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Abstract

Transformers have recently revolutionized many
domains in modern machine learning and one
salient discovery is their remarkable in-context
learning capability, where models can solve an
unseen task by utilizing task-specific prompts
without further parameters fine-tuning. This also
inspired recent theoretical studies aiming to un-
derstand the in-context learning mechanism of
transformers, which however focused only on lin-
ear transformers. In this work, we take the first
step toward studying the learning dynamics of
a one-layer transformer with softmax attention
trained via gradient descent in order to in-context
learn linear function classes. We consider a struc-
tured data model, where each token is randomly
sampled from a set of feature vectors in either
balanced or imbalanced fashion. For data with
balanced features, we establish the finite-time con-
vergence guarantee with near-zero prediction er-
ror by navigating our analysis over two phases of
the training dynamics of the attention map. More
notably, for data with imbalanced features, we
show that the learning dynamics take a stage-wise
convergence process, where the transformer first
converges to a near-zero prediction error for the
query tokens of dominant features, and then con-
verges later to a near-zero error for query tokens of
under-represented features, via one and four train-
ing phases. Our proof features new techniques for
analyzing the competing strengths of two types of
attention weights, the change of which determines
different training phases.

1. Introduction
Transformers (Vaswani et al., 2017) have emerged as the
foundational architectures in various domains, including
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natural language processing (Devlin et al., 2018; OpenAl,
2023), computer vision (Dosovitskiy et al., 2020; He et al.,
2022), reinforcement learning (Chen et al., 2021; Janner
et al., 2021), and so on. Recently, large language models
(LLMs) based on transformers have exhibited remarkable
in-context learning capabilities, where the model can solve
a new task solely through inference based on prompts of the
task without further fine-tuning (Brown et al., 2020).

Such striking abilities have inspired a recent line of research
to understand the underlying mechanisms of in-context
learning from various aspects (Garg et al., 2022; Min et al.,
2022; Wei et al., 2023; Von Oswald et al., 2023; Xie et al.,
2021). Among these studies, the pioneering work of Garg
et al. (2022) empirically studied in-context learning via an
interpretable framework, highlighting the capacity of trans-
formers to acquire in-context knowledge of linear and some
more complex function classes. Specifically, they showed
that an in-context trained model over a function class F
can accurately predict the function value f (Zquery) Of @ new
query token Tquery for most f € F by using a prompt se-
quence including in-context input-label pairs along with the
query token (z1, f (z1),..., 2N, [ (ZN) , Tquery)-

Built on this theoretically amenable setting, many follow-up
works explored theoretical properties of in-context learning
of transformers from different perspectives such as expres-
sive power (Akylirek et al., 2022; Giannou et al., 2023), gen-
eralization (Li et al., 2023b), internal mechanisms (Von Os-
wald et al., 2023; Bai et al., 2023), etc. Specially, a few
recent studies (Zhang et al., 2023a; Mahankali et al., 2023;
Ahn et al., 2023) made interesting progress towards un-
derstanding the training dynamics of transformers for in-
context learning'. However, those studies focused only on
‘linear’ transformers, and does not capture the crucial role
of the ‘softmax’ mapping, which lies in the core design of
transformers to be advantageous over other network archi-
tectures. Therefore, the following fundamental problem still
remains largely open:

How do softmax-based transformers trained via gradient
descent learn in-context?

This paper takes the first step toward addressing this prob-
lem by investigating the learning dynamics of a single-layer

"More detailed discussions for related work can be found in
Appendix A.
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transformer with softmax attention trained by gradient de-
scent (GD) for in-context learning. We focus on the setting
with training prompts generated from linear regression mod-
els as in Garg et al. (2022), and with structured input data,
where each token is randomly selected from a set of feature
vectors {vg }H<_| with probability {p } X, respectively. We
then train the transformer over the squared loss of prediction
error using GD. We study the training dynamics under both
balanced and imbalanced feature distributions, and charac-
terize the in-context learning ability for both settings. We
highlight our contributions as follows.

Our Contributions.

* We first establish the convergence guarantee for the
setting with balanced features, where pj, = (%) for
each k € [K], and characterize the training evolution
of the attention map into a two-phase dynamic process.
In phase I, for each k € [K], the parameters of the
self-attention module undergo fast growth, aligning the
query token featuring vy, with input tokens featuring
vy, rapidly disregarding other feature directions. In
phase II, the loss of prediction error converges to a
near-minimum value.

* We then prove the convergence for the setting with
imbalanced features, where one feature dominates, say
vy with p; = ©(1), while others are under-represented
with pj, = ©(4) for k > 1, which serves as a remark-
able showcase of the in-context learning capabilities
of transformers. We show that the learning dynam-
ics takes a stage-wise convergence process. Initially,
the transformer quickly attains near-zero prediction
error for query tokens of dominant features, and then
converges to near-zero prediction error for query to-
kens of under-represented features, irrespective of their
infrequent occurrence.

* Our analysis hinges on a novel proof technique that
characterizes the softmax attention dynamics via the in-
terplay between two types of bilinear attention weights:
‘weight of query token and its target feature’ and
‘weight of query token and off-target features’. Which
weight plays a dominant role in the attention dynam-
ics can change over the learning process, resulting in
different training phases. Our analysis tools may be
of independent interest and hold the potential to study
various other problems involving transformers.

Notations. We let [K] := {1,2,..., K}. We use capital let-
ters for matrices (e.g., A), and lowercase letters for vectors
and scalars (e.g., a). For a matrix A, we use A; to repre-
sent the i-th column of A and A;.; to indicate a collection
of columns spanning from ¢ to j. We use 1{-} to denote
the indicator function. We use O(K), Q(K), and O(K) to
omit universal constants concerning the variable K. We use

poly(K) and polylog(K) to denote large constant-degree
polynomials of K and log(K), respectively. Given h(z) <
0 and g(x) > 0, we denote h(z) = —Q(g(x)) if there ex-
ists some constant C; > 0 and aq, s.t. |h(x)| > Cig(z)
for all x > ay; h(z) = —O(g(x)) if there exist some con-
stant Co > 0 and as, s.t. |h(x)| < Cag(x) for all z > ao;
h(z) = O(g(z)) if there exists some constant C'3, Cy > 0
and ag, s.t. Csg(z) < |h(x)| < Cag(x) for all z > as.

2. Problem Setup

In this section, we present our problem formulations, in-
cluding the in-context learning framework, one-layer trans-
former architecture, and the training settings we consider.

2.1. In-Context Learning Framework

We adopt the well-established in-context learning frame-
work in Garg et al. (2022). The objective is to enable the
training of models capable of in-context learning within
a specified function class F, where the functions and in-
put data are sampled respectively by the distributions D
and Dy. Specifically, the process is initiated by generat-
ing random training prompts as follows. We first sample a
random function f from the class according to the distribu-
tion Dx. We then create a set of random inputs x1,...,T N
and query Zgyery » all drawn independently by D x . Finally,
we compute the value of function f on these inputs to con-
struct the prompt P = (1, Y1, ..., TN, YN, Tquery ), Where
yi = f(x;). The goal for an in-context learner is to use the
prompt to form a prediction ¥ (2query) for the query such

that ﬂ(xquery) ~ f (-Tquery)-

Task Distribution. In this work, our focus is
on the task of linear functions defined as F =
{f: X =>R]| f(z) = (w,z) withw € R, X C R},
which is widely adopted in recent studies for in-context
learning (Ahn et al., 2023; Zhang et al., 2023a; Mahankali
et al., 2023). For each prompt, the task-specific weight w is
independently drawn from a task distribution Dg with zero
mean and identity covariance matrix Iy 4.

Data Distribution Dy. We consider a set of distinct fea-
tures {vy € RY k = 1,..., K}, where all features are
orthonormal vectors. Each data point x is sampled from the
feature set with the probability p;, for sampling vy, where
pr € (0,1) for k € [K]and 37, s Pk = 1. Such a data
model has been widely employed in the theoretical studies
of deep learning, including ensemble methods (Allen-Zhu &
Li, 2020), multi-modal learning (Huang et al., 2022), vision
transformers (Li et al., 2023a), etc.

2.2. One-Layer Transformer Architecture
To present the one-layer transformer model we consider,
we first introduce the self-attention mechanism (Bahdanau
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et al., 2014; Vaswani et al., 2017) for the transformer model.

Definition 2.1 (Self-Attention (SA) Mechanism). A self-
attention layer (Bahdanau et al., 2014; Vaswani et al., 2017)
in the single-head case with width d, consists of the follow-
ing components: a key matrix WX ¢ Rde*de 3 query
matrix W® € Ré*de and a value matrix WV € Rdexde
Given a prompt P of length N, let E € R%*~ be an
embedding matrix of the prompt P, and the self-attention
mechanism will output:

Fsa (B;WEY we wY)
= WV E - softmax (W5 E)TWOE), ()

where the softmax(-) function is applied column-wisely,
i.e., for a vector input z, the i-th entry of softmax(z) is

given by e*i /" e*.

Embeddings. For in-context learning, given a prompt
P = (z1,4%1,..., TN, YN, Tquery )» @ Natural token embed-
ding is to stack x; € R¢ and y; into the first N columns.
The final column consists of Zquery € R and 0. Formally,

E(P)(ml T2
Yyr Y2 - YN

Therefore, dy = N + 1 and d. = d + 1 in the above
embedding. Let us further denote the first d rows of E as
E*(P) € R>WH1 and the last row of E as EY(P) €
R'*(N+1)_ Then we write B(P) = {E*(P), EY(P)}. We
omit the dependency on P for E(P), E*(P) and E*(P)
when there is no ambiguity.

We next instantiate additional operations and certain param-
eter settings based on the general SA mechanism (1) for
our one-layer transformer model to mitigate unnecessary
complications in theoretical analysis while keeping the most
critical component of the SA mechanism.

Masking. Let M (-) denote the masking operation, which
masks (removes) the last column of the entry matrix. In
other words, for a given matrix A € R(+DX(N+1) 77 (A)
yields A;.x € REFD*N We will first mask the embedding
matrix E before its multiplication with the key matrix W ey
and the value matrix WY, which results in WX M (E)
and WY M (E), in order to prevent the query token from
attending to itself. This approach has been commonly taken
in previous works (Tian et al., 2023; Mahankali et al., 2023;
Von Oswald et al., 2023; Kitaev et al., 2020).

Reparameterization. We consolidate the query and key
matrices into one matrix denoted as W@ ¢ R(d+1)x(d+1)
often taken in recent theoretical frameworks (Zhang et al.,
2023a; Jelassi et al., 2022; Tian et al., 2023). Furthermore,

TN Tquery ) c R+ x(N+1)
0 .

we consider WV and WX in the following specific forms:
0 0 Q 0
vV _ dxd Ud KQ _ d
() e (V) e

where v € R and Q € R%*?. The above structures of WV
and WX® are inspired by the recent study (Zhang et al.,
2023a), which showed that such structured matrices achieve
the global optimum in the linear SA model. Furthermore,
we set v = 1 (where v is the only parameter in ") and do
not update it during the training. The reason is twofold: 1)
this aligns with the common practice in theoretical studies
of deep learning, where the last linear layer is often kept
fixed to focus on the analysis of hidden layers. Our objective
remains highly nonconvex and challenging even with a fixed
v; and 2) the form of the global optimum outlined in recent
work (Zhang et al., 2023a) suggests that for linear SA, the
optimal solution for v serves as a scaling factor to normalize
the output of linear attention. In our case, the output of
softmax attention is already inherently normalized.

Remark 2.2 (Nealy no loss of optimality). Despite the
specific form of {WV WHXQY the minimum of the loss
function L* = ©(e PV (as shown in Theorem 3.2)
implies that such a specific form at most incurs an error
of ©(e~PY ) that vanishes exponentially with K, com-
pared to the minimum loss over the general parameter space
{WV WRey W&, Therefore, for our nonlinear softmax
SA, such specific parameterization does not lose optimality.

With the aforementioned masking operations and reparam-
eterization, the overall transformer model consisting of a
single SA layer can be recast in the parameterization of
0 = {1,Q} as follows:

Fea (E;0) = M(EY) - softmax (M(Ef)TQEz) G)

Such a reparameterization separates the label EY from the
softmax operator while maintaining simultaneous process-
ing of both input £ and label EY information. The predic-
tion for the token xquery Will be the last entry of Fga,

@\query = ?/J\query(E; 9) = [FSA(E7 0)](N+1) :

Henceforth, we may omit the reference to £ and 6, and use
Yquery if it is not ambiguous.

