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Abstract
Transformers have recently revolutionized many
domains in modern machine learning and one
salient discovery is their remarkable in-context
learning capability, where models can solve an
unseen task by utilizing task-specific prompts
without further parameters fine-tuning. This also
inspired recent theoretical studies aiming to un-
derstand the in-context learning mechanism of
transformers, which however focused only on lin-
ear transformers. In this work, we take the first
step toward studying the learning dynamics of
a one-layer transformer with softmax attention
trained via gradient descent in order to in-context
learn linear function classes. We consider a struc-
tured data model, where each token is randomly
sampled from a set of feature vectors in either
balanced or imbalanced fashion. For data with
balanced features, we establish the finite-time con-
vergence guarantee with near-zero prediction er-
ror by navigating our analysis over two phases of
the training dynamics of the attention map. More
notably, for data with imbalanced features, we
show that the learning dynamics take a stage-wise
convergence process, where the transformer first
converges to a near-zero prediction error for the
query tokens of dominant features, and then con-
verges later to a near-zero error for query tokens of
under-represented features, via one and four train-
ing phases. Our proof features new techniques for
analyzing the competing strengths of two types of
attention weights, the change of which determines
different training phases.

1. Introduction
Transformers (Vaswani et al., 2017) have emerged as the
foundational architectures in various domains, including
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natural language processing (Devlin et al., 2018; OpenAI,
2023), computer vision (Dosovitskiy et al., 2020; He et al.,
2022), reinforcement learning (Chen et al., 2021; Janner
et al., 2021), and so on. Recently, large language models
(LLMs) based on transformers have exhibited remarkable
in-context learning capabilities, where the model can solve
a new task solely through inference based on prompts of the
task without further fine-tuning (Brown et al., 2020).

Such striking abilities have inspired a recent line of research
to understand the underlying mechanisms of in-context
learning from various aspects (Garg et al., 2022; Min et al.,
2022; Wei et al., 2023; Von Oswald et al., 2023; Xie et al.,
2021). Among these studies, the pioneering work of Garg
et al. (2022) empirically studied in-context learning via an
interpretable framework, highlighting the capacity of trans-
formers to acquire in-context knowledge of linear and some
more complex function classes. Specifically, they showed
that an in-context trained model over a function class F
can accurately predict the function value f (xquery) of a new
query token xquery for most f ∈ F by using a prompt se-
quence including in-context input-label pairs along with the
query token (x1, f (x1) , . . . , xN , f (xN ) , xquery).

Built on this theoretically amenable setting, many follow-up
works explored theoretical properties of in-context learning
of transformers from different perspectives such as expres-
sive power (Akyürek et al., 2022; Giannou et al., 2023), gen-
eralization (Li et al., 2023b), internal mechanisms (Von Os-
wald et al., 2023; Bai et al., 2023), etc. Specially, a few
recent studies (Zhang et al., 2023a; Mahankali et al., 2023;
Ahn et al., 2023) made interesting progress towards un-
derstanding the training dynamics of transformers for in-
context learning1. However, those studies focused only on
‘linear’ transformers, and does not capture the crucial role
of the ‘softmax’ mapping, which lies in the core design of
transformers to be advantageous over other network archi-
tectures. Therefore, the following fundamental problem still
remains largely open:

How do softmax-based transformers trained via gradient
descent learn in-context?

This paper takes the first step toward addressing this prob-
lem by investigating the learning dynamics of a single-layer

1More detailed discussions for related work can be found in
Appendix A.
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transformer with softmax attention trained by gradient de-
scent (GD) for in-context learning. We focus on the setting
with training prompts generated from linear regression mod-
els as in Garg et al. (2022), and with structured input data,
where each token is randomly selected from a set of feature
vectors {vk}Kk=1 with probability {pk}Kk=1, respectively. We
then train the transformer over the squared loss of prediction
error using GD. We study the training dynamics under both
balanced and imbalanced feature distributions, and charac-
terize the in-context learning ability for both settings. We
highlight our contributions as follows.

Our Contributions.

• We first establish the convergence guarantee for the
setting with balanced features, where pk = Θ( 1

K ) for
each k ∈ [K], and characterize the training evolution
of the attention map into a two-phase dynamic process.
In phase I, for each k ∈ [K], the parameters of the
self-attention module undergo fast growth, aligning the
query token featuring vk with input tokens featuring
vk rapidly disregarding other feature directions. In
phase II, the loss of prediction error converges to a
near-minimum value.

• We then prove the convergence for the setting with
imbalanced features, where one feature dominates, say
v1 with p1 = Θ(1), while others are under-represented
with pk = Θ( 1

K ) for k > 1, which serves as a remark-
able showcase of the in-context learning capabilities
of transformers. We show that the learning dynam-
ics takes a stage-wise convergence process. Initially,
the transformer quickly attains near-zero prediction
error for query tokens of dominant features, and then
converges to near-zero prediction error for query to-
kens of under-represented features, irrespective of their
infrequent occurrence.

• Our analysis hinges on a novel proof technique that
characterizes the softmax attention dynamics via the in-
terplay between two types of bilinear attention weights:
‘weight of query token and its target feature’ and
‘weight of query token and off-target features’. Which
weight plays a dominant role in the attention dynam-
ics can change over the learning process, resulting in
different training phases. Our analysis tools may be
of independent interest and hold the potential to study
various other problems involving transformers.

Notations. We let [K] := {1, 2, . . . ,K}. We use capital let-
ters for matrices (e.g., A), and lowercase letters for vectors
and scalars (e.g., a). For a matrix A, we use Ai to repre-
sent the i-th column of A and Ai:j to indicate a collection
of columns spanning from i to j. We use 1{·} to denote
the indicator function. We use O(K), Ω(K), and Θ(K) to
omit universal constants concerning the variable K. We use

poly(K) and polylog(K) to denote large constant-degree
polynomials of K and log(K), respectively. Given h(x) ≤
0 and g(x) > 0, we denote h(x) = −Ω(g(x)) if there ex-
ists some constant C1 > 0 and a1, s.t. |h(x)| ≥ C1g(x)
for all x ≥ a1; h(x) = −O(g(x)) if there exist some con-
stant C2 > 0 and a2, s.t. |h(x)| ≤ C2g(x) for all x ≥ a2;
h(x) = Θ(g(x)) if there exists some constant C3, C4 > 0
and a3, s.t. C3g(x) ≤ |h(x)| ≤ C4g(x) for all x ≥ a3.

2. Problem Setup
In this section, we present our problem formulations, in-
cluding the in-context learning framework, one-layer trans-
former architecture, and the training settings we consider.

2.1. In-Context Learning Framework
We adopt the well-established in-context learning frame-
work in Garg et al. (2022). The objective is to enable the
training of models capable of in-context learning within
a specified function class F , where the functions and in-
put data are sampled respectively by the distributions DF
and DX . Specifically, the process is initiated by generat-
ing random training prompts as follows. We first sample a
random function f from the class according to the distribu-
tion DF . We then create a set of random inputs x1, . . . , xN

and query xquery , all drawn independently by DX . Finally,
we compute the value of function f on these inputs to con-
struct the prompt P = (x1, y1, . . . , xN , yN , xquery), where
yi = f(xi). The goal for an in-context learner is to use the
prompt to form a prediction ŷ (xquery) for the query such
that ŷ (xquery) ≈ f (xquery).

Task Distribution. In this work, our focus is
on the task of linear functions defined as F ={
f : X → R | f(x) = ⟨w, x⟩ with w ∈ Rd,X ⊂ Rd

}
,

which is widely adopted in recent studies for in-context
learning (Ahn et al., 2023; Zhang et al., 2023a; Mahankali
et al., 2023). For each prompt, the task-specific weight w is
independently drawn from a task distribution DΩ with zero
mean and identity covariance matrix Id×d.

Data Distribution DX . We consider a set of distinct fea-
tures {vk ∈ Rd, k = 1, . . . ,K}, where all features are
orthonormal vectors. Each data point x is sampled from the
feature set with the probability pk for sampling vk, where
pk ∈ (0, 1) for k ∈ [K] and

∑
k∈[K] pk = 1. Such a data

model has been widely employed in the theoretical studies
of deep learning, including ensemble methods (Allen-Zhu &
Li, 2020), multi-modal learning (Huang et al., 2022), vision
transformers (Li et al., 2023a), etc.

2.2. One-Layer Transformer Architecture
To present the one-layer transformer model we consider,
we first introduce the self-attention mechanism (Bahdanau
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et al., 2014; Vaswani et al., 2017) for the transformer model.

Definition 2.1 (Self-Attention (SA) Mechanism). A self-
attention layer (Bahdanau et al., 2014; Vaswani et al., 2017)
in the single-head case with width de consists of the follow-
ing components: a key matrix WKey ∈ Rde×de , a query
matrix WQ ∈ Rde×de , and a value matrix WV ∈ Rde×de .
Given a prompt P of length N , let E ∈ Rde×dN be an
embedding matrix of the prompt P , and the self-attention
mechanism will output:

FSA
(
E;WKey,WQ,WV

)
= WV E · softmax

((
WKeyE

)⊤
WQE

)
, (1)

where the softmax(·) function is applied column-wisely,
i.e., for a vector input z, the i-th entry of softmax(z) is
given by ezi/

∑
s e

zs .

Embeddings. For in-context learning, given a prompt
P = (x1, y1, . . . , xN , yN , xquery ), a natural token embed-
ding is to stack xi ∈ Rd and yi into the first N columns.
The final column consists of xquery ∈ Rd and 0. Formally,

E(P ) =

(
x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1).

Therefore, dN = N + 1 and de = d + 1 in the above
embedding. Let us further denote the first d rows of E as
Ex(P ) ∈ Rd×(N+1) and the last row of E as Ey(P ) ∈
R1×(N+1). Then we write E(P ) = {Ex(P ), Ey(P )}. We
omit the dependency on P for E(P ), Ex(P ) and Ex(P )
when there is no ambiguity.

We next instantiate additional operations and certain param-
eter settings based on the general SA mechanism (1) for
our one-layer transformer model to mitigate unnecessary
complications in theoretical analysis while keeping the most
critical component of the SA mechanism.

Masking. Let M(·) denote the masking operation, which
masks (removes) the last column of the entry matrix. In
other words, for a given matrix A ∈ R(d+1)×(N+1), M(A)
yields A1:N ∈ R(d+1)×N . We will first mask the embedding
matrix E before its multiplication with the key matrix WKey

and the value matrix WV , which results in WKeyM(E)
and WV M(E), in order to prevent the query token from
attending to itself. This approach has been commonly taken
in previous works (Tian et al., 2023; Mahankali et al., 2023;
Von Oswald et al., 2023; Kitaev et al., 2020).

Reparameterization. We consolidate the query and key
matrices into one matrix denoted as WKQ ∈ R(d+1)×(d+1),
often taken in recent theoretical frameworks (Zhang et al.,
2023a; Jelassi et al., 2022; Tian et al., 2023). Furthermore,

we consider WV and WKQ in the following specific forms:

WV =

(
0d×d 0d
0⊤d ν

)
, WKQ =

(
Q 0d
0⊤d 0

)
, (2)

where ν ∈ R and Q ∈ Rd×d. The above structures of WV

and WKQ are inspired by the recent study (Zhang et al.,
2023a), which showed that such structured matrices achieve
the global optimum in the linear SA model. Furthermore,
we set ν = 1 (where ν is the only parameter in WV ) and do
not update it during the training. The reason is twofold: 1)
this aligns with the common practice in theoretical studies
of deep learning, where the last linear layer is often kept
fixed to focus on the analysis of hidden layers. Our objective
remains highly nonconvex and challenging even with a fixed
ν; and 2) the form of the global optimum outlined in recent
work (Zhang et al., 2023a) suggests that for linear SA, the
optimal solution for ν serves as a scaling factor to normalize
the output of linear attention. In our case, the output of
softmax attention is already inherently normalized.

Remark 2.2 (Nealy no loss of optimality). Despite the
specific form of {WV ,WKQ}, the minimum of the loss
function L∗ = Θ(e−poly(K)) (as shown in Theorem 3.2)
implies that such a specific form at most incurs an error
of Θ(e−poly(K)) that vanishes exponentially with K, com-
pared to the minimum loss over the general parameter space
{WV ,WKey,WQ}. Therefore, for our nonlinear softmax
SA, such specific parameterization does not lose optimality.

With the aforementioned masking operations and reparam-
eterization, the overall transformer model consisting of a
single SA layer can be recast in the parameterization of
θ = {1, Q} as follows:

FSA (E; θ) = M(Ey) · softmax
(
M(Ex)

⊤
QEx

)
. (3)

Such a reparameterization separates the label Ey from the
softmax operator while maintaining simultaneous process-
ing of both input Ex and label Ey information. The predic-
tion for the token xquery will be the last entry of FSA,

ŷquery = ŷquery(E; θ) = [FSA(E; θ)](N+1) .

Henceforth, we may omit the reference to E and θ, and use
ŷquery if it is not ambiguous.

2.3. Training Settings
Loss Function. To train the transformer model FSA over
linear regression tasks, we minimize the following squared
loss of the prediction error, which has also been taken
by Zhang et al. (2023a); Ahn et al. (2023):

L(θ) =
1

2
E
[
(ŷ query − ⟨w, x query ⟩)2

]
(4)

where the expectation is taken with respect to the prompt
P including input and query tokens {xi}Ni=1 ∪ {xquery } and
the weight vector w.
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Training Algorithm. The above learning objective in
eq.(4) is minimized via GD with the learning rate η. At
t = 0, we initialize Q(0) as zero matrix 0d×d. The parame-
ter is updated as follows:

θ(t+1) = θ(t) − η∇θL(θ
(t)).

3. Main Results
In this section, we characterize the convergence of in-
context learning by GD for the settings with balanced and
imbalanced features, respectively.

To measure the degree to which the query token xquery at-
tends to the specific input token and to a certain class of
features, we define the notions of the attention scores.

Definition 3.1 (Attention Score). Given a prompt P =
(x1, y1, · · · , xN , yN , xquery) and its corresponding embed-
ding E, where {xi ∈ Rd}Ni=1, xquery is drawn independently
from DX , then at time t, for FSA with parameter θ(t), we
define the attention score as follows.

1. Given i ∈ [N ], the attention score for the i-th token xi is

attni(θ
(t);E) :=

[
softmax(M(Ex)⊤Q(t)Ex)

]
i

=
eE

x
i
⊤Q(t)Ex

N+1∑
j∈[N ] e

Ex
j
⊤Q(t)Ex

N+1

.

2. For k ∈ [K], denote Vk(P ) ⊂ [N ] as the index set for
input tokens, such that xi = vk for i ∈ Vk(P ). Then the
attention score for the k-th feature is given by

Attnk(θ
(t);E) :=

∑
i∈Vk(P ) attni(θ

(t);E).

For simplicity, we represent attni(θ
(t);E) and

Attnk(θ
(t);E) as attn

(t)
i and Attn

(t)
k , respectively,

and denote Vk(P ) as Vk. We also rewrite the prediction
output at time t as follows:

ŷ(t)query =
∑

i∈[N ] attn
(t)
i yi =

∑
k∈[K] Attn

(t)
k ⟨w, vk⟩.

(5)

3.1. In-Context Learning with Balanced Features
In this subsection, we study in-context learning with bal-
anced features, where the probabilities of sampling all K
features are in the same order, i.e., pk = Θ( 1

K ) for each
k ∈ [K]. In such a setting, each feature appears equally
likely in the prompt, ensuring their equal recognition. The
following theorem characterizes the convergence of GD.

Theorem 3.2 (In-context Learning with Balanced Features).
Suppose pk = Θ( 1

K ) for k ∈ [K]. For any 0 < ϵ < 1,
suppose N ≥ poly(K) and polylog(K) ≫ log( 1ϵ ). We
apply GD to train the loss function given in eq.(4). Then

with at most T ∗ = O( log(K)K2

η +
K log

(
Kϵ−

1
2

)
ϵη ) iterations,

we have

1. The loss converges: L(θ(T
∗))− L∗ ≤ ϵ, where L∗ =

Θ(e−poly(K)) is the global minimum of eq.(4).

2. Attention score concentrates: if xquery = vk, then with
probability at least 1 − e−Ω(poly(K))2,the one-layer
transformer nearly “pays all attention” to input tokens
featuring vk, i.e., (1−Attn

(T∗)
k )2 ≤ O(ϵ).

Theorem 3.2 shows that training a one-layer transformer
with softmax attention can converge to the minimum of the
objective loss in the reparameterization space via GD, with
polynomial time efficiency with respect to K and 1

ϵ . The
learning dynamics for such a case with balanced features ex-
hibit a two-phase behavior. (i) The first term of T ∗ captures
the duration of phase I, where the network actively aligns
the query token (suppose xquery = vk) with those tokens
featuring vk itself, thus substantially increasing Attn

(t)
k to

a constant level. (ii) The second term captures the dura-
tion of phase II, where the loss converges to the near-zero
prediction error.

In-context Learning Ability. For the obtained model with
θ(T

∗), let us evaluate a test prompt associated with a linear
task w, which might not be drawn from the support of DΩ

(i.e., w may not be present in the training process), but has its
data drawn by DX . Suppose the query token is xquery = vk.
Following from the attention score concentration principle
in Theorem 3.2, eq.(5) yields that with high probability the
query prediction ŷ

(T∗)
query is given by

Attn
(T∗)
k ⟨w, vk⟩+

∑
m ̸=k Attn(T∗)

m ⟨w, vm⟩ ≈ ⟨w, vk⟩.

This implies that the in-context learned model can still well
approximate the test prompt even if the task model w does
not lie in the support of the training task distribution DΩ and
was unseen during training. This showcases the remarkable
in-context learning capability of trained transformers. We
also highlight that the in-context learning mechanism char-
acterized by our theorems has been verified by the empirical
findings in many recent works trained with transformers
at the GPT-2 (Radford et al., 2019) scale. For instance, in
Yadlowsky et al. (2023), they showed that the in-context
learning ability of transformers may be closely tied to the
coverage of their pre-training data mixtures. This indeed
aligns with our attention concentration principle, which
demonstrates that the transformer can perform in-context
learning by correctly capturing and identifying different
types of features in the training data.

3.2. In-Context Learning with Imbalanced Features
In real-world datasets, skewed distributions are common,
where a few classes or features dominate in data while others
are under-represented. It is typically difficult to train models

2The randomness originates from the first N input tokens in
the test prompt.
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to perform well on features that have limited representation
in those datasets (Cui et al., 2019; Chou et al., 2020). In
this subsection, we investigate the setting with imbalanced
features, where the dominant feature v1 is sampled with the
probability p1 = Θ(1), and all other features are sampled
with pk = Θ( 1

K ) for 2 ≤ k ≤ K. We will show that
somewhat remarkably, in-context learning is less sensitive to
imbalanced features and can achieve a near-zero error even
when the query token takes an under-represented feature.

To investigate the performance for the imbalanced case, we
focus on the following prediction error for each feature vk:

Lk(θ) =
1

2
E
[
(ŷquery − ⟨w, xquery⟩)2

∣∣xquery = vk

]
. (6)

The following theorem identifies the convergence of GD.

Theorem 3.3 (In-context Learning with Imbalanced Fea-
tures). Suppose p1 = Θ(1) and pk = Θ( 1

K ) for 2 ≤ k ≤
K. For any 0 < ϵ < 1, suppose N ≥ poly(K), and
polylog(K) ≫ log( 1ϵ ). We apply GD to train the loss
function given in eq.(4). Then the following results hold.

1. The prediction error for the dominant feature converges:

for v1, with at most T1 = O( log(ϵ
− 1

2 )
ηϵ ) GD iterations,

L1(θ
(T1)) ≤ L∗

1 + ϵ, where L∗
1 = Θ(e−poly(K)) is the

global minimum of eq.(6) for k = 1;

2. The prediction error for the under-represented fea-
tures converges: for vk with 2 ≤ k ≤ K, with at

most Tk = O( log(K)K2

η +
K log

(
Kϵ−

1
2

)
ϵη ) GD iterations,

Lk(θ
(Tk)) ≤ L∗

k + ϵ, where L∗
k = Θ(e−poly(K)) is the

global minimum of eq.(6);

3. Attention score concentrates: for each k ∈ [K], if the
query token is vk, then after Tk iterations, with probabil-
ity at least 1− e−Ω(poly(K)), the one-layer transformer
nearly “pays all attention” to input tokens featuring vk:
(1−Attn

(Tk)
k )2 ≤ O(ϵ).

Theorem 3.3 shows that the GD dynamics of the in-context
training exhibit ‘stage-wise’ convergence. The trained
transformer rapidly (within T1) converges to a model that
achieves a near-zero prediction error L1 for the dominant
feature; and then takes a much longer time (up to Tk ≫ T1)
to converge to a model that attains a near-zero prediction
error Lk for the under-represented features. Our analysis
captures the later learning dynamics associated with the
under-represented features into a four-phase behavior as fur-
ther described in the subsequent section. Despite the longer
convergence time it takes, in-context learning still achieves
the same accurate prediction for under-represented features
as that for the dominant feature.

4. Overview of Training Phases
In this section, we explain our key ideas for analyzing the
in-context learning capabilities of transformers. We will
focus on characterizing the training process of the setting
with imbalanced features for under-represented features in
Section 4.2, which comprehensively exhibits four phases.
Other scenarios take only one or two of those phases, which
we will briefly describe in Appendix C. The complete proofs
of all the results are provided in the appendix.

4.1. Bilinear Attention Weights
We will first provide the general training dynamics for
the bilinear attention weights (defined in Definition 4.1
below), which is useful for analyzing all learning phases.
These quantities are the key elements in the attention scores
attn

(t)
i for 1 ≤ i ≤ N , which play an important role

in determining the prediction ŷ
(t)
query. Hence, our analysis

mainly tracks the training dynamics of those bilinear atten-
tion weights.

