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Abstract—Function approximation has experienced significant
success in the field of reinforcement learning (RL). Despite a
handful of progress on developing theory for Nonstationary
RL with function approximation under structural assumptions,
existing work for nonstationary RL with general function
approximation is still limited. In this work, we propose a UCB-
type of algorithm LSVI-Nonstationary following the popular least-
square-value-iteration (LSVI) framework. LSVI-Nonstationary
features the restart mechanism and a new design of bonus term to
handle nonstationarity, and performs no worse than the existing
confidence-set based algorithm SW-OPEA in [1], which has been
shown to outperform the existing algorithms for nonstationary
linear and tabular MDPs in the small variation budget setting.

I. INTRODUCTION

Reinforcement learning (RL) focuses on the problem of
maximizing the cumulative reward through interactions with
an unknown environment. RL has witnessed a great success in
practical applications, including robotics [2, 3], games [4-6],
and autonomous driving [7]. The unknown environment in RL
is commonly modeled as a Markov decision process (MDP),
where the set of states S describes all possible status of the
environment. At a state s € S, an agent takes an action a
from an action set A to interact with the environment, after
which the environment transits to the next state s’ € S drawn
from some unknown transition distributions, and then the agent
receives an immediate reward. The interaction between the
agent and the environment takes place episodically, where
each episode consists of H steps. The notion called regret has
been typically employed to measure the performance of RL
algorithms, which measures how much worse an agent performs
following its current policy in comparison to the optimal policy
in hindsight. The goal of the agent is to strategically interact
with the environment to balance the exploration and exploitation
tradeoff to minimize the regret.

Most existing RL studies adopt a static MDP model, in which
both the reward and the transition kernel are time-invariant
across episodes. However, stationary environment is insufficient
to model enormous sequential decision problems such as
online advertisement auctions [8, 9], traffic management [10],
health care operations [11], and inventory control [12]. In
contrast, nonstationary RL takes variations in rewards and
transitions into consideration and is able to characterize
larger classes of problems of interest [13]. In general, it is
impossible to design algorithms that achieve sublinear regret
for MDPs with drastically changing rewards and transitions
in the worst case [14]. Therefore, one fundamental issue in
the theoretical study of nonstationary RL is to investigate the
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maximum nonstationarity an agent can tolerate to adapt to
the nonstationary dynamics of an MDP in order to achieve
sublinear regret.

Without additional assumptions on the structure of the MDP,
there is a line of extensive studies on nonstationary tabular
MDPs [14-27]. However, the performance of nonstationary
tabular MDPs suffers from large state and action spaces, which
limits its applicability in scenarios with exponentially large or
continuous state spaces. Therefore, function approximation has
become a prominent tool to cope with this challenge. Several
works have developed RL algorithms for nonstationary MDPs
under structural assumptions, such as state-action set forming
a metric space [28], linear MDPs [29, 30], linear mixture
MDPs [31]. Although the developed algorithms are much more
efficient than the algorithms designed for tabular setting, these
algorithms require strong structural assumptions on the function
approximation (such as a well-designed feature extractor in
linear MDPs), which severely restricts the range of situations
where these approaches can be employed.

Towards the direction of nonstationary MDPs under general
function approximation, [1] initiates the study, and proposes a
confidence-set based algorithm SW-OPEA, which relies on an
computational inefficient oracle to select the optimistic state-
action value function within the confidence set. To mitigate the
computational inefficiency, we propose a UCB-type algorithm
LSVI-Nonstationary in this work and our contribution is
summarized below.

Our proposed UCB-type algorithm LSVI-Nonstationary
adopts LSVI with upper confidence bound to handle the
exploration and exploitation tradeoff. In order to handle
nonstationarity, our algorithm features the restart mechanism,
and incorporating the local variation budget in the design of the
bonus term to ensure the optimism of the learned state-action
value function.

