
√
log(2/δ) + logN (Fh, 1/W )− 6(H − h+ 1).

For the third term I3, we have

I3 ≥ −2(H − h+ 1)

(
k−1∑
ℓ=τ

sup
x,a
|(rkh − rℓh)(x, a)|

+H
k−1∑
ℓ=τ

sup
x,a
|(P k

h − P ℓ
h)(x, a)|

)
= −2(H − h+ 1)∆k

h.

Since f̂V ;h = argminf∈F ∥f∥2Dk
V ;h

, we have

0 ≥
∥∥∥f̂V ;h

∥∥∥2
D2

V ′;h

−
∥∥rkh + Pk

hV
′∥∥2

D2
V ′;h

≥
∥∥∥f̂V ;h − rkh − Pk

hV
′
∥∥∥2
Zk

h

− 4(H − h+ 1)

(
(
∥∥∥f̂V ;h − rkh − Pk

hV
′
∥∥∥
Zk

h

+ 2

)
·
√
log(2/δ) + logN (Fh, 1/W )

− 6(H − h+ 1)− 2(H − h+ 1)∆k
h.

Solving the above inequality, we have∥∥∥f̂V ;h − rkh − Pk
hV

′
∥∥∥
Zk

h

≤ c′
(
H ·

√
log(1/δ) + logN (Fh, 1/W ) +

√
H∆k

h

)
for some absolute constant c′ > 0.

Based on the single step optimization error of nonstationary
MDPs, we devise the confidence set Fk

h which contains both
the least square solution fk

h and the one-step backup rkh +
P k
hV

k
h+1, as summarized in the following lemma.

Lemma 6 (Confidence set). Define

Fk
h =

{
f ∈ Fh :

∥∥f − fk
h

∥∥
Zk

h

≤ β(Fh, δ)
}
,

where β(Fh, δ) = c′
(
H
√

log(T/δ)+logN (Fh, 1/W )+log |Wh|

+
√

H∆W
h

)2

for some absolute constant c′ > 0, and Wh

is given in Lemma 4 with F replaced by Fh. Then with
probability at least 1 − δ/8, for all k, h ∈ [K] × [H], we
have

rkh + Pk
hV

k
h+1 ∈ Fk

h .

Proof. For all (k, h) ∈ [K]× [H] the bonus function bkh(·, ·) =
w(Fh; ·, ·) ∈ W . Note that

Q={min{f(·, ·) + w)(·, ·), H} :w∈W, f ∈C(Fh, 1/W )}∪{0}

is a (1/W )-cover of

Qk
h+1(·, ·) =

{
min{fk

h+1(·, ·) + bkh+1, H}, h < H,

0, h = H.

In other words , there exists q ∈ Q such that
∥∥q −Qk

h+1

∥∥
∞ ≤

1/W , which implies

V = {max
a∈A

q(·, a) : q ∈ Q}

is a (1/W )-cover of V k
h+1 with log |V| ≤ log |W| +

logN (Fh, 1/W ) + 1. For each V ∈ V , let Ih,V,δ/(8|V|T )

be the event defined in Lemma 5. By Lemma 5, we have
P[∩V ∈VIh,V,δ/(8|V|T )] ≥ 1 − δ/(8T ). We condition on
∩V ∈VIh,V,δ/(8|V|T ) in the rest of the proof.

Since fk
h is the solution of the optimization problem in Line

10 of Algorithm 1, i.e., fk
h = minf∈F ∥f∥2Dk

h
. Let V ∈ V such

that
∥∥V − V k

h+1

∥∥
∞ ≤ 1/W . Thus, by Lemma 5, we have∥∥∥fk

h − rkh − P k
hV

k
h+1

∥∥∥
Zk

h

≤

c′
(
H ·

√
log(T/δ) + logN (Fh, 1/W ) + log |Wh|+

√
H∆k

h

)
for some absolute constant c′. Therefore, by a union bound,
for all (k, h) ∈ [K]× [H], we have rkh + Pk

hV
k
h+1 ∈ Fk

h with
probability at least 1− δ/8.