Definition 4.1. (Bilinear Attention Weights) Given k, n ∈
[K], where k ̸= n, for t ≥ 0, we define the bilinear attention
weights as follows:

A
(t)
k := v⊤k Q

(t)vk, B
(t)
k,n := v⊤n Q

(t)vk.

By our initialization, we have A
(0)
k = B

(0)
k,n = 0.

To further interpret these weights, suppose the query token
corresponds to the feature vk. Then eA

(t)
k serves as the (un-

normalized) weight for the input token featuring vk, while
eB

(t)
k,n captures the weight for the input token featuring a dif-

ferent vector vn with n ̸= k. Having a larger A(t)
k compared

to other B(t)
k,n indicates a better capture of the target fea-

ture vk. As shown in eq.(5), this condition implies a higher
‘attention’ towards input tokens featuring vk, resulting in
ŷ
(t)
query ≈

∑
i∈Vk

attn
(t)
i yi ≈ ⟨w, vk⟩, where the prediction

well approximates the ground truth.

The following lemma provides the GD updates of the bilin-
ear attention weights A(t)

k and B
(t)
k,n.

Lemma 4.2. Let t ≥ 0. For k, n ∈ [K], where k ̸= n, A(t)
k

and B
(t)
k,n satisfy:

A
(t+1)
k = A

(t)
k + ηα

(t)
k , B

(t+1)
k,n = B

(t)
k,n + ηβ

(t)
k,n,

α
(t)
k = E

[
1{xquery = vk}Attn

(t)
k ·(∑

m ̸=k Attn(t)
m

2
+ (1−Attn

(t)
k )2

)]
,

β
(t)
k,n = E

[
1{xquery = vk}Attn(t)

n ·(∑
m ̸=k Attn(t)

m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k )
)]

.
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Lemma 4.2 shows that A(t)
k is monotonically increasing at

any time since α
(t)
k ≥ 0, whereas the monotonicity does

not always hold for B(t)
k,n. Therefore, we need to analyze

whether B(t)
k,n decreases and determine its rate of change

compared to A
(t)
k . Such a comparison between B

(t)
k,n and

A
(t)
k determines which bilinear weight plays a dominant

role in the attention dynamics, and the change of the leading
weight over the learning process results in different training
phases.

4.2. Learning Process for Under-represented Features
We consider the setting with imbalanced features and focus
on the under-represented features.

Given a prompt P = (x1, y1, · · · , xN , yN , xquery), denote
Pinput to be the collection of input tokes, i.e., {xi}Ni=1. Re-
call that |Vk| is the number of input tokens featuring vk.
Based on our data generation setup, we can show that for
imbalanced data, with high probability, Pinput belongs to

E∗
imbal :=

{
Pinput : |V1| = Θ(N), |Vk| = Θ

(
N
K

)
for k ≥ 2

}
.

In the following, we focus on the event that Pinput ∈ E∗
imbal

unless otherwise specified. We next characterize the learn-
ing process for under-represented features vk with k > 1 by
four phases. An illustration of these four phases is provided
in Figure 1.

4.2.1. PHASE I: DECREASE OF DOMINANT FEATURE.
Consider the query token featuring vk for some k > 1. At
t = 0, A(0)

k = B
(0)
k,n = 0, and hence attn

(0)
i = 1

N for i ∈
[N ] which implies that the transformer equally attends each
input token. However, due to the imbalanced occurrence of
features in E∗

imbal, the number of tokens featuring v1 is much
larger than others. Hence, Attn

(0)
1 = |V1|

N ≥ Ω(1) while
Attn(0)

m = Θ( 1
K ) for m > 1. Therefore, by Lemma 4.2,

we obtain β
(0)
k,1 ≤ −Ω( 1

K ), whereas α(0)
k , |β(0)

k,n| ≈ Θ( 1
K2 )

for n ̸= k, 1. Therefore, B(t)
k,1 enjoys a much larger decreas-

ing rate initially. It can be shown that the decrease of B(t)
k,1

will dominate for a certain time period that defines phase
I. The following lemma summarizes our main result in this
phase.

Lemma 4.3 (Informal). Under the same conditions as The-
orem 3.3, given k > 1, there exists T1,k = O( log(K)K1.98

η ),
such that for all 0 ≤ t ≤ T1,k

β
(t)
k,1 ≤ −Ω

(
1

K1.98

)
, α

(t)
k = Θ

(
1

K2

)
,

|β(t)
k,n| ≤ O

(
α

(t)
k +|β(t)

k,1|
K

)
for all n ̸= k, 1.

At time t = T1,k + 1, B(T1,k+1)
k,1 ≤ −0.49 log(K), while

A
(T1,k+1)
k and B

(T1,k+1)
k,n for n ̸= k, 1 remain close to zero.

During phase I, B(t)
k,1 significantly decreases, leading to a

reduction in Attn
(t)
1 , whereas other Attn(t)

n with n > 1
remain at the level of Θ( 1

K ). By the end of this phase,
(Attn

(t)
1 )2 drops to O( 1

K0.98 ), resulting in a decrease in
|β(t)

k,1| as it approaches α(t)
k . Phase II then begins.

4.2.2. PHASE II: SWITCHING OF LEADING INFLUENCE

Soon after entering this phase, the dominance role of B(t)
k,1

diminishes as |β(t)
k,1| reaches the same order of magnitude as

α
(t)
k . The following result captures the shift of the leading

influence, where the growth of A(t)
k takes dominance.

Lemma 4.4 (Informal). Under the same conditions as
Theorem 3.3, given k > 1, there exists T2,k =

T1,k + O( log(K)K2

η ), such that at iteration t = T2,k +

1, we have A
(T2,k+1)
k ≥ 0.5 log(K), B

(T2,k+1)
k,1 ∈

[−0.51 log(K),−0.49 log(K)], and B
(T2,k+1)
k,n for n ̸= k, 1

remain close to zero.

Lemma 4.4 shows that by the end of phase II, A(t)
k matches

the magnitude of B(t)
k,1, and during phase II B(t)

k,1 changes
only slightly from the end of phase I. This suggests that, at
certain moments in this phase, A(t)

k significantly increases
and its growth becomes the dominant factor. We next
provide some insights into the reasons behind this tran-
sition. Once B

(t)
k,1 decreases to −0.5 log(K), we observe

that |β(t)
k,1| ≈ α

(t)
k = Θ( 1

K2 ). After this point, it becomes

challenging for B(t)
k,1 to decrease significantly compared to

the increase in A
(t)
k . To illustrate, let us suppose a minimal

decrease of B(t)
k,1 by an amount of 0.01 log(K). This would

yield that Attn
(t)
1 ≤ O( 1

K0.501 ) and β
(t)
k,1 ≤ O( 1

K2.01 ),

while Attn
(t)
k ≥ Ω( 1

K ) and α
(t)
k ≥ Ω( 1

K2 ), establishing a
situation where α

(t)
k ≫ β

(t)
k,1. Such a discrepancy leads to

the switching of the dominant effect.

4.2.3. PHASE III: GROWTH OF TARGET FEATURE

After a transition phase, we observe that A(t)
k enjoys a larger

gradient α(t)
k ≈ Θ( 1

K1.5 ) compared to |β(t)
k,1| ≤ O( 1

K1.98 )

and |β(t)
k,n| ≤ O( 1

K3 ) with n ̸= k, 1. This gap between

α
(t)
k and β

(t)
k,n remains over the period, and the gradient α(t)

k

continues to grow, driving the rapid growth of A(t)
k with

B
(t)
k,n being relatively unchanged. The following lemma

summarizes our main results in this phase.

Lemma 4.5 (Informal). Under the same conditions as The-
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(a) Decrease of Dominant Feature (b) Switching of Leading Influence (c) Growth of Target Feature (d) Convergence

Figure 1. Overview of the dynamics of attention scores and bilinear attention weights for under-represented features. Assume the query
token is vk with 2 ≤ k ≤ K. The top row depicts the trend of the attention score Attn

(t)
m for each feature vm, where a darker color

corresponds to a higher score. The bottom row shows the interplay and leading effect among bilinear attention weights A(t)
k , B

(t)
k,1, and

B
(t)
k,n (where n ̸= 1, k) in different training phases. (a) Phase I: B(t)

k,1 significantly decreases and the attention on tokens with the dominant

feature v1 is suppressed (Section 4.2.1); (b) Phase II: With the suppression of Attn
(t)
1 , the decreasing rate for B(t)

k,1 drops and the growth

of A(t)
k becomes the leading influence (Section 4.2.2); (c) Phase III: A(t)

k rapidly grows and Attn
(t)
k reaches Ω(1) (Section 4.2.3); (d)

Phase IV: Attn
(t)
k nearly grows to 1 and the prediction error converges to a global minimum (Section 4.2.4).

orem 3.3, given k > 1, there exists T3,k = O( log(K)K1.5

η ),
such that for all T2,k < t ≤ T3,k

α
(t)
k ≥ Ω

(
1

K1.5

)
, β

(t)
k,1 ∈

[
−O

(
α

(t)
k

K0.48

)
,−Ω

(
1

K2.01

)]
,

|β(t)
k,n| ≤ O

(
α

(t)
k +|β(t)

k,1|
K

)
with n ̸= k, 1.

At time t = T3,k + 1, we have A
(T3,k+1)
k ≥ log(K).

Lemma 4.5 follows because the continuous growth of α(t)
k is

mainly driven by Attn
(t)
k , where 1−Attn

(t)
k remains at the

constant order. However, as A(t)
k reaches log(K), Attn

(t)
k

is above Ω(1), necessitating a more detailed analysis to
control α(t)

k , which starts the final phase.

4.2.4. PHASE IV: CONVERGENCE

After learning the target feature vk at a certain level, the
prediction error converges. We characterize this in the fol-
lowing lemma, where we establish a connection between
α
(t)
k and the prediction error via analyzing the change of

1−Attn
(t)
k that diminishes during this phase.

Lemma 4.6 (Informal). Under the same conditions as
Theorem 3.3, given 0 < ϵ < 1, for each k > 1, there

exists T4,k = T3,k + O(K log(Kϵ−
1
2 )

ηϵ ), such that for all
T3,k < t ≤ T4,k

α
(t)
k ≥ Ω(

ϵ

K
), β

(t)
k,n ∈ [−O(

α
(t)
k

K0.49
), 0],

β
(t)
k,n ∈ [−O(

α
(t)
k

K
), 0] with n ̸= k, 1.

At time t = T4,k + 1, we have Lk(θ
(T4,k+1))−L∗

k < ϵ and
(1−Attn

(t)
k )2 ≤ O(ϵ), if xquery = vk and Pinput ∈ E∗

imbal.

The convergence result for k > 1 stated in Theorem 3.3
directly follows by choosing T ∗

k = T4,k + 1.

(a) Imbalanced Case (b) Balanced Case

Figure 2. The prediction error for each feature.

5. Experiments
In this section, we conduct experiments to demonstrate that
our theoretical results are consistent with the actual dynam-
ics during the in-context training of transformers. Detailed
experimental settings are deferred to Appendix B.

Task and Data Generations. We follow the task and
data distributions introduced in Section 2.1. For each task,
we sample the task weight w from N (0, Id×d). Each data
point is drawn from the given feature set {vk ∈ Rd, k =
1, · · · ,K} with probability pk for sampling vk, where all
features are orthonormal vectors, and pk ∈ (0, 1) satis-
fies

∑K
k=1 pk = 1. The prompt consists of N random

inputs {xi}Ni=1 with their task values given by {yi}Ni=1 =
{w⊤xi}Ni=1, and a query xquery. We consider the setting with

7
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(a) Imbalanced Case

(b) Balanced Case

Figure 3. The attention heatmap during the training. For each heatmap, the i-th row represents the average attention scores of the query
token attending to each feature when xquery = vi.

d = 16, N = 60, and K = 3. We consider the following
two types of data distributions:

• Balanced case: pi = 1
3 for i ∈ [3];

• Imbalanced case: v1 is the dominant feature with p1 = 0.8
and {v2, v3} are under-represented with p2 = p3 = 0.1.

Stage-Wise Convergence. In Figure 2, we plot the evo-
lution of the prediction error for each feature throughout
the training process. For the imbalanced case (Figure 2a),
the transformer quickly converges to a model with nearly
vanishing prediction error L1 for the dominant feature. How-
ever, the errors L2 and L3 for under-represented features
initially fluctuate and then converge to zero after a consid-
erably longer period. This behavior verifies the stage-wise
convergence process characterized in our Theorem 3.3.On
the other hand, in the balanced scenario (Figure 2b), the
prediction errors for all features decrease in a similar man-
ner throughout the training, which validates our theory on
convergence in the balanced case in Theorem 3.2.

Attention Score Concentration. In Figure 3, we present
the dynamic evolution of attention scores throughout the
training process for both balanced and imbalanced scenarios.
For each k ∈ [3], and when xquery = vk, it is observed that
Attnk progressively increases to be close to 1 while other
Attnk′ diminishes at the end of the training. These results
support the principle of attention score concentration as
elaborated in Theorems 3.2 and 3.3, and demonstrate that
the attention is allocated towards those tokens with the same
feature as the query token.

Multi-Phase Transition during Training Process. Fig-
ure 3 also demonstrates the multi-phase convergence process
of under-represented features, which verifies those learn-
ing phases we characterize in our proof of convergence in
Section 4. We elaborate on this by taking the case with
xquery = v2 as an example. In Figure 3a and focusing on the
row of xquery = v2, from epoch 10 to 100, Attn1 decreases
and Attn3 increases, which suggests that the decrease in
B2,1 is the main factor in phase I. If the increase in A2

was the driving factor, we would expect a decrease in all
off-diagonal attention scores including Attn3 similarly to
Figure 3b, which contradicts our observation. Then moving
to epoch 150, the simultaneous increase in Attn2 and de-
creases in Attn1 and Attn3 indicate a shift of dominance
effect, with the rise of A2 becomes the main factor (phases
II and III). Finally, the concentration of attention scores at
epoch 400 corresponds to the last phase of convergence.

6. Discussions
Practical Insights. One direct practical implication fol-
lows from our stage-wise convergence characterization for
the imbalanced setting, which implies that employing an
early stopping strategy for in-context (pre-)training could be
advantageous when the goal is to identify and leverage dom-
inant features quickly. Further, our insights into attention
score concentration can provide useful guidance for dealing
with non-stationarity in real-world applications. For exam-
ple, in scenarios with task shifts, the (pre-)trained model
would exhibit considerable robustness due to the in-context
learning capability, allowing the model to continue to per-
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form well. On the other hand, data shifts such as covariate
shifts or other more complex shifts would necessitate further
training of the model.

Future Directions. Our analysis focuses on an orthonormal
feature model for analytical clarity, so that our characteriza-
tion of the convergence and the dynamics of the attention
scores will not be over-complicated by non-essential as-
pects, e.g., additional non-dominant terms that need to be
bounded in gradient calculations. Nevertheless, our anal-
ysis can be extended to a more general setting, where the
features are drawn from a subspace with K features serving
as basis vectors. For such a setting, we need to further char-
acterize how correlation among features affects attention
coefficients, which we leave as future work. Furthermore,
it is also important to generalize our analysis to nonlinear
target functions and consider more complicated network
architectures.

7. Conclusions
In this work, we investigated the training dynamics of a one-
layer transformer with softmax attention trained by GD for
in-context learning. We analyzed two settings respectively
with balanced and imbalanced features, and proved the guar-
anteed convergence to a vanishing in-context prediction
error by detailing the evolution of attention dynamics for
both settings. Interestingly, we characterized a four-phase
behavior for the imbalanced settings that sheds light on the
intricate attention dynamics between dominant and target
under-represented features during training. We also provide
empirical results to back up our theoretical characterization.
To our knowledge, this is the first work that rigorously ana-
lyzed the softmax attention dynamics for in-context learning.
Our approach features novel ideas for phase decomposition
based on the changes of the dominant role between two
types of bilinear attention weights in the learning process,
and has the potential to facilitate further theoretical under-
standing of how transformers perform in other algorithms
and learning paradigms.
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A. Additional Related Work
In-Context Learning. Recent studies explored theoretical properties of transformers for in-context learning from various
perspectives. Focusing on expressive capacity, Akyürek et al. (2022) studied linear regression tasks and showed that trained
in-context learners can represent GD of ridge regression and exact least-squares regression. Giannou et al. (2023) proved
the existence of a looped transformer that can emulate in-context learning algorithms. Von Oswald et al. (2023); Dai et al.
(2023) also showed that transformer trained in-context implements the GD. Bai et al. (2023) further provided comprehensive
results of transformers including the expressive power, in-context prediction power, and sample complexity of pre-training,
and then constructed two general mechanisms for algorithm selection. Li et al. (2023b) analyzed the generalization error of
trained in-context learning transformers. Another line of work considered in-context learning from a different perspective
within the Bayesian framework (Xie et al., 2021; Zhang et al., 2023b; Wang et al., 2023; Jiang, 2023; Han et al., 2023; Wies
et al., 2023; Ahuja et al., 2023).

Closely related to our work is the line of research by Zhang et al. (2023a); Mahankali et al. (2023); Ahn et al. (2023), which
investigated the training dynamics of in-context learning. Specifically, Mahankali et al. (2023) considered linear regression
tasks and showed that the one-layer transformer that minimizes the pre-training loss implements one step of GD. Zhang et al.
(2023a) investigated in-context learning of transformers with a single linear self-attention layer trained by gradient flow on
linear regression tasks, and showed that gradient flow finds a global minimum. Ahn et al. (2023) investigated the landscape
of the loss function for linear transformers trained over random instances of linear regression. However, all those works
considered only transformers with linear self-attention layers and do not capture the crucial role of the softmax mapping,
which lies in the core design of transformers to be advantageous over other network architectures. Our work focuses on
nonlinear transformers with softmax attention and characterizes their training dynamics for in-context learning.

Training Dynamics of Transformers. Jelassi et al. (2022) proposed a simplified Vision Transformers (ViT) model in
which the attention matrix solely depends on the positional embeddings and showed that the trained model by GD can learn
spatial structure. Li et al. (2023a) studied the training of shallow ViT for a classification task and characterized the sample
complexity to achieve a desirable generalization performance. However, their analysis relied on a good initialization near the
target pattern, which may not be feasible in practice. Tian et al. (2023) analyzed the SGD training dynamics for a one-layer
transformer with one self-attention plus one decoder layer and showed how the self-attention layer combines input tokens
during the training, but this work did not provide the convergence guarantee for SGD. Tarzanagh et al. (2023) established an
equivalence between the optimization geometry of self-attention and a hard-margin SVM problem that separates optimal
input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. While the mathematical
setup of these problems is different from in-context learning, some of our analysis techniques may be useful for studying the
training dynamics of these problems. Recently, Huang et al. (2024) studied the training dynamics of transformers trained
with the masked image modeling method under a self-supervised learning framework.

B. Experimental Settings
In this section, we present additional details for experiments in Section 5.

Transformer Architecture. We consider a simplified transformer network. The model consists of one block with a
single-head self-attention layer, followed by a feedforward neural network, which incorporates layer normalization and
ReLU activation, and finally concludes with a linear layer for output processing.

Training Setup. We collect M = 300 randomly generated prompts and then train the model based on the empirical version
of the training objective Equation (4) for 400 epochs using Adam (Kingma & Ba, 2014) with full batch and the learning
rate of 0.002. Notice that Adam is a preferred choice for its stability in training transformers, which is also consistent with
recent studies (Garg et al., 2022; Zhang et al., 2023a) to tackle the in-context learning ability of transformers over linear
function classes.

Evaluations. We focus on two performance metrics. 1). Prediction error: As defined in Equation (6), the prediction error
Lk measures the loss conditioned on the event that the query token is vk. We evaluate Lk by averaging the squared loss on
the prompts whose query token is vk. 2). Attention score: We also evaluate the attention score Attnk for each feature,
where Attnk is defined in Definition 3.1 as the average attention score for the k-th feature over the prompts with query
token featuring vk.
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C. Overview of Training Phases of Other Settings
We next describe the training dynamics of other settings, which take the phases similar to those discussed in Section 4.2.

Imbalanced Setting for the Dominant Feature. For the dominant feature v1 in the imbalanced setting, since the overall
attention Attn

(0)
1 to the target feature already reaches Ω(1) due to the abundance of tokens featuring v1 in E∗

imbal, the
training directly enters the convergence stage, as summarized in the following lemma.

Lemma C.1 (Informal). Under the same conditions as Theorem 3.3, given k > 1, there exists T1 = O( log(ϵ
− 1

2 )
ηϵ ), such that

for all t ≤ T1

α
(t)
1 ≥ Ω(ϵ), β

(t)
1,n ∈ [−O(

α(t)
n

K ), 0] with n > 1.

Further L1(θ
(T1+1))− L∗

1 < ϵ, and (1−Attn
(T1+1)
1 )2 ≤ O(ϵ) if xquery = v1 and Pinput ∈ E∗

imbal.

Balanced Scenarios. Similarly to imbalanced settings, we can show that for balanced data, with high probability, Pinput
belongs to E∗

bal :=
{
Pinput : |Vk| = Θ(NK ) for all k ∈ [K]

}
. At initialization, the transformer uniformly assigns attention

to each token, i.e., attn(0)
i = 1

N for i ∈ [N ]. Unlike the imbalanced case, here, due to Pinput ∈ E∗
bal, we have that

Attn(0)
m = Θ( 1

K ) for m ∈ [K], indicating nearly equal attention to each feature. Consequently, as Lemma 4.2, we observe
a significantly larger gradient in A

(t)
k at the outset, with α

(0)
k ≈ Θ( 1

K2 ), compared to |β(0)
k,n| ≈ Θ( 1

K3 ) for n ̸= k. This
behavior mirrors the observations from phase III for under-represented features, allowing us to directly generalize the
analysis.