2.3. Training Settings

Loss Function. To train the transformer model Fss over
linear regression tasks, we minimize the following squared
loss of the prediction error, which has also been taken
by Zhang et al. (2023a); Ahn et al. (2023):

1

L(e) = §]E (ﬁ/y\query - <U), T query >)2} “4)

where the expectation is taken with resIJ)\?ct to the prompt
P including input and query tokens {x;};_; U {Zquery } and
the weight vector w.
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Training Algorithm. The above learning objective in
eq.(4) is minimized via GD with the learning rate 7. At
t = 0, we initialize Q(O) as zero matrix Ogx 4. The parame-
ter is updated as follows:

oD =9 —v,L(eW).

3. Main Results

In this section, we characterize the convergence of in-
context learning by GD for the settings with balanced and
imbalanced features, respectively.

To measure the degree to which the query token xquery at-
tends to the specific input token and to a certain class of
features, we define the notions of the attention scores.

Definition 3.1 (Attention Score). Given a prompt P =
(1,91, , TN, YN, Zquery) and its corresponding embed-
ding E, where {z; € R?}.¥ |, Zquery is drawn independently
from Dy, then at time ¢, for Fsa with parameter G(t), we
define the attention score as follows.

1. Given i € [N], the attention score for the i-th token x; is

attn;(0V); F) := [Softmax(M(Em)TQ(t)Em)} _
eE?TQ(t)EfVJrl

72j€[N] BT TRQWER
2. For k € [K], denote Vi, (P) C [N] as the index set for
input tokens, such that z; = vy, for i € Vi (P). Then the
attention score for the k-th feature is given by

Attn, (00 E) := Y, (p) attn; (01 ).
For simplicity, we represent attn;(0Y);F) and
Attn, (00 E) as attn!” and Attn,(f), respectively,

and denote Vi, (P) as Vi. We also rewrite the prediction
output at time ¢ as follows:

Uiy = Py attn") y; = > kelK] Attn” (w, vy).
Q)

3.1. In-Context Learning with Balanced Features

In this subsection, we study in-context learning with bal-
anced features, where the probabilities of sampling all K
features are in the same order, i.e., p, = @(%) for each
k € [K]. In such a setting, each feature appears equally
likely in the prompt, ensuring their equal recognition. The
following theorem characterizes the convergence of GD.

Theorem 3.2 (In-context Learning with Balanced Features).
Suppose pr, = O(%) for k € [K]. Forany 0 < € < 1,
suppose N > poly(K) and polylog(K) > log(L). We
apply GD to train the loss function given in eq.(4). Then

1
. 2 Klog( Ke 2
with at most T* = O(log(fs)K + (
we have

) iterations,

1. The loss converges: L(0T)) — L* < ¢, where L* =
(e PoY(E)) is the global minimum of eq.(4).

2. Attention score concentrates: if Tquery = Vi, then with
probability at least 1 — e~ P2 the one-layer
transformer nearly “pays all attention” to input tokens

featuring vy, ie., (1 — Attn,(CT*))2 < O(e).

Theorem 3.2 shows that training a one-layer transformer
with softmax attention can converge to the minimum of the
objective loss in the reparameterization space via GD, with
polynomial time efficiency with respect to K and % The
learning dynamics for such a case with balanced features ex-
hibit a two-phase behavior. (i) The first term of 7™ captures
the duration of phase I, where the network actively aligns
the query token (suppose Tquery = vx) With those tokens

featuring vy, itself, thus substantially increasing Attn,(:) to
a constant level. (ii) The second term captures the dura-
tion of phase II, where the loss converges to the near-zero
prediction error.

In-context Learning Ability. For the obtained model with
6T, let us evaluate a test prompt associated with a linear
task w, which might not be drawn from the support of Dg
(i.e., w may not be present in the training process), but has its
data drawn by D . Suppose the query token is Tquery = V.
Following from the attention score concentration principle
in Theorem 3.2, eq.(5) yields that with high probability the

query prediction @53;;) is given by

(T7)

Attty (w,v6) + 32,4 Attn'T) (w, v,) ~ (w, vp).

This implies that the in-context learned model can still well
approximate the test prompt even if the task model w does
not lie in the support of the training task distribution D, and
was unseen during training. This showcases the remarkable
in-context learning capability of trained transformers. We
also highlight that the in-context learning mechanism char-
acterized by our theorems has been verified by the empirical
findings in many recent works trained with transformers
at the GPT-2 (Radford et al., 2019) scale. For instance, in
Yadlowsky et al. (2023), they showed that the in-context
learning ability of transformers may be closely tied to the
coverage of their pre-training data mixtures. This indeed
aligns with our attention concentration principle, which
demonstrates that the transformer can perform in-context
learning by correctly capturing and identifying different
types of features in the training data.

3.2. In-Context Learning with Imbalanced Features

In real-world datasets, skewed distributions are common,
where a few classes or features dominate in data while others
are under-represented. It is typically difficult to train models

The randomness originates from the first N input tokens in
the test prompt.
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to perform well on features that have limited representation
in those datasets (Cui et al., 2019; Chou et al., 2020). In
this subsection, we investigate the setting with imbalanced
features, where the dominant feature v; is sampled with the
probability p; = ©(1), and all other features are sampled
with p, = ©(%) for 2 < k < K. We will show that
somewhat remarkably, in-context learning is less sensitive to
imbalanced features and can achieve a near-zero error even
when the query token takes an under-represented feature.

To investigate the performance for the imbalanced case, we
focus on the following prediction error for each feature vy:

1

ACk(e) = §E |:(/y\query - <waxquery>>2 ’xquery = Ulc:| . (6)

The following theorem identifies the convergence of GD.

Theorem 3.3 (In-context Learning with Imbalanced Fea-
tures). Suppose p1 = O(1) and py, = O() for2 < k <
K. Forany 0 < € < 1, suppose N > poly(K), and
polylog(K) > log(2). We apply GD to train the loss
function given in eq.(4). Then the following results hold.

1. The prediction error for the dominant feature converges:
_1
for vy, with at most Ty = O(hyg(giéz)) GD iterations,

L1(0T)) < L% + ¢, where L = ©(e7PYE)) js the
global minimum of eq.(6) for k = 1;

2. The prediction error for the under-represented fea-
tures converges: for v with 2 < k < K, with at

1
2 Klog(Ke 2 X .
most Tj, = O(log(f LS <€r] ) ) GD iterations,

Li(0T)) < Lf + ¢ where L, = ©(e PV ) js the
global minimum of eq.(6);

3. Attention score concentrates: for each k € [K], if the
query token is vy, then after Ty, iterations, with probabil-
ity at least 1 — e~ the one-layer transformer
nearly “pays all attention” to input tokens featuring vy:

(1 — Attn!™)2 < O(e).

Theorem 3.3 shows that the GD dynamics of the in-context
training exhibit ‘stage-wise’ convergence. The trained
transformer rapidly (within 77) converges to a model that
achieves a near-zero prediction error £, for the dominant
feature; and then takes a much longer time (up to Ty > T1)
to converge to a model that attains a near-zero prediction
error Ly, for the under-represented features. Our analysis
captures the later learning dynamics associated with the
under-represented features into a four-phase behavior as fur-
ther described in the subsequent section. Despite the longer
convergence time it takes, in-context learning still achieves
the same accurate prediction for under-represented features
as that for the dominant feature.

4. Overview of Training Phases

In this section, we explain our key ideas for analyzing the
in-context learning capabilities of transformers. We will
focus on characterizing the training process of the setting
with imbalanced features for under-represented features in
Section 4.2, which comprehensively exhibits four phases.
Other scenarios take only one or two of those phases, which
we will briefly describe in Appendix C. The complete proofs
of all the results are provided in the appendix.

4.1. Bilinear Attention Weights

We will first provide the general training dynamics for
the bilinear attention weights (defined in Definition 4.1
below), which is useful for analyzing all learning phases.

These quantities are the key elements in the attention scores
®
i
in determining the prediction g//\éﬁ?ﬂy. Hence, our analysis
mainly tracks the training dynamics of those bilinear atten-
tion weights.

attn:’ for 1 < ¢ < N, which play an important role

Definition 4.1. (Bilinear Attention Weights) Given k,n €
[K], where k # n, for t > 0, we define the bilinear attention
weights as follows:

A,(f) = v,;rQ(t)vk, B,(:L = ’UIQ(t)”Uk.
By our initialization, we have A;CO) = B,(”)L =0.
To further interpret these weights, suppose the query token
corresponds to the feature vy. Then A% serves as the (un-
normalized) weight for the input token featuring vy, while
®)
eBrn captures the weight for the input token featuring a dif-
ferent vector v,, with n # k. Having a larger Ag) compared

to other B,itzl indicates a better capture of the target fea-
ture v. As shown in eq.(5), this condition implies a higher
‘attention’ towards input tokens featuring vy, resulting in

@gﬁz,,ry S attnz(.t) yi ~ {(w,vg), where the prediction
1€V

well approximates the ground truth.

The following lemma provides the GD updates of the bilin-

ear attention weights A](f) and B ,(le.

Lemma 4.2. Lett > 0. For k,n € [K], where k # n, A,(f)
and B,(:)n satisfy:

A A9 wel0, B < BG4,
a,(;') =F {l{xque,y = v} Attnl(;’) .
(Zm#k Attn®” 4 (1 - Attn}j’)Q)] ,
,(szl =K {1{3:(1,,(,,}, = v} Attng) .

(Zm e Attn®” — Attn® — Attn(? (1 - Attn,(f))ﬂ :
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Lemma 4.2 shows that Aff) is monotonically increasing at
any time since a,(f) > 0, whereas the monotonicity does

not always hold for B ,(ﬁl. Therefore, we need to analyze

whether Bl(ﬁm decreases and determine its rate of change

t)

compared to A,(c . Such a comparison between B,(:ZL and

A,(:) determines which bilinear weight plays a dominant
role in the attention dynamics, and the change of the leading
weight over the learning process results in different training
phases.

4.2. Learning Process for Under-represented Features
We consider the setting with imbalanced features and focus
on the under-represented features.

Given a prompt P = (1,41, - , N, YN, Lquery)> denote
Piput to be the collection of input tokes, i.e., {x;}Y ;. Re-
call that | V| is the number of input tokens featuring vy.
Based on our data generation setup, we can show that for
imbalanced data, with high probability, Py, belongs to

5;nbal _{ input - ‘V1| = ( )’|Vk| =

In the following, we focus on the event that Ppu € Epal
unless otherwise specified. We next characterize the learn-
ing process for under-represented features vy, with k£ > 1 by
four phases. An illustration of these four phases is provided

in Figure 1.

4.2.1. PHASE I: DECREASE OF DOMINANT FEATURE.

Consider the query token featuring vy, for some k£ > 1. At
t=0, A(O) B,(COT)L = 0, and hence attn( ) = Ji, fori €
[N] Wthh implies that the transformer equally attends each
input token. However, due to the imbalanced occurrence of

features in &, .;, the number of tokens featuring v is much

larger than others. Hence, Attngo) = % > (1) while
Attn?) = ©(%) for m > 1. Therefore, by Lemma 4.2,

m

we obtain ﬂ,(goi < 79(%) whereas a(o) \6(0) | = (;2)

for n # k, 1. Therefore, B,(:)l enjoys a much larger decreas-

ing rate initially. It can be shown that the decrease of B ,(f)l

will dominate for a certain time period that defines phase
I. The following lemma summarizes our main result in this
phase.

Lemma 4.3 (Informal). Under the same conditions as The-
O( 1og(K)K1-98)

orem 3.3, given k > 1, there exists T , = o

such that for all 0 <t < T
(t) _ 1
Ozk = @ <I(2) ,

(t) 1
Bk 1 S Q (K198> bl
) forallm # k, 1.

>

'+1B)

i < 0 (S5

@(%) for k > 2}.

Attime t = Tyy, + 1, By < —0.491og(K), while

A2T1 kt1) and B(Tl k+1)

ko forn # k, 1 remain close to zero.
During phase I, B(t)1 significantly decreases, leading to a

reduction in Attng ), whereas other Attn(t) withn > 1

remain at the level of ©(+). By the end of this phase,

(Attngt))2 drops to O(4as), resulting in a decrease in

(®)

| Bff)l\ as it approaches «, ’. Phase II then begins.

4.2.2. PHASE II: SWITCHING OF LEADING INFLUENCE

Soon after entering this phase, the dominance role of B ,(:)1

diminishes as |ﬂ,(f)1| reaches the same order of magnitude as
a,(f). The following result captures the shift of the leading

)

influence, where the growth of A;c takes dominance.