Since the bonus term bkh is defined to be the width of
confidence set Fk

h , we conclude that Qk
h(·, ·) defined by

min{H, (fk
h + bkh(·, ·))} is an optimistic upper bound for

(rkh + P k
hV

k
h+1)(·, ·).
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Lemma 7. With probability at least 1− δ/4, for all (k, h) ∈
[K]× [H], for all (x, a) ∈ S ×A,

Q∗
h(x, a) ≤ Qk

h(x, a) ≤ rh(x, a) + (P k
hV

k
h+1)(x, a) + 2bkh(x, a).

Proof. For each (k, h) × [K] × [H], define Fk
h ={

f ∈ Fh :
∥∥f − fk

h

∥∥
Zk

h

≤ β(Fh, δ)
}

. By Lemma 6, the event
that for all (k, h) ∈ [K]× [H], rkh+Pk

hV
k
h+1 ∈ Fk

h holds with
probability at least 1−δ/8. Moreover, by Lemma 4, the event
bkh(x, a) > w(Fk

h ;x, a) holds with probability at least 1−δ/8.
We condition on those two events in the rest of the proof.

Note that

max
f∈Fk

h

|f(x, a)− fk
h (x, a)| ≤ w(Fk

h ;x, a) ≤ bkh(x, a).

Since rkh + Pk
hV

k
h+1 ∈ Fk

h , we have∣∣rkh(x, a) + (Pk
hV

k
h+1)(x, a)− fk

h (x, a)
∣∣ ≤ bkh(x, a).

Therefore,

Qk
h(x, a) ≤ fk

h (x, a) + bkh(x, a)

≤ rkh(x, a) + (Pk
hV

k
h+1)(x, a) + 2bkh(x, a).

Next we show Q∗
h(x, a) ≤ Qk

h(x, a) by induction on h,
When h = H+1, the desired inequality clearly holds. Suppose
Q∗

h(·, ·) ≤ Qk
h+1(·, ·) for some h. Clearly, V ∗

h+1(·) ≤ V k
h+1(·).

Therefore, for all (s, a) ∈ S ×A,

Q∗
h(x, a) = rkh(x, a) + (Pk

hV
∗
h+1)(x, a)

≤ min
{
H, rkh(x, a) + (Pk

hV
k
h+1)(x, a)

}
≤ min

{
H, fk

h (x, a) + bkh(x, a)
}
= Qk

h(x, a).

Step III: We decompose the dynamic regret and further
bound it via Eluder dimension.

By standard regret decomposition for UCB-type algorithms,
the dynamic regret is upper bounded by the summation of the
bonus function, as shown in the following lemma.

Lemma 8. With probability at least 1− δ/2,

D− Regret(K) ≤ 2

K∑
k=1

H∑
h=1

bkh(x
k
h, a

k
h) + 4H

√
KH log(8/δ).

Proof. Define ξkh = P k
h (V

k
h+1 − V πk

h+1)(x
k
h, a

k
h) −

(V k
h+1 − V πk

h+1)(x
k
h+1) and Fk

h as the filtration induced
by {(xk′

h′ , ak
′

h′)}(h′,k′)∈[H]×[k−1] ∪ {(xk
1 , a

k
1), . . . , (x

k
h, a

k
h)}.

Then

E[ξkh|Fk
h] = 0 and |ξkh| ≤ 2H.

By Azuma-Hoeffding’e inequality, with probability at least 1−
δ/4,

H∑
k=1

H−1∑
h=1

ξkh ≤ 4H
√

KH log(8/δ).

We condition on the above event, and the event defined in
Lemma 7 which holds with probability 1− δ/4. We have

D− Regret(K) =
K∑

k=1

(
V ∗
1 (x

k
1)− V πk

1 (xk
1)
)

≤
K∑

k=1

(
V k
1 (xk

1)− V πk
1 (xk

1)
)

≤
K∑

k=1

(
rk1 (x

k
1 , a

k
1) + (P k

1 V
k
2 )(xk

1 , a
k
1) + 2bk1(x

k
1 , a

k
1)

−rk1 (xk
1 , a

k
1)− (P k

1 V
πk
2 )(xk

1 , a
k
1)
)

=
K∑

k=1

(
P k
1 (V

k
2 − V πk

2 )(xk
1 , a

k
1) + 2bk1(x

k
1 , a

k
1)
)

=
K∑

k=1

(
ξk1 + (V k

2 − V πk
2 )(xk

2) + 2bk1(x
k
1 , a

k
1)
)

≤
K∑

k=1

H−1∑
h=1

ξkh + 2
K∑

k=1

H−1∑
h=1

bkh(x
k
h, a

k
h)

≤ 2
K∑

k=1

H−1∑
h=1

bkh(x
k
h, a

k
h) + 4H

√
KH log(8/δ).