D. Preliminary Development for Main Proofs
In this section, we will introduce warm-up gradient computations and probabilistic lemmas that establish essential properties
of the data and the loss function, which are pivotal for the technical proofs in the upcoming sections. Towards the conclusion
of this section, we will also provide a summary of the key notations introduced in both the main content and these preliminary
sections. These notations will be frequently adopted in our subsequent analyses.

D.1. Gradient Computations
We first calculate the gradient with respect to Q (note that we do not update the parameter ν during the training). We omit
the superscript ‘(t)’ and write L(θ) as L here for simplicity.

Lemma D.1. The gradient of the loss function with respect to Q is given by

∇QL = E

(ŷquery − ⟨w, xquery⟩)
∑

i,j∈[N ]

attni attnj(E
x
i − Ex

j )E
x
N+1

⊤yi

 .

Proof. We obtain:

∇QL = E[(ŷquery − ⟨w, xquery⟩)
∂ŷquery

∂Q
] = E

(ŷquery − ⟨w, xquery⟩)
∑
i∈[N ]

∂ attni

∂Q
yi

 . (7)

Denote Qj,k as the entry in j-th row and k-th column of Q, and define f : Rd×d → RN as f(Q) =(
eE

x
1
⊤QEx

N+1 , · · · , eE
x
N

⊤QEx
N+1

)⊤
, and g : RN → R as g(y) = yi∑

j∈[N] yj
. By the chain rule, we have

∂ attni

∂Qj,k
= Tr

[
(
∂g(y)

∂y

∣∣
y=f(Q)

)⊤
∂f(Q)

∂Qj,k

]
=
∑
n̸=i

− eE
x
i
⊤QEx

N+1(∑
n∈[N ] e

Ex
n
⊤QEx

N+1

)2 · eE
x
n
⊤QEx

N+1(Ex
n)j(E

x
N+1)k

13
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+

∑
n∈[N ] e

Ex
n
⊤QEx

N+1 − eE
x
i
⊤QEx

N+1(∑
n∈[N ] e

Ex
n
⊤QEx

N+1

)2 · eE
x
i
⊤QEx

N+1(Ex
i )j(E

x
N+1)k

= attni

(
(Ex

i )j(E
x
N+1)k −

N∑
n=1

attnn(E
x
n)n = j(Ex

N+1)k

)

= attni

(
N∑

n=1

attnn ((E
x
i )j − (Ex

n)j) (E
x
N+1)k

)
.

Then we reorganize these derivatives into a matrix, and have

∂ attni

∂Q
= attni

∑
j∈[N ]

attnj(E
x
i − Ex

j )E
x
N+1

⊤.

Substituting the above equation into Equation (7), we have

∇QL = E

(ŷquery − ⟨wτ , xquery⟩)
∑

i,j∈[N ]

attni attnj(E
x
i − Ex

j )E
x
N+1

⊤yi

 .

Recall that the quantities Ak and Bk,n are defined in Definition 4.1. These quantities are associated with the attention
weights for each token, and they play a crucial role in our analysis of learning dynamics. We will restate their definitions
here for clarity.

Definition D.2. For k, n ∈ [K] and n ̸= k, define the following quantities for t ≥ 0:

A
(t)
k := v⊤k Q

(t)vk α
(t)
k = −v⊤k ∇QL(Q

(t))vk

B
(t)
k,n := v⊤n Q

(t)vk β
(t)
k,n = −v⊤n ∇QL(Q

(t))vk

By GD update, we have

A
(t+1)
k := A

(t)
k + ηα

(t)
k

B
(t+1)
k,n := B

(t)
k,n + ηβ

(t)
k,n

Moreover, by our initialization of Q(0) = 0d×d, we have A
(0)
k = B

(0)
k,n = 0 for all k, n ∈ [K] with n ̸= k.

Next, we apply the expression in Lemma D.1 to compute the gradient projected onto the feature directions, i.e., α(t)
k and

β
(t)
k,n.

Lemma D.3. For k, k′ ∈ [K], where k ̸= k′, we have

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


β
(t)
k,k′ = E

1{xquery = vk}Attn
(t)
k′ ·

∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
k′ −Attn

(t)
k (1−Attn

(t)
k )

 .

Proof. For any k, k′ ∈ [K], apply the previous gradient expression in Lemma D.1, and note that only when Ex
N+1 =

xquery = vk, we have Ex
N+1

⊤vk ̸= 0. Thus, we obtain

v⊤k′∇QLvk

14
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= E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)
∑

i,j∈[N ]

attni attnj yiv
⊤
k′(Ex

i − Ex
j )


= E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)
∑

m,n∈[K]

∑
i∈Vm

∑
j∈Vn

attni attnj yiv
⊤
k′(vm − vn)


= E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)
∑

n∈[K]

∑
i∈Vk′

∑
j∈Vn

attni attnj yiv
⊤
k′(vk′ − vn)


+ E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)
∑

m∈[K]

∑
i∈Vm

∑
j∈Vk′

attni attnj yiv
⊤
k′(vm − vk′)


= E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)Attnk′⟨w, vk′⟩
∑

n∈[K]

Attnn


− E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)Attnk′

∑
m∈[K]

Attnm⟨w, vm⟩


= E

1{xquery = vk} (ŷquery − ⟨w, xquery⟩)Attnk′

∑
m∈[K]

Attnm⟨w, vk′ − vm⟩

 .

Note that
ŷquery =

∑
i∈[N ]

attni yi =
∑

m∈[K]

Attnm⟨w, vm⟩.

Thus when xquery = vk, we have

ŷquery − ⟨w, xquery⟩ = −
∑

m∈[K]

Attnm⟨w, vk − vm⟩.

Substituting this into the above equation, we have

v⊤k′∇QLvk

= −E

1{xquery = vk}Attnk′

 ∑
n∈[K]

Attnn⟨w, vk − vn⟩

 ∑
m∈[K]

Attnm⟨w, vk′ − vm⟩


= −E

1{xquery = vk}Attnk′

 ∑
n∈[K]

∑
m∈[K]

Attnm Attnn⟨w, vk − vn⟩⟨w, vk′ − vm⟩


= −E

1{xquery = vk}Attnk′

 ∑
n∈[K]

∑
m∈[K]

Attnm Attnn(vk − vn)
⊤ww⊤(vk′ − vm)


= −E [1{xquery = vk}Attnk′ · ∑

n∈[K]

∑
m∈[K]

Attnm Attnn(vk − vn)
⊤E[ww⊤ | Pinput ∪ {xquery}](vk′ − vm)


= −E

1{xquery = vk}Attnk′

 ∑
n∈[K]

∑
m∈[K]

Attnm Attnn(vk − vn)
⊤(vk′ − vm)


= −E

1{xquery = vk}Attnk′

(vk −
∑

n∈[K]

Attnn vn)
⊤(vk′ −

∑
m∈[K]

Attnm vm)

 .
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When k′ = k, we obtain

αk = −v⊤k ∇QLvk = E

[
1{xquery = vk}Attnk ∥vk −

∑
n

Attnn vn∥2
]

= E

1{xquery = vk}Attnk

(1−Attnk)
2 +

∑
m ̸=k

Attn2
m

 .

When k′ ̸= k, we have

βk,k′ = −v⊤k′∇QLvk

= E

1{xquery = vk}Attnk′

 ∑
m ̸=k,k′

Attn2
m −Attnk(1−Attnk)−Attnk′(1−Attnk′)


= E

1{xquery = vk}Attnk′

∑
m ̸=k

Attn2
m −Attnk(1−Attnk)−Attnk′

 .

D.2. Useful Probabilistic Lemmas for Prompt
Recall that given a prompt P = (x1, y1, . . . , xN , yN , xquery), we denote Pinput as the collection of input tokens, i.e., {xi}Ni=1.
It is worth noting that, based on our data distribution, the occurrence count of the k-th feature in the first N input tokens from
Pinput, denoted as |Vk|, follows a multinomial distribution. Leveraging the concentration property inherent to multinomial
distributions, we can identify a high-probability event to which Pinput belongs. This event constitutes the crux of our
subsequent analysis.

We first introduce the following tail bound for multinomial distributions.

Lemma D.4 (Tail Bound of Multinomial Distribution (Devroye, 1983)). Let (X1, · · · , XK) be a multinomial
(N, p1, · · · , pK) random vector. For all ε ∈ (0, 1) and all K satisfying K/N ≤ ε2/20, we have

P

(
K∑
i=1

|Xi − E (Xi)| > Nε

)
≤ 3 exp

(
−Nε2/25

)
.

Now we present our characterization of a high-probability event for Pinput.

Lemma D.5 (High-probability Event for Balanced Data). Suppose that pk = Θ
(

1
K

)
for any k ∈ [K] and K3 ≪ N . For

some constant cbal ⩾
√

20K3

N , define

E∗
bal :=

{
Pinput : |Vk| ∈

[
pkN − cbalN

K
, pkN +

cbalN

K

]
for k ∈ [K]

}
.

Then , we have

P(Pinput ∈ E∗
bal) ≥ 1− 3 exp

(
− c2balN

25K2

)
.

Let us denote Lbal
k = pkK − cbal and U bal

k = pkK + cbal. Note that Lbal
k , U bal

k are at the order of the constant level since

pk = Θ
(

1
K

)
. Then for any Pinput belonging to E∗

bal, |Vk| ∈ [
Lbal

k N
K ,

U bal
k N
K ] = Θ(NK ). Note that we can properly choose cbal

to guarantee Lbal
k > 0 for k ∈ [K].

16
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Proof. Denote |Vk| = Xk. Then (X1, · · · , XK) ∼ multinomial (N, p1, · · · , pK). Noting that c2bal
20K2 ≥ K

N by our choice of
cbal, and then letting ϵ = cbal

K , we have ϵ2/20 ≥ K
N . By multinomial tail bound in Lemma D.4, we obtain

P

(
K∑
i=1

|Xi − E (Xi)| > cbal
N

K

)
≤ 3 exp

(
− c2balN

25K2

)
.

Then, since E (Xi) = piN , we have

P

(
∩K
i=1

{
|Xi − piN | > cbalN

K

})
≤ P

(
K∑
i=1

|Xi − E (Xi)| > cbal
N

K

)

≤ 3 exp

(
− c2balN

25K2

)
.

Lemma D.6 (High-probability Event for Imbalanced Data). Suppose that p1 = Θ(1), pk = Θ
(

1
K

)
for 2 ≤ k ≤ K, and

K3 ≪ N . Then for some constant cim ⩾
√

20K3

N , there exist constants U im
k > Lim

k > 0 for any k ∈ [K], such that letting

E∗
imbal :=

{
Pinput : |V1| ∈ [Lim

1 N,U im
1 N ] and |Vk| ∈

[
Lim
k N

K
,
U im
k N

K

]
for 2 ≤ k ≤ K

}
,

we have

P(Pinput ∈ E∗
imbal) ≥ 1− 3 exp

(
− c2imN

25K2

)
.

Proof. Similarly to the proof for Lemma D.5, we have

P

(
∩K
i=1

{
|Xi − piN | > cimN

K

})
≤ 3 exp

(
− c2imN

25K2

)
.

For k > 1, let us denote Lim
k = pkK − cim and U im

k = pkK + cim. Since pk = Θ
(

1
K

)
, we can easily conclude that Lim

k , U im
k

for k > 1 are constant level. Furthermore, for k = 1, let Lim
1 = p1 − 0.01cim and U im

1 = p1 + 0.01cim. Since p1 is at the
order of the Θ(1), we have[

p1N − cimN

K
, p1N +

cimN

K

]
=
[
(p1 −

cim

K
)N, (p1 +

cim

K
)p1N

]
⊂
[
Lim
1 N,U im

1 N
]

for sufficiently large K.

D.3. Properties of Loss Function and Prediction Error
Recall the population loss we consider is given by:

L(θ) =
1

2
E
[
(ŷ query − ⟨w, x query ⟩)2

]
. (8)

In this part, we will present several important lemmas for such a training objective. We first introduce the following lemma,
which connects the loss form with the attention score when the query token takes a certain feature.

Lemma D.7 (Loss Calculation). The population loss L(θ) can be decomposed into the following form:

L(θ) =
1

2

K∑
k=1

E

1{xquery = vk}

∑
m ̸=k

Attn2
m +(1−Attnk)

2

 .
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Proof. Following the calculations similar to those in Lemma D.3, we have

L(θ) =
1

2

K∑
k=1

E
[
1{xquery = vk} (ŷquery − ⟨w, xquery⟩)2

]

=
1

2

K∑
k=1

E

1{xquery = vk}

 ∑
n∈[K]

Attnn⟨w, vk − vn⟩

 ∑
m∈[K]

Attnm⟨w, vk − vm⟩


=

1

2

K∑
k=1

E

1{xquery = vk}∥vk −
∑

n∈[K]

Attnn vn∥2


=
1

2

K∑
k=1

E

1{xquery = vk}

(1−Attnk)
2 +

∑
m ̸=k

Attn2
m

 .

D.3.1. LOSS CHARACTERIZATION FOR THE BALANCED CASE

We first introduce some additional crucial notations for the loss objectives.

Notations for the balanced case.

L∗ = min
θ

L(θ) = min
θ

1

2
E
[
(ŷ query − ⟨w, x query ⟩)2

]
, (9)

Llow =
1

2

(
1 +

1

K − 1

) K∑
k=1

P (xquery = vk ∩ |Vk| = 0) . (10)

L∗ denotes the minimum value of the population loss in Equation (8) by minimizing over θ in the form of {1, Q}, and
Llow represents the sum of unavoidable errors for each k ∈ [K], given that the query token is the k-th feature but has not
been seen in the first N training samples. We will show that Llow serves as a lower bound for L∗, and demonstrate that
the network trained with GD will attain nearly zero error compared to Llow. Our convergence will be established by the
suboptimality gap with respect to Llow, which necessarily implies the convergence to L∗. (It also implies L∗ − Llow is
small.) We further introduce the following quantities to facilitate our analysis of the loss function.

L(θ) =
K∑

k=1

Lk(θ),

where Lk(θ) =
1

2
E
[
1{xquery = vk} (ŷquery − ⟨w, xquery⟩)2

]
.

Llow
k =

1

2

(
1 +

1

K − 1

)
P (xquery = vk ∩ |Vk| = 0) ,

L̃k(θ) =
1

2
E
[
1{xquery = vk ∩ Pinput ∈ E∗

bal} (ŷquery − ⟨w, xquery⟩)2
]
.

Lemma D.8. For L∗ and Llow defined in Equation (9) and Equation (10), respectively, we have Llow ≤ L∗ and they are
both at the order of Θ(e− poly(K)) for the balanced data.

Proof. We first prove Llow ≤ L∗:

L∗ = min
θ

1

2

K∑
k=1

E
[
1{xquery = vk} (ŷquery − ⟨w, xquery⟩)2

]
≥ min

θ

1

2

K∑
k=1

E
[
1{xquery = vk ∩ |Vk| = 0} (ŷquery − ⟨w, xquery⟩)2

]
18
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= min
θ

1

2

K∑
k=1

E

1{xquery = vk ∩ |Vk| = 0}

∑
m ̸=k

Attn2
m +(1−Attnk)

2


Notice that when the query token is the k-th feature but has not been seen in the first N training samples, Attnk = 0.
Moreover,

∑
m ̸=k

Attn2
m ≥ 1

K−1by Cauchy–Schwarz inequality. Thus

L∗ ≥ 1

2

(
1 +

1

K − 1

) K∑
k=1

E [1{xquery = vk ∩ |Vk| = 0}] = Llow.

Furthermore, since xquery and Pinput are independently sampled,

Llow = K ·Θ
(

1

K

)
·
(
1−Θ

(
1

K

))N

= Θ
(
e−poly(K)

)
.

where the last equality follows because N ≫ K3, and hence (1−Θ
(

1
K

)
)N = Θ

(
e−poly(K)

)
.

We next only need to show L∗ = O(e−poly(K)). We have

L∗ =min
θ

1

2

K∑
k=1

E

1{xquery = vk ∩ |Vk| > 0}

∑
m ̸=k

Attn2
m +(1−Attnk)

2


+

1

2

K∑
k=1

E

1{xquery = vk ∩ |Vk| = 0}

∑
m ̸=k

Attn2
m +1


Consider Q = σId×d. If xquery = vk ∩ |Vk| > 0 holds, we have∑

m ̸=k

Attn2
m +(1−Attnk)

2

≤ (1−Attnk)max
m ̸=k

Attnm +(1−Attnk)
2

≤ 2(1−Attnk)
2 = 2

(
N − |Vk|

N − |Vk|+ |Vk|eσ

)2

≤ 2

(
N

N + eσ

)2

Taking σ = poly(N), then we have

L∗ ≤ O(e−poly(N)) +O(e−poly(K)) = O(e−poly(K)).

Lemma D.9. For the balanced data, given k ∈ [K], for any θ, we have

L̃k(θ) ≤ Lk(θ)− Llow
k ≤ L̃k(θ) + 3pk exp

(
− c2balN

25K2

)
.

Proof. We proceed the derivation as follows.

Lk(θ)− L̃k(θ) =
1

2
E
[
1{xquery = vk ∩ Pinput ∈ E∗

bal
c} (ŷquery − ⟨w, xquery⟩)2

]
=

1

2
E

1{xquery = vk ∩ Pinput ∈ E∗
bal

c}

∑
m ̸=k

Attn2
m +(1−Attnk)

2


(a)

≤ 1

2
· 2P (xquery = vk ∩ Pinput ∈ E∗

bal
c)
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(b)

≤ pk · 3 exp
(
− c2balN

25K2

)
= 3pk exp

(
− c2balN

25K2

)
.

where (a) follows from the fact that∑
m ̸=k

Attn2
m +(1−Attnk)

2 ≤ (1−Attnk)max
m ̸=k

Attnm +(1−Attnk)
2 ≤ 2,

and (b) holds by Lemma D.5.

On the other hand,

Lk(θ)− L̃k(θ) ≥
1

2
E

1{xquery = vk ∩ |Vk| = 0}

∑
m ̸=k

Attn2
m +(1−Attnk)

2


≥ 1

2

K

K − 1
E [1{xquery = vk ∩ |Vk| = 0}] = Llow

k .

Consequently, for each k ∈ [K], L̃k(θ) closely tracks the deviation between Lk(θ) and Llow
k , which is what we will primarily

focus on bounding in the subsequent analysis.

D.3.2. LOSS CHARACTERIZATION FOR THE IMBALANCED CASE

Notations for the imbalanced case. In the imbalanced case, we are interested in the prediction error for the query
corresponding to each given feature k ∈ [K]. Thus we consider the following conditional prediction error for each k ∈ [K]:

Lk(θ) =
1

2
E
[
(ŷquery − ⟨w, xquery⟩)2

∣∣∣∣xquery = vk

]
. (11)

Similarly, we define the minimum and the unavoidable values for such conditional prediction error:

L∗
k = min

θ

1

2
E
[
(ŷquery − ⟨w, xquery⟩)2

∣∣∣∣xquery = vk

]
, (12)

Llow
k =

1

2

(
1 +

1

K − 1

)
P (|Vk| = 0) , (13)

L̃k(θ) =
1

2
E
[
1{Pinput ∈ E∗

imbal} (ŷquery − ⟨w, xquery⟩)2
∣∣∣∣xquery = vk

]
.

Lemma D.10. Given k ∈ [K], for L∗
k and Llow

k defined in Equation (12) and Equation (13), respectively, we have Llow
k ≤ L∗

k

and they are both at the order of Θ(e− poly(K)) for the imbalanced data.

Proof. The analysis is similar as Lemma D.8, we only show Llow
k = Θ(e−poly(K)).

Llow
k =

1

2

(
1 +

1

K − 1

)
P (|Vk| = 0)

= Θ(1)(1− pk)
N .

For k = 1, (1− p1)
N = Θ(exp(−N)) = Θ

(
e−poly(K)

)
. For k > 1, since N ≫ K3, then (1− pk)

N = (1−Θ
(

1
K

)
)N =

Θ
(
e−poly(K)

)
, which completes the proof.
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Table 1. Summary of Notations

Notations Descriptions

attn
(t)
i , Attn

(t)
k The attention scores for the i-token and k-th feature, where i ∈ [N ] and

k ∈ [K].

A
(t)
k , B(t)

k,n The bilinear attention weights when xquery = vk: A(t)
k = ev

⊤
k Q(t)vk , B(t)

k,n =

ev
⊤
n Q(t)vk for n ̸= k.

α
(t)
k , β(t)

k,n The gradient updates respectively for A(t)
k and B

(t)
k,n.

Pinput The input tokens in the prompt, i.e., {xi}Ni=1.

E∗
bal, E∗

imbal The high-probability events that Pinput belongs to respectively for the balanced
and imbalanced data.

L∗, Llow The minimum value and lower bound on the population loss L(θ) (8).

Lk(θ), L̃k(θ), Llow
k The loss functions on the event {xquery = vk}, {xquery = vk} ∩ {Pinput ∈ E∗

bal},
and the lower bound on Lk.

L∗
k, Llow

k (Imbalanced) The minimum value and lower bound of prediction error conditioned on
xquery = vk, i.e., Lk(θ) (11).

L̃k(θ) (Imbalanced) The conditional prediction error on the event {Pinput ∈ E∗
imbal}.

Lemma D.11. For the imbalanced data, given k ∈ [K], for any θ, we have

L̃k(θ) ≤ Lk(θ)− Llow
k ≤ L̃k(θ) + 3 exp

(
− c2imN

25K2

)
.

Proof. The proof of the first inequality is similar to that for Lemma D.9. We next show the second inequality.