We use the Eluder dimension to measure the complexity
of the state-action value function class J for nonstataionry
MDPs. We then theoretically characterize the dynamic regret
of the proposed UCB-type algorithm, which depends on the
eluder dimension of function class F. Our newly proposed
UCB-type algorithm matches with the performance of SW-
OPEA in terms of horizon H, average variation budget in
transitions Lp and average variation budget in rewards L.,
while performing slightly worse in the number of states and
actions |S|, |.A| under tabular MDPs and the same in the linear
feature d in linear MDPs. Our result suggests the benefit of
UCB-type algorithm over confidence-set based algorithm.



Our main technical development for these approaches lies in
the single step optimization error for the least-square optimiza-
tion in our UCB-type algorithm. We do not take the distribution
drift in transitions and rewards into consideration, which may
lead to non-trivial estimation error. In our analysis, we explicitly
capture a non-trivial term due to the nonstationarity of the
environment. We show that by compensating such a term
involving local variation budget into the standard term due to
concentration, the difference between the least-square predictor
and the one-step backup estimate 7 + PFV;F, | is still bounded.

A. Related Work

Static Regret of Nonstationary MDPs: Static regret in nonsta-
tionary MDPs has been considered extensively in the past [14—
24]. Static regret has also been studied for nonstationary MDPs
with function approximation. In particular, [30] extends LSVI-
UCB [32] for stationary linear MDPs and characterizes the
static regret for the weighted least squares value iteration
method. [33] studies the nonstationary RL setting with general
function approximation, where the static regret is captured
through a more general notion called decision-estimation
coefficient (DEC).

Dynamic Regret of Nonstationary MDPs: Many studies in the
past have been focused on the metric of dynamic regret, which
quantifies the performance difference between the learning
policy and the optimal policy at each step. For nonstationary
tabular MDPs, value-based approaches have been proposed in
[25, 27], where they respectively propose a sliding window strat-
egy and a restart mechanism to handle nonstationarity. Further,
[26] adopts a different method based on policy optimization.
For nonstationary MDPs with function approximation, [29] and
[31] focus on linear function approximation and linear-mixture
function approximation, respectively, and [28] considers a
kernel-based approach for nonstationary MDPs when state-
action set forms a metric space. Further, [34] proposes a
unified approach to nonstationary MDPs that relies on an
oracle algorithm with optimal regret for stationary MDPs to
develop a useful algorithm for nonstationary MDPs.
Notation: For a positive integer N, we use [N] to denote
the set of positive integers {1,2,..., N }. For positive integers
m,n, define {-}[,..) = @ if m > n. Given a dataset D =
{(xs, ai, qz)}gl1 CSxAxR, for a functlion f:Sx AR,
define || f|lp = (Zlﬂ(f(azi,ai) - qi)2> * . For a set of state-
action pairs Z C S x A, for a fulnction f: S x A, define
Ifllz = (Z(La)ez(f(xi,ai)f)z. For a set of functions

F C{f:S x A~ R}, we define the width function of the
state-action pair as w(F;x,a) = sup; p.c 7(f — f')(x, a).

II. PRELIMINARIES

A. Nonstationary MDPs

Our setting can be formulated as a nonstationary finite-
horizon episodic Markov decision process, captured by a tuple
(S, A,H,K,P,r,x1). Here, S is the state space, A is the
action space, H is the length of each episode, K is the total

number of episodes, P = {P;]f}(k,h)e[K]x[H—l] where Pf :
S x A— A(S) is the transition kernel at step & in the k-th
episode, 7 = {ri} k. nye(x)x ) Where r : S x A [0,1] is
the mean reward function at step h in the k-th episode, and
x1 1s the fixed initial state.