Lemma 4.4 (Informal). Under the same conditions as
Theorem 3.3, given k > 1, there exists Tp) =

Ty j + O(RBEIC)
1, we have AT2 AR 0.5log(K), B(TMH) c

[—0.511og(K'), —0.4910og(K)], and B T2 S forn £k, 1
remain close to zero.

, such that at iteration t = T} +

Lemma 4.4 shows that by the end of phase II, A;Ct) matches

the magnitude of B,C 1> and during phase II B changes
only slightly from the end of phase L. This suggests that, at
certain moments in this phase, Ak significantly increases
and its growth becomes the dominant factor. We next
provide some insights into the reasons behind this tran-

sition. Once B,(Ct)1 decreases to —0.51log(K), we observe

that |B,§t)1| 2 oz,(f)

challenging for B,/ (¢ ) to decrease significantly compared to

the increase in AEC)

decrease of B,(:)l by an amount of 0.01 log(K). This would
yield that Attngt) < O(K(fg;m) and ﬁ(t) < O(K2 o7 )
while Attn,(:’) > Q( ) and aét) > Q3=
situation where a ) > 6 1.1- Such a discrepancy leads to
the switching of the dominant effect.

= O(4=). After this point, it becomes

. To illustrate, let us suppose a minimal

> ), establishing a

4.2.3. PHASE III: GROWTH OF TARGET FEATURE
After a transition phase, we observe that A](f) enjoys a larger

gradient aff) = G)(Klw) compared to |6,(€t)1| < O(ﬁ)
and |B,(:)n| < O(4s) with n # k,1. This gap between
oz,(f) and ﬁ,(le remains over the period, and the gradient oz,(:)
continues to grow, driving the rapid growth of A](f) with

B](:’zI being relatively unchanged. The following lemma
summarizes our main results in this phase.

Lemma 4.5 (Informal). Under the same conditions as The-
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1 (a) Decrease of Dominant Feature (b) Switching of Leading Influence (c) Growth of Target Feature (d) Convergence
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Figure 1. Overview of the dynamics of attention scores and bilinear attention weights for under-represented features. Assume the query
token is vy with 2 < k < K. The top row depicts the trend of the attention score Attnﬁfl) for each feature v,,, where a darker color
corresponds to a higher score. The bottom row shows the interplay and leading effect among bilinear attention weights Ag), Bl(;)l, and
B,(;ZL (where n # 1, k) in different training phases. (a) Phase I: B,(f)l significantly decreases and the attention on tokens with the dominant
feature v is suppressed (Section 4.2.1); (b) Phase II: With the suppression of Attngt), the decreasing rate for B,(:)l
of A,(:) becomes the leading influence (Section 4.2.2); (c¢) Phase I1I: A,(f) rapidly grows and Attngf) reaches (1) (Section 4.2.3); (d)

Phase IV: Attnl(f) nearly grows to 1 and the prediction error converges to a global minimum (Section 4.2.4).

drops and the growth

orem 3.3, given k > 1, there exists T ), = O(M), At time t = Ty j, + 1, we have Ly (T++ 1)) — £¥ < e and

such that for all Ts , <t < T3, (1— Attng))z < O(e), if Tguery = Vi and Pipur € Eiipar-
() .
t 1 t o 1 The convergence result for £ > 1 stated in Theorem 3.3
a](c)EQ(Kl.S))/BI(C)le -0 gt ), (5=w1) | . & . :
’ directly follows by choosing T} = Ty 1, + 1.
IO
U+ .
‘6}?31' S O (Ot"llﬂm) Wll‘h n # k7 1 Prediction Error vs Epochs Prediction Error vs Epochs
. _— o TohTn o, anen
At time t = T3 1, + 1, we have A;C shtl) > log(K). gos [
Lemma 4.5 follows because the continuous growth of oz,(:) is 1 :0
mainly driven by Attn,(f), where 1 —Attn,(f) remains at the o oz
constant order. However, as A,(f) reaches log(K), Attn,(f) o w0 o ;o0 w0 w00 R

is above (1), necessitating a more detailed analysis to

control a,(:), which starts the final phase.

(a) Imbalanced Case (b) Balanced Case

Figure 2. The prediction error for each feature.

4.2.4. PHASE IV: CONVERGENCE

After learning the target feature vy, at a certain level, the 5. Experiments

prediction error converges. We characterize this in the fol-  In this section, we conduct experiments to demonstrate that
lowing lemma, where we establish a connection between  our theoretical results are consistent with the actual dynam-

a,(f) and the prediction error via analyzing the change of  ics during the in-context training of transformers. Detailed

1 — Attn,(ct) that diminishes during this phase. experimental settings are deferred to Appendix B.

Lemma 4.6 (Informal). Under the same conditions as

Theorem 3.3, given 0 < ¢ < 1, for each k > 1, there Task and Data Generations. We follow the task and

Klon(Ke—b data distributions introduced in Section 2.1. For each task,
exists Ty, = Typ, + O(F2BEC 2D uch that for all — we sample the task weight w from N'(0,I4x4). Each data

ne
T <t <Tyk point is drawn from the given feature set {v;, € R% k =
(t) 1,---, K} with probability pj, for sampling vj, where all

a,(:) > Q(%), ](:31 c [70(]?(1)6.49)’0]7 features are orthonormal vectors, and p, € (0,1) satis-

fies Zszl pr = 1. The prompt consists of N random
inputs {x;}¥ | with their task values given by {y;}, =
{wTz;}Y |, and a query Zquery- We consider the setting with

(t)
l(ct')n € [*O(%),O] withn # k, 1.
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(b) Balanced Case

Figure 3. The attention heatmap during the training. For each heatmap, the i-th row represents the average attention scores of the query

token attending to each feature when Tquery = ;.

d =16, N = 60, and K = 3. We consider the following
two types of data distributions:

* Balanced case: p; = 1 fori € [3];

* Imbalanced case: v is the dominant feature with p; = 0.8
and {vg, v3} are under-represented with po = p3 = 0.1.

Stage-Wise Convergence. In Figure 2, we plot the evo-
lution of the prediction error for each feature throughout
the training process. For the imbalanced case (Figure 2a),
the transformer quickly converges to a model with nearly
vanishing prediction error £, for the dominant feature. How-
ever, the errors £, and L3 for under-represented features
initially fluctuate and then converge to zero after a consid-
erably longer period. This behavior verifies the stage-wise
convergence process characterized in our Theorem 3.3.0n
the other hand, in the balanced scenario (Figure 2b), the
prediction errors for all features decrease in a similar man-
ner throughout the training, which validates our theory on
convergence in the balanced case in Theorem 3.2.

Attention Score Concentration. In Figure 3, we present
the dynamic evolution of attention scores throughout the
training process for both balanced and imbalanced scenarios.
For each k € [3], and when Zguery = g, it is observed that
Attny progressively increases to be close to 1 while other
Attnys diminishes at the end of the training. These results
support the principle of attention score concentration as
elaborated in Theorems 3.2 and 3.3, and demonstrate that
the attention is allocated towards those tokens with the same
feature as the query token.

Multi-Phase Transition during Training Process. Fig-
ure 3 also demonstrates the multi-phase convergence process
of under-represented features, which verifies those learn-
ing phases we characterize in our proof of convergence in
Section 4. We elaborate on this by taking the case with
Tquery = U2 as an example. In Figure 3a and focusing on the
row Of Zquery = v2, from epoch 10 to 100, Attn, decreases
and Attngs increases, which suggests that the decrease in
By ;1 is the main factor in phase I. If the increase in As
was the driving factor, we would expect a decrease in all
off-diagonal attention scores including Attns similarly to
Figure 3b, which contradicts our observation. Then moving
to epoch 150, the simultaneous increase in Attn, and de-
creases in Attn; and Attns indicate a shift of dominance
effect, with the rise of A5 becomes the main factor (phases
IT and III). Finally, the concentration of attention scores at
epoch 400 corresponds to the last phase of convergence.

6. Discussions

Practical Insights. One direct practical implication fol-
lows from our stage-wise convergence characterization for
the imbalanced setting, which implies that employing an
early stopping strategy for in-context (pre-)training could be
advantageous when the goal is to identify and leverage dom-
inant features quickly. Further, our insights into attention
score concentration can provide useful guidance for dealing
with non-stationarity in real-world applications. For exam-
ple, in scenarios with task shifts, the (pre-)trained model
would exhibit considerable robustness due to the in-context
learning capability, allowing the model to continue to per-
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form well. On the other hand, data shifts such as covariate
shifts or other more complex shifts would necessitate further
training of the model.

Future Directions. Our analysis focuses on an orthonormal
feature model for analytical clarity, so that our characteriza-
tion of the convergence and the dynamics of the attention
scores will not be over-complicated by non-essential as-
pects, e.g., additional non-dominant terms that need to be
bounded in gradient calculations. Nevertheless, our anal-
ysis can be extended to a more general setting, where the
features are drawn from a subspace with K features serving
as basis vectors. For such a setting, we need to further char-
acterize how correlation among features affects attention
coefficients, which we leave as future work. Furthermore,
it is also important to generalize our analysis to nonlinear
target functions and consider more complicated network
architectures.

7. Conclusions

In this work, we investigated the training dynamics of a one-
layer transformer with softmax attention trained by GD for
in-context learning. We analyzed two settings respectively
with balanced and imbalanced features, and proved the guar-
anteed convergence to a vanishing in-context prediction
error by detailing the evolution of attention dynamics for
both settings. Interestingly, we characterized a four-phase
behavior for the imbalanced settings that sheds light on the
intricate attention dynamics between dominant and target
under-represented features during training. We also provide
empirical results to back up our theoretical characterization.
To our knowledge, this is the first work that rigorously ana-
lyzed the softmax attention dynamics for in-context learning.
Our approach features novel ideas for phase decomposition
based on the changes of the dominant role between two
types of bilinear attention weights in the learning process,
and has the potential to facilitate further theoretical under-
standing of how transformers perform in other algorithms
and learning paradigms.
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A. Additional Related Work

In-Context Learning. Recent studies explored theoretical properties of transformers for in-context learning from various
perspectives. Focusing on expressive capacity, Akyiirek et al. (2022) studied linear regression tasks and showed that trained
in-context learners can represent GD of ridge regression and exact least-squares regression. Giannou et al. (2023) proved
the existence of a looped transformer that can emulate in-context learning algorithms. Von Oswald et al. (2023); Dai et al.
(2023) also showed that transformer trained in-context implements the GD. Bai et al. (2023) further provided comprehensive
results of transformers including the expressive power, in-context prediction power, and sample complexity of pre-training,
and then constructed two general mechanisms for algorithm selection. Li et al. (2023b) analyzed the generalization error of
trained in-context learning transformers. Another line of work considered in-context learning from a different perspective
within the Bayesian framework (Xie et al., 2021; Zhang et al., 2023b; Wang et al., 2023; Jiang, 2023; Han et al., 2023; Wies
et al., 2023; Ahuja et al., 2023).

Closely related to our work is the line of research by Zhang et al. (2023a); Mahankali et al. (2023); Ahn et al. (2023), which
investigated the training dynamics of in-context learning. Specifically, Mahankali et al. (2023) considered linear regression
tasks and showed that the one-layer transformer that minimizes the pre-training loss implements one step of GD. Zhang et al.
(2023a) investigated in-context learning of transformers with a single linear self-attention layer trained by gradient flow on
linear regression tasks, and showed that gradient flow finds a global minimum. Ahn et al. (2023) investigated the landscape
of the loss function for linear transformers trained over random instances of linear regression. However, all those works
considered only transformers with /inear self-attention layers and do not capture the crucial role of the softrmax mapping,
which lies in the core design of transformers to be advantageous over other network architectures. Our work focuses on
nonlinear transformers with softmax attention and characterizes their training dynamics for in-context learning.

Training Dynamics of Transformers. Jelassi et al. (2022) proposed a simplified Vision Transformers (ViT) model in
which the attention matrix solely depends on the positional embeddings and showed that the trained model by GD can learn
spatial structure. Li et al. (2023a) studied the training of shallow ViT for a classification task and characterized the sample
complexity to achieve a desirable generalization performance. However, their analysis relied on a good initialization near the
target pattern, which may not be feasible in practice. Tian et al. (2023) analyzed the SGD training dynamics for a one-layer
transformer with one self-attention plus one decoder layer and showed how the self-attention layer combines input tokens
during the training, but this work did not provide the convergence guarantee for SGD. Tarzanagh et al. (2023) established an
equivalence between the optimization geometry of self-attention and a hard-margin SVM problem that separates optimal
input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. While the mathematical
setup of these problems is different from in-context learning, some of our analysis techniques may be useful for studying the
training dynamics of these problems. Recently, Huang et al. (2024) studied the training dynamics of transformers trained
with the masked image modeling method under a self-supervised learning framework.