Lk(θ)− Llow
k ≤ L̃k(θ) +

1

2
E
[
1{Pinput ∈ E∗

imbal
c} (ŷquery − ⟨w, xquery⟩)2 | xquery = vk

]
= L̃k(θ) +

1

2
E

1{Pinput ∈ E∗
imbal

c}

∑
m ̸=k

Attn2
m +(1−Attnk)

2

 | xquery = vk


≤ L̃k(θ) + P (Pinput ∈ E∗

imbal
c)

≤ L̃k(θ) + 3 exp

(
− c2imN

25K2

)
.

D.4. Notations and Parameters
In Table 1, we summarize the notations introduced throughout the main content and in the preliminary section. Throughout
all the proofs in our paper, we consider N = poly(K) ≫ K3, and K is sufficiently large.
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E. Analysis for the Balanced Case (Proof of Theorem 3.2)
In this section, we present the analysis for the balanced case, we first discuss the outline of our proof.

E.1. Roadmap of the Proof
We will analyze the convergence of the training process via two phases of dynamics. At the beginning of each phase, we will
establish an induction hypothesis, which we expect to remain valid throughout that phase. Subsequently, we will analyze the
dynamics under such a hypothesis within the phase, aiming to provide proof of the hypothesis by the end of the phase.

The main idea of the proof lies in analyzing the GD dynamics of A(t)
k and B

(t)
k,n. From Definition D.2 and Lemma D.3, we

have

A
(t+1)
k = A

(t)
k + ηα

(t)
k ,

B
(t+1)
k,n = B

(t)
k,n + ηβ

(t)
k,n,

where

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

 ,

β
(t)
k,n = E

1{xquery = vk}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k )

 .

We divide the learning process of any feature k in the balanced case into the following two phases.

• Phase I (t ∈ [0, T1,k], Appendix E.2): At initialization, A(t)
k keeps growing at a rate at least of η

K2 , while B
(t)
k,n

oscillates with a smaller rate of η
K3 . Therefore, the increase in A

(t)
k will dominate the learning dynamics during phase I.

• Phase II (t ∈ (T1,k, T
ϵ
2,k], Appendices E.3 and E.4): After rapid growth of self-attention module parameters in phase I,

the query token featuring vk is aligned with these input tokens also featuring vk effectively and disregards other features.
Then the process proceeds to the convergence phase, where A

(t)
k monotonically increases and B

(t)
k,n monotonically

decreases, which finally contributes to the convergence of the loss. Based on the variation rates of A(t)
k and B

(t)
k,n, the

convergence phase further has two sub-stages as follows.

– Stage I (t ∈ (T1,k, T̃
ϵ
2,k], Appendix E.3): the increase of A(t)

k is as fast as Ω( ϵ
K ) while the decrease of B(t)

k,n is

slow, and the gap A
(t)
k −maxm ̸=k B

(t)
k,m stays within O(log( K

ϵ
1
2
)).

– Stage II (t ∈ (T̃ ϵ
2,k, T

ϵ
2,k], Appendix E.4): the increase of A(t)

k and the decrease of B(t)
k,n both are relatively steady

and the attention nearly focuses on the target feature, leading to the convergence of the loss.

We finally combine all results in the above two phases to prove the convergence of the training process given in Theorem 3.2
(Appendix E.5).

E.2. Phase I: Growth of Target Feature
In this section, we shall study the initial phase of learning the relationship between the query token and its corresponding
feature. Firstly, we present the induction hypothesis in this phase. For the k-th feature vk, we define the Phase I as all
iterations 0 ≤ t ≤ T1,k, where

T1,k ≜ max
{
t : A

(t)
k ≤ log(K)

}
.

We state the following induction hypothesis, which will hold throughout Phase I. This hypothesis is ultimately proved in
Appendix E.2.3.

Induction Hypothesis E.1. For each 0 ≤ t ≤ T1,k, the following holds:

a. A
(t)
k is monotonically increasing and A

(t)
k ∈ [0, log(K)];

b. |B(t)
k,n| = O(

A
(t)
k

K ) for any n ̸= k.
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E.2.1. TECHNICAL LEMMAS

We first introduce several useful technical lemmas.

Lemma E.1. Suppose Induction Hypothesis E.1 holds at iteration 0 ≤ t ≤ Tk,1. If xquery = vk and Pinput ∈ E∗
bal, the

following holds

1. Attn
(t)
k = Ω

(
1
K

)
;

2. 1−Attn
(t)
k ≥ Ω(1).

Proof. Since xquery = vk, then we have

Attn
(t)
k =

|Vk|evk
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vk| exp(A(t)

k )∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis E.1,

e−(log(K)+O(
log(K)

K )) ≤ exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K)
K ).

Thus

Attn
(t)
k ≥ 1

eO(
log(K)

K )( N
|Vk| − 1) + 1

≥ 1

eO(
log(K)

K )(K/Lbal
k − 1) + 1

= Ω

(
1

K

)
,

where the second inequality follows because Pinput ∈ E∗
bal.

On the other hand,

Attn
(t)
k ≤ 1

e−(log(K)+O(
log(K)

K ))( N
|Vk| − 1) + 1

≤ 1

e−1( 1
U bal

k

− 1
K ) + 1

.

Considering U bal = Θ(1), we have

1−Attn
(t)
k ≥

( 1
U bal

k

− 1
K )

( 1
U bal

k

− 1
K ) + e

≥ Ω(1).

Lemma E.2. Suppose Induction Hypothesis E.1 holds at iteration 0 ≤ t ≤ T1,k. If xquery = vk and Pinput ∈ E∗
bal, for n ̸= k,

the following holds

Attn(t)
n = Θ

(
1−Attn

(t)
k

K

)
= Θ

(
1

K

)
.

Proof. To show the first equality, since xquery = vk, we have

Attn(t)
n =

|Vn|evn
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

.
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By Induction Hypothesis E.1, e−O(
log(K)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)
K ). Combining with the fact that |Vm|

|Vn| = Θ(1)

when Pinput ∈ E∗
bal, we have

Attn(t)
n

1−Attn
(t)
k

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m)
=

1∑
m ̸=k

|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

= Θ

(
1

K

)
.

Combining with the Lemma E.1, we immediately have Attn(t)
n = Θ

(
1
K

)
.

E.2.2. CONTROLLING GRADIENT UPDATES IN PHASE I

Lemma E.3. Given any fixed k ∈ [K], if Induction Hypothesis E.1 holds at iteration 0 ≤ t ≤ T1,k, then α
(t)
k ≥ 0 and

satisfies

α
(t)
k ≥ Ω

(
1

K2

)
.

Proof. By the gradient expression in Lemma D.3,

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


= E

1{xquery = vk ∩ Pinput ∈ E∗
bal}Attn

(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


+ E

1{xquery = vk ∩ Pinput ∈ E∗
bal

c}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


(a)

≥ pk · P(Pinput ∈ E∗
bal)

× E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ {Pinput ∈ E∗
bal}


≥ pk · P(Pinput ∈ E∗

bal)× E
[
Attn

(t)
k ·(1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ {Pinput ∈ E∗
bal}
]

(14)

(b)

≥ Ω

(
1

K2

)
,

where (a) follows from the fact that xquery is independent with Pinput and the second term is non-negative, (b) follows from
Lemma D.5, Lemma E.1 and the fact that pk = Θ

(
1
K

)
in the balanced case and N ≫ K3.

Lemma E.4. Given any fixed k ∈ [K], if Induction Hypothesis E.1 holds at iteration 0 ≤ t ≤ T1,k, then for any n ̸= k,
β
(t)
k,n satisfies

|β(t)
k,n| ≤ O

(
α
(t)
k

K

)
.

Proof. By the gradient expression in Lemma D.3, we have

β
(t)
k,n ≤ E

1{xquery = vk}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2

 , (15)

−β
(t)
k,n ≤ E

[
1{xquery = vk}Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)]

. (16)
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For Equation (15), we further derive

β
(t)
k,n ≤ E

1{xquery = vk ∩ Pinput ∈ E∗
bal}Attn(t)

n ·

∑
m ̸=k

Attn(t)
m

2


+ E

1{xquery = vk ∩ Pinput ∈ E∗
bal

c}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2


(a)

≤ pk · P(Pinput ∈ E∗
bal) · E

[
Attn(t)

n ·
(
max
m ̸=k

Attn(t)
m

) ∣∣∣∣{xquery = vk} ∩ {Pinput ∈ E∗
bal}
]

+ pk · P(Pinput ∈ E∗
bal

c)

(b)

≤ pkE
[
Attn(t)

n ·
(
max
m ̸=k

Attn(t)
m

) ∣∣∣∣{xquery = vk} ∩ {Pinput ∈ E∗
bal}
]
+ 3pk exp

(
− c2balN

25K2

)
(c)

≤ O

(
1

K3

)
, (17)

where (a) follows from the fact that xquery is independent with Pinput, Attn(t)
n ≤ 1 and

∑
m ̸=k Attn(t)

m

2
≤

maxm ̸=k Attn(t)
m ·

∑
m ̸=k Attn(t)

m ≤ maxm ̸=k Attn(t)
m , (b) follows from Lemma D.5, and (c) follows from Lemma E.2

and the fact that pk = Θ
(

1
K

)
and N ≫ K3.

For Equation (16), similarly to the derivation above, we have

− β
(t)
k,n

≤ pkE
[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
) ∣∣∣∣{xquery = vk} ∩ E∗

bal

]
+ 2pk · P(Pinput ∈ E∗

bal
c)

(a)
= 2pk · P(Pinput ∈ E∗

bal
c) + pk · P(Pinput ∈ E∗

bal)×

E

[
Θ(

1−Attn
(t)
k

K
) ·

(
Θ(

1−Attn
(t)
k

K
) +Attn

(t)
k (1−Attn

(t)
k )

)∣∣∣∣{xquery = vk} ∩ E∗
bal

]
(b)

≤ pk · P(Pinput ∈ E∗
bal)E

[
O(

Attn
(t)
k (1−Attn

(t)
k )2

K
)

∣∣∣∣{xquery = vk} ∩ E∗
bal

]
+ 6pk exp

(
− c2balN

25K2

)
(c)

≤ O

(
α
(t)
k

K
+

1

K
exp

(
− c2balN

25K2

))
(18)

where (a) follows from Lemma E.2 and (b) follows from Lemma E.1 and Lemma D.5, and (c) follows from Equation (14).

From Lemma E.3 and the choice of N ≫ K3, we have

α
(t)
k ≥ Ω

(
1

K2

)
≫ 6 exp

(
− c2balN

25K2

)
. (19)

Thus, combining Equations (17) to (19), we have

|β(t)
n,k| ≤ max

{
O(

α
(t)
k

K
), O

(
1

K3

)}
= O

(
α
(t)
k

K

)
.

E.2.3. END OF PHASE I
Lemma E.5. Given any fixed k ∈ [K], Induction Hypothesis E.1 holds for all iterations 0 ≤ t ≤ T1,k, where T1,k is at

most O( log(K)K2

η ), and at iteration t = T1,k + 1, we have
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a. A
(T1,k+1)
k ≥ log(K);

b. Attn
(T1,k+1)
k = Ω(1) if xquery = vk and Pinput ∈ E∗

bal.

Proof. If Induction Hypothesis E.1 holds, the existence of T1,k = O( log(K)K2

η ) directly follows from Lemma E.3.

We next prove Induction Hypothesis E.1. It is easy to verify Induction Hypothesis E.1 holds at t = 0. Now we suppose
Induction Hypothesis E.1 holds for all iterations ≤ t− 1, and prove it holds at t.

By Lemma E.3, we have α
(t−1)
k ≥ 0. Thus A

(t)
k = A

(t−1)
k + ηα

(t−1)
k ≥ 0. Moreover, by the definition of T1,k, we

immediately obtain A
(t)
k ≤ log(K).

By Lemma E.4, we have |β(t−1)
k,n | ≤ O

(
α

(t−1)
k

K

)
. Thus,

|B(t)
k,n| ≤ |B(t−1)

k,n |+ ηO

(
α
(t−1)
k

K

)

≤ O

(
A

(t−1)
k

K

)
+ ηO

(
α
(t−1)
k

K

)

≤ O

(
A

(t)
k

K

)
.

The first statement follows the definition of T1,k. Moreover, Attn
(T1,k+1)
k = Ω(1) can be derived from Lemma E.6 in the

subsequent section.

E.3. Phase II: Convergence: Stage I
After rapid growth of self-attention module parameters in phase I, the query token featuring vk is aligned with these input
tokens also featuring vk effectively and disregards other features. Then the process proceeds to the convergence phase,
where A

(t)
k monotonically increases and B

(t)
k,n monotonically decreases, which finally contributes to the convergence of the

loss. Based on the variation rates of A(t)
k and B

(t)
k,n, the convergence phase further has two sub-stages as follows.

Given any 0 < ϵ < 1, for k ∈ [K], define

T̃ ϵ
2,k := max

{
t > T1,k : A

(t)
k −max

m ̸=k
B

(t)
k,m ≤ log

((
K

Lbal
k

− 1

)((
3

ϵ

) 1
2

− 1

))}
.

Induction Hypothesis E.2. For T1,k < t ≤ T̃ ϵ
2,k, suppose polylog(K) ≫ log( 1ϵ ), and the following holds

a. A
(t)
k is monotonically increasing and A

(t)
k ∈ [log(K), O(log(K/ϵ))];

b. B
(t)
k,n is monotonically decreasing and |B(t)

k,n| = O(
A

(t)
k

K ) for any n ̸= k.

E.3.1. TECHNICAL LEMMAS

We first introduce several useful technical lemmas.

Lemma E.6. Suppose Induction Hypothesis E.2 holds at iteration T1,k < t ≤ T̃ ϵ
2,k. If xquery = vk and Pinput ∈ E∗

bal, the
following holds

1. Attn
(t)
k = Ω(1);

2. (1−Attn
(t)
k )2 ≥ Ω(ϵ) = Ω(exp (− polylog(K))).
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Proof. Since xquery = vk, we have

Attn
(t)
k =

|Vk| exp(A(t)
k )∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis E.2, we obtain

exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K/ϵ)
K )−log(K) ≤ eO(

log(K)+polylog(K)
K )−log(K) ≤ O

(
1

K

)
.

Therefore,

Attn
(t)
k ≥ 1

O
(

1
K

)
( N
|Vk| − 1) + 1

≥ 1

O( 1
Lbal

k

− 1
K ) + 1

≥ Ω(1).

On the other hand, by the definition of T̃ ϵ
2,k, we have

1−Attn
(t)
k =

∑
m ̸=k

|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k )∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

≥
exp(minm ̸=k B

(t)
k,m −A

(t)
k )( N

|Vk| − 1)

exp(minm ̸=k B
(t)
k,m −A

(t)
k )( N

|Vk| − 1) + 1

≥
exp(minm ̸=k B

(t)
k,m −A

(t)
k )( K

U bal
k

− 1)

exp(minm ̸=k B
(t)
k,m −A

(t)
k )( K

U bal
k

− 1) + 1

=
exp(maxm ̸=k B

(t)
k,m −A

(t)
k −∆B

(t)
k )( K

U bal
k

− 1)

exp(maxm ̸=k B
(t)
k,m −A

(t)
k −∆B

(t)
k )( K

U bal
k

− 1) + 1

≥
( K
Lbal

k

− 1)−1(ϵ−
1
2 − 1)−1 · e−O(

polylog(K)
K )( K

U bal
k

− 1)

( K
Lbal

k

− 1)−1(ϵ−
1
2 − 1)−1e−O(

polylog(K)
K )( K

U bal
k

− 1) + 1

≥ Ω(ϵ
1
2 ),

where ∆B
(t)
k = maxm ̸=k B

(t)
k,m − minm ̸=k B

(t)
k,m = O(

A
(t)
k

K ), and the first and second inequalities follow from the fact

that x
1+x monotonically increases w.r.t. x ≥ 0, and the third inequality follows from the definition of T̃ ϵ

2,k and Induction
Hypothesis E.2.

Lemma E.7. Suppose Induction Hypothesis E.2 holds at iteration T1,k < t ≤ T̃ ϵ
2,k. If xquery = vk and Pinput ∈ E∗

bal, for
n ̸= k, then the following holds

Attn(t)
n = Θ

(
1−Attn

(t)
k

K

)
.

Proof. By definition,

Attn(t)
n =

|Vn| exp(B(t)
k,n)∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )
.

By Induction Hypothesis E.2, we have

e−O(
log(K)−log(ϵ)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)−log(ϵ)
K ).
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Further combining with the fact that − log(ϵ) ≪ polylog(K), we have

Attn(t)
n

1−Attn
(t)
k

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m)
=

1∑
m ̸=k

|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

= Θ

(
1

K

)
.

E.3.2. CONTROLLING GRADIENT UPDATES IN STAGE I OF PHASE II

Lemma E.8. At each iteration T1,k < t ≤ T̃ ϵ
2,k, if Induction Hypothesis E.2 holds, then α

(t)
k ≥ 0 and satisfies

α
(t)
k ≥ Ω

( ϵ

K

)
.

Proof. The analysis is similar to that for Lemma E.3, but we need to be more careful about the lower bound of 1−Attn
(t)
k .

By gradient expression in Lemma D.3, we obtain

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


≥ pk · P(Pinput ∈ E∗

bal)E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

 | {xquery = vk} ∩ E∗
bal


≥ pk · P(Pinput ∈ E∗

bal)E
[
Attn

(t)
k ·(1−Attn

(t)
k )2 | {xquery = vk} ∩ E∗

bal

]
≥ Ω(

ϵ

K
),

where the last inequality follows from Lemmas D.5 and E.6 and the fact that pk = Θ
(

1
K

)
in the balanced case.

Lemma E.9. At each iteration T1,k < t ≤ T̃ ϵ
2,k, if Induction Hypothesis E.2 holds, then given k ∈ [K], for any n ̸= k, β(t)

k,n

satisfies

−O

(
α
(t)
k

K

)
≤ β

(t)
k,n ≤ 0.

Proof. Note that conditioned on the event {xquery = vk}∩{Pinput ∈ E∗
bal}, by Lemmas E.6 and E.7, we have Attn

(t)
k = Ω(1),

maxm ̸=k Attnm = O
(

1
K

)
, and thus∑

m ̸=k

Attn(t)2

m −Attn(t)
n −Attn

(t)
k (1−Attn

(t)
k ) ≤ max

m ̸=k
Attn(t)

m

∑
m ̸=k

Attn(t)
m −Attn

(t)
k (1−Attn

(t)
k )

= −(1−Attn
(t)
k )(Attn

(t)
k −max

m ̸=k
Attn(t)

m )

≤ −Ω(1−Attn
(t)
k ). (20)

Therefore, by combining with Lemma D.3, we obtain

β
(t)
k,n ≤ E

1{xquery = vk ∩ E∗
bal}Attn(t)

n ·

∑
m ̸=k

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k )


+ E

1{xquery = vk ∩ E∗
bal

c}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2


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(a)

≤ pk · P(Pinput ∈ E∗
bal) · E

[
−Ω(

(1−Attn
(t)
k )2

K
) | {xquery = vk} ∩ E∗

bal

]
+ pk · P(E∗

bal
c)

(b)

≤ pk ·
(
−Ω(

ϵ

K
)
)
+ 3pk exp

(
− c2balN

25K2

)
≤0,

where (a) follows from Equation (20) and Lemma E.7, (b) follows from Lemmas D.5 and E.6, and the last inequality holds
since

ϵ

K
≫ exp(− polylog(K))

K
≫ exp

(
− c2balN

25K2

)
.

Moreover, following the analysis similar to that for Lemma E.4, we have

−β
(t)
k,n ≤ pkE

[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
) ∣∣∣∣{xquery = vk} ∩ E∗

bal

]
+ pkP(E∗

bal
c)

≤ pkE

[
Θ(

1−Attn
(t)
k

K
) ·O

(
Attn

(t)
k (1−Attn

(t)
k )
) ∣∣∣∣{xquery = vk} ∩ E∗

bal

]

+ 6pk exp

(
− c2balN

25K2

)
= pkE

[
O(

Attn
(t)
k (1−Attn

(t)
k )2

K
)

∣∣∣∣{xquery = vk} ∩ E∗
bal

]
+ 6pk exp

(
− c2balN

25K2

)

≤ O(
α
(t)
k

K
).

E.3.3. END OF STAGE I OF PHASE II

Lemma E.10. Given k ∈ [K], and 0 < ϵ < 1, suppose polylog(K) ≫ log( 1ϵ ). Then Induction Hypothesis E.2 holds for at

least all T1,k < t ≤ T̃ ϵ
2,k = T1,k +O

(
K log(Kϵ−

1
2 )

ηϵ

)
, and at iteration t = T̃ ϵ

2,k + 1, we have A
(T̃ ϵ

2,k+1)

k ≥ Ω
(
log(Kϵ )

)
.

Proof. We first prove the existence of T̃ ϵ
2,k. Recall that

T̃ ϵ
2,k := max

{
t > T1,k : A

(t)
k −max

m ̸=k
B

(t)
k,m ≤ log

((
K

Lbal
k

− 1

)(
(
3

ϵ
)

1
2 − 1

))}
.

When t ∈ (T1,k, T̃
ϵ
2,k], consider

(
A

(t+1)
k −max

m ̸=k
B

(t+1)
k,m

)
−
(
A

(t)
k −max

m ̸=k
B

(t)
k,m

)
≥ η(1−O

(
1

K

)
)α

(t)
k = Ω

(ηϵ
K

)
,

where the inequality follows from Lemma E.9 and the last equation follows from Lemma E.8. Therefore, at most

T̃ ϵ
2,k − T1,k = O(

K log
(
( K
Lbal

k

− 1)(( 3ϵ )
1
2 − 1)

)
ηϵ

) = O(
K log(Kϵ−

1
2 )

ηϵ
)

iterations are needed before A
(t)
k −maxm ̸=k B

(t)
k,m exceeds log

((
K
Lbal

k

− 1
)(

( 3ϵ )
1
2 − 1

))
.
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It is easy to verify Induction Hypothesis E.2 holds at t = T1,k + 1. Now we suppose Induction Hypothesis E.2 holds for all
iterations in [T1,k + 1, t− 1], and prove it holds at t.