The agent interacts with the nonstationary MDP sequentially.
At the beginning of k-th episode, the agent chooses a policy
78 = {7} }he(m) where w0 S A(A). At step h, the agent
observes the state =¥, takes an action following af ~ 7 (-|z¥),
obtains a reward ?}’j (we also use r,’f if there is no ambiguity)
with mean (2%, a¥), and the MDP evolves into the next state
af | ~ PF(af,af). The process ends after receiving the last
reward r§;. We define the state and state-action value functions
of policy ™ = {7, } e[z recursively via the following equation

Qs (T,0) = iz, a) + (P}lfv;:rﬂ;(*,k))(% a),
Vf:f(*,k)(x) = <QZ;(*,1€) (@, ')7”5('@))«47 VH+1;(*,k) =0,

where PJ is the operator defined as (P}f)(z,a) =
E [f(a')|z" ~ Pf(2'|z,a)] for any function f : S +— R. Here
(+,-).4 denotes the inner product over action space .4 and the
subscript A is omitted when appropriate.

The learning objective is to find the optimal policy via
interactions with the environment to minimize the dynamic
regret

K 2R <k
D — Regret(K) := > ;_, (Vl;(*,k) - Vl;(*,k)) (1),
which quantifies the performance difference between the
learning policy and the benchmark policy {w(*’k)} ke[K] Where
7k = arg max, Vi ery (@1)-

B. Function Approximation

Consider a function class F = F; X Fa X ... X Fpy, where
Fn C{f:8x A~ [0,H — h+1]} is the candidate function
class to approximate QZFE:"}C). For convenience, we set fr1 =

0.

Assumption 1 (Realizability). QZ;(*, K € Fy, for all (k,h) €
(K] > [H].

Realizability assumption requires that the optimal state-action
value function in each episode is contained in the function class
F with no approximation error, i.e., (QT;(*,k)’ e 7QZ,;(*’,C)) €
F for k € [K].

Given functions f = (f1, fo, -
[0, H — h + 1]), define

(Ekfh+1)(x7a) = TZ(ZJL(J,) + (Pf’fchrl)(xva)v

(P} fry1)(z,a) = By Pb(|2,0) [g}gﬁ frir(a’,a')],

-, frr) where fp € (SxAw—

where ’77{“ is the Bellman operator at step h in episode k.
Note that the optimal state-action value function satisfies
Qe (@) = (TFQ5 1. py) (@, a) for all valid z,a,h.
Moreover, we define T,FF, 11 = {T,* frni1 : fni1 € Fhi1}-

Assumption 2 (Completeness). T,*Fy, 1 C Fy, for all (k,h) €
(K] x [H].



For the completeness assumption, we require that after
applying the Bellman operator 7}{“ of any episode k£ to a
function fj 1 in the function class Fp1 at step h + 1, the
resulting function lies in the function class J}, at previous step
h.

C. Complexity Measures

In this section, we introduce two complexity measures for a
class of functions. One is Eluder dimension and the other one
is distributional Eluder dimension.

The definition of Eluder dimension was first proposed in [35],
and is based on the e-independence of points, as illustrated in
the following definition.

Definition 1 (Eluder Dimension). Let ¢ > 0 and Z =
{(zs,0:)}1 €S x A be a sequence of state-action pairs.
o A state-action pair (x,a) € S X A is e-dependent on Z
with respect to F if any f, f' € F satisfying ||f — f'|| z <
€ also satisfies |f(x,a) — f'(z,a)| < e
o An (z,a) is e-independent on Z with respect to F if (x,a)
is not e-dependent on Z.
o The Eluder dimension dimg(F,€) of a function class F
is the length of the longest sequence of elements in S x A
such that, for some € > ¢, every element is ¢'-independent
of its predecessors.

It has been shown in [36] that dimp(F,€) < |S||A| for
tabular MDPs, and dimg (F,¢) < O(d) for linear MDPs where
d is the feature dimension.!