B. Experimental Settings

In this section, we present additional details for experiments in Section 5.

Transformer Architecture. We consider a simplified transformer network. The model consists of one block with a
single-head self-attention layer, followed by a feedforward neural network, which incorporates layer normalization and
ReLU activation, and finally concludes with a linear layer for output processing.

Training Setup. We collect M = 300 randomly generated prompts and then train the model based on the empirical version
of the training objective Equation (4) for 400 epochs using Adam (Kingma & Ba, 2014) with full batch and the learning
rate of 0.002. Notice that Adam is a preferred choice for its stability in training transformers, which is also consistent with
recent studies (Garg et al., 2022; Zhang et al., 2023a) to tackle the in-context learning ability of transformers over linear
function classes.

Evaluations. We focus on two performance metrics. 1). Prediction error: As defined in Equation (6), the prediction error
L}, measures the loss conditioned on the event that the query token is v;. We evaluate £, by averaging the squared loss on
the prompts whose query token is vg. 2). Attention score: We also evaluate the attention score Attn; for each feature,
where Attny, is defined in Definition 3.1 as the average attention score for the k-th feature over the prompts with query
token featuring vy,.

12
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C. Overview of Training Phases of Other Settings

We next describe the training dynamics of other settings, which take the phases similar to those discussed in Section 4.2.

Imbalanced Setting for the Dominant Feature. For the dominant feature v; in the imbalanced setting, since the overall
attention Attngo) to the target feature already reaches (1) due to the abundance of tokens featuring vy in & the

imbal
training directly enters the convergence stage, as summarized in the following lemma.

-1
Lemma C.1 (Informal). Under the same conditions as Theorem 3.3, given k > 1, there exists T} = O(lmg(;iez)), such that
forallt <Tjy

a®

€ [-O(=), 0] withn > 1.

ol =0, By

t)

Further £1(0T*D)) — L3 < ¢, and (1 — Attn(lTIH))2 < O(€) if Tguery = v1 and Pipus € E;f -
Balanced Scenarios. Similarly to imbalanced settings, we can show that for balanced data, with high probability, Pipu

belongs to &, = {Pinpm V| = @(%) forall k € [K ]} . At initialization, the transformer uniformly assigns attention
) _

to each token, i.e., attn; % for i € [N]. Unlike the imbalanced case, here, due to Piput € &y We have that

Attnfg) = @(%) for m € [K], indicating nearly equal attention to each feature. Consequently, as Lemma 4.2, we observe
a significantly larger gradient in Ag) at the outset, with a,(co) ~ O(7z), compared to | Bl(com ~ O(5) for n # k. This
behavior mirrors the observations from phase III for under-represented features, allowing us to directly generalize the
analysis.

D. Preliminary Development for Main Proofs

In this section, we will introduce warm-up gradient computations and probabilistic lemmas that establish essential properties
of the data and the loss function, which are pivotal for the technical proofs in the upcoming sections. Towards the conclusion
of this section, we will also provide a summary of the key notations introduced in both the main content and these preliminary
sections. These notations will be frequently adopted in our subsequent analyses.

D.1. Gradient Computations
We first calculate the gradient with respect to () (note that we do not update the parameter v during the training). We omit
the superscript ‘(¢)” and write L(6) as L here for simplicity.

Lemma D.1. The gradient of the loss function with respect to Q) is given by

VoL =E | (Guery — (0, Tqueny)) Y, attn; attn;(Ef — EY)ER ., 'y,
,J€[N]

Proof. We obtain:

I OYquer - Jattn;
VoL = E[(Jgery — (W, Tquery)) o] = E | (Gguery — (W, Tquery)) z 0 Jil- D
8Q €[N 8Q
Denote Q;x as the entry in j-th row and k-th column of @, and define f : R4 — RN as f(Q) =
x x x x T
(eElTQENH, e ,eENTQENH) ,and g : RN — Ras g(y) = Zyﬁ By the chain rule, we have
jen) Vi
dattn; _ 99(y) T0f(Q)
— =T (5 =10 50,
an,k 8y Y aQ],k
BT TQER 11

x T x
E=TQET )2 cefn CEN(ED) (B )k
2 e 50}
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E*TQE%.,, _ EFTQEX
Zne[N]e n N+1 — et N+1
2
(e €77 @%5n)

N
— attn, ((Em(ml)k =3 attn, (E2), = j(E;”mk)

n=1

_|_

. eEfTQEml(Elev)j(E}\‘[H)k

N
= attn; (Z attn, ((E7); — (E7);) (Efv+1)k> ~

n=1
Then we reorganize these derivatives into a matrix, and have

0 attni
oQ

= attn,; Z attn;(E} — E;")EKIHT.
JelN]

Substituting the above equation into Equation (7), we have

VoL =E | (fwery — (Wr, Tquery)) Y attn; attn;(EF — EY)ER 'y
i,5€[N]

O

Recall that the quantities Ay and By, ,, are defined in Definition 4.1. These quantities are associated with the attention
weights for each token, and they play a crucial role in our analysis of learning dynamics. We will restate their definitions
here for clarity.

Definition D.2. For k,n € [K] and n # k, define the following quantities for ¢ > 0:
A,(:) = v,;rQ(t)vk a,(f) = —U,IVQL(Q(t))vk
B, =0l QW B =~V L(QW)uy
By GD update, we have
AI(:+1) — Al(ct) + na,(:)
BN o B0+l
Moreover, by our initialization of Q) = 044, we have A,(CO) = B,g?r)l =0 forall k,n € [K] with n # k.

Next, we apply the expression in Lemma D.1 to compute the gradient projected onto the feature directions, i.e., ag) and
(t)
k,n*

Lemma D.3. For k, k' € [K], where k # k', we have

ol = E | Haguen = ve} Attnl - [ 37 Attn()” + (1 - Attn()?
m#k

O, = E [ Hagen = v} Attnl? - | 3 Attn®” — Attnl? — Attn (1 — Attn")
m#k

Proof. For any k,k' € [K], apply the previous gradient expression in Lemma D.1, and note that only when E%;,; =
Tquery = Uk, We have E'}(,HTvk # 0. Thus, we obtain

’U;—, VQL’Uk

14
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=FE | 1{Zquery = V& } (Yquery — (W, Zquery)) Z attn; attn; y;vy, (EF — EY)
L i,j€[N]

=FE 1{5Cquery = Uk} (:/U\query U) ‘rquery Z Z Z attn; attn; yz'Uk/( - )

m,n€[K]i€Vm jJEV,

=FE | 1{Zquery = V& } (Uquery — (W, Zquery)) Z Z Z attn; attn; y;v;, (vir — vp)
n€[K| i€V jEVn

+E [ 1{zquery = Uk} (Yquery — (W, Tquery)) Z Z Z attn; attn; yzvk,( — V)
mG[K] 1€V JEV/

=E | 1{oquery = Vi } Gauery — (W, Tquery)) Abtny (w,vp) Y Attn,
nel[K]

—E | 1{Zquery = 0} (Tauery — (0, Tquery)) Attng Y Attng, (w, vy,)
me[K]

=E | 1{zquery = vk} Wquery — (W, Zquery) ) Attny Z Attn,, (w, v — vy)

me[K]|
Note that
gquery = Z attn; y; = Z Attnm <U}, Um>.
1€[N] me[K]
Thus when zquery = vi, wWe have
i/\query <w xquery Z Attnm<w Vi — >
me[K]|

Substituting this into the above equation, we have

v VoLuy,

= —E [1{zqery = vi} Attny Z Attn, (w, v — vy) Z Attn,, (w,vp — vpy,)
nelK] me[K]

= —E [1{zqery = vi} Attny Z Z Attn,, Attn, (w, v — vp) (W, Vg — Vpy)
ne[K] me[K)

= —E [1{zquery = vi} Attny Z Z Attn,, Attn, (vy —v,) ww ' (Ve — V)
ne[K] me[K)

=-E [1{$query = Uk} Attnk/ .

Z Z Attn,, Attn, (vg — vn)TE[wa | Pinput U {Zquery }H (Vi — Urm)
ne[K] me[K]

= —FE | 1{zquery = vi } Attny Z Z Attn,, Attn, (v — vn)T(vk, — Um)
ne(K] me(K]

= —FE | 1{zquey = vp} Attny | (v — Z Attn,, v,) vk/ - Z Attn,, v,,)
n€[K) me[K]

15
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When k&’ = k, we obtain

o = fv;—VQka =E | 1{zqey = v } Attny ||vi, — ZAttnn vn||2

n

=E | 1{aqey = ve} Attny [ (1 - Attng)® + ) Attn?,
m#k

When k' # k, we have

5k,k’ = —'U];r/VQL’Uk

=E |1{Zquery = vk} Attng Z Attn?, — Attng (1 — Attng) — Attng (1 — Attng)
m#k, k'

=E |1{Zquery = vk} Attng Z Attn?, — Attny (1 — Attng) — Attng

L m#k
O
D.2. Useful Probabilistic Lemmas for Prompt
Recall that given a prompt P = (21, Y1, - - ., TN, YN Tquery)» We denote Py as the collection of input tokens, i.e., {z;} Y ;.

It is worth noting that, based on our data distribution, the occurrence count of the k-th feature in the first /V input tokens from
Pinput, denoted as V|, follows a multinomial distribution. Leveraging the concentration property inherent to multinomial
distributions, we can identify a high-probability event to which P, belongs. This event constitutes the crux of our
subsequent analysis.

We first introduce the following tail bound for multinomial distributions.

Lemma D.4 (Tail Bound of Multinomial Distribution (Devroye, 1983)). Let (Xi,---,Xk) be a multinomial
(N,p1,--+ ,px) random vector. For all € € (0,1) and all K satisfying K/N < 2 /20, we have

K
P <Z 1X; —E(X;)| > Ns) < 3exp (—Ne?/25).
i=1

Now we present our characterization of a high-probability event for Pypy.

Lemma D.5 (High-probability Event for Balanced Data). Suppose that p, = © (&) for any k € [K] and K* < N. For

3
some constant Cpq 2> 1/ %, define

chaN chalN

Epat = {Pmpm Vil € [pkN PN+ K] fork € [K}}-

Then , we have

* CQu N
]P)(Pinput S gbal) 2 1 — 3eXp (— 2;}{2> .

Let us denote Lf;“’ = pr K — cpgand U ,i’"l = pr K + cpy. Note that Li”’ , U,i"‘l are at the order of the constant level since
bal bal

pr =0 (%) Then for any Py, belonging to &, |Vi| € [L’}(N, U’}(N]

to guarantee Ly > 0 for k € [K].

= @(%) Note that we can properly choose Cpy

16



In-context Convergence of Transformers

Proof. Denote |Vi| = Xj. Then (X1, - - XK) ~ multinomial (N, p1,--- ,pk). Noting that 28%2 > N K by our choice of

Cpa1, and then letting € = <2 we have €2 / 20> K ~ - By multinomial tail bound in Lemma D.4, we obtam

K>
E ‘X IE | > Cp, < 36)([) 776 alN
al 7~ Fr — 25P72 .

Then, since E (X;) = p; N, we have

CoallV N
P(mf(—1{|Xi—piN|> b;lf }) <Z|X -E(X |>CbalK>

< 3exp < CbalN) .

25K2

O

Lemma D.6 (High-probability Event for Imbalanced Data). Suppose that py = O(1), p, = O (%) for2 <k <K, and
S

K? < N. Then for some constant ciy > 1/ 20K , there exist constants U > L‘,?“ > 0 for any k € [K], such that letting

L"N UmN

= { Pop V1| € (LN, 0N and v € | £,

]f0r2<k<K}

we have

N
P(Pinpus € Epppa) > 1 — 3 exp < 25K2) '

Proof. Similarly to the proof for Lemma D.5, we have

N 2 N
K m i
P (ﬂi_l {|X1 —Di }) < 3exp (— 25“‘[(2> .