By Lemma E.8, we have α(t−1)
k ≥ 0. Thus A(t)

k ≥ A
(t−1)
k ≥ log(K). By Lemma E.9, we have −O

(
α

(t−1)
k

K

)
≤ β

(t−1)
k,n ≤ 0.

Thus,

|B(t)
k,n| ≤ |B(t−1)

k,n |+ ηO

(
α
(t−1)
k

K

)

≤ O

(
A

(t−1)
k

K

)
+ ηO

(
α
(t−1)
k

K

)

≤ O

(
A

(t)
k

K

)
.

Moreover, by the definition of T̃ ϵ
2,k, for any T1,k < t ≤ T̃ ϵ

2,k we immediately have

(
1−O

(
1

K

))
A

(t)
k ≤ A

(t)
k −max

m ̸=k
B

(t)
k,m ≤ log

((
K

Lbal
k

− 1

)((
3

ϵ

) 1
2

− 1

))
.

Therefore, A(t)
k ≤ O(log(Kϵ )) for any T1,k < t ≤ T̃ ϵ

2,k.

At iteration t = T̃ ϵ
2,k + 1, we have A

(T̃ ϵ
2,k+1)

k − maxm ̸=k B
(T̃ ϵ

2,k+1)

k,m > log
(
( K
Lbal

k

− 1)(
(
3
ϵ

) 1
2 − 1)

)
. Thus A

(T̃ ϵ
2,k+1)

k ≥
Ω(log(Kϵ )).

When {xquery = vk} ∩ {Pinput ∈ E∗
bal}, we obtain

1−Attn
(T̃ ϵ

2,k+1)

k =

∑
m ̸=k

|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k )∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

≤
exp(maxm ̸=k B

(t)
k,m −A

(t)
k )( N

|Vk| − 1)

exp(maxm ̸=k B
(t)
k,m −A

(t)
k )( N

|Vk| − 1) + 1

≤
exp(maxm ̸=k B

(t)
k,m −A

(t)
k )( K

Lbal
k

− 1)

exp(maxm ̸=k B
(t)
k,m −A

(t)
k )( K

Lbal
k

− 1) + 1

≤

(
( K
Lbal

k

− 1)(( 3ϵ )
1
2 − 1)

)−1

( K
Lbal

k

− 1)(
( K
Lbal

k

− 1)(( 3ϵ )
1
2 − 1)

)−1

( K
Lbal

k

− 1) + 1

= (ϵ/3)
1
2 ,

where the first inequality follows from the fact that x
1+x monotonically increases w.r.t. x ≥ 0.

E.4. Phase II: Convergence: Stage II
Given k ∈ [K], define

T ϵ
2,k := T̃ ϵ

2,k +O

K log
(
Kϵ−

1
2

)
ϵη

 .
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Induction Hypothesis E.3. Suppose polylog(K) ≫ log( 1ϵ ) for t ∈ (T̃ ϵ
2,k, T

ϵ
2,k]. The following holds:

a. A
(t)
k is monotonically increasing but cannot exceed O(log(K/ϵ));

b. B
(t)
k,m is monotonically decreasing and |B(t)

k,m| = O(
A

(t)
k

K ) for any m ̸= k.

E.4.1. TECHNICAL LEMMAS

We first introduce several useful technical lemmas.

Lemma E.11. Suppose Induction Hypothesis E.3 holds at iteration t ∈ (T̃ ϵ
2,k, T

ϵ
2,k]. If xquery = vk and Pinput ∈ E∗

bal, the
following holds

1. Attn
(t)
k = Ω(1);

2. (1−Attn
(t)
k )2 ∈ [Ω(exp(− polylog(K))), ϵ].

Proof. Since xquery = vk, we have

Attn
(t)
k =

|Vk| exp(A(t)
k )∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis E.3,

exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K/ϵ)
K )−log(K) ≤ eO(

log(K)+polylog(K)
K )−log(K) ≤ O

(
1

K

)
.

Therefore,

Attn
(t)
k ≥ 1

O
(

1
K

)
( N
|Vk| − 1) + 1

≥ 1

O( 1
Lbal

k

− 1
K ) + 1

≥ Ω(1).

We first upper-bound 1−Attn
(t)
k as

1−Attn
(t)
k =

∑
m ̸=k

|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k )∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

≤
exp(maxm ̸=k B

(t)
k,m −A

(t)
k )( N

|Vk| − 1)

exp(maxm ̸=k B
(t)
k,m −A

(t)
k )( N

|Vk| − 1) + 1

(a)

≤
exp(maxm ̸=k B

(T̃ ϵ
2,k+1)

k,m −A
(T̃ ϵ

2,k+1)

k )( N
|Vk| − 1)

exp(maxm ̸=k B
(T̃ ϵ

2,k+1)

k,m −A
(T̃ ϵ

2,k+1)

k )( N
|Vk| − 1) + 1

(b)
<
( ϵ
3

) 1
2

,

where (a) holds since maxm ̸=k B
(t)
k,m − A

(t)
k is non-increasing by Induction Hypothesis E.3, and (b) follows from the

definition of T̃ ϵ
2,k.

Then we lower-bound 1−Attn
(t)
k following the analysis similar to that for Lemma E.6:

1−Attn
(t)
k =

∑
m ̸=k

|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k )∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1
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≥
exp(minm ̸=k B

(t)
k,m −A

(t)
k )( N

|Vk| − 1)

exp(minm ̸=k B
(t)
k,m −A

(t)
k )( N

|Vk| − 1) + 1

≥
exp(minm ̸=k B

(t)
k,m −A

(t)
k )( K

U bal
k

− 1)

exp(minm ̸=k B
(t)
k,m −A

(t)
k )( K

U bal
k

− 1) + 1

≥
1

eO(log(K/ϵ)) (
K
U bal

k

− 1)

1
eO(log(K/ϵ)) (

K
U bal

k

− 1) + 1

≥
1

eO(polylog(K)) (
K
U bal

k

− 1)

1
eO(polylog(K)) (

K
U bal

k

− 1) + 1

≥ Ω(exp(− polylog(K))),

where the first three inequalities follow from the fact that x
1+x monotonically increases w.r.t. x ≥ 0 and A

(t)
k ≤ O(log(K/ϵ)).

Lemma E.12. Suppose Induction Hypothesis E.3 holds at iteration t ∈ (T̃ ϵ
2,k, T

ϵ
2,k]. If xquery = vk and Pinput ∈ E∗

bal, for
n ̸= k, the following holds

Attn(t)
n = Θ

(
1−Attn

(t)
k

K

)
.

Proof. By definition,

Attn(t)
n =

|Vn| exp(B(t)
k,n)∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )
.

By Induction Hypothesis E.3,

e−O(
log(K)−log(ϵ)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)−log(ϵ)
K ).

Combining with the fact that − log(ϵ) ≪ polylog(K), we obtain

Attn(t)
n

1−Attn
(t)
k

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m)
=

1∑
m ̸=k

|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

= Θ

(
1

K

)
.

E.4.2. CONTROLLING GRADIENT UPDATES IN STAGE II OF PHASE II

Lemma E.13. At each iteration t ∈ (T̃ ϵ
2,k, T

ϵ
2,k]. If Induction Hypothesis E.3 holds for t, then α

(t)
k ≥ 0 and satisfies

α
(t)
k ≤ O

( ϵ

K

)
.

Proof. By the gradient expression in Lemma D.3,

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


≤ pkE

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

 | {xquery = vk} ∩ E∗
bal


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+ 6pk exp

(
− c2balN

25K2

)
≤ pk ·O(ϵ) + 6pk exp

(
− c2balN

25K2

)
≤ O

( ϵ

K

)
,

where the second inequality follows from Lemmas E.11 and E.12, and the last inequality follows from the fact that
pk = Θ

(
1
K

)
and ϵ = Ω(exp(− polylog(K))) ≫ 6 exp

(
− c2balN

25K2

)
.

Lemma E.14. At each iteration t ∈ (T̃ ϵ
2,k, T

ϵ
2,k], if Induction Hypothesis E.3 holds for t, for any n ̸= k, β(t)

k,n satisfies

−O

(
α
(t)
k

K

)
≤ β

(t)
k,n ≤ 0.

Proof. Note that conditioned on the event {xquery = vk} ∩ {Pinput ∈ E∗
bal}, Attn

(t)
k = Ω(1), and maxm ̸=k Attn(t)

m =

O( ϵ
1
2

K ). Thus,∑
m ̸=k

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k ) ≤ max

m ̸=k
Attn(t)

m

∑
m ̸=k

Attn(t)
m −Attn

(t)
k (1−Attn

(t)
k )

= −(1−Attn
(t)
k )(Attn

(t)
k −max

m ̸=k
Attn(t)

m )

≤ −Ω(1−Attn
(t)
k ) ≤ −Ω (exp(− polylog(K))) .

Therefore, by the gradient expression in Lemma D.3 and the fact that N ≫ K3,

β
(t)
k,n ≤ 6 exp

(
− c2balN

25K2

)
− Ω(exp(− polylog(K))) < 0.

Moreover, following the analysis similar to that for Lemma E.9, we have

−β
(t)
k,n ≤ pkE

[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)
| {xquery = vk} ∩ E∗

bal

]
+ pkP(E∗

bal
c)

≤ pkE

[
Θ(

1−Attn
(t)
k

K
) ·O

(
Attn

(t)
k (1−Attn

(t)
k )
)
| {xquery = vk} ∩ E∗

]

+ 6pk exp

(
− c2balN

25K2

)
= pkE

[
O(

Attn
(t)
k (1−Attn

(t)
k )2

K
) | {xquery = vk} ∩ E∗

]
+ 6pk exp

(
− c2balN

25K2

)

≤ O

(
α
(t)
k

K

)
,

where the last inequality follows from the gradient expression of α(t)
k in Lemma D.3 and because α

(t)
k ≫ 6 exp

(
− c2balN

25K2

)
.

E.4.3. CONTROLLING LOSS IN STAGE II OF PHASE II

Lemma E.15. Given k ∈ [K], and 0 < ϵ < 1, suppose polylog(K) ≫ log( 1ϵ ). At each iteration t ∈ (T̃ ϵ
2,k, T

ϵ
2,k], if

Induction Hypothesis E.3 holds for t, then we have L̃k(θ
(t)) < pkϵ

2 .
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Proof. By the gradient expression in Lemma D.3, we have

L̃k(θ
(t)) =

1

2
E
[
1{xquery = vk ∩ Pinput ∈ E∗

bal} (ŷquery − ⟨w, xquery⟩)2
]

=
1

2
E

1{xquery = vk ∩ Pinput ∈ E∗
bal}

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


≤ 1

2
pkP (Pinput ∈ E∗

bal) · E
[(

O

(
1

K

)
+ 1

)(
1−Attn

(t)
k

)2 ∣∣∣∣xquery = vk ∩ Pinput ∈ E∗
bal

]
≤ 1

2
pk ·

(
1 +O

(
1

K

))
· ϵ

≤ 2pkϵ

3
,

where the first inequality follows from Lemma E.12, and the second inequality follows from Lemma E.11.

E.4.4. END OF STAGE II OF PHASE II

Lemma E.16. Given k ∈ [K], and 0 < ϵ < 1, suppose polylog(K) ≫ log( 1ϵ ). Then Induction Hypothesis E.3 holds for

all T̃ ϵ
2,k < t ≤ T ϵ

2,k = T̃ ϵ
2,k +O

(
K log

(
Kϵ−

1
2

)
ϵη

)
.

Proof. It is easy to verify Induction Hypothesis E.3 holds at t = T̃ ϵ
2,k + 1. Now we suppose Induction Hypothesis E.3 holds

for all iterations T̃ ϵ
2,k ≤ t− 1, and prove it holds at t.

For the first claim, we can upper-bound the update of A(t)
k by Lemma E.13 as follows:

A
(t)
k ≤ A

(t−1)
k + η ·O(

ϵ

K
)

≤ A
(T̃ ϵ

2,k+1)

k + η(t− T̃ ϵ
2,k − 1) ·O(

ϵ

K
)

≤ O(log(K/ϵ)) + ηO(
K log

(
Kϵ−

1
2

)
ϵη

) ·O(
ϵ

K
)

= O(log(K/ϵ)).

The second claim follows from Lemma E.14 and the analysis similar to that for Lemma E.10.

E.5. Proof of Theorem 3.2 for Balanced Case
Theorem E.17 (Restatement of Theorem 3.2 for balanced features). Suppose pk = Θ

(
1
K

)
for each k ∈ [K]. For any

0 < ϵ < 1, suppose N ≥ poly(K) and polylog(K) ≫ log( 1ϵ ). We apply GD to train the loss function given in Equation (4).

Then with at most T ∗ = O( log(K)K2

η +
K log

(
Kϵ−

1
2

)
ϵη ) iterations, we have

1. The loss converges: L(θ(T
∗))− L∗ ≤ ϵ, where L∗ = Θ(e−poly(K)) is the global minimum of the population loss in

Equation (4).

2. Attention score concentrates: if xquery = vk, with probability at least 1 − e−Ω(poly(K))3, the one-layer transformer
nearly “pays all attention” to input tokens featuring vk, i.e., (1−Attn

(T∗)
k )2 ≤ O(ϵ).

3The randomness originates from the first N input tokens in the test prompt.
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Proof. Denote T ∗ = maxk∈[K] T̃
ϵ
2,k + 1 = O( log(K)K2

η +
K log

(
Kϵ−

1
2

)
ϵη ). Thus for any k, at iteration T ∗, it is in stage II

of the convergence phase, i.e., T ∗ ∈ (T̃ ϵ
2,k, T

ϵ
2,k]. Then by Lemmas E.15 and E.16, for any k ∈ [K], we obtain:

L̃k(θ
(T∗)) ≤ 2pkϵ

3
.

Therefore

L(θ(T
∗))− Llow =

K∑
k=1

(Lk(θ
(T∗))− Llow

k )

≤
K∑

k=1

(
L̃k(θ

(T∗)) + 3pk exp

(
− c2balN

25K2

))

≤
K∑

k=1

2pkϵ

3
+ 3 exp

(
− c2balN

25K2

)
≤ 2ϵ

3
+ 3 exp

(
− c2balN

25K2

)
≤ ϵ,

where the first inequality follows from Lemma D.9.

Finally, by Lemma D.8,

L(θ(T
∗))− L∗ ≤ L(θ(T

∗))− Llow ≤ ϵ.
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F. Analysis for the Imbalanced Case: Under-represented Features (Proof of Theorem 3.3 Part I)
In this section, we present the analysis of the prediction error when the query token features an under-represented feature vk
with k > 1 in the imbalanced case. We first discuss the outline of our proof.

F.1. Roadmap of the Proof
We will analyze the convergence of the training process via four phases of dynamics. At the beginning of each phase, we will
establish an induction hypothesis, which we expect to remain valid throughout that phase. Subsequently, we will analyze the
dynamics under such a hypothesis within the phase, aiming to provide proof of the hypothesis by the end of the phase.

The main idea of the proof lies in analyzing the GD dynamics of A(t)
k and B

(t)
k,n. From Definition D.2 and Lemma D.3, we

have

A
(t+1)
k = A

(t)
k + ηα

(t)
k ,

B
(t+1)
k,n = B

(t)
k,n + ηβ

(t)
k,n,

where

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

 ,

β
(t)
k,n = E

1{xquery = vk}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k )

 .

We divide the learning process of the under-represented feature vk with k > 1 into the following four phases.

• Phase I (t ∈ [0, T1,k], Appendix F.2): At initialization, B(t)
k,1 enjoys a much larger reduction rate, i.e., βk,1 < 0 and

|βk,1| is large. Therefore, the decrease of B(t)
k,1 will dominate the dynamics during phase I.

• Phase II (t ∈ (T1,k, T2,k], Appendix F.3): At time T2,k + 1, the decrease of B(t)
k,1 becomes slower, and the same

happens to |β(t)
k,1|. Their decreasing rate drops to be closer to the increasing rate of α(t)

k . This marks the beginning of

phase II. Shortly after entering this phase, the previous dominance of reduction of B(t)
k,1 diminishes, as |β(t)

k,1| approaches

a comparable order of the magnitude to α
(t)
k . At this point, there is a shift in the leading influence, with the growth of

A
(t)
k taking over.

• Phase III (t ∈ (T2,k, T3,k], Appendix F.4): Following the transitional phase, α(t)
k grows from the value of Θ( 1

K1.5 ),
whereas |β(t)

k,1| and |β(t)
k,n| for n ̸= k, 1 stay at much lower values (≤ O( 1

K1.98 ) and ≤ O
(

1
K3

)
respectively). This

consistent gap in magnitude between α
(t)
k and β

(t)
k,n leads to the continuously rapid growth of A(t)

k , while B
(t)
k,n remains

relatively unchanged.

• Phase IV (t ∈ (T3,k, T
ϵ
4,k], Appendix F.5): At t = T3,k + 1, we achieve the desired attention structures for query

tokens featuring the under-represented feature vk. Then we establish a connection between α
(t)
k and the prediction

error via analyzing the change of 1−Attn
(t)
k that diminishes, leading to the subsequent proof of convergence.

We finally combine all results in the above four phases to prove the main Theorem 3.3 for underrepresented features
(Appendix F.6).

F.2. Phase I: Decrease of Dominant Feature
In this section, we will delve into the initial phase of learning dynamics, aiming at mitigating the high occurrence bias of
the dominant feature v1. Specifically, for k > 1, Bk,1 will undergo significant decrease during this phase. Let us begin by
defining phase I.

For the k-th feature vk with k > 1, we define phase I as all iterations t ≤ T1,k, where

T1,k ≜ max
{
t : B

(t)
k,1 ≥ −0.49 log(K)

}
.
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We state the following induction hypothesis, which will hold throughout phase I:

Induction Hypothesis F.1. Given k > 1, for each 0 ≤ t ≤ T1,k, the following holds:

a. A
(t)
k is monotonically increasing and A

(t)
k ∈ [0, O( log(K)

K0.02 )];

b. B
(t)
k,1 is monotonically decreasing and B

(t)
k,1 ∈ [−0.49 log(K), 0];

c. |B(t)
k,n| = O(

A
(t)
k −B

(t)
k,1

K ) and B
(t)
k,n > B

(t)
k,1 for any n ̸= k, 1.

F.2.1. TECHNICAL LEMMAS

We first introduce several technical lemmas that will be used for the proof of Induction Hypothesis F.1.

Lemma F.1. If Induction Hypothesis F.1 holds at iteration 0 ≤ t ≤ T1,k, for the prompt satisfying xquery = vk and
Pinput ∈ E∗

imbal, the following holds

1. Attn
(t)
k = Θ

(
1
K

)
;

2. Attn
(t)
1 = Ω

(
1

K0.49

)
;

3. 1−Attn
(t)
1 −Attn

(t)
k ≥ Ω(1).

Proof. Since xquery = vk, and |Vk| > 0 for Pinput ∈ E∗
imbal, we have

Attn
(t)
k =

|Vk|evk
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vk| exp(A(t)

k )∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis F.1, we have

• for m ̸= 1, k, e−O(
log(K)

K0.02 ) ≤ exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K)
K );

• for m = 1, e(−0.49 log(K)−O(
log(K)

K0.02 )) ≤ exp(B
(t)
k,1 −A

(t)
k ) ≤ e0.

Combining with the fact that
∑

m ̸=k
|Vm|
|Vk| = Θ(K) for Pinput ∈ E∗

imbal, we have

Attn
(t)
k ≥ Ω

(
1

K

)
.

On the other hand, since N−|V1|
|Vk| is still Θ(K), we have

Attn
(t)
k ≤ 1

e−O(
log(K)

K0.02 )(N−|V1|
|Vk| − 1) + e(−0.49 log(K)−O(

log(K)

K0.02 )) |V1|
|Vk| + 1

≤ O

(
1

K

)
.

By similar analysis, we have

Attn
(t)
1 =

|V1| exp(B(t)
k,1)∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )

=
1∑

m ̸=1,k
|Vm|
|Vk| exp(B

(t)
k,m −B

(t)
k,1) +

|Vk|
|V1| exp(A

(t)
k −B

(t)
k,1) + 1

.

By Induction Hypothesis F.1,
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• for m ̸= 1, k, we have e0 ≤ exp(B
(t)
k,m −B

(t)
k,1) ≤ e0.49 log(K)+O(

log(K)
K );

• e0 ≤ exp(A
(t)
k −B

(t)
k,1) ≤ e0.49 log(K)+O(

log(K)
K ).

Hence,

Attn
(t)
1 ≥ 1

e0.49 log(K)+O(
log(K)

K )( N
|V1| − 1) + 1

≥ Ω

(
1

K0.49

)
,

where the last inequality holds since N
|V1| = Θ(1) for Pinput ∈ E∗

imbal.

For the last statement,

1−Attn
(t)
1 ≥

e0( N
|V1| − 1)

e0( N
|V1| − 1) + 1

≥ Ω(1).

Combining with the fact that Attn
(t)
k = Θ

(
1
K

)
, we have

1−Attn
(t)
k −Attn

(t)
1 ≥ Ω(1).

Lemma F.2. If Induction Hypothesis F.1 holds at iteration 0 ≤ t ≤ T1,k, for the prompt satisfying xquery = vk and
Pinput ∈ E∗

imbal, the following holds

Attn(t)
n = O

(
1−Attn

(t)
k −Attn

(t)
1

K

)
.

Proof. Since xquery = vk, we have

Attn(t)
n =

|Vn|evn
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

.