III. UCB-TYPE ALGORITHM

In this section, we propose our UCB-type algorithm LSVI-
Nonstationary. Our proposed algorithm falls into the popuplar
LSVI framework, which uses LSVI with upper confidence
bound to handle exploration and exploitation tradeoff. While
designing the bonus term is simple in static tabular and linear
MDPs, it becomes difficult in nonstationary MDPs with general
function approximation. Our algorithm features the restart
mechanism and incorporate the local variation budget in the
design of the bonus term to handle nonstationarity. Moreover,
it alleviates the computational inefficiency in the confidence-
set based approach to select the optimistic state-action value
functions in each step altogether.

We begin with the bounded complexity assumption [37] on
the function class F and the state-action pairs S x A.

Assumption 3. For any € > 0, the following statements hold:
o There exists an e-cover C(F,e) C F with size |C(F,¢e)| <
N(F,¢), such that for any f € F, there exists [ €
C(F,2) with || — f|l.. < =
o There exists an e-cover C(SX A, €) with size C(Sx A, &) <
N (S %A, ¢), such that for any (x,a) € S X A, there exists
(z',a") € C(Sx A, e) withsupex | f(z,a)— f(2',a')] <
E.
I'The proofs for the nonstationary setting are essentially the same as the

proof for the stationary setting therein, and we do not differentiate the two
settings.

This assumption essentially requires both the function class
and the state-action pairs have bounded covering numbers. It
is acceptable for the covers to have exponential size since the
regret bound scales logarithmically on both N'(F, -) and N/ (S x
A, -). For the tabular case when S, A are finite, log N'(F,¢) =
O(|S||A]) and log N'(S x A, ) = log(|S||.Al). For the linear
MDPs with feature dimension d, log N'(F,e) = O(d) and
log V(S x A, e) = log(d).

A. Algorithm LSVI-Nonstationary

In this section, we describe our proposed UCB-type algo-
rithm LSVI-Nonstationary for nonstationary MDPs with general
function approximation.

From a high level point of view, our algorithm features
two key ingredients: least-square value iteration (LSVI) and
a restart mechanism. Our algorithm uses LSVI with upper
confidence bound to handle the exploration and exploitation
tradeoff, where we incorporate the local variation budget in the
design of bonus term to ensures the optimism of the learned
state-action value function. Moreover, we use the epoch restart
mechanism to adapt to the nonstationarity of the environment.
Those ingredients make our design significantly different from
the F-LSVI algorithm [35] for static MDPs.

Algorithm 1 LSVI-Nonstationary

1: Input: failure probability ¢ € (0, 1), number of episodes

K and epoch size W.

2 for j =1,2,...,[%] do

3 T+ (j-1)W+1.

4. for episode k = 7,...,min{r + W, K} do

5: Receive initial state s¥ ~ p.
6: Qr1() < 0and VE_ (1)« 0.
7
8
9

Z;’f = {(ﬂfﬁaafz)}ee[r:kq]-
for h=H H—-1,...,1do

D}’: = {(xfwai’ ?f; + fo-fl(xfﬁ-l))}ée[r,k—ly

10: fF «+ argminger, Hf||%;}f

11: bF < bonus(Fy, fF, ZF,5,7) (Algorithm 3).

12: Q;CL(’) <_m1n{fl§(7)+b2(’)vH} and V}f() =
maxqea QF (-, a).

13: 7r(+) + argmax,ea QF (-, a).

14: end for

15: for h=1,2,...,H do

16: Take action aj < 75 (z}) and observe xf_ , ~
PF(|a¥,ak) and 7% ~ rF(aF, ak).

17: end for

18:  end for

19: end for

The pseudocode of LSVI-Nonstationary is presented in
Algorithm 1. Our algorithm runs in epochs with length W.
Within each episode, we follow these steps: Firstly, we estimate
the state-action value function through a least-square problem
using historical data from the current epoch. Next, we create
an upper confidence bound for the state-action value function
and select the policy that maximizes this upper confidence
bound. A new trajectory is then collected by following the



greedy policy. Finally, we periodically restart the algorithm to
handle the nonstationarity of the environment.