To bound the summation of the bonus function, we use a
similar argument in [45] to show that the summation of bonus
term can be upper bounded by the Eluder dimension of the
function class Fh.

Lemma 9. With probability at least 1− δ/4, for any ε > 0,

K∑
k=1

1
{
bkh(x

k
h, a

k
h) > ε

}
≤
(
cβ(Fh, δ)

ε2
+ 1

)
dimE(Fh, ε),

for some absolute constant c > 0.

Proof. Let Fk

h = {f ∈ Fh :
∥∥f − fk

h

∥∥2
Zk

h

≤ 9β(Fh, δ) +

12}. By Lemma 4, the event that for all (k, h) ∈ [K] × [H],
bkh(·, ·) ≤ w(Fk

h, ·, ·) holds with probability at least 1 − δ/4.
We condition on such event in the rest of the proof.

Let L = {(xk
h′ , akh′) : h′ = h, bkh(x

k
h, a

k
h) > ε} with

|L| = L. We show that there exists (xk
h, a

k
h) ∈ L such that

(xk
h, a

k
h) is ε-dependent on at least L/ dimE(Fh, ε)−1 disjoint

subsequences in Zk
h ∩ L if K is sufficiently large. Consider

the following procedure: Let L1, . . . ,LL/ dimE(Fh,ε)−1 be
L/ dimE(Fh, ε) − 1 disjoint subsequences of L which are
initially empty. Consider (xk

h, a
k
h) ∩ L for each k ∈ [K]

sequentially. Find a j such that (xk
h, a

k
h) is ε-independent of

Lj and then add (xk
h, a

k
h) into Lj . If such j does not exist,

then the process terminates. By the definition of ε-dependence,
|Lj | ≤ dimE(Fh, ε) for all j. Therefore, (xk

h, a
k
h) must be ε-

dependent on at least ⌊L/ dimE(Fh, ε)⌋ disjoint sequences in
Zk

h ∩ L.
Note that since (xk

h, a
k
h) ∈ L, i.e., bkh(x

k
h, a

k
h) > ε,

which implies there exists f, f ′ ∈ Fh with
∥∥f − fk

h

∥∥2
Zk

h

≤
9β(Fh, δ) + 12 and

∥∥f ′ − fk
h

∥∥2
Zk

h

≤ 9β(Fh, δ) + 12 such

that ∥f − f ′∥∞ > ϵ. By triangle inequality, ∥f − f ′∥2Zk
h
≤

36β(Fh, δ) + 48. Therefore

⌊L/ dimE(Fh, ε)⌋ε2 ≤ ∥f − f ′∥2Zk
h
≤ 36β(Fh, δ) + 48,

which gives L ≤ ( 36β(Fh,δ)
ε + 1) dimE(Fh, ε).
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Lemma 10. With probability at least 1− δ/4,

W∑
k=1

bkh(x
k
h, a

k
h) ≤4H dimE(Fh, 1/W )

+ c′
√

dimE(Fh, 1/W ) ·W · β(Fh, δ),

for some absolute constant c′.

Proof. Let w1 ≥ . . . ≥ wW be a permutation of
{bkh(xk

h, a
k
h)}k∈[W ]. By Lemma 9, for any wt ≥ 1/W , we

have

t ≤
(
cβ(Fh, δ)

w2
t

+ 1

)
dimE(Fh, wt)

≤
(
cβ(Fh, δ)

w2
t

+ 1

)
dimE(Fh, 1/W ),

which implies

wt ≤
(

t

dimE(Fh, 1/W )
− 1

)− 1
2

·
√
cβ(Fh, δ).