By Induction Hypothesis F.1, for m,n ̸= 1,

e−O(
log(K)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)
K ).

Combining with the fact that |Vm|
|Vn| = Θ(1) for Pinput ∈ E∗

imbal, we have

Attn(t)
n

1−Attn
(t)
k −Attn

(t)
1

=
|Vn| exp(B(t)

k,n)∑
m ̸=1,k |Vm| exp(B(t)

k,m)

=
1∑

m ̸=k,1
|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

≤ O

(
1

K

)
.
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F.2.2. CONTROLLING GRADIENT UPDATES IN PHASE I

Lemma F.3. Given k > 1, if Induction Hypothesis F.1 holds at iteration 0 ≤ t ≤ T1,k, then α
(t)
k ≥ 0 and satisfies

α
(t)
k = Θ

(
1

K2

)
.

Proof. By the gradient expression in Lemma D.3, we have

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


= E

1{xquery = vk ∩ E∗
imbal}Attn

(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


(a)

≤ pk · P(Pinput ∈ E∗
imbal)E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ E∗
imbal


+ 2pk · P(Pinput ∈ E∗

imbal
c)

(b)

≤ pk · E

[
Attn

(t)
k ·

(
O

(
1

K

)
+Attn

(t)
1

2

+ (1−Attn
(t)
k )2

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ 2pk · P(Pinput ∈ E∗

imbal
c)

(c)

≤ O

(
1

K2

)
,

where (a) follows from the fact that xquery and Pinput are independently sampled, and Attn
(t)
k ·(

∑
m ̸=k Attn(t)

m

2
+ (1−

Attn
(t)
k )2) is upper-bounded by 2 on the event {Pinput ∈ E∗

imbal
c}, (b) follows by applying Lemma F.2 to Attn(t)

m for
m ̸= 1, k, and (c) follows from Lemma F.1, our choice of pk, Lemma D.6, and the evident bound:

3 exp

(
− c2imN

25K2

)
≪ O

(
1

K

)
.

Similarly, we can show that α(t)
k ≥ Ω

(
1

K2

)
.

Lemma F.4. Given k > 1, if Induction Hypothesis F.1 holds at iteration 0 ≤ t ≤ Tk,1, then β
(t)
k,1 < 0 satisfies

|β(t)
k,1| ≥ Ω

(
1

K1.98

)
.

Proof. We first derive∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )

=
∑

m ̸=1,k

Attn(t)
m

2
−Attn

(t)
1 (1−Attn

(t)
1 )−Attn

(t)
k (1−Attn

(t)
k )

≤ max
m ̸=1,k

Attn(t)
m (1−Attn

(t)
1 −Attn

(t)
k )−Attn

(t)
1 (1−Attn

(t)
1 )−Attn

(t)
k (1−Attn

(t)
k )

≤ −(1−Attn
(t)
k −Attn

(t)
1 )(Attn

(t)
1 +Attn

(t)
k − max

m ̸=1,k
Attn(t)

m ). (21)
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Therefore, by the gradient expression in Lemma D.3, we have

β
(t)
k,1 ≤E

1{xquery = vk ∩ Pinput ∈ E∗
imbal}Attn

(t)
1 ·

∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )


+ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal

c}Attn
(t)
1 ·

∑
m ̸=k

Attn(t)
m

2


(a)

≤pk · P(Pinput ∈ E∗
imbal

c) + pk · P(Pinput ∈ E∗
imbal)

· E

[
−Ω(

(Attn
(t)
1 +Attn

(t)
k −maxm ̸=1,k Attn(t)

m )

K0.49
)

∣∣∣∣{xquery = vk} ∩ E∗
imbal

]

≤pk ·
(
−Ω

(
1

K0.98

))
+ 3pk exp

(
− c2imN

25K2

)
=− Ω

(
1

K1.98

)
,

where (a) follows from Equation (21) and Lemma F.1, and the last equality holds since

1

K0.98
≫ exp

(
− c2imN

25K2

)
.

Lemma F.5. If Induction Hypothesis F.1 holds at iteration 0 ≤ t ≤ Tk,1, for any n ̸= 1, k, β(t)
k,n satisfies

|β(t)
k,n| ≤ O

(
α
(t)
k − β

(t)
k,1

K

)
.

Proof. By the gradient expression in Lemma D.3, we have

β
(t)
k,n ≤ E

1{xquery = vk}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2

 (22)

−β
(t)
k,n ≤ E

[
1{xquery = vk}Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)]

(23)

We further upper-bound Equation (22) as,

β
(t)
k,n ≤ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal}Attn(t)

n ·

∑
m ̸=k

Attn(t)
m

2


+ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal

c}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2


≤pk · P(Pinput ∈ E∗

imbal) · E
[
Attn(t)

n ·
(
Attn

(t)
1

2
+O

(
1

K

))
| {xquery = vk} ∩ E∗

imbal

]
+ pk · P(Pinput ∈ E∗

imbal
c)

(a)

≤ O

(
1

K3

)
+O

(
|β(t)

k,1|
K

)
+ 3pk exp

(
− c2imN

25K2

)

≤O

(
1

K3

)
+O

(
|β(t)

k,1|
K

)
.
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where (a) follows from the following two observations from Lemma F.2:

|β(t)
k,1| ≥ pk · P(Pinput ∈ E∗

imbal) · E
[
Ω
(
Attn

(t)
1

2) ∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
,

and Attn(t)
n ≤ O

(
1
K

)
.

To further upper-bound Equation (23), we have

−β
(t)
k,n

≤ pkE
[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
) ∣∣∣∣{xquery = vk} ∩ E∗

imbal

]
+ pk · P(E∗

imbal
c)

(a)

≤ pk · P(Pinput ∈ E∗
imbal

c) + pk · P(E∗
imbal)E

[
O

(
1−Attn

(t)
k

K

)

·

(
O

(
1−Attn

(t)
k

K

)
+Attn

(t)
k (1−Attn

(t)
k )

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]

≤pk · P(E∗
imbal)E

[
O(

Attn
(t)
k (1−Attn

(t)
k )2

K
)

∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ 3pk exp

(
− c2imN

25K2

)

≤ O

(
α
(t)
k

K

)
,

where (a) follows from Lemma F.2, and the last inequality follows from the analysis in the proof of Lemma F.3, and from
the fact that

α
(t)
k ≥ Ω

(
1

K2

)
≫ 3 exp

(
− c2imN

25K2

)
.

Thus, we obtain

|β(t)
k,n| ≤ O

(
α
(t)
k − β

(t)
k,1

K

)
.

F.2.3. END OF PHASE I

Lemma F.6. Given k ≥ 2, Induction Hypothesis F.1 holds for all t ≤ T1,k = O( log(K)K1.98

η ), and at iteration t = T1,k +1,
we have

a. B
(T1,k+1)
k,1 ≤ −0.49 log(K);

b. Attn1 = O
(

1
K0.49

)
if xquery = vk and Pinput ∈ E∗

imbal.

Proof. The existence of T1,k = O( log(K)K1.98

η ) directly follows from Lemma F.3.

It is easy to verify that Induction Hypothesis F.1 holds at t = 0. Now we suppose Induction Hypothesis F.1 holds for all
iterations ≤ t− 1, and prove it holds at t.

By Lemma F.3, we have α
(t−1)
k ≥ 0. Thus A(t)

k = A
(t−1)
k + ηα

(t−1)
k ≥ 0. Moreover, combining Lemmas F.3 and F.4, we

obtain A
(t)
k −A

(0)
k ≤ O(

|B(t)
k,1−B

(0)
k,1|

K0.02 ) which further implies A(t)
k ≤ O(log(K)/K0.02).

For m ̸= 1, k, by Lemma F.5, we have

|B(t)
k,m| ≤ O(

A
(t)
k −A

(0)
k + |B(t)

k,1 −B
(0)
k,1|

K
) ≤ O(log(K)/K).

The proof for the second statement is deferred to the next phase (Lemma F.7).
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F.3. Phase II: Switching of Leading Influence
During phase I, B(t)

k,1 significantly decreases, resulting in a decrease in Attn
(t)
1 , while other Attn(t)

n with n > 1 remain

approximately at the order of Θ
(

1
K

)
. By the end of phase I, (Attn

(t)
1 )2 decreases to O( 1

K0.98 ), leading to a decrease in
|β(t)

k,1| as it approaches towards α(t)
k . At this point, phase II begins. Shortly after entering this phase, the prior dominant role

of the decrease of B(t)
k,1 in learning dynamics diminishes as |β(t)

k,1| reaches the same order of magnitude as α(t)
k .

For k > 1, define

T2,k ≜ max{t > T1,k : A
(t)
k −B

(t)
k,1 ≤ 1.01 log(K)}.

We next state the following induction hypothesis which holds during phase II.

Induction Hypothesis F.2. For T1,k < t ≤ T2,k, the following holds

a. A
(t)
k is monotonically increasing and A

(t)
k ∈ [0, 0.52 log(K)];

b. B
(t)
k,1 is monotonically decreasing and B

(t)
k,1 ∈ [−0.51 log(K),−0.49 log(K)];

c. |B(t)
k,n| = O(

A
(t)
k +|B(t)

k,1|
K ) for any n ̸= 1, k.

F.3.1. TECHNICAL LEMMAS

We first introduce several technical lemmas that will be used for the proof of Induction Hypothesis F.2.

Lemma F.7. Suppose Induction Hypothesis F.2 holds at iteration T1,k < t ≤ T2,k. If xquery = vk and Pinput ∈ E∗
imbal, the

following holds

1. Attn
(t)
k ∈ [Ω

(
1
K

)
, O( 1

K0.48 )];

2. Attn
(t)
1 ∈ [Ω

(
1

K0.51

)
, O
(

1
K0.49

)
];

3. 1−Attn
(t)
1 −Attn

(t)
k ≥ Ω(1).

Proof. Since xquery = vk, and |Vk| > 0 for Pinput ∈ E∗
imbal, we have

Attn
(t)
k =

|Vk|evk
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vk| exp(A(t)

k )∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis F.2,

• for m ̸= 1, k, we have e−O(
log(K)

K )−0.52 log(K) ≤ exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K)
K );

• for m = 1, e−1.01 log(K) ≤ exp(B
(t)
k,1 −A

(t)
k ) ≤ e0.

Combining with the fact that
∑

m ̸=k
|Vm|
|Vk| = Θ(K) for Pinput ∈ E∗

imbal, we obtain

Attn
(t)
k ≥ Ω

(
1

K

)
.

Moreover, since N−|V1|
|Vk| is still at the order of Θ(K), we have

Attn
(t)
k ≤ 1

e−O(
log(K)

K )−0.52 log(K)(N−|V1|
|Vk| − 1) + e−1.01 log(K) |V1|

|Vk| + 1
≤ O

(
1

K0.48

)
.

42



In-context Convergence of Transformers

We next analyze Attn
(t)
1 as

Attn
(t)
1 =

|V1| exp(B(t)
k,1)∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )

=
1∑

m ̸=1,k
|Vm|
|Vk| exp(B

(t)
k,m −B

(t)
k,1) +

|Vk|
|V1| exp(A

(t)
k −B

(t)
k,1) + 1

.

By Induction Hypothesis F.2,

• for m ̸= 1, k, we have

e0.49 log(K)−O(
log(K)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,1) ≤ e0.51 log(K)+O(

log(K)
K );

• for m = 1, e0.49 log(K) ≤ exp(A
(t)
k −B

(t)
k,1) ≤ e1.01 log(K).

Thus, we obtain

Attn
(t)
1 ≥ 1

e0.51 log(K)+O(
log(K)

K )(N−|Vk|
|V1| − 1) + e1.01 log(K)+O(

log(K)
K ) |Vk|

|V1| + 1
≥ Ω

(
1

K0.51

)
.

On the other hand,

1−Attn
(t)
1 ≥

e0.49 log(K)−O(
log(K)

K )( N
|V1| − 1)

e0.49 log(K)−O(
log(K)

K )( N
|V1| − 1) + 1

≥ Ω(1).

Thus, we obtain

1−Attn
(t)
k −Attn

(t)
1 ≥ Ω(1).

Lemma F.8. Suppose Induction Hypothesis F.2 holds at iteration T1,k < t ≤ T2,k. If xquery = vk and Pinput ∈ E∗
imbal, for

n ̸= 1, k, the following holds

Attn(t)
n = O

(
1−Attn

(t)
k −Attn

(t)
1

K

)
.

Proof. Since xquery = vk, we have

Attn(t)
n =

|Vn|evn
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

.

By Induction Hypothesis F.2, for m,n ̸= 1,

e−O(
log(K)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)
K ).

Combining with the fact that |Vm|
|Vn| = Θ(1) for Pinput ∈ E∗

imbal, we obtain

Attn(t)
n

1−Attn
(t)
k −Attn

(t)
1

=
|Vn| exp(B(t)

k,n)∑
m ̸=1,k |Vm| exp(B(t)

k,m)
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=
1∑

m ̸=k,1
|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

≤ O

(
1

K

)
.

F.3.2. CONTROLLING GRADIENT UPDATES IN PHASE II

Lemma F.9. Given k > 1, if Induction Hypothesis F.2 holds at iteration T1,k < t ≤ T2,k, then α
(t)
k ≥ 0 and satisfies

α
(t)
k ≥ Ω

(
1

K2

)
.

Proof. By the gradient expression in Lemma D.3, we have

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


= E

1{xquery = vk ∩ E∗
imbal}Attn

(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


≥ pk · P(P ∈ E∗

imbal)E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ E∗
imbal


≥ Ω

(
1

K2

)
,

where the last inequality follows from Lemma D.6, Lemma F.7 and our choice of pk.

Lemma F.10. Given k > 1, if Induction Hypothesis F.2 holds at iteration Tk,1 ≤ t ≤ Tk,2, then β
(t)
k,1 < 0 and satisfies

|β(t)
k,1| ∈

[
Ω

(
1

K2.02

)
, O

(
1

K1.97

)]
.

Proof. Following the computations similar to those in Lemma F.4, we have∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )

≤ −(1−Attn
(t)
k −Attn

(t)
1 )(Attn

(t)
1 +Attn

(t)
k − max

m ̸=1,k
Attn(t)

m ).

Therefore,

β
(t)
k,1

≤ E

1{xquery = vk ∩ E∗
imbal}Attn

(t)
1 ·

∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn
(t)
1 ·

∑
m ̸=k

Attn(t)
m

2


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(a)

≤ pk · P(Pinput ∈ E∗
imbal) · E

[
−Ω(

(Attn
(t)
1 +Attn

(t)
k −maxm ̸=1,k Attn(t)

m )

K0.51
) | {xquery = vk} ∩ E∗

imbal

]
+ pk · P(Pinput ∈ E∗

imbal
c)

(b)

≤ pk ·
(
−Ω

(
1

K1.02

))
+ 3pk exp

(
− c2imN

25K2

)
= −Ω

(
1

K2.02

)
,

where (a) follows from Lemma F.7, (b) follows from Lemma F.7 and Lemma D.6, and the last inequality holds since

1

K1.02
≫ exp

(
− c2imN

25K2

)
.

Moreover,

−β
(t)
k,1 ≤E

[
1{xquery = vk ∩ E∗

imbal}Attn
(t)
1 ·

(
Attn

(t)
1 +Attn

(t)
k (1−Attn

(t)
k )
)]

+ E
[
1{xquery = vk ∩ E∗

imbal
c}Attn

(t)
1 ·

(
Attn

(t)
1 +Attn

(t)
k (1−Attn

(t)
k )
)]

(a)

≤pk · P(Pinput ∈ E∗
imbal) · E

[
Attn

(t)
1 ·O(Attn

(t)
1 +Attn

(t)
k ) | {xquery = vk} ∩ E∗

imbal

]
+ 2pk · P(Pinput ∈ E∗

imbal
c)

(b)

≤pk ·
(
O

(
1

K0.97

))
+ 6pk exp

(
− c2imN

25K2

)
=O

(
1

K1.97

)
,

where (a) follows because Attn
(t)
1 +Attn

(t)
k (1−Attn

(t)
k ) is upper-bounded by 2 on the event {Pinput ∈ E∗

imbal
c}, and (b)

follows from Lemma F.7.

Lemma F.11. If Induction Hypothesis F.2 holds at iteration T1,k < t ≤ T2,k, for any n ̸= 1, k, β(t)
k,n satisfies

|β(t)
k,n| ≤ O

(
α
(t)
k − β

(t)
k,1

K

)
.

Proof. By the gradient expression in Lemma D.3, we have

β
(t)
k,n ≤ E

1{xquery = vk}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2

 , (24)

−β
(t)
k,n ≤ E

[
1{xquery = vk}Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)]

. (25)

To further bound Equation (24), we have

β
(t)
k,n ≤ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal}Attn(t)

n ·

∑
m ̸=k

Attn(t)
m

2


+ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal

c}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2


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≤pk · P(Pinput ∈ E∗
imbal) · E

[
Attn(t)

n ·
(
Attn

(t)
1

2
+O

(
1

K

)) ∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ pk · P(Pinput ∈ E∗

imbal
c)

≤O

(
1

K3

)
+O

(
|β(t)

k,1|
K

)
+ 3pk exp

(
− c2imN

25K2

)

≤O

(
1

K3

)
+O

(
|β(t)

k,1|
K

)
.

To further bound Equation (25), we have

−β
(t)
k,n

≤ pkE
[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)
| {xquery = vk} ∩ E∗

imbal

]
+ 2pk · P(E∗

imbal
c)

=2pk · P(E∗
imbal

c) + pk · P(E∗
imbal)E

[
O

(
1−Attn

(t)
k

K

)

·

(
O

(
1−Attn

(t)
k

K

)
+Attn

(t)
k (1−Attn

(t)
k )

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]

≤pk · P(E∗
imbal)E

[
O

(
Attn

(t)
k (1−Attn

(t)
k )2

K

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ 6pk exp

(
− c2imN

25K2

)

≤ O(
α
(t)
k

K
).

Following from the analysis in Lemma F.9, we have

α
(t)
k ≥ Ω

(
1

K2

)
≫ 6 exp

(
− c2imN

25K2

)
.

Thus, we obtain

|β(t)
k,n| ≤ O

(
α
(t)
k − β

(t)
k,1

K

)
.

F.3.3. END OF PHASE II

Lemma F.12. Given k ≥ 2, Induction Hypothesis F.2 holds for all T1,k < t ≤ T2,k = T1,k +O( log(K)K2

η ), and at iteration
t = T2,k + 1, we have

a. A
(T2,k+1)
k ≥ 0.5 log(K);

b. B
(T2,k+1)
k ≥ −0.51 log(K).

Proof. The existence of T2,k = T1,k +O( log(K)K2

η ) directly follows from Lemmas F.9 and F.10.

It is easy to verify that Induction Hypothesis F.2 holds at T1,k + 1. Now we suppose Induction Hypothesis F.2 holds for all
iterations ≤ t− 1, and prove that it holds at t.

For m ̸= 1, k, by Lemma F.11, we have

|B(t)
k,m| ≤ |B(T1,k+1)

k,m |+O(
A

(T2,k)
k −A

(T1,k+1)
k + |B(T2,k)

k,1 −B
(T1,k+1)
k,1 |

K
) ≤ O(log(K)/K).
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Now suppose A
(T2,k+1)
k < 0.5 log(K), then B

(T2,k+1)
k,1 < −0.51 log(K). Denote the first time that B

(t)
k,1 reaches

−0.501 log(K) as T̃ . Note that T̃ < T
(t)
2,k since β

(t)
k,1, the change of B(t)

k,1, satisfies |β(t)
k,1| ≪ log(K). Then for t ≥ T̃ , if

xquery = vk and Pinput ∈ E∗
imbal, the following holds:

1. Attn
(t)
k ∈ [Ω

(
1
K

)
, O( 1

K0.5 )];

2. Attn
(t)
1 ≤ O( 1

K0.501 ).

Therefore, following the analysis similar to those for Lemma F.10, we have

|β(t)
k,1| ≤ E

[
1{xquery = vk ∩ E∗

imbal}Attn
(t)
1 ·

(
Attn

(t)
1 +Attn

(t)
k (1−Attn

(t)
k )
)]

+ E
[
1{xquery = vk ∩ E∗

imbal
c}Attn

(t)
1 ·

(
Attn

(t)
1 +Attn

(t)
k (1−Attn

(t)
k )
)]

≤pk · P(P ∈ E∗
imbal) · E

[
Attn

(t)
1 ·O(Attn

(t)
1 +Attn

(t)
k ) | {xquery = vk} ∩ E∗

imbal

]
+ 2pk · P(E∗

imbal
c)

≤pk ·
(
O

(
1

K1.002

))
+O

(
α
(t)
k

K0.501

)
+ 6pk exp

(
− c2imN

25K2

)

≤ O

(
α
(t)
k

K0.002

)
,

where the last inequality follows from Lemma F.9.

Since |B(T2,k+1)
k,1 −B

(T̃ )
k,1 | ≥ Ω(log(K)), we have

A
(T2,k+1)
k ≥ |B(T2,k+1)

k,1 −B
(T̃ )
k,1 | · Ω(K

0.002) +A
(T̃ )
k ≫ Ω(K0.002 log(K)),

which contradicts the assumption that A(T2,k+1)
k < 0.5 log(K). Therefore, A(T2,k+1)

k ≥ 0.5 log(K). Noting that once
B

(t)
k,1 drops below −0.501 log(K), it will change much smaller compared to the increase of A(t)

k . Thus, B(T2,k+1)
k,1 ≥

−0.51 log(K).

F.4. Phase III: Growth of Target Feature
After the transition phase, A(t)

k will experience a larger gradient, with the growth of A(t)
k becoming the dominant effect in

this phase. For the k-th feature vk, we define phase III as all iterations T2,k < t ≤ T3,k, where

T3,k ≜ max
{
t > T2,k : A

(t)
k ≤ log(K)

}
.