Least-square value iteration. At the beginning of each
episode k, we maintain a replay buffer of existing samples
{af,,a},, 7, Yee[rk—1), Where 7 is the first episode of the
epoch containing episode k. Let Q% 41 = 0, and we set
Q’;’I,Q’;’{fl, .. .,Q’f iteratively as follows (line 10-12). For
h=HH-1,...,1,

I () = arg mln Z( xh»ah —7h _maXQthl(IhJA» ))27
Qh('v') :mln{fh ('7 ')7H}7

where b (-,-) is the bonus function to be defined shortly.
After obtaining Q% (-,-), we then use the greedy policy with
respect to QZ’ to collect data (line 13) for the kth episode. Note
that the least-square problem does not take into consideration
the distribution drift in transitions and rewards, which may
potentially result in significant estimation errors. However, our
analysis shows that these estimation errors can adapt to the
nonstationarity. Specifically, we incorporate such estimation
errors into the design of the bonus term to ensure the state-
action value estimate is an optimistic upper bound of the
optimal state-action value function.
Stable upper-confidence bonus function. With more collected
data, the least-square solution is expected to provide a better
approximation to the optimal state-action value function. To
encourage exploration, we add additional bonus function
by (-,-) to guarantee that with high probability, QF (-, ") is
an optimistic upper bound of the optimal state-action value
function. The design of bonus term b’fL has two features:
First, we leverage the importance sampling technique [35]
to prioritize important data in the replay buffer so that the
bonus function bf is stable even when the replay buffer has
large cardinality. Second, the distribution drift of the transitions
and the rewards is characterized in the design of bonus term
b’g in order to obtain the optimistic upper bound of the optimal
state-action value function.

We define bonus function to be the width function b% (-, -) =
w(FF;-,-), where FF is defined as the confidence set so that
the estimation error of the one-step backup (ry +PFV,F (-, )
lies within F7 ; with high probability. By the deﬁmtlon of width
function, b} (-, -) provides an upper bound on the confidence in-
terval of the state-action value estimate, since the width function
maximizes the difference between all pairs of state-action value
functions within the confidence set. Spemﬁcally, we define the

confidence set as Ff = {f € Fj ||f thZ" < B+ HAF}
where 6 is the confidence parameter properly Selected so that
(rf 4+ PFVF. (-, ) € FF with high probability, ZJ consists

of the collected samples (line 5), and AZ is the local variation
budget defined by

) + bh('a

k—1 k—1
Af = Zsup\ i —rh)(z,a |+HZsup PH(:|z, a)H .
t=r T L=T

Note that the complexity of a bonus function could be high
as it is defined by the dataset Z,’f whose size can be as large
as W. We adopt importance sampling technique in [35] to
reduce the size of the dataset. Moreover, the data samples in

Z,}f are collected from nonstationary environment, we include
an additional term of local variation budget A¥ in the definition
of FF. Intuitively, the local variation budget A¥ captures the
discrepancy between current episode k£ and previous episodes
in the current epoch. By incorporating a term involving Ah in
the design of ]-'h, we ensure the true action-value function of
the kth episode lies within the confidence set F, }f with high
probability. The formal definition of bonus term b5 and the
selection of g is deferred to Appendix A.

Restart mechanism. We use epoch restart mechanism to handle
the nonstationary environment. Specifically, we restart every
W episodes as illustrated in the outer loop of Algorithm 1
(line 4), and the estimate of the state-action value function are
calculated only by the samples collected in the current epoch,
independent of all previous epochs. Note that while in general
the epoch length W can vary for different epochs, we consider
a fixed length and the corresponding dynamic regret upper
bound in this work.

Compared to the confidence-set based algorithm SW-OPEA,
which relies on an computational inefficient oracle to select
the optimistic state-action value function within the confidence
set. Instead, our algorithm is based on the popular UCB-based
approach, which simplified the algorithm design and can be
potentially implemented computationally efficiently [35].