For k > 1, let us denote Ly = px K — cim and U™ = pi K + Cim. Since py = © (%), we can easily conclude that Li™, U;m
for £ > 1 are constant level. Furthermore, for & = 1, let L™ = p; — 0.01¢im and U™ = p1 + 0.01cim. Since p; is at the
order of the ©(1), we have

imN imN im
{plN— ‘ . ] = {( C

Gml N — MmN
K y D1V + K P1 )N, (p1+

i Cifm)plN} C [LiI"N,UI™N]

K

for sufficiently large K. O

D.3. Properties of Loss Function and Prediction Error
Recall the population loss we consider is given by:

1 ~ 2
L(e) = iE (yquery - <w7xquery >) ] . (8)
In this part, we will present several important lemmas for such a training objective. We first introduce the following lemma,
which connects the loss form with the attention score when the query token takes a certain feature.

Lemma D.7 (Loss Calculation). The population loss L(6) can be decomposed into the following form:

L6 ZE WZguery = vi} [ > Attn}, +(1 — Attny)’
m#k

17
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Proof. Following the calculations similar to those in Lemma D.3, we have

K
1 ~ 2
L(Q) = 5 ZE [l{xquery = Uk'} (yquery - <w7 xquery>) }
k=1
1 E T
b ZE 1{Zquery = Vi } Z Attn, (w, v — vy) Z Attn,, (w, v — vpy)
k=1 L n€e[K] me[K]
1 &
=3 S B | H{aquery = vn}lloe — Y Attn, v,
k=1 L ne[K]
1 &
=3 D B | 1{aquery = vr} | (1 — Attng)® + ) Attn?,
k=1 L m#k
O
D.3.1. LoSS CHARACTERIZATION FOR THE BALANCED CASE
We first introduce some additional crucial notations for the loss objectives.
Notations for the balanced case.
" . 1 ~
L* = min L(0) = min JE [(yquery — (0, 7 query V)7 ©)
1 1 K
low
Lo 2<1+K_1> DB (rgmy = 02 1% = 0. (10)

L* denotes the minimum value of the population loss in Equation (8) by minimizing over € in the form of {1, @}, and
L% represents the sum of unavoidable errors for each k € [K], given that the query token is the k-th feature but has not
been seen in the first N training samples. We will show that L'°¥ serves as a lower bound for L*, and demonstrate that
the network trained with GD will attain nearly zero error compared to L'°”. Our convergence will be established by the
suboptimality gap with respect to L'°", which necessarily implies the convergence to L*. (It also implies L* — L'°¥ is
small.) We further introduce the following quantities to facilitate our analysis of the loss function.

K
L(6) = > Li(0),
k=1

1 ~
where Ly (6) = §E [1{x<]uery = Ok} (Yquery — <w’xq“°ry>)2
1 1
LW=2(“VKJwaw=wﬂWH=®’
~ 1 * (7
Ly(0) = §E |:1{l'query = v N Prpur € Epa} (Yguery — <wvxquer>’>)2 :

Lemma D.8. For L* and L'V defined in Equation (9) and Equation (10), respectively, we have L' < L* and they are
both at the order of © (e~ P°Y X)) for the balanced data.

Proof. We first prove L'V < L*:

K
* . 1 ~ 2
LZWb;EH%mﬁM%W—W%MH
K

1 Py 2
> ngln 5 ;E [1{xquery = v N |Vk| = O} (yquery - <w; mquery>) :|

18
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K

1
= min 5 kZ_IE 1{Zquery = v N |[Vi| = 0} %Attn; +(1 — Attny)?

Notice that when the query token is the k-th feature but has not been seen in the first N training samples, Attn; = 0.

Moreover, %é:k Attn?n > ﬁby Cauchy-Schwarz inequality. Thus

K
1 1
L*> - (1 + ) E [1{zquery = vx N |Vi| =0}] = Lo,
2 K-1 —
Furthermore, since Zquery and Pypy are independently sampled,

L =K .0 (;{) : <1—® (;))N :@(eﬂ”ly(m).

where the last equality follows because N >> K3, and hence (1 — © (%))N =0 (e*pOW(K)).

We next only need to show L* = O(e P°¥(K)) We have

K

* . 1 2
L* =min 5};%: 1{Zquery = vk N |[Vi| > 0} gkAttnT,L+(1—Attnk)2

K
1 E 2
* 2 kfl]E 1{$query = v N [Vi| = 0} E#k Attn;, +1

Consider @ = 01ix4. If Zquery = v N |[Vi| > 0 holds, we have

> Attn?, +(1 — Attn,)?
m#k

< (1 — Attny) max Attn,, +(1 — Attny)?

2 2
§2(1Attnk)22< N = Vil >§2< N >

N — |Vi| + |Vile® N +e”
Taking o = poly(NN), then we have

L* < O(efpoly(N)) + O(efpoly(K)) — O(efpoly(K)).

Lemma D.9. For the balanced data, given k € [K), for any 6, we have

2
T low T cbulN
Lk(e) < Lk(e) — Lk < Lk(e) + 3pr exp (— 25K2> .

Proof. We proceed the derivation as follows.

~ 1 % CY s~
Li(6) = Li(6) = 5E [ 1{quay = 6 1 Prpur € E”} Gy — (10, Cquery))’|
1 c
= 3B | H{query = vk 0 Popun € £} > Attn}, +(1 — Attn,)?
m#k
(@ 1 . e
< 5 - 2P (l'query = v N -Pinpul S gba] )
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(®) 2 N
< . _ bal
= Pk 36Xp< 25K2>

where (a) follows from the fact that
> Attn}, +(1 — Attng)® < (1 — Attng) max Attn,, +(1 — Attn,)? <2,
ik m#k

and (b) holds by Lemma D.5.

On the other hand,

1
Li(0) = L(0) > B | 1{aquey = ve 0 Vi =0} [ > Attn?, +(1 — Attn,)?

2
m#k

Y

1 K )
iﬁE [1{Zquery = vi, N [Vi| = 0}] = L™

v

O

Consequently, for each k € [K], Ly, (0) closely tracks the deviation between Ly, (6) and L', which is what we will primarily
focus on bounding in the subsequent analysis.

D.3.2. LoSS CHARACTERIZATION FOR THE IMBALANCED CASE
Notations for the imbalanced case. In the imbalanced case, we are interested in the prediction error for the query
corresponding to each given feature k € [K|. Thus we consider the following conditional prediction error for each k € [K]:

1

‘Ck(e) = §E |:(/y\query - <wquuery>)2

LTquery = vk:| . (1D

Similarly, we define the minimum and the unavoidable values for such conditional prediction error:

1 ~
£l§ = nbln iE l:(yquery - <"an-rquery>)2 Tquery = Uk:| , (12)
Llow 1 1+ # ]P’(|Vk| = O) (13)
) K -1 ’

_ 1 . R
Zu(6) = 5B | 1{Pa € Eina} (T, — (0. )’

Tquery = 'Uk:| .

Lemma D.10. Given k € [K], for L} and L?" defined in Equation (12) and Equation (13), respectively, we have L} < L}
and they are both at the order of O (e~ poly (K )) for the imbalanced data.

Proof. The analysis is similar as Lemma D.8, we only show £V = O(ePolv(K)),

1 1

low —-(1 P _

g =5 (14 g1 ) PO =0)
— o)1 - p).

Fork =1, (1 —p1)"N = O(exp(—N)) = © (e PWE)) Fork > 1, since N > K3, then (1 —p)V = (1-0© (£))V =

© (e~Pl¥(K)) which completes the proof. O
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Table 1. Summary of Notations

Notations ‘ Descriptions

attngt), Attn,(f) The attention scores for the i-token and k-th feature, where ¢ € [N] and

k € [K].

A,(:), B,(Ctzl The bilinear attention weights when Tguery = vi: Ag) — el @Yo p® _

kn —
T A(t)
evn @k for n # k.

() 50

s By, The gradient updates respectively for A,(f) and B ,(f)n

Piput The input tokens in the prompt, i.e., {z;} ;.

e Eb bl The high-probability events that Py, belongs to respectively for the balanced
and imbalanced data.

L*, Llov ‘ The minimum value and lower bound on the population loss L(6) (8).

L (6), fk(ﬁ), LY The loss functions on the event {Zquery = Vi }, {Zquery = Vi } N { Pinput € Epit }»
and the lower bound on L.

Ly, L‘l,;"” (Imbalanced) The minimum value and lower bound of prediction error conditioned on
Tquery = Uk, 1.e., Li(0) (11).

Lh (¢) (Imbalanced)

The conditional prediction error on the event { Py € Epar -

Lemma D.11. For the imbalanced data, given k € [K], for any 0, we have

2 N
~ low ~ Cim
Ly(0) < Li(0) — LYY < Li(0) 4 3exp (— 25K2> .

Proof. The proof of the first inequality is similar to that for Lemma D.9. We next show the second inequality.

W ~ 1 * cy [~
Ly (0) — 5113 < Li(0) + §E 1{ Paoput € Enpar + (Yquery — <w,$query>)2 | ZTquery = ”k}

~ 1 c
= ‘Ck (9) + iE 1{RHPU1 € gi;bal } Z Attnfn +(1 - Attnk)2 | Tquery = Vk
m#k

< Ek (0) +P (Pinpul € Eitnbalc)

~ 2 N
< L(0) + 3exp <— 215‘“}{2> .

D.4. Notations and Parameters
In Table 1, we summarize the notations introduced throughout the main content and in the preliminary section. Throughout
all the proofs in our paper, we consider N = poly(K) > K?, and K is sufficiently large.
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E. Analysis for the Balanced Case (Proof of Theorem 3.2)

In this section, we present the analysis for the balanced case, we first discuss the outline of our proof.

E.1. Roadmap of the Proof

We will analyze the convergence of the training process via two phases of dynamics. At the beginning of each phase, we will
establish an induction hypothesis, which we expect to remain valid throughout that phase. Subsequently, we will analyze the
dynamics under such a hypothesis within the phase, aiming to provide proof of the hypothesis by the end of the phase.

The main idea of the proof lies in analyzing the GD dynamics of A,(:) and B,(le. From Definition D.2 and Lemma D.3, we

have

1
AL Z 4O 4 o)

1
B =B, 0By,

where

o) = E | H{zquy = v} Attnf” - [ 37 Aten{)” + (1 - Aten(")? | |,
m#k

= E | Haquy = vp} Attn - [ 3 Attn®” — Attn® — Attn(” (1 — Attn")
m#k

We divide the learning process of any feature k in the balanced case into the following two phases.

» Phase I (¢ € [0,71 ], Appendix E.2): At initialization, A,(f) keeps growing at a rate at least of %, while B,(:L

)

oscillates with a smaller rate of %5. Therefore, the increase in Agf will dominate the learning dynamics during phase I.

e Phase Il (¢t € (11, T 5, «)» Appendices E.3 and E.4): After rapid growth of self-attention module parameters in phase I,

the query token featuring vy, is aligned with these input tokens also featuring vy, effectively and disregards other features.

) (t)

Then the process proceeds to the convergence phase, where A,(: monotonically increases and B, }, monotonically

decreases, which finally contributes to the convergence of the loss. Based on the variation rates of A;Ct) and B ](:ZL the
convergence phase further has two sub-stages as follows.

- Stage I (t € (T' , f;y «)» Appendix E.3): the increase of A,(:) is as fast as () while the decrease of B,(:zl is
(*) stays within O (log(%-)).

k,m

slow, and the gap Ag) — maxyzk B
— StageII (t € (’f 5k L3, «)» Appendix E.4): the increase of A,(:) and the decrease of B,(:ZL both are relatively steady
and the attention nearly focuses on the target feature, leading to the convergence of the loss.
We finally combine all results in the above two phases to prove the convergence of the training process given in Theorem 3.2

(Appendix E.5).

E.2. Phase I: Growth of Target Feature

In this section, we shall study the initial phase of learning the relationship between the query token and its corresponding
feature. Firstly, we present the induction hypothesis in this phase. For the k-th feature vi, we define the Phase I as all
iterations 0 < ¢t < T i, where

Ty = max {t : A,(:) < log(K)} .

We state the following induction hypothesis, which will hold throughout Phase I. This hypothesis is ultimately proved in
Appendix E.2.3.

Induction Hypothesis E.1. For each 0 <t <T7 j, the following holds:
a. A,(:) is monotonically increasing and Ag) € [0,log(K)];

)
b. |B,(f31| = O(%) for any n # k.
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E.2.1. TECHNICAL LEMMAS
We first introduce several useful technical lemmas.