We state the following induction hypothesis, which will hold throughout phase III.

Induction Hypothesis F.3. For each T2,k < t ≤ T3,k, the following holds:

a. A
(t)
k is monotonically increasing and A

(t)
k ∈ [0.5 log(K), log(K)];

b. B
(t)
k,1 is monotonically decreasing and B

(t)
k,1 ∈ [−0.51 log(K)−O( log(K)

K0.48 ),−0.49 log(K)];

c. |B(t)
k,n| = O(

A
(t)
k +|B(t)

k,1|
K ) for any n ̸= 1, k.

F.4.1. TECHNICAL LEMMAS

We first introduce several useful technical lemmas.

Lemma F.13. Suppose Induction Hypothesis F.3 holds at iteration Tk,2 < t ≤ Tk,3. If xquery = vk and Pinput ∈ E∗
imbal, then

the following holds
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1. Attn
(t)
k = Ω

(
1

K0.5

)
;

2. Attn
(t)
1 ∈ [Ω

(
1

K0.51

)
, O
(

1
K0.49

)
];

3. 1−Attn
(t)
k ≥ Ω(1).

Proof. Since xquery = vk, and |Vk| > 0 for Pinput ∈ E∗
imbal, we have

Attn
(t)
k =

|Vk|evk
⊤Q(t)vk∑

j∈[N ] e
Ex

j
⊤Q(t)vk

=
|Vk| exp(A(t)

k )∑
m ̸=k |Vm| exp(B(t)

k,m) + |Vk| exp(A(t)
k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis F.3, we have

• for m ̸= 1, e−(log(K)+O(
log(K)

K )) ≤ exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K)
K )−0.5 log(K);

• e−(1.51 log(K)+O(
log(K)

K )) ≤ exp(B
(t)
k,1 −A

(t)
k ) ≤ e−1.01 log(K).

Thus,

Attn
(t)
k ≥ 1

eO(
log(K)

K )−0.5 log(K)(N−|V1|
|Vk| − 1) + e−1.01 log(K) |V1|

|Vk| + 1
≥ Ω

(
1

K0.5

)
,

where the second inequality follows from the fact that Pinput ∈ E∗
imbal.

On the other hand,

Attn
(t)
k ≤ 1

e−(log(K)+O(
log(K)

K ))(N−|V1|
|Vk| − 1) + 1

≤ 1

e−1( 1
U im

k

− 1
K ) + 1

.

Thus,

1−Attn
(t)
k ≥

e−(log(K)+O(
log(K)

K ))(N−|V1|
|Vk| − 1) + e−1.01 log(K) |V1|

|Vk|

e−(log(K)+O(
log(K)

K ))(N−|V1|
|Vk| − 1) + e−1.01 log(K) |V1|

|Vk| + 1
≥ Ω(1).

We next analyze Attn
(t)
1 as follows.

Attn
(t)
1 =

|V1| exp(B(t)
k,1)∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )

=
1∑

m ̸=1,k
|Vm|
|Vk| exp(B

(t)
k,m −B

(t)
k,1) +

|Vk|
|V1| exp(A

(t)
k −B

(t)
k,1) + 1

.

By Induction Hypothesis F.3,

• for m ̸= 1, k, we have

e0.49 log(K)−O(
log(K)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,1) ≤ e0.51 log(K)+O(

log(K)
K );

• for m = 1, e1.01 log(K) ≤ exp(A
(t)
k −B

(t)
k,1) ≤ e1.51 log(K)+O(

log(K)
K ).
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Thus,

Attn
(t)
1 ≤ 1

e0.49 log(K)−O(
log(K)

K )(N−|Vk|
|V1| − 1) + e1.01 log(K) |Vk|

|V1| + 1
≤ O

(
1

K0.49

)
.

Attn
(t)
1 ≥ 1

e0(N−|Vk|
|V1| − 1) + e1.51 log(K)+O(

log(K)
K ) |Vk|

|V1| + 1
≥ Ω

(
1

K0.51

)
.

Lemma F.14. Suppose Induction Hypothesis F.3 holds at iteration T2,k < t ≤ T3,k. If xquery = vk and Pinput ∈ E∗
imbal, for

n ̸= 1, k, then the following holds

Attn(t)
n = O

(
1−Attn

(t)
k −Attn

(t)
1

K

)
.

Proof. By Induction Hypothesis F.3, we have

e−O(
log(K)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)
K ).

Combining with the fact that |Vm|
|Vn| = Θ(1) when Pinput ∈ E∗

imbal, we have

Attn(t)
n

1−Attn
(t)
k −Attn

(t)
1

=
|Vn| exp(B(t)

k,n)∑
m ̸=1,k |Vm| exp(B(t)

k,m)
=

1∑
m ̸=1,k

|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

≤ O

(
1

K

)
.

F.4.2. CONTROLLING GRADIENT UPDATES IN PHASE III

Lemma F.15. At each iteration T2,k < t ≤ T3,k, if Induction Hypothesis F.3 holds, then α
(t)
k ≥ 0 and satisfies

α
(t)
k ≥ Ω

(
1

K1.5

)
.

Proof. By the gradient expression in Lemma D.3, we have

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


= E

1{xquery = vk ∩ E∗
imbal}Attn

(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


≥ pk · P(Pinput ∈ E∗

imbal)E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ E∗
imbal


≥ pk · P(Pinput ∈ E∗

imbal)E
[
Attn

(t)
k ·(1−Attn

(t)
k )2 | {xquery = vk} ∩ E∗

imbal

]
≥ Ω

(
1

K1.5

)
where the last inequality follows from Lemma D.6, Lemma F.13 and our choice of pk.
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Lemma F.16. Given k > 1, if Induction Hypothesis F.3 holds at iteration Tk,2 ≤ t ≤ Tk,3, then β
(t)
k,1 < 0 satisfies

|β(t)
k,1| ≤

[
Ω

(
1

K2.01

)
, O

(
α
(t)
k

K0.48

)]
.

Proof. Following the computations similar to those for Lemma F.4, we have∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )

≤ −(1−Attn
(t)
k −Attn

(t)
1 )(Attn

(t)
1 +Attn

(t)
k − max

m ̸=1,k
Attn(t)

m ).

Therefore,

β
(t)
k,1 ≤ E

1{xquery = vk ∩ E∗
imbal}Attn

(t)
1 ·

∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn
(t)
1 ·

∑
m ̸=k

Attn(t)
m

2


(a)

≤ pk · P(Pinput ∈ E∗
imbal

c) + pk · P(Pinput ∈ E∗
imbal)

· E

[
−Ω(

(Attn
(t)
1 +Attn

(t)
k −maxm ̸=1,k Attn(t)

m )

K0.51
)

∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
(b)

≤ pk ·
(
−Ω

(
1

K1.01

))
+ 3pk exp

(
− c2imN

25K2

)
= −Ω

(
1

K2.01

)
,

where both (a) and (b) follow from Lemma F.13, and the last inequality holds since

1

K1.01
≫ exp

(
− c2imN

25K2

)
.

Moreover, we have

−β
(t)
k,1 ≤ E

[
1{xquery = v1 ∩ Pinput ∈ E∗

imbal}Attn
(t)
1 · (Attn1 +Attnk(1−Attnk))

]
+ E

[
1{xquery = vk ∩ Pinput ∈ E∗

imbal
c}Attn

(t)
1 · (Attn1 +Attnk(1−Attnk))

]
≤pk · P(Pinput ∈ E∗

imbal) · E [Attn1 ·O(Attn1 +Attnk) | {xquery = vk} ∩ E∗
imbal]

+ 2pk · P(Pinput ∈ E∗
imbal

c)

≤pk ·
(
O

(
1

K0.98

))
+O

(
α
(t)
k

K0.49

)
+ 6pk exp

(
− c2imN

25K2

)

≤ O

(
α
(t)
k

K0.48

)
where the last inequality follows from Lemma F.15.

Lemma F.17. If Induction Hypothesis F.3 holds at iteration T2,k < t ≤ T3,k, then for any n ̸= 1, k, β(t)
k,n satisfies

|β(t)
k,n| ≤ O

(
α
(t)
k − β

(t)
k,1

K

)
.
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Proof. By the gradient computation in Lemma D.3, we have

β
(t)
k,n ≤ E

1{xquery = vk}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2

 , (26)

−β
(t)
k,n ≤ E

[
1{xquery = vk}Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)]

. (27)

We further bound Equation (26) as

β
(t)
k,n ≤ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal}Attn(t)

n ·

∑
m ̸=k

Attn(t)
m

2


+ E

1{xquery = vk ∩ Pinput ∈ E∗
imbal

c}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2


≤pk · P(Pinput ∈ E∗

imbal) · E
[
Attn(t)

n ·
(
Attn

(t)
1

2
+O

(
1

K

)) ∣∣∣∣{xquery = vk} ∩ Pinput ∈ E∗
imbal

]
+ pk · P(Pinput ∈ E∗

imbal
c)

≤O

(
1

K3

)
+O

(
|β(t)

k,1|
K

)
+ 6pk exp

(
− c2imN

25K2

)

≤O

(
1

K3

)
+O

(
|β(t)

k,1|
K

)
.

We then further bound Equation (27) as

−β
(t)
k,n ≤ pkE

[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)
| {xquery = vk} ∩ Pinput ∈ E∗

imbal

]
+ pk · P(Pinput ∈ E∗

imbal
c)

=pk · P(Pinput ∈ E∗
imbal

c) + pk · P(Pinput ∈ E∗
imbal)E

[
O

(
1−Attn

(t)
k

K

)

·

(
O

(
1−Attn

(t)
k

K

)
+Attn

(t)
k (1−Attn

(t)
k )

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]

≤pk · P(E∗
imbal)E

[
O

(
Attn

(t)
k (1−Attn

(t)
k )2

K

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ 6pk exp

(
− c2imN

25K2

)

≤ O

(
α
(t)
k

K

)
.

Following from the analysis in Lemma F.15, we have

α
(t)
k ≥ Ω

(
1

K1.5

)
.

Thus, we obtain

|β(t)
k,n| ≤ O

(
α
(t)
k − β

(t)
k,1

K

)
.
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F.4.3. END OF PHASE III

Lemma F.18. Given k > 1, Induction Hypothesis F.3 holds for all T2,k < t ≤ T3,k = T2,k + O( log(K)K1.5

η ), and at
iteration t = T3,k + 1, we have

a. A
(T3,k+1)
k ≥ log(K);

b. Attnk = Ω(1) if xquery = vk and Pinput ∈ E∗
imbal.

Proof. The existence of T3,k = T2,k +O( log(K)K1.5

η ) directly follows from Lemma F.15.

It is easy to verify Induction Hypothesis F.3 holds at t = T2,k + 1. Now we suppose Induction Hypothesis F.3 holds for all
iterations ≤ t− 1, and prove it holds at t.

By Lemma F.15, we have α
(t−1)
k ≥ 0. Thus A(t)

k = A
(t−1)
k + ηα

(t−1)
k ≥ 0.5 log(K). Morover, by Lemma F.16, we have

|B(t)
k,1 −B

(T2,k+1)
k,1 | ≤ O(

A
(t)
k −A

(T2,k+1)

k

K0.48 ) which immediately implies that

B
(t)
k,1 ≥ −O(log(K)/K0.48)− 0.51 log(K).

For m ̸= 1, k, by Lemma F.17, we have

|B(t)
k,m| ≤ O(

A
(t)
k −A

(T2,k+1)
k + |B(t)

k,1 −B
(T2,k+1)
k,1 |

K
) ≤ O(log(K)/K).

The proof for the second statement is deferred to the next phase (Lemma F.19).

F.5. Phase IV: Convergence
At t = T3,k + 1, the desired attention structure for the query token associated with feature vk has already been achieved. In
this final phase, we establish that these structures, including each under-represented feature, indeed represent the solutions
toward which the algorithm converges.

Given any 0 < ϵ < 1, for k ≥ 2, define

T ϵ
4,k ≜ max

{
t > T3,k : A

(t)
k ≤ log

((
e(1− Lim

1 )K + U im
1 K0.51

Lim
k

− 1

)((
3

ϵ

) 1
2

− 1

))}
.

Induction Hypothesis F.4. For T3,k < t ≤ T ϵ
4,k, suppose polylog(K) ≫ log( 1ϵ ). Then the following holds.

a. A
(t)
k is monotonically increasing and A

(t)
k ∈ [log(K), O(log(K/ϵ))];

b. B
(t)
k,1 is monotonically decreasing and

B
(t)
k,1 ∈

[
−0.51 log(K)−O

(
log(K)

K0.48

)
,−0.49 log(K)

]

c. B
(t)
k,n is monotonically decreasing and |B(t)

k,n| = O( log(K/ϵ)
K ) for any n ̸= 1, k.

F.5.1. TECHNICAL LEMMAS

We first introduce several useful technical lemmas.

Lemma F.19. Suppose Induction Hypothesis F.4 holds at iteration T3,k < t ≤ T ϵ
4,k. If xquery = vk and Pinput ∈ E∗

imbal, then
the following holds.

1. Attn
(t)
k = Ω(1);

2. (1−Attn
(t)
k )2 ≥ Ω(ϵ) = Ω(exp (− polylog(K))).
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Proof. Since xquery = vk, we have

Attn
(t)
k =

|Vk| exp(A(t)
k )∑

m ̸=k |Vm| exp(B(t)
k,m) + |Vk| exp(A(t)

k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis F.4, we have

• for m ̸= 1, k:

exp(B
(t)
k,m −A

(t)
k ) ≤ eO(

log(K/ϵ)
K )−log(K) ≤ eO(

log(K)+polylog(K)
K )−log(K) ≤ O

(
1

K

)
.

• for m = 1, exp(B(t)
k,1 −A

(t)
k ) ≤ O( 1

K1.49 ).

Therefore,

Attn
(t)
k ≥ 1

O
(

1
K

)
(N−|V1|

|Vk| − 1) +O( 1
K1.49 )

|V1|
|Vk| + 1

≥ Ω(1).

On the other hand, we have

1−Attn
(t)
k =

∑
m ̸=k

|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k )∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

(a)

≥
exp(minm ̸=1,k B

(t)
k,m −A

(t)
k )(N−|V1|

|Vk| − 1) + exp(B
(t)
k,1 −A

(t)
k ) |V1|

|Vk|

exp(minm ̸=1,k B
(t)
k,m −A

(t)
k )(N−|V1|

|Vk| − 1) + exp(B
(t)
k,1 −A

(t)
k ) |V1|

|Vk| + 1

≥
exp(minm ̸=k B

(t)
k,m −A

(t)
k )(

(1−U im
1 )K

U im
k

− 1) + exp(B
(t)
k,1 −A

(t)
k ) · Lim

1

U im
k

exp(minm ̸=k B
(t)
k,m −A

(t)
k )(

(1−U im
1 )K

U im
k

− 1) + exp(B
(t)
k,1 −A

(t)
k ) · Lim

1

U im
k

+ 1

=
(
(1−U im

1 )K

U im
k

− 1 +
Lim

1 K0.49

U im
k

) exp(−A
(t)
k )

(
(1−U im

1 )K

U im
k

− 1 +
Lim

1 K0.49

U im
k

) exp(−A
(t)
k ) + 1

≥ Ω(ϵ
1
2 ),

where (a) follows from the fact that x
1+x increases w.r.t. x > 0.

Lemma F.20. Suppose Induction Hypothesis F.4 holds at iteration T3,k < t ≤ T ϵ
4,k. If xquery = vk and Pinput ∈ E∗

imbal, then
the following holds.

1. Attn(t)
n = Θ

(
1−Attn

(t)
k

K

)
for n ̸= 1, k;

2. Attn
(t)
1 ∈

[
Ω(

1−Attn
(t)
k

K0.51 ), O

(
1−Attn

(t)
k

K0.49

)]
.

Proof. We first have

Attn(t)
n

1−Attn
(t)
k

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m)
.

If n ̸= 1, by Induction Hypothesis F.4, we have
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• for m ̸= 1, k, e−O(
log(K)−log(ϵ)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

log(K)−log(ϵ)
K ),

• for m = 1, e−0.51 log(K)−O(
log(K/ϵ)

K ) ≤ exp(B
(t)
k,1 −B

(t)
k,n) ≤ 0.

Note that when Pinput ∈ E∗
imbal, we have |Vm|

|Vn| = Θ(1), and |V1|
|Vn| = Θ(K). Then combining with the fact that − log(ϵ) ≪

polylog(K), we obtain

Attn(t)
n

1−Attn
(t)
k

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m)
=

1∑
m ̸=k

|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

= Θ

(
1

K

)
.

For n = 1, by Induction Hypothesis F.4, we have

e0.49 log(K)−O(
log(K/ϵ)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,1) ≤

0.51 log(K)+O(
log(K/ϵ)

K ),

for m ̸= 1. Combining with the fact that |Vm|
|V1| = Θ

(
1
K

)
when Pinput ∈ E∗

imbal, and − log(ϵ) ≪ polylog(K), we have

Attn
(t)
1

1−Attn
(t)
k

=
1∑

m ̸=k
|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

≤ O(
1

K · 1
K · e0.49 log(K)−O(

log(K/ϵ)
K ) + 1

) = O

(
1

K0.49

)
;

and

Attn
(t)
1

1−Attn
(t)
k

=
1∑

m ̸=k
|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

≥ O(
1

K · 1
K · e0.51 log(K)+O(

log(K/ϵ)
K ) + 1

) ≥ Ω

(
1

K0.51

)
.

F.5.2. CONTROLLING GRADIENT UPDATES IN PHASE IV

Lemma F.21. At each iteration T3,k < t ≤ T ϵ
4,k, if Induction Hypothesis F.4 holds, then α

(t)
k ≥ 0 and satisfies

α
(t)
k ≥ Ω

( ϵ

K

)
.

Proof. The analysis is similar to that for Lemma F.15, but we need to be more careful about the lower bound of 1−Attn
(t)
k .

By the gradient expression, we have

α
(t)
k = E

1{xquery = vk}Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2


≥ pk · P(P ∈ E∗)E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

 | {xquery = vk} ∩ E∗


≥ pk · P(P ∈ E∗)E

[
Attn

(t)
k ·(1−Attn

(t)
k )2 | {xquery = vk} ∩ E∗

]
≥ Ω

( ϵ

K

)
where the last inequality follows from Lemma F.19 and our choice of pk.

Lemma F.22. At each iteration T3,k < t ≤ T ϵ
4,k, if Induction Hypothesis F.4 holds, then given k ≥ 2, β(t)

k,1 satisfies

−O

(
α
(t)
k

K0.49

)
≤ β

(t)
k,n ≤ 0.
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Proof. Following the computations similar to those for Lemma F.4, we have∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )

≤ −(1−Attn
(t)
k −Attn

(t)
1 )(Attn

(t)
1 +Attn

(t)
k − max

m ̸=1,k
Attn(t)

m ).

Therefore,

β
(t)
k,1 ≤ E

1{xquery = vk ∩ E∗
imbal}Attn

(t)
1 ·

∑
m ̸=k

Attn(t)
m

2
−Attn

(t)
1 −Attn

(t)
k (1−Attn

(t)
k )


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn
(t)
1 ·

∑
m ̸=k

Attn(t)
m

2


(a)

≤ pk · P(Pinput ∈ E∗
imbal) · E

[
−Ω(

(1−Attn
(t)
k )2

K0.51
)

∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ pk · P(E∗

imbal
c)

≤pk ·
(
−Ω

( ϵ

K0.51

))
+ 3pk exp

(
− c2imN

25K2

)
< 0.

where (a) follows from Lemma F.20, and the last inequality holds since

ϵ

K0.51
≥ exp(− polylog(K))

K0.51
≫ exp

(
− c2imN

25K2

)
.

Moreover,

−β
(t)
k,1 ≤ E

[
1{xquery = vk ∩ E∗

imbal}Attn
(t)
1 ·

(
Attn

(t)
1 +Attn

(t)
k (1−Attn

(t)
k )
)]

+ E
[
1{xquery = vk ∩ E∗

imbal
c}Attn

(t)
1 ·

(
Attn

(t)
1 +Attn

(t)
k (1−Attn

(t)
k )
)]

≤pk · P(Pinput ∈ E∗
imbal) · E

[
·O(Attn

(t)
1 (1−Attn

(t)
k )) | {xquery = vk} ∩ E∗

imbal

]
+ 2pk · P(E∗

imbal
c)

≤O

(
α
(t)
k

K0.49

)
+ 6pk exp

(
− c2imN

25K2

)

= O

(
α
(t)
k

K0.49

)
.

Lemma F.23. At each iteration T3,k < t ≤ T ϵ
4,k, if Induction Hypothesis F.4 holds, then given k ≥ 2, for any n ̸= 1, k,

β
(t)
k,n satisfies

−O

(
α
(t)
k

K

)
≤ β

(t)
k,n ≤ 0.
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Proof. Note that conditioned on the event {xquery = vk} ∩ E∗
imbal, by Lemmas F.19 and F.20, we have Attn

(t)
k = Ω(1),

maxm ̸=k Attnm = O
(

1
K0.49

)
. Thus, we obtain∑

m ̸=k

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k ) ≤ max

m ̸=k
Attn(t)

m

∑
m ̸=k

Attn(t)
m −Attn

(t)
k (1−Attn

(t)
k )

= −(1−Attn
(t)
k )(Attn

(t)
k −max

m ̸=k
Attn(t)

m )

≤ −Ω(1−Attn
(t)
k ). (28)

Therefore,

β
(t)
k,n ≤ E

1{xquery = vk ∩ E∗}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
k (1−Attn

(t)
k )


+ E

1{xquery = vk ∩ E∗
imbal

c}Attn(t)
n ·

∑
m ̸=k

Attn(t)
m

2


≤pk · P(Pinput ∈ E∗

imbal) · E
[
−Ω(

(1−Attnk)
2

K
)

∣∣∣∣{xquery = vk} ∩ E∗
]
+ pk · P(Pinput ∈ E∗

imbal
c)

≤pk ·
(
−Ω

( ϵ

K

))
+ 3pk exp

(
− c2imN

25K2

)
≤0,

where the last inequality holds since

ϵ

K
≫ exp(− polylog(K))

K
≫ exp

(
− c2imN

25K2

)
.