B. Theoretical Guarantees

In this section, we provide the theoretical guarantee for
Algorithm 1, and defer proofs to Appendix B.

For clarity, assume K/W is an integer throughout this
section. The variation budget of an epoch w € [1 : K/W]
is defined as

wW

>

L=w(W—1)+1
wW

>

L=w(W —1)+1

A;Lw) = sup |(r§ — i) (x, a)l

T,a

+ H

sup
x,a

(P = PO, a)| -

The dynamic regret of LSVI-Nonstationary is characterized
in the following theorem.
Theorem 1 (Dynamic regret of LSVI-Nonstationary). Under
Assumption 1, Assumption 2 and Assumption 3, with probability

at least 1 — 0, LSVI-Nonstationary achieves a dynamic regret
bound of

~ [ 4H?’Kd,,
( L

)

h=1 w=1

where d,, = sup;, dimg(Fp,1/W) and
T 1) 1 1
<c- 32 dim?2 7
L <c st}tplog 3 dimZ; (F, T 5) -1 (5'/\/’(]:]“576 )

In(N(S x A YW/6).

1
" 164/W/8
for some absolute constant ¢ > Q.

Note that the last term depends on the length of the restart
epoch W, and the dynamic regret upper bound can be further



optimized by setting appropriate . We define the average
variation budget in transitions Lp and rewards L,

k— s S
Sazisup, , (P = PE)(|z,a)ls

Lp =
P he?lglz]%,}t;k k—t ’
k—1
_ S ams 8P (i =) (2, 0))
= max .
he[H],t<k k—t

Clearly, we have Lp,L, < 1 and A%(k,h) < Lpw?,
A’f{(k7 h) < L,w?. Lp, L, can be viewed as the the greatest
average variation of transition kernels and rewards across
adjacent episodes over any period of episodes maximized over
step h € [H]. Then the following corollary characterizes the
dynamic regret by optimizing the window size w based on Lp
and L,.

The following corollary characterize the dynamic regret
by optimizing the restart epoch length W based on the
average variation budget L for both nonstationary tabular and
nonstationary linear MDPs.

Corollary 1. Consider the same condition as in Theorem 1.
For tabular MDPs with d = |S||A|, let F}, be the entire
function space of S x A — [0,H — h + 1] for h € [H].
Since S, A are finite, for ¢ > 0, we have dimg(Fp,¢) < d,
log(NV(F,e)) = O(d), and log(N (S x A, e)) = O(log(d)),
and the dynamic regret is bounded by

O (HATHd% + HTALY, + HATILY) |

For linear MDPs with feature dimension d, dimp (Fn,e) <

O(d), log(N(F,e)) = O(d), and log(N'(S x A, £)) = O(d),
and the dynamic regret is bounded by

O (HiTHd} + HTE L) + HATEL)).

Compare to SW-OPEA: Under nonstationary MDPs with
general function approximation, we compare the dynamic
regret upper bound of our UCB-type algorithm to the dynamic
regret bound of the confidence-set based algorithm SW-OPEA
in [1]. For both nonstationary tabular and linear MDPs, SW-
OPEA gives O (HiTHd+ HTdI L}, + HATAILY ), where
d equals |S||A| for tabular MDPs and equals the feature
dimension for linear MDPs. We see that the dynamic regret
bound of UCB-type algorithm matches that of confidence-set
based algorithm in horizon H as well as average variation
budgets Lp and L, while perform slightly worse in terms of
d. Similarly to the static MDPs [35], a more refined analysis
specialized to the tabular and linear setting can potentially
improve the dynamic regret bound. We would like to point
out that our algorithm and analysis handles the nonstationary
MDPs with general function approximation, which is much
harder than and contains the nonstationary tabular and linear
MDPs.