Lemma E.1. Suppose Induction Hypothesis E.1 holds at iteration 0 < t < Ty 1. If Tguery = Vi and Py € &y, the
following holds

1. Attn)) = Q (L),
2. 1— Attn” > Q(1).
Proof. Since Zquery = Vi, then we have
[Vilevs "o

E?TQWy,
jeN1 €7

Attnl) =

Vil exp(AL)
S sk Vil exp(B{),) + Vil exp(A}Y)
1
> ik “j;;' exp(B,Ef)m — Ay 1
[Vi|

By Induction Hypothesis E.1,

¢ (08 HOCSED) < oxp(B) — A1) < O,
Thus
1 1 1
Attn!) > ; > -Q <> ,
PO (AL 1) 41 T O (/I 1) + 1 K
where the second inequality follows because Piput € Ey-
On the other hand,
1 1
Attn](f) < T (5 S 1 :
6_(l°g(K)+O(gT))(|wlzvk| 41 Hgpmw) Tl
Considering U = ©(1), we have
(Ulbal - %)

1— Attn{” >

O

Lemma E.2. Suppose Induction Hypothesis E.1 holds at iteration 0 < t <11 y. If Zguery = Vi, and Py € &gy forn # k,
the following holds
1— Attn!" 1
Attn) =0 | ———F | =0 (= ).
Tin K K

Proof. To show the first equality, since Zquery = vk, We have

Vn |evnTQ<‘)vk

E*TQ®qyy
. J
jeln] €

Attn(?) =

Valexp(B}))
Sk Vil exp(BL)) + [Vl exp(A}Y)
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log(K) log(K))

By Induction Hypothesis E.1, e~ ¢ ) < exp(B,gf) B,(:)n) < 9l Combining with the fact that % =0(1)

when Py € &£, We have
Attn®  alexp(BY) 1 _ ( 1 )
6 t - Vin t N |
1- Attni) Zm;ﬁk [Vim| eXP(Bl(c,zn) Zm;ﬁk ‘|v |‘ exp(B( . BI(CZL) K
Combining with the Lemma E.1, we immediately have Attng ) =0 (%) O

E.2.2. CONTROLLING GRADIENT UPDATES IN PHASE I

Lemma E.3. Given any fixed k € [K], if Induction Hypothesis E.I holds at iteration 0 < t < T3 y, then a,(c) > 0 and

satisfies
¢ 1

Proof. By the gradient expression in Lemma D.3,

a](:) =E | 1{zqey = vi} Attn(t) Z Attn Attn](f))
L m#k
=B | 1{Zquery = 0% N Propur € Eg} Attnl - | D7 Attnl)” + (1 — Attn")?
L m#k
+E | H{aiquery = v N Propur € Sy} At [ 37 Attn®” + (1 — Attn{))?
L m#k
(a) .
> Pk - P(Rnput S gbal)
x E Attnk Z Attn(t Attng)) {xquery = /Uk} N {Rnpul S gttal}
L m#k

> pr - P(Pinput € &) X E {Attnff) (1= Attn)? {2 query = vk} N { Progue € &y} (14)

(b) 1
> Q 2 )

where (a) follows from the fact that guery is independent with P,y and the second term is non-negative, (b) follows from
Lemma D.5, Lemma E.1 and the fact that p;, = © () in the balanced case and N > K?. O

Lemma E4. Given any fixed k € [K], if Induction Hypothesis E.1 holds at iteration 0 < t < T} 1, then for any n # k,

(t)
o (t)
<0 .
|ﬂk | P(

. Satisfies
Proof. By the gradient expression in Lemma D.3, we have

< E | Yaquy = on} Attnl) - [ 30 Attn®? || | (15)
m#k
—B") < E [1{2qury = vi} Attn?). (Attnﬁ? +Attn) (1 — Attn;‘f)))} . (16)
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For Equation (15), we further derive

B < E | H{aquery = vk N Proput € Sy} Attn? - [ S Attn?)
m#k

+E | 1H{aquery = vk N Propur € &} Attnf) - [ > Attnl)
m#k

(@
< pi - P(Poput € Eg) - E [Attnif) : (mg;g Attn(; )

{l'query = Uk} N {Pmput € gbal}:l

+ Pk - IP)(Pmput € gbal )

@ 0. (1)
< piE | Attn,, mixAttn

& N
(s = 00101 (P € & | + 3p0xp (247 )

(e 1
<0 (Ki") ; 7)

2
where (a) follows from the fact that xqury is independent with Pipy, Attngf) < land ) £k Attngfl) <

MaXy, £k Attn(?) . > omtk Attn't) < MaX £ Attn'?), (b) follows from Lemma D.5, and (c) follows from Lemma E.2
and the fact that p, = © (%) and N > K3.

For Equation (16), similarly to the derivation above, we have

(t)
k,n

< pE [Attn( ). (Attn(t) +AttnY (1 — Attnfj)))

{xquely == ’Uk} N 5;al:| + 2pk : ]P( input € Ebdl )

(i) 2pk ]P(Pinput € 5§a1c) +Pk : ]P)(Pinput € Sﬁkal) X

1- AttnEj)) ol= Attn"
K K

E |6

)+ Attn” (1 - Attnf’))

{Zquery = v} N 5§a1]

() Attn!” (1 — Attn!” 2 N
< pk- P(Rnput € ggal)E O( K ( ) ) {gcquery = U’f} n gl:al + 6prexp | — bal 2
K 25K
@ (o 1 2 N
bal
=0 ( K TR (_25aK2) 1%

where (a) follows from Lemma E.2 and (b) follows from Lemma E.1 and Lemma D.5, and (c) follows from Equation (14).

From Lemma E.3 and the choice of N > K3, we have

1 2N
(t) >0 ( > > 6exp (— gg“}(z) ) (19)

Thus, combining Equations (17) to (19), we have

(#) oy 1 oy
< —k —)s=0(—-+-].
By k| < max § O(7=), 0 <K3> O\ &

E.2.3. END OF PHASE |

Lemma E.5. Given any fixed k € [K], Induction Hypothesis E.1 holds for all iterations 0 < t < T} j, where T} j, is at

<1og(K)K2)
n

most O , and at iteration t = T j, + 1, we have
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a. A,(CTI”"H) > log(K);

b, Attn"" Y = Q1) if 2 guery = vi and Pip € ELyp.

Proof. 1f Induction Hypothesis E.1 holds, the existence of 17 j, = O(W) directly follows from Lemma E.3.

We next prove Induction Hypothesis E.1. It is easy to verify Induction Hypothesis E.1 holds at ¢ = 0. Now we suppose
Induction Hypothesis E.1 holds for all iterations < ¢ — 1, and prove it holds at ¢.

By Lemma E.3, we have a,(:_l) > 0. Thus Ag) = A,(f_l) + na,(:_l) > 0. Moreover, by the definition of T j, we
immediately obtain A,(f) < log(K).

(t—1) alt=h
By Lemma E.4, we have |5k7n | <O | =% ). Thus,
( 1)
(t) (t 1) k
B < B O
B < 1B 4 ( - )
(t 1)
A(t)
<O = |.
< (K
(Th,k+1)

The first statement follows the definition of 77 ;. Moreover, Attn,;
subsequent section.

)

= (1) can be derived from Lemma E.6 in the

O

E.3. Phase II: Convergence: Stage 1
After rapid growth of self-attention module parameters in phase I, the query token featuring vy, is aligned with these input

tokens also featuring vy, effectively and disregards other features. Then the process proceeds to the convergence phase,

B

where A,(f) monotonically increases and B,(C ., monotonically decreases, which finally contributes to the convergence of the

loss. Based on the variation rates of A](f) and B ,(:31 the convergence phase further has two sub-stages as follows.

Given any 0 < € < 1, for k € [K], define

1
~ K 2
T3, = max t>T1k:A,(€)fmaxB,(€) <log (bll) <3> 1 )
s ) Mk m Lka c

Induction Hypothesis E.2. For T} j, <t < T; &> suppose polylog(K') > log(%), and the following holds
a. Aff) is monotonically increasing and A,(f) € [log(K), O(log(K/e€))];
OFF - - ) | — (AL
b. B, is monotonically decreasing and | B, | = O(—%) for any n # k.

E.3.1. TECHNICAL LEMMAS
We first introduce several useful technical lemmas.

Lemma E.6. Suppose Induction Hypothesis E.2 holds at iteration T} j, <t < T2 ke If guery = Vi, and Pypy € &, the

following holds

al’

1. Attnl? = Q(1);

2. (1— Attn{)2 > Q(e) = Q(exp (— polylog(K))).
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In-context Convergence of Transformers

Proof. Since Zquery = v, We have

Attng) _ Vi eXP(Az(ct))
Sk [Vl exp(B{),) + [Vi| exp(A[”)
_ 1
Sk b exp(BY), — AV +1

By Induction Hypothesis E.2, we obtain

exp(BY — AW) < OUEGELD) log () - [O(BUDERMOEU0) log() () (1) '

Therefore,

Attnl >
K

On the other hand, by the definition of TVQE, > We have

V7YL
e Tt exp(BL), — AL

<‘2 —
\
=
+
—
<
\
==
+
—
|

k|

1— Attnl” =
Vi [ t
Soze el (B, — A7) +
exp(min, £ B(t) —A t))(W -1)
~ exp(min, 2 B A(t))(vlk‘ -1H+1
exp(ming, £ B( ) — A )( -1
>
exp(ming, 4 B(t A(t))(UKba, -1 +1
exp(max, £k B,(fzn — A(t) AB(t))( o )
B exp(maxm7ng A(t) AB(I‘/))(Ubal -1)+1
1 polylog(K)
(f5 — 17 e — 1) ORI (K
T D) (e - 1) Lem ORI (L 1) 1
k k
> Q(e?),
where AB,(:) = MaX;m£k B,(;) — min,, £ B = O( ) and the first and second inequalities follow from the fact

that 1-%: monotonically increases w.r.t. z > 0, and the third inequality follows from the definition of T. 5 and Induction

Hypothesis E.2.

Lemma E.7. Suppose Induction Hypothesis E.2 holds at iteration T} j, <1t < T;k If Tguery = i and Py € &5, for

n # k, then the following holds

(t)
Attnl) = © (1 — Attny > .

K
Proof. By definition,
[Val exp(B)
S sk Vel exp(BL) + V| exp(Af))

Attnl) =

By Induction Hypothesis E.2, we have

log(K)—log(e) log(K)—log(e)
e OCE=F= )gexp(Bl(:Zn—Blgtzl) < O F52),
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Further combining with the fact that — log(e) < polylog(K), we have

Attn) |V exp(B) B 1 _ (1)

E.3.2. CONTROLLING GRADIENT UPDATES IN STAGE I OF PHASE II

Lemma E.8. At each iteration Th j, <t < T 26 w» if Induction Hypothesis E.2 holds, then a,(:) > 0 and satisfies

o= 0(5)-
()

Proof. The analysis is similar to that for Lemma E.3, but we need to be more careful about the lower bound of 1 — Attn,,
By gradient expression in Lemma D.3, we obtain

o) = E | 1{zquey = vi} Attn)) - [ 3 Attn®” 4 (1 — Attn())?
m#k
> P B(Papu € 5B At - {37 Aten(?” (1 Attn)? | | (e = 0} N &
m#k

> pic - P(Popu € E)E [Attn( (1 - Aten]’ >2|{xquery—vk}msbal}

> (),

where the last inequality follows from Lemmas D.5 and E.6 and the fact that p, = © (%) in the balanced case. O

Lemma E.9. At each iteration T} j, < t < TQE w If Induction Hypothesis E.2 holds, then given k € [K|, for any n # k,
satisfies

(t)
0 <O‘I’€(> < B <.