Moreover, we have

−β
(t)
k,n ≤ pkE

[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
k (1−Attn

(t)
k )
)
| {xquery = vk} ∩ E∗

imbal

]
+ 2pkP(E∗

imbal
c)

≤ pkE

[
Θ(

1−Attn
(t)
k

K
) ·O

(
Attn

(t)
k (1−Attn

(t)
k )
) ∣∣∣∣{xquery = vk} ∩ E∗

imbal

]

+ 6pk exp

(
− c2imN

25K2

)
= pkE

[
O

(
Attn

(t)
k (1−Attn

(t)
k )2

K

)∣∣∣∣{xquery = vk} ∩ E∗
imbal

]
+ 6pk exp

(
− c2imN

25K2

)

≤ O

(
α
(t)
k

K

)
.

F.5.3. END OF PHASE IV

Lemma F.24. Given k > 1, and 0 < ϵ < 1, suppose polylog(K) ≫ log( 1ϵ ). Then Induction Hypothesis F.4 holds for all

T3,k < t ≤ T ϵ
4,k = T3,k +O(K log(Kϵ−

1
2 )

ηϵ ), and at iteration t = T ϵ
4,k + 1, we have

1. L̃k(θ
T ϵ
4,k+1) < ϵ

2 ;

2. If xquery = vk and Pinput ∈ E∗
imbal, we have (1−Attn

(T ϵ
4,k+1)

k )2 ≤ O(ϵ).
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Proof. The existence of T ϵ
4,k = T3,k +O(K log(Kϵ−

1
2 )

ηϵ ) directly follows from Lemma F.21.

It is easy to verify Induction Hypothesis F.4 holds at t = T3,k + 1. Now we suppose Induction Hypothesis F.4 holds for all
iterations ≤ t− 1, and prove it holds at t.

By Lemma F.21, we have α
(t−1)
k ≥ 0. Thus A(t)

k = A
(t−1)
k + ηα

(t−1)
k ≥ log(K). Moreover, by Lemma F.22, we have

|B(t)
k,1 −B

(T3,k+1)
k,1 | ≤ O(

A
(t)
k −A

(T3,k+1)
k

K0.49
),

which immediately implies

B
(t)
k,1 ≥ −O(A

(t)
k /K0.49)−O(log(K)/K0.48)− 0.51 log(K).

For m ̸= 1, k, by Lemma F.23, we have

|B(t)
k,m −B

(T3,k+1)
k,m | ≤ O(

A
(t)
k −A

(T3,k+1)
k

K
) ≤ O(log(K/ϵ)/K).

Thus
|B(t)

k,m| ≤ O(log(K/ϵ)/K) +O(log(K)/K) = O(log(K/ϵ)/K).

At iteration t = T ϵ
4,k + 1, we have

A
(t)
k ≥ log

((
e(1− Lim

1 )K + U im
1 K0.51

Lim
k

− e

)((
3

ϵ

) 1
2

− 1

))
.

Thus when {xquery = vk} ∩ {Pinput ∈ E∗
imbal}, we obtain

1−Attn
(t)
k =

∑
m ̸=k

|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k )∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

≤
exp(maxm ̸=1,k B

(t)
k,m −A

(t)
k )(N−|V1|

|Vk| − 1) + exp(B
(t)
k,1 −A

(t)
k ) |V1|

|Vk|

exp(maxm ̸=1,k B
(t)
k,m −A

(t)
k )(N−|V1|

|Vk| − 1) + exp(B
(t)
k,1 −A

(t)
k ) |V1|

|Vk| + 1

≤
exp(1−A

(t)
k )(

(1−Lim
1 )K

Lim
k

− 1) + exp(−0.49 log(K)−A
(t)
k )

U im
1 K

Lim
k

exp(1−A
(t)
k )(

(1−Lim
1 )K

Lim
k

− 1) + exp(−0.49 log(K)−A
(t)
k )

U im
1 K

Lim
k

+ 1

=

(
(
e(1−Lim

1 )K+U im
1 K0.51

Lk
− e)

)
exp(−A

(t)
k )(

(
e(1−Lim

1 )K+U im
1 K0.51

Lim
k

− e)
)
exp(−A

(t)
k ) + 1

≤
(( 3ϵ )

1
2 − 1)−1

(( 3ϵ )
1
2 − 1)−1 + 1

= (ϵ/3)
1
2 .

We further derive

L̃k(θ
(t)) =

1

2
E

1{Pinput ∈ E∗
imbal}

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣xquery = vk


≤ 1

2
P (Pinput ∈ E∗

imbal) · E
[(

O

(
1

K0.49

)
+ 1

)
(1−Attn

(t)
k )2

∣∣∣∣xquery = vk ∩ Pinput ∈ E∗
imbal

]
≤ 1

2

(
1 +O

(
1

K0.49

))
· ϵ
3
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≤ ϵ

2
.

F.6. Proof of Theorem 3.3 for Under-represented Features
Theorem F.25 (Restatement of Theorem 3.3 for Under-represented Features). Suppose p1 = Θ(1) and pk = Θ

(
1
K

)
for

2 ≤ k ≤ K. For any 0 < ϵ < 1, suppose N ≥ poly(K), and polylog(K) ≫ log( 1ϵ ). We apply GD to train the loss
function given in Equation (4). Then the following results hold.

1. The prediction error for under-represented feature converges: for vk with 2 ≤ k ≤ K, with at most Tk = O( log(K)K2

η +

K log
(
Kϵ−

1
2

)
ϵη ) GD iterations, Lk(θ

(Tk)) ≤ L∗
k + ϵ, where L∗

k = Θ(e−poly(K)) is the global minimum of Equation (6);

2. Attention score concentrates: for each 2 ≤ k ≤ K, if the query token is vk, then after Tk iterations, with probability
at least 1 − e−Ω(poly(K)), the one-layer transformer nearly “pays all attention” to input tokens featuring vk: (1 −
Attn

(Tk)
k )2 ≤ O(ϵ).

Proof. The first statement is obtained by letting Tk = T ϵ
4,k+1, and combining Lemma F.24, Lemma D.10 and Lemma D.11,

which lead to

Lk(θ
(Tk))− L∗

k ≤ Lk(θ
(Tk))− Llow

k ≤ L̃k(θ
(Tk)) + 3 exp

(
− c2imN

25K2

)
< ϵ.

The second statement directly follows from Lemma F.24.
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G. Analysis for Imbalanced Case: Dominant Feature (Proof of Theorem 3.3 Part II)
In this section, we delve into the analysis of prediction error when the query token features the dominant feature v1. The
training dynamics for the dominant feature v1 are relatively straightforward, comprising only a single phase.

Note that at the beginning t = 0, we already have the following lemma.

Lemma G.1. If xquery = v1 and Pinput ∈ E∗
imbal, at t = 0, we have Attn

(0)
1 = Ω(1), Attn

(0)
k = O

(
1
K

)
for k > 1.

Thus, the learning process directly enters the convergence phase, which is defined as follows. Given any 0 < ϵ < 1, define

T ϵ
1,∗ ≜ max

{
t ≥ 0 : A

(t)
1 −max

m ̸=1
B

(t)
1,m ≤ log

((
1

Lim
1

− 1

)((
2

ϵ

) 1
2

− 1

))}
.

Induction Hypothesis G.1. For 0 ≤ t ≤ T ϵ
1,∗, suppose polylog(K) ≫ log( 1ϵ ). Then the following holds.

a. A
(t)
1 is monotonically increasing and A

(t)
1 ∈ [0, O(log(1/ϵ))];

b. B
(t)
k,n is monotonically decreasing and −O(

A
(t)
1

K ) ≤ B
(t)
1,n ≤ 0 for any n ̸= 1.

G.1. Technical Lemmas
We first introduce several useful technical lemmas.

Lemma G.2. Suppose Induction Hypothesis G.1 holds at iteration 0 < t ≤ T ϵ
1,∗. If xquery = v1 and E∗

imbal ∈ Pinput, then the
following holds

1. Attn
(t)
1 = Ω(1);

2. (1−Attn
(t)
1 )2 ≥ Ω(ϵ) = Ω(exp (− polylog(K))).

Proof. Since xquery = v1, we have

Attn
(t)
1 =

|V1| exp(A(t)
k )∑

m ̸=1 |Vm| exp(B(t)
1,m) + |V1| exp(A(t)

k )

=
1∑

m ̸=k
|Vm|
|Vk| exp(B

(t)
k,m −A

(t)
k ) + 1

.

By Induction Hypothesis G.1, we have

Attn
(t)
1 ≥ 1∑

m ̸=k
|Vm|
|Vk| exp(B

(0)
k,m −A

(0)
k ) + 1

≥ 1

( N
Lim

1 N
− 1) + 1

≥ Ω(1).

On the other hand, by the definition of T ϵ
1,∗, we have

1−Attn
(t)
1 =

∑
m ̸=1

|Vm|
|V1| exp(B

(t)
1,m −A

(t)
k )∑

m ̸=1
|Vm|
|V1| exp(B

(t)
1,m −A

(t)
1 ) + 1

(a)

≥
exp(minm ̸=1 B

(t)
1,m −A

(t)
1 )( N

|V1| − 1)

exp(minm ̸=1 B
(t)
1,m −A

(t)
1 )( N

|V1| − 1) + 1

≥
exp(minm ̸=1 B

(t)
1,m −A

(t)
1 )( 1

U im
1
− 1)

exp(minm ̸=1 B
(t)
1,m −A

(t)
1 )( 1

U im
1
− 1) + 1
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=
exp(maxm ̸=1 B

(t)
1,m −A

(t)
1 −∆B

(t)
1 )( 1

U im
1
− 1)

exp(maxm ̸=1 B
(t)
1,m −A

(t)
1 −∆B

(t)
1 )( 1

U im
1
− 1) + 1

≥
( 1
p1L1

− 1)−1(( 2ϵ )
1
2 − 1)−1 · e−O(

polylog(K)
K )( 1

U im
1
− 1)

( 1
Lim

1
− 1)−1(( 2ϵ )

1
2 − 1)−1( 1

U im
1
− 1)e−O(

polylog(K)
K ) + 1

≥ Ω(ϵ
1
2 ).

where ∆B
(t)
k = maxm ̸=k B

(t)
k,m −minm ̸=k B

(t)
k,m = O(

A
(t)
k

K ), (a) follows from the fact that x
1+x increases w.r.t. x > 0.

Lemma G.3. Suppose Induction Hypothesis G.1 holds at iteration 0 ≤ t ≤ T ϵ
1,∗. If xτ,query = v1 and P ∈ E∗, for n ̸= 1,

the following holds

Attn(t)
n = Θ

(
(1−Attn

(t)
1 )

K

)
.

Proof. We first have

Attn(t)
n =

|Vn| exp(B(t)
1,n)∑

m ̸=k |Vm| exp(B(t)
1,m) + |V1| exp(A(t)

1 )
.

By Induction Hypothesis G.1, we have

e−O(
p log( 1

ϵ
)

K ) ≤ exp(B
(t)
k,m −B

(t)
k,n) ≤ eO(

p log( 1
ϵ
)

K ).

Combining with the fact that − log(ϵ) ≪ polylog(K), we obtain

Attn(t)
n

1−Attn
(t)
k

=
|Vn| exp(B(t)

k,n)∑
m ̸=k |Vm| exp(B(t)

k,m)
=

1∑
m ̸=k

|Vm|
|Vn| exp(B

(t)
k,m −B

(t)
k,n)

= Θ

(
1

K

)
.

G.2. Controlling Gradient Updates

Lemma G.4. At each iteration 0 ≤ t ≤ T ϵ
1,∗, if Induction Hypothesis G.1 holds then α

(t)
1 ≥ 0 and satisfies

α
(t)
k ≥ Ω(ϵ).

Proof. By the gradient expression, we have

α
(t)
1 = E

1{xquery = v1}Attn
(t)
1 ·

∑
m ̸=1

Attn(t)
m

2
+ (1−Attn

(t)
1 )2


≥ p1 · P(Pinput ∈ E∗

imbal)E

Attn
(t)
k ·

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ E∗
imbal


≥ p1 · P(Pinput ∈ E∗

imbal)E
[
Attn

(t)
k ·(1−Attn

(t)
k )2

∣∣∣∣{xquery = vk} ∩ E∗
]

≥ Ω(ϵ)

where the last inequality follows from Lemma G.2 and our choice of p1.
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Lemma G.5. At each iteration 0 ≤ t ≤ T ϵ
1,∗, if Induction Hypothesis G.1 holds, then for any n ̸= 1, β(t)

1,n satisfies

−O

(
α
(t)
1

K

)
≤ β

(t)
1,n ≤ 0.

Proof. Note that conditioned on the event {xquery = v1} ∩ E∗
imbal, by Lemmas G.2 and G.3, we have Attn

(t)
1 = Ω(1), and

maxm ̸=1 Attn(t)
m = O

(
1
K

)
. Thus, we further obtain∑

m ̸=1

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
1 (1−Attn

(t)
1 )

≤ max
m ̸=1

Attn(t)
m

∑
m ̸=1

Attn(t)
m −Attn

(t)
1 (1−Attn

(t)
1 )

= −(1−Attn
(t)
1 )(Attn

(t)
1 −max

m ̸=1
Attn(t)

m )

≤ −Ω(1−Attn
(t)
1 ). (29)

Therefore,

β
(t)
1,n ≤ E

1{xquery = v1 ∩ E∗
imbal}Attn(t)

n ·

∑
m ̸=1

Attn(t)
m

2
−Attn(t)

n −Attn
(t)
1 (1−Attn

(t)
1 )


+ E

1{xquery = v1 ∩ E∗
imbal

c}Attn(t)
n ·

∑
m ̸=1

Attn(t)
m

2


(a)

≤ p1 · P(Pinput ∈ E∗
imbal) · E

[
−Ω

(
(1−Attn

(t)
1 )2

K

)∣∣∣∣{xquery = v1} ∩ E∗
imbal

]
+ p1 · P(E∗

imbal
c)

(b)

≤ p1 ·
(
−Ω

( ϵ

K

))
+ 3p1 exp

(
− c2imN

25K2

)
≤0

where (a) follows from Equation (29) and Lemma G.3, (b) follows from Lemma G.2, and the last inequality holds since

ϵ

K
≫ exp(− polylog(K))

K
≫ exp

(
−c2imp2N

25K2

)
.

Moreover, we have

−β
(t)
1,n ≤ p1E

[
Attn(t)

n ·
(
Attn(t)

n +Attn
(t)
1 (1−Attn

(t)
1 )
)
| {xquery = v1} ∩ E∗

imbal

]
+ 2p1P(E∗

imbal
c)

≤ p1E

[
Θ

(
1−Attn

(t)
1

K

)
·O
(
Attn

(t)
k (1−Attn

(t)
1 )
) ∣∣∣∣{xquery = v1} ∩ E∗

imbal

]
+ 6p1 exp

(
− c2imN

25K2

)

= p1E

[
O

(
Attn

(t)
1 (1−Attn

(t)
1 )2

K

)∣∣∣∣{xquery = v1} ∩ E∗
imbal

]
+ 6p1 exp

(
−c2imp

2N

25K2

)

≤ O

(
α
(t)
1

K

)
.

G.3. End of the Phase

Lemma G.6. Given 0 < ϵ < 1
2 , suppose polylog(K) ≫ log( 1ϵ ). Then Induction Hypothesis G.1 holds for all 0 ≤ t ≤

T ϵ
1,∗ = O( log(ϵ

− 1
2 )

ηϵ ), and at iteration t = T ϵ
1,∗ + 1, we have
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1. L̃1(θ
T ϵ
1,∗+1) < ϵ/2;

2. If xquery = 1 and Pinput ∈ E∗
imbal, we have (1−Attn

(T ϵ
1,∗+1)

1 )2 ≤ O(ϵ).

Proof. We first prove the existence of T ϵ
1,∗. Recall that

T ϵ
1,∗ = max

{
t ≥ 0 : A

(t)
1 −max

m ̸=1
B

(t)
1,m ≤ log

((
1

Lim
1

− 1

)((
2

ϵ

) 1
2

− 1

))}
.

When t ∈ [0, T ϵ
1,∗], we can simply lower bound the update of A(t)

k −maxm ̸=k B
(t)
k,m as

A
(t+1)
k −max

m ̸=k
B

(t+1)
k,m ≥ A

(t+1)
k ≥ A

(t)
k +Ω

(ηϵ
K

)
.

Therefore, at most T ϵ
1,∗ = O(

log

(
( 1

Lim
1

−1)(( 2
ϵ )

1
2 −1)

)
ηϵ ) = O( log(ϵ

− 1
2 )

ηϵ ) iterations are needed before A
(t)
k −maxm ̸=k B

(t)
k,m

exceeds log
(
( 1
Lim

1
− 1)(( 2ϵ )

1
2 − 1)

)
.

It is easy to verify Induction Hypothesis G.1 holds at t = 0. Now we suppose Induction Hypothesis G.1 holds for all
iterations 0 ≤ t− 1, and prove it holds at t.

By Lemma G.4, we have α
(t−1)
1 ≥ 0. Thus A(t)

1 ≥ A
(t−1)
1 ≥ 0. By Lemma G.5, we have −O

(
α

(t−1)
1

K

)
≤ β

(t−1)
1,n ≤ 0.

Thus,

−B
(t)
1,n ≤ −B

(t−1)
1,n + ηO

(
α
(t−1)
1

K

)

≤ O

(
A

(t−1)
1

K

)
+ ηO

(
α
(t−1)
1

K

)

≤ O

(
A

(t)
1

K

)
.

Moreover, by the definition of T ϵ
1,∗, for any t ≤ T ϵ

1,∗, we immediately have

A
(t)
1 ≤ A

(t)
1 −max

m ̸=1
B

(t)
1,m ≤ log

((
1

Lim
1

− 1

)((
2

ϵ

) 1
2

− 1

))
.

Therefore, A(t)
1 ≤ O(log( 1ϵ )).

At iteration t = T ϵ
1,∗ + 1, we have A

(t)
1 − maxm ̸=1 B

(t)
1,m > log

(
( 1
Lim

1
− 1)(( 2ϵ )

1
2 − 1)

)
. Thus, when {xquery = v1} ∩

{Pinput ∈ E∗
imbal}, we obtain

1−Attn
(t)
1 =

∑
m ̸=1

|Vm|
|V1| exp(B

(t)
1,m −A

(t)
1 )∑

m ̸=1
|Vm|
|V1| exp(B

(t)
1,m −A

(t)
1 ) + 1

≤
exp(maxm ̸=1 B

(t)
1,m −A

(t)
1 )( N

|V1| − 1)

exp(maxm ̸=1 B
(t)
1,m −A

(t)
1 )( N

|V1| − 1) + 1

≤
exp(maxm ̸=1 B

(t)
1,m −A

(t)
1 )( 1

Lim
1
− 1)

exp(maxm ̸=1 B
(t)
1,m −A

(t)
1 )( 1

Lim
1
− 1) + 1

62



In-context Convergence of Transformers

≤

(
( 1
Lim

1
− 1)(( 2ϵ )

1
2 − 1)

)−1

( 1
Lim

1
− 1)(

( 1
Lim

1
− 1)(( 2ϵ )

1
2 − 1)

)−1

( 1
Lim

1
− 1) + 1

= (ϵ/2)
1
2 .

Similarly, we have

L̃1(θ
(t)) =

1

2
E

1{Pinput ∈ E∗
imbal}

∑
m ̸=k

Attn(t)
m

2
+ (1−Attn

(t)
k )2

∣∣∣∣xquery = vk


≤ 1

2
P (Pinput ∈ E∗

imbal) · E
[(

O

(
1

K

)
+ 1

)
(1−Attn

(t)
k )2

∣∣∣∣xquery = vk ∩ Pinput ∈ E∗
imbal

]
≤ 1

2
·
(
1 +O

(
1

K

))
· ϵ
2

≤ ϵ/2.

G.4. Proof of Theorem 3.3 for Dominant Feature

Theorem G.7 (Restatement of Theorem 3.3 for Dominant Feature). Suppose p1 = Θ(1) and pk = Θ
(

1
K

)
for 2 ≤ k ≤ K.

For any 0 < ϵ < 1, suppose N ≥ poly(K), and polylog(K) ≫ log( 1ϵ ). We apply GD to train the loss function given in
Equation (4). Then the following results hold.

1. The prediction error for dominant feature converges: for v1, with at most T1 = O( log(ϵ
− 1

2 )
ηϵ ) GD iterations,

L1(θ
(T1)) ≤ L∗

1 + ϵ, where L∗
1 = Θ(e−poly(K)) is the global minimum of Equation (6);

2. Attention score concentrates: k = 1, if the query token is vk, then after Tk iterations, with probability at least
1−e−Ω(poly(K)), the one-layer transformer nearly “pays all attention” to input tokens featuring vk: (1−Attn

(Tk)
k )2 ≤

O(ϵ).

Proof. The first statement is obtained by letting T1 = T ϵ
1,∗ + 1, and combining Lemma G.6, Lemma D.10 and Lemma D.11,

which lead to

L1(θ
(T1))− L∗

1 ≤ L1(θ
(T1))− Llow

1 ≤ L̃1(θ
(T1)) + 3 exp

(
− c2imN

25K2

)
< ϵ.

The second statement directly follows from Lemma G.6.
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