IV. CONCLUSION

In this paper, we propose a UCB-type algorithm LSVI-
Nonstationary for nontationary MDPs with general function

approximation, which follows the popular LSVI framework. To
handle nonstationarity, LSVI-Nonstationary features the restart
mechanism, and the novel design of the bonus term to ensure
the optimism of the learned state-action value function. LSVI-
Nonstationary performs no worse than the existing confidence-
set based algorithm SW-OPEA in [1], while considerably
simplifies the algorithm design and alleviate its computational
inefficiency.

REFERENCES

[1] S. Feng, M. Yin, R. Huang, Y.-X. Wang, J. Yang, and
Y. Liang, “Non-stationary reinforcement learning under
general function approximation,” in Proceedings of the
40th International Conference on Machine Learning,
2023.

[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement
learning in robotics: A survey,” International Journal of
Robotics Research, vol. 32, no. 11, pp. 1238-1274, 2013.

[3] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates,” in 2017 IEEE international
conference on robotics and automation (ICRA), 2017.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484489, 2016.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel et al., “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm,” ArXiv,
2017.

, “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science,
vol. 362, no. 6419, pp. 1140-1144, 2018.

[7] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A
survey of autonomous driving: Common practices and
emerging technologies,” IEEE Access, vol. 8, pp. 58 443—
58469, 2019.

[8] H. Cai, K. Ren, W. Zhang, K. Malialis, J. Wang, Y. Yu,
and D. Guo, “Real-time bidding by reinforcement learning
in display advertising,” in Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining
(WSDM), 2017.

[9] J. Lu, C. Yang, X. Gao, L. Wang, C. Li, and G. Chen,

“Reinforcement learning with sequential information

clustering in real-time bidding,” in Proceedings of the

28th ACM International Conference on Information and

Knowledge Management, 2019.

C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong,

K. Xu, and Zhenhui, “Toward a thousand lights: De-

centralized deep reinforcement learning for large-scale

traffic signal control,” in AAAI Conference on Artificial

Intelligence, 2020.

[11] S. M. Shortreed, E. B. Laber, D. J. Lizotte, T. S. Stroup,

J. Pineau, and S. A. Murphy, “Informing sequential

(6]




[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

clinical decision-making through reinforcement learning:
an empirical study,” Machine Learning, vol. 84, pp. 109-
136, 2010.

S. Agrawal and R. Jia, “Learning in structured mdps
with convex cost functions: Improved regret bounds for
inventory management,” in Proceedings of the 2019 ACM
Conference on Economics and Computation, 2019.

T. Cover and S. Pombra, “Gaussian feedback capacity,”
IEEE Transactions on Information Theory, vol. 35, no. 1,
pp- 37-43, 1989.

J. Y. Yu, S. Mannor, and N. Shimkin, “Markov decision
processes with arbitrary reward processes,” Mathematics
of Operations Research, vol. 34, no. 3, pp. 737-757, 2009.
P. Auer, T. Jaksch, and R. Ortner, “Near-optimal regret
bounds for reinforcement learning,” in Advances in Neural
Information Processing Systems, 2008.

P. Gajane, R. Ortner, and P. Auer, “A sliding-window
algorithm for markov decision processes with arbitrarily
changing rewards and transitions,” ArXiv, 2018.

E. Even-Dar, S. M. Kakade, and Y. Mansour, “Online
markov decision processes,” Mathematics of Operations
Research, vol. 34, no. 3, pp. 726-736, 2009.

J. Y. Yu and S. Mannor, “Arbitrarily modulated markov
decision processes,” in Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly
with 2009 28th Chinese Control Conference, 2009.

G. Neu, A. Gyorgy, and C. Szepesvari, “The online
loop-free stochastic shortest-path problem,” in Annual
Conference Computational Learning Theory, 2010.

G. Neu, A. Gyorgy, and C. Szepesvari, “The adversarial
stochastic shortest path problem with unknown transition
probabilities,” in Proceedings of the Fifteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
2012.