Proof. Note that conditioned on the event {Zquery = Vi } N { Pinput € &g }» by Lemmas E.6 and E.7, we have Attn(t) Q(1),
max,, «; Attn,, = O (&), and thus

3 Attn®? — Attn® — Attn(” (1 — Attn) < max Attn| 3" Attn?) — Attn” (1 — Attn]”)
m#k m#k

= —(1 - Attn{")(Attn(" — max Attn))
(1 — Attn"). (20)
Therefore, by combining with Lemma D.3, we obtain

B < E | Haquery = vi N &gy} Attn - | Attn®” — Attn® — Attn(” (1 — Attn")
m#k

+E | Mgy = v N &y} Attn) - [ > Attn)
m#k
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(@) . 1— Attn!")2 . e
< Pk - P(Phoput € Epy) - E —9(4( I kf) ) [ {zquery = v} N Exy | + - P(Exy”)
(b) € . N

< . _ . _ bal

< Pk ( Q(K)) +3Pkexp< 25K2>

<0

Y

where (a) follows from Equation (20) and Lemma E.7, (b) follows from Lemmas D.5 and E.6, and the last inequality holds
since

e exp(—polylog(K)) GV
K > K > exp mK2 )

Moreover, following the analysis similar to that for Lemma E.4, we have

~B) < pE |Attn) - (Attn;” +Attnl (1 - Attn,(f))) {Tquery = £} N 5;,;1} + pP(EEC)
[ 1-— Attnl(f) @) () N
< pxE @(T) -0 (Attnk (1 — Attn, )) {Zquery = v} N &y
i 2
CalN
+ 6py exp (— 253K2 )
[ Attn” (1 — Attnl))? . 2, N
=prE | O( k 7 k ) {xquery = ’Uk} N &par | + 6Pk exp (_ 21;1[(2>
(t)
a
< Zk_
0%

E.3.3. END OF STAGE I OF PHASE II

Lemma E.10. Given k € [K], and 0 < € < 1, suppose polylog(K) > log(%). Then Induction Hypothesis E.2 holds for at

~ —-1 ~ Te
leastall Ty <t <715, =T, +O (Klog(n}:ez)> and at iteration t = T ; + 1, we have AéT“H) > Q (log(£)).

Proof. We first prove the existence of T; - Recall that

e . L A® () K 314
T , := max {t >Tp: A — g}i)k{Bkm <log ((Lz‘“ — 1) ((6)2 — 1>> } .

When ¢ € (T k, FTVQEVk], consider

t+1 t+1 t t
(Az(c = Ig;},gBé,m )) - (Aé) - 33%32,%)

o (3w -a(3)

where the inequality follows from Lemma E.9 and the last equation follows from Lemma E.8. Therefore, at most

_ Klo (%_1)((2) —1) . 1
T5, — Tk = O( g<L’f o )):O(Klg;[: ))

[N

iterations are needed before A,(f) — MaAX, £ B,(Ct) exceeds log ((% — 1) ((g)% — 1))
’ k

m
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It is easy to verify Induction Hypothesis E.2 holds at ¢t = T} ;, + 1. Now we suppose Induction Hypothesis E.2 holds for all
iterations in [T} j, + 1, ¢ — 1], and prove it holds at .

-1
By Lemma E.8, we have a,(ffl) > 0. Thus A,(f) > qu) > log(K). By Lemma E.9, we have —O ( ) < 5,(:;1) <0.

Thus,
. oD
t t—
|BMJsuinN+no< %,)

A(t—l) Oz(t 1)
< k k
<0 ( e + n0O e
A(t)
< k.
<o ( L )

Moreover, by the definition of TQE p forany Th p, <t < TQE . we immediately have

Therefore, A < O(log(£)) forany Ty, < t < f;k.

At iteration t = T;k + 1, we have A(T2 D mMaX,,£ B( 26t 5 1o og <(Lba‘ - 1)((%)% - 1)) Thus AECT;*’H) >
Q(log(?)).
When {Zquery = Ui} N { Pinpuc € Egy }» We obtain

(TQ k+1) Zm#’“ |Vk|‘ = p( — A )

1— Attn
Vm (t
D omtk ‘|Vk|| exp(By, ,, ) - A,(c)) +1
exp(max, £k B(t) - A,@)(W -1)
 exp(max,, sk B(t) - A(t))( Ve -1)+1
. exp(max £k B,(:;n — A )( -1
 exp(max,, sk B,(C?n - A,(Ct))( K 1) +1
L -1
(5 -0 -) <£ - 1)
= -1
(- =) -+
= (/3)%,
where the first inequality follows from the fact that - monotonically increases w.r.t. z > 0.

E.4. Phase II: Convergence: Stage 11
Given k € [K], define

K log (Ke*%)

TS, =TS, +O
2.k ok T en
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Induction Hypothesis E.3. Suppose polylog(K) > log(1) for t € (T; k> s |- The following holds:

a. Agf) is monotonically increasing but cannot exceed O (log(K/¢));

()
b. B,itzn is monotonically decreasing and |B,(C ml = O(%) for any m # k.

E.4.1. TECHNICAL LEMMAS
We first introduce several useful technical lemmas.

Lemma E.11. Suppose Induction Hypothesis E.3 holds at iteration t € (T 5.0 15, el If Tquery = Vi and Py € &, the
following holds

1. Attnl” = Q(1);

2. (1 - Attn”)? € [Q(exp(— polylog(K))), €.

Proof. Since Zquery = Vi, We have
[V | exp(A(t))
gk Vil exp(B{),) + Vi exp(A})
1

- Vi t t
S s Bl exp(BY), — AD) +1

Attnl) =

By Induction Hypothesis E.3,

eXp(B;Efzn _ AI(:)) <e (log(K/e)) log(K) < O(log(K>+polylog(K)) log(K) < 0 (‘[1{)
Therefore,
1 1
Attn) > > >Q(1)
FTOR) (R -V T O R+
We first upper-bound 1 — Attnl(f) as
Vi (t) (t)
() D msth ‘|vk|| exp(By, — A;7)
L= Attn;, " = Vo] @ _ 40
m#k VL] exp(B - A7)+
exp(max,, £ B(t) A(t))(w -1
 exp(max,,z Bl(:,) A(t))( )+ 1

(T2 A+1) A(T2’k+1))(L _ 1)

(2) exp(maxm=i By, V]

- (Ts +1) +1)
exp(maxmz By, 2k A ok )(%—1)—1—1

(2) (E)é
3) >

— A,(f) is non-increasing by Induction Hypothesis E.3, and (b) follows from the

where (a) holds since max,, £ B,(:?n

definition of Tf) .

Then we lower-bound 1 — Attn,(f) following the analysis similar to that for Lemma E.6:

[Vim | (t) (t)

1— Attn® — Zm;ék Vil eXp(B —4;7)
k [Vin (t)

m#k \Vk\e p( km_A )+1
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. t t
exp(ming, 2 By, — A (g — 1)

 exp(min, Bl(ctzn - Ag))( I\If\il —1)+1

exp(min,, £ B,(:zn - Ag)) K —1)

Y

exp(min, £ BY A,(:))( K —1)+1

k,m
1 K
sotmeray (g — 1)

1 K
eO(log(K/e)) (U}lial - 1) +1

Y

1 K
O (polylog(K)) (U};ﬂl - 1)

1 K
O (polylog(K)) (U}lzill - 1) + 1

> Q(exp(— polylog(K))),

>

where the first three inequalities follow from the fact that 17 monotonically increases w.r.t. z > 0 and AS) < O(log(K/e)).
O

Lemma E.12. Suppose Induction Hypothesis E.3 holds at iteration t € (f;k, T;) o) If Tquery = v and Py € EF, for
n % k, the following holds
1— Attn,ﬁ”)

Attn) = © < %

Proof. By definition,

[Val exp(B)

n

> zi [Vl exp(BL),) + [Vel exp(A)

Attnl) =

By Induction Hypothesis E.3,

log(K)—log(e
( 2( )K g()).

O < exp(BY), — B ) < €0

Combining with the fact that — log(e) < polylog(K), we obtain

Attn®  alexp(BY) 1 e (1)
1-Attnl) S Valep(BY) X, el exp(BY), — B{!)) K

E.4.2. CONTROLLING GRADIENT UPDATES IN STAGE II OF PHASE I1

Lemma E.13. At each iteration t € (fj ko 1o, i) If Induction Hypothesis E.3 holds for t, then oz,(:) > 0 and satisfies

0<0(g).

Proof. By the gradient expression in Lemma D.3,

al!! = E | H{zquy = v} Attnf? - [ 3 Attn®” 4 (1 — Attn(")?
m#k

<pE |Attng) - | Y Attn®” + (1 — Attn()? | | {mquey = v} N EL
m#k
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2
CialV
+ 6py, exp <— 253K2 )
2
CialV
<000 omo (L)
€

<0(%)

- K
where the second inequality follows from Lemmas E.11 and E.12, and the last inequality follows from the fact that

2

pi = © () and ¢ = Ofexp(— polylog(K))) > Gexp (— 534 ). .

Lemma E.14. At each iteration t € (TQG go 1o, i) if Induction Hypothesis E.3 holds for t, for any n # k, 6,(:21 satisfies
O‘S) (t)
-0 ? < ﬁk,n <0.

Proof. Note that conditioned on the event {Zquery = vk} N { Piput € Ey }> Attn,(f) = Q(1), and max,,«, Attnffl) =
1
O(57). Thus,

3 Attn®” — Attn® — Attn(” (1 — Attn()) < max Attn) > Attn{) — Attn}” (1 — Attn ")
m#k m#k

= —(1— Attn{")(Attn" — max Attn())
<-001 - Attng)) < —Q (exp(— polylog(K))) .
Therefore, by the gradient expression in Lemma D.3 and the fact that N >> K3,

2 N
ﬁ](:n < 6Gexp (—2};}{2) — Q(exp(— polylog(K))) < 0.

Moreover, following the analysis similar to that for Lemma E.9, we have

B0, < i |Attn(? - (Attn!) + Attn) (1~ Aten(”)) | {zqery = vk} N & + PRP(Er*)

< piE -@( = A};tn’(;)) -0 (Attng)(l - Attnl(ct))) | {Zquery = v} N S*]
_ + 6p exp <;g52‘}é\g)
_E 'O(Attn,ﬁt)(lKAttnEW) | (ouay = 06} NE°| + Gpx xp (_ 235}?2)
“o(%)
where the last inequality follows from the gradient expression of a,(:) in Lemma D.3 and because a,(f) > 6exp (— ;Ea}évz ) .
O

E.4.3. CONTROLLING LOSS IN STAGE II OF PHASE II

Lemma E.15. Given k € [K], and 0 < € < 1, suppose polylog(K) > log(L). At each iteration t € (Tf’k,Tf,k], if
Induction Hypothesis E.3 holds for t, then we have Lj,(61)) < Pre,
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Proof. By the gradient expression in Lemma D.3, we have
~ 1 .
Ly, (9(1‘)) = i]E 1{$query = v N Pinput S gbal} (yquery - <w7 xquery>)2:|

1 2
= §]E H{zquery = V& N Pinput € Egui} Z Attn)” + (1 - Attn,(:))2
m#k

1 1 2
3P (P 650 2| (0 ) +1) (1 Aeen?)

o (off)-

2]%6
3 ?

IA

*
LTquery = Vk N -Pinpul € gbal

<

where the first inequality follows from Lemma E.12, and the second inequality follows from Lemma E.11. O
E.4.4. END OF STAGE II OF PHASE II
Lemma E.16. Given k € [K], and 0 < € < 1, suppose polylog(K) > log(1). Then Induction Hypothesis E.3 holds for

€n

~ ~ Klog(Kefé)
all Ts, <t<Ts,=T5, +0 | ———2).

Proof. 1t is easy to verify Induction Hypothesis E.3 holds at ¢t = fg © T 1. Now we suppose Induction Hypothesis E.3 holds
for all iterations fg x < t—1,and prove it holds at 7.

For the first claim, we can upper-bound the update of AE:) by Lemma E.13 as follows:

A <Al 4y 0(2)

< A e - T5, - 1) 0(5)
Klog (Ke#)
< O(log(K/€)) + n0(—— -—) - O( )

= O(log(K/€)).

The second claim follows from Lemma E.14 and the analysis similar to that for Lemma E.10.

E.5. Proof of Theorem 3.2 for Balanced Case
Theorem E.17 (Restatement of Theorem 3.2 for balanced features). Suppose pr, = © (4) for each k € [K]. For any
0 < e < 1, suppose N > poly(K) and polylog(K) > log(%). We apply GD to train the loss function given in Equation (4).

10g(K)K2 Klog(Kefé)
O(leER | = 8

Then with at most T* =

) iterations, we have

1. The loss converges: L(6T)) — L* < ¢, where L* = ©(e PV is the global minimum of the population loss in
Equation (4).

2. Attention score concentrates: if Tquery = Uk, With probability at least 1 — e~y (K))3 the one-layer transformer

nearly “pays all attention” to input tokens featuring vy, i.e., (1 — At‘cn,(fp*))2 < O(e).