Moreover, we have wt ≤ 4H . Therefore
W∑
t=1

wt ≤ 4H · dimE(Fh, 1/W )

+
∑

dimE(Fh,1/W )≤t≤W

(
t

dimE(Fh, 1/W )
− 1

)− 1
2 √

cβ(Fh, δ)

≤ 4H dimE(Fh, 1/W ) + 2
√

c dimE(Fh, 1/W )Wβ(Fh, δ).

Proof of Theorem 2. Combining Lemma 8 and Lemma 10
and the value of β(Fh, δ), and summing over all epochs w ∈
⌈1,K/W ⌉, we obtain the dynamic regret upper bound for our
proposed algorithm LSVI-Nonstationary

D− Regret(K) ≤
H∑

h=1

⌈K/W⌉∑
w=1

min{wW,K}∑
t=w(W−1)+1

bth(x
t
h, a

t
h)

≤ 4H2Kdm
W

+ Õ

KH2

√
W

√
ι+

√
dmHW

H∑
h=1

⌈K/W⌉∑
w=1

√
∆

(w)
h

 ,

where dm = suph dimE(Fh, 1/W ), and we use
√
a+ b ≤

√
a+

√
b

in the second inequality.

B. Proof of Corollary 2
Recall the definition of average variation budget LP and Lr . By

Theorem 2, we have

D− Regret(K)

= Õ

4H2Kdm
W

+
KH2

√
W

√
ι+

√
dmHW

H∑
h=1

K/W∑
w=1

√
∆

(w)
h


≤ Õ

KH2

√
W

√
ι+

√
dmHW

H∑
h=1

K/W∑
w=1

√
LW 2


= Õ

(
KH2ι

1
2W− 1

2 + d
1
2
mKH

3
2 (H

1
2L

1
2
P + L

1
2
r )W

1
2

)
,

where dm = suph dimE(Fh, 1/W ) and

ι ≤ c′ sup
h

log3(T/δ) dim2
E(Fh, δ/16W

2) ln(N (Fh, δ/576W )/δ)

· ln(N (S ×A,
1

16
√

W/δ
) ·W/δ).

If ι
1
2 H

1
2

d
1
2
m

(√
LP+

√
Lr√
H

) ≥ K, i.e.,
√
LP +

√
Lr√
H

≤
√
Hι

K
√
dm

, we select

W = K and we have

D− Regret(K) ≤ Õ
(
H2K

1
2 ι

1
2

)
.

If ι
1
2 H

1
2

d
1
2
m

(√
LP+

√
Lr√
H

) < K, i.e.,
√
LP +

√
Lr√
H

>
√
Hι

K
√
dm

, select

W = ⌈ ι
1
2 H

1
2

d
1
2
m

(√
LP+

√
Lr√
H

)⌉ and we have

D− Regret(K) ≤ Õ

(
KH2ι

1
4 d

1
4
mL

1
4
P +KH

7
4 ι

1
4 d

1
4
mL

1
4
P

)
.

Consider tabular MDPs with d̃ = |S||A|. Let Fh be the entire
function space of S ×A 7→ [0, H − h+ 1] for h ∈ [H]. Since S,A
are finite, for ε > 0, we have dimE(Fh, ε) ≤ d̃, log(N (F , ε)) =
Õ(d̃), and log(N (S ×A, ε)) = O(log(d̃)), we have ι = Õ(d̃3) and
dm = Õ(d̃). Therefore, when

√
LP +

√
Lr√
H

>
√
Hd̃
K

, we have

D− Regret(K) ≤ Õ

(
KH2d̃L

1
4
P +KH

7
4 d̃L

1
4
P

)
.

For linear MDPs with feature dimension d̃, dimE(Fh, ε) ≤ Õ(d̃),
log(N (F , ε)) = Õ(d̃), and log(N (S × A, ε)) = Õ(d̃), we have

ι = Õ(d̃4) and dm = Õ(d̃). Therefore, when
√
LP +

√
Lr√
H

>
√
Hd̃

3
2

K
,

we have

D− Regret(K) ≤ Õ

(
KH2d̃

5
4L

1
4
P +KH

7
4 d̃

5
4L

1
4
P

)
.
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