A. Zimin and G. Neu, “Online learning in episodic
markovian decision processes by relative entropy policy
search,” in Advances in Neural Information Processing
Systems, 2013.

O. Dekel and E. Hazan, “Better rates for any adversarial
deterministic MDP,” in Proceedings of the 30th Interna-
tional Conference on Machine Learning, 2013.

A. Rosenberg and Y. Mansour, “Online convex opti-
mization in adversarial markov decision processes,” in
International Conference on Machine Learning, 2019.
C. Jin, T. Jin, H. Luo, S. Sra, and T. Yu, “Learning ad-
versarial markov decision processes with bandit feedback
and unknown transition,” in International Conference on
Machine Learning, 2020.

W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Rein-
forcement learning for non-stationary Markov decision
processes: The blessing of (More) optimism,” in Proceed-
ings of the 37th International Conference on Machine
Learning, 2020.

Y. Fei, Z. Yang, Z. Wang, and Q. Xie, “Dynamic regret
of policy optimization in non-stationary environments,”
in Advances in Neural Information Processing Systems,

[27]

(28]

[40]

2020.

W. Mao, K. Zhang, R. Zhu, D. Simchi-Levi, and T. Basar,
“Near-optimal model-free reinforcement learning in non-
stationary episodic MDPs,” in Proceedings of the 38th
International Conference on Machine Learning, 2021.
O. D. Domingues, P. M’enard, M. Pirotta, E. Kaufmann,
and M. Valko, “A kernel-based approach to non-stationary
reinforcement learning in metric spaces,” in International
Conference on Artificial Intelligence and Statistics, 2020.
H. Zhou, J. Chen, L. R. Varshney, and A. Jagmohan,
“Nonstationary reinforcement learning with linear func-
tion approximation,” Transactions on Machine Learning
Research, 2022.

A. Touati and P. Vincent, “Efficient learning in non-
stationary linear markov decision processes,” ArXiv, 2020.
H. Zhong, Z. Yang, Z. Wang, and C. Szepesvari, “Op-
timistic policy optimization is provably efficient in non-
stationary MDPs,” ArXiv, 2021.

C. Jin, Z. Yang, Z. Wang, and M. 1. Jordan, “Provably
efficient reinforcement learning with linear function
approximation,” in Proceedings of Thirty Third Confer-
ence on Learning Theory, ser. Proceedings of Machine
Learning Research. PMLR, 09-12 Jul 2020.

D. J. Foster, A. Rakhlin, A. Sekhari, and K. Sridharan,
“On the Complexity of Adversarial Decision Making,”
ArXiv, 2022.

C.-Y. Wei and H. Luo, “Non-stationary reinforcement
learning without prior knowledge: An optimal black-box
approach,” ArXiv, 2021.

R. Wang, R. R. Salakhutdinov, and L. Yang, “Reinforce-
ment learning with general value function approximation:
Provably efficient approach via bounded eluder dimen-
sion,” in Advances in Neural Information Processing
Systems, 2020.

D. Russo and B. Van Roy, “Eluder dimension and the
sample complexity of optimistic exploration,” in Advances
in Neural Information Processing Systems, 2013.

R. Wang, R. R. Salakhutdinov, and L. Yang, “Reinforce-
ment learning with general value function approximation:
Provably efficient approach via bounded eluder dimen-
sion,” in Advances in Neural Information Processing
Systems, 2020.

M. Langberg and L. J. Schulman, “Universal -
approximators for integrals,” in Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2010.

D. Feldman and M. Langberg, “A unified framework for
approximating and clustering data,” in Proceedings of
the Forty-Third Annual ACM Symposium on Theory of
Computing, 2011.

D. Feldman, M. Schmidt, and C. Sohler, “Turning big data
into tiny data: Constant-size coresets for k-means, pca and
projective clustering,” in Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms,
2013.