3The randomness originates from the first NV input tokens in the test prompt.
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Proof. Denote T™ = maxj¢|x] f;k +1=0(

1
. 2 Klog| Ke 2 . . .
log(ls)K + ( ) ). Thus for any k, at iteration T, it is in stage 11

€n

of the convergence phase, i.e., T* € (va jo I, &)- Then by Lemmas E.15 and E. 16, for any k € [K], we obtain:

Therefore

L(Q(T*)) . Llow _ Z(Lk(Q(T*)) _ LIISW)
k=1

IA
ilngls
7 N\

~ . 2 N
Li(07)) + 3pj, exp (— 2%"“1’(2 ))

k=
K
2pre 2 N
< Z + 3exp ( 25aK2

where the first inequality follows from Lemma D.9.

Finally, by Lemma D.8,

LOT )N —L* <LOT)) - L' <e.
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F. Analysis for the Imbalanced Case: Under-represented Features (Proof of Theorem 3.3 Part I)
In this section, we present the analysis of the prediction error when the query token features an under-represented feature vy,
with £ > 1 in the imbalanced case. We first discuss the outline of our proof.

F.1. Roadmap of the Proof

We will analyze the convergence of the training process via four phases of dynamics. At the beginning of each phase, we will
establish an induction hypothesis, which we expect to remain valid throughout that phase. Subsequently, we will analyze the
dynamics under such a hypothesis within the phase, aiming to provide proof of the hypothesis by the end of the phase.

The main idea of the proof lies in analyzing the GD dynamics of A,(:) and B,(:L. From Definition D.2 and Lemma D.3, we
have

A}(:H) _ A,(f) +nal(ct)’
By = Byl + By

k,n’

where

al!) = E | 1{zqury = v} Attnl? - [ 37 Attn®? + (1 - Aten())2 | | |
m#k

2
) =E | Haquy = v} Attnl) - [ 7 Attn()” — Attn() — Attn]” (1 — Attn{")
m#k

We divide the learning process of the under-represented feature vy, with k£ > 1 into the following four phases.

» Phase I (t € [0, T} 1], Appendix F.2): At initialization, B,it)l enjoys a much larger reduction rate, i.e., 851 < 0 and

..1| 1s large. Therefore, the decrease of B(t) will dominate the dynamics during phase 1.
; g k1 y gp

e Phase II (¢t € (11 %, T2 k], Appendix F.3): At time 15, + 1, the decrease of B,(Ct)1 becomes slower, and the same

appens to . eir decreasing rate drops to be closer to the increasing rate of «; ”. 1S marks the beginning o
happ (). Their d ing rate drops to be cl he i ing f o\"). This marks the beginning of

phase II. Shortly after entering this phase, the previous dominance of reduction of B,gt)l diminishes, as |3 ,(f)l approaches
a comparable order of the magnitude to oz,(f). At this point, there is a shift in the leading influence, with the growth of

Aff) taking over.

» Phase Il (¢ € (15 1, T5,,], Appendix F.4): Following the transitional phase, a,(f) grows from the value of @(ﬁ),
whereas | ﬂ,(:)1| and |ﬁ,(le\ for n # k, 1 stay at much lower values (< O(7+ss) and < O (25 ) respectively). This
(t)
k

and 3 ,(:ZL leads to the continuously rapid growth of A(,t), while B ,(fzb remains

consistent gap in magnitude between «
relatively unchanged.

* Phase IV (¢t € (T3, Ty +)» Appendix F.5): Att¢ = T3, + 1, we achieve the desired attention structures for query
tokens featuring the under-represented feature v;. Then we establish a connection between a,(:) and the prediction

error via analyzing the change of 1 — Attn,(:) that diminishes, leading to the subsequent proof of convergence.

We finally combine all results in the above four phases to prove the main Theorem 3.3 for underrepresented features
(Appendix F.6).

F.2. Phase I: Decrease of Dominant Feature

In this section, we will delve into the initial phase of learning dynamics, aiming at mitigating the high occurrence bias of
the dominant feature v;. Specifically, for & > 1, By, ; will undergo significant decrease during this phase. Let us begin by
defining phase L.

For the k-th feature vy, with £ > 1, we define phase I as all iterations ¢t < T} j, where

T1 r = max {t : B,(;)l > —0.49 log(K)} .

36



In-context Convergence of Transformers

We state the following induction hypothesis, which will hold throughout phase I:
Induction Hypothesis F.1. Given k > 1, for each 0 < ¢t < T7 j, the following holds:

a. A,(:) is monotonically increasing and A(t) € o, 0(1;)(80(‘{]{2 ) )i

b. B )1 is monotonically decreasing and Bk 1 € [—0.491o0g(K),0];

) _g®
c. |B o= (AiB) and B,gf) > B,(f)l for any n # k, 1.

n

F.2.1. TECHNICAL LEMMAS
We first introduce several technical lemmas that will be used for the proof of Induction Hypothesis F.1.

Lemma F.1. If Induction Hypothesis F.1 holds at iteration 0 < t < T 1, for the prompt satisfying Tguery = Vi and
Pipur € Epap the following holds

1. Attnl” =0 (L);

2. Attnl" = Q (i)

3. 1— Attn{” — Attnl? > Q(1).

Proof. Since Tquery = Uk, and [Vi| > 0 for Ppue € Ebpy» We have

imbal®

[Vylevr @ v

eElTQ(t)Uk
JEIN]

Attnl) =

[Vl exp(Al(f))
S otk Vil exp(BL),) + [Vi] exp(A[”)
1
Sk b exp(B), — AV +1

By Induction Hypothesis F.1, we have

e form # 1,k, e_O(l;%(-g{;) < exp(B,(fzn — A,(;)) < eo(loigz((m);

e form=1, e(_0'49 log(K)—O(353)) < eXp(B,(:)1 — A,(:)) < e,

Combining with the fact that } -, |v”|‘ = O(K) for Pupu € Eipars

1
Attnl” > 0
()

On the other hand, since N‘;ll:‘}ll is still ©(K), we have

we have

1 E—

1
. , <0 .
e—o(%)(Nl;\‘/l’l\ 1)+ e(—0-4910g(K)—0(%)) ||V1| +1 <K>
k

Attn!) <

By similar analysis, we have

V1| exp(B})))
S sk Vil exp(B{),) + [Vl exp(A}Y)
1

S mtexp(BY), — BY) + P exp(Af) — B{) +1

Attn{") =

By Induction Hypothesis F.1,

37



In-context Convergence of Transformers

o form # 1, k, we have e® < exp(B,gtln — B,gt)l) < 0-4910g(K)+O(5).

e el < eXp<A§€t) _ Bz(@t)ﬂ < eo.4glog(K)+0(%)‘

Hence,

1 1

Attn!) > s 2 _
= 60.4910g(1<)+o(%)(“1;v )41 K049 )
1]

where the last inequality holds since | = O(1) for Pupu € Efpar-
For the last statement,

V(L — 1)

1—Attn(” > — L~ > 9
O —1)+1
V1]

Combining with the fact that Attn(t) =0 (&), we have

1— Attnl” — Attnl? > Q(1).

O

Lemma F.2. If Induction Hypothesis F.1 holds at iteration 0 < t < T 1, for the prompt satisfying Xguery = Vi, and
Pipur € Epparr the following holds

imbal’

Atta® — O (1 — Attn" — Attngt)>

Proof. Since Zquery = Vi, We have

|Vn|€vnTQ<t)vk

eEITQ(t)Uk
JEN]

Attn(t) =

Val exp(B))
Sk [Vl exp(BL)) + [Vl exp(A}))

By Induction Hypothesis F.1, for m,n # 1,

O < o), - B) < X
Combining with the fact that ||v L — O(1) for Pupu € &py» We have
Attn® _ Valen(B))
t t) t
1-— Attnﬁc) — Attng ) > omzt g [Vl eXp(B,i;n)

1
sz t t
Zm;ﬁk,l ‘|vn \I eXp(Bl(c,Zn - Bl(czl)

coft)
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F.2.2. CONTROLLING GRADIENT UPDATES IN PHASE I

Lemma F.3. Given k > 1, if Induction Hypothesis F.1 holds at iteration 0 <t < T j, then a,(f) > 0 and satisfies

. 1

Proof. By the gradient expression in Lemma D.3, we have

o) = E | H{zquey = v} Attnf” - | 37 Attn()” + (1 — Attn()>
L m#k
=B | 1{zquery = 00 N Epa} Attn” - [ 37 Attn®” 4+ (1 — Attn())?
L m#k
+E | Haqury = 0k N} At - | S Attn®” + (1 - Attn{")?
m#k

(a)
< Pk - P(Poput € Eppa) E Attn,(:) ) Z Attngfb)g + (1 - Attng))Q

m#k

{xquery = Uk} N (c"iTnbaI

+ 2pk : P(Pmpm S 1mbalc)

(b) 1 2
Attn” - <O <> + Attn(” 4 (1- Attng)f)

<pkE

K
+ 2pk : P(Rnpul € 1mbalc)

(c) 1
<0 2 )

2
where (a) follows from the fact that Zquery and Pppy are independently sampled, and Attn,(f) (D matk Attn)” + (1 —

{xquery = 'Uk} N gitnbal‘|

Attn,(f)) ) is upper-bounded by 2 on the event { Pnpu € Efpa s (b) follows by applying Lemma F.2 to Attngfl) for
m # 1, k, and (¢) follows from Lemma F.1, our choice of pj, Lemma D.6, and the evident bound:

3 N\ Lo
AP "5 K)

Similarly, we can show that oz,(f) >Q (). O

Lemma F.4. Given k > 1, if Induction Hypothesis F.1 holds at iteration 0 <t < T, 1, then B,(Ct)l < 0 satisfies

. 1
|6I(c,)1| >} (K198> .

Proof. We first derive

3 Attn®” — Attn(? — Attn(” (1 — Attn?)

m#k
= 3 Attn®” — Attn{(1 - Aten("”) — Aten” (1 — Aten?)
m#1,k
< max Attn® (1 — Attn{” — Attn(”) — Attn(” (1 — Attn”) — Attnl” (1 — Attn")
—(1— Attn!” — Attn(")(Attn'” + Attnl” — max Attn(?). 1)

m#1,k
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Therefore, by the gradient expression in Lemma D.3, we have

B <E | 1{Zquery = vk N Propur € Epa } Attn{” - [ 37 Attn®” — Attn'? — Attn(” (1 — Attn?)
m#k

+E | H{aquery = 0 N Poput € St} Attn” - [ S Attn)
m#k

(a) c
<pk ']P)(f)input € ifnbal ) + Dk P( input € gmbal)

(Attl’lgt) + Attn(t) — MaXm=£1,k Attnf(ni))
K0-49 )

1 A N
1
=-9 <K1.98) ’

where (a) follows from Equation (21) and Lemma F.1, and the last equality holds since

1 A N
K098>>ep T o5 K2

E |-

{Zquery = v} N mbal‘|

O
Lemma E.5. If Induction Hypothesis F.1 holds at iteration 0 < t < Ty, 1, for any n # 1, k, B;itl satisfies
(t) B(t)
k,1
Proof. By the gradient expression in Lemma D.3, we have
2
)< E | Haquey = v} Attnl? - | S Attnl) (22)
m#k
B < E[Uogey = vi} Attn? - (Aten?) + Aten(’ (1 - Attn(”))] 23)

We further upper-bound Equation (22) as,

5,(:2) <E | 1{zquery = Vi N Pinput € Eipgpar | Attn Z Attn(75
m#k

+E | H{&query = V& N Prnput € Expa "} At - | S Attn(D?
m#k

2 1
<pt - P(Paput € Epa) - E [Attnﬁf E (Attn?) +0 (K>> | ey = 0k 0 S

+ Pk - P(Pput € Eippar”)

(@) 1 1) AN

< P

_O<K3)+O< e +3pkexp( 25K2>
1 |8y,

< .

<0 (s >+0< " )
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where (a) follows from the following two observations from Lemma F.2:

|5l(ct)1| > pr - P(Phnput € Eippar) * E [Q (Attngt )

{xquery - vk} N 1mba1:| ’

and Attn) <O (%)
To further upper-bound Equation (23), we have

_5®
k.n

< pE [Attnﬁ? : (Attnﬁ? +Attnl (1 - Attn,(j)))

{xquery = Uk} N mbalj| + Pk ]P)(glmbal )

o= Attn”
K

1— Attn”
: (O <Kn’“> + Attn( (1 — Attn@))

Attnl" (1 - Attn,(f))Q)
K

(a)
< Pk - P( input € glmbal ) + Pk - P(glmbal)E

{Zquery = v} N gi’:nbaI‘|

A N
+3pkexp< )

{Zquery = v} N Epar

<pr - P(Empa) E lO( 25K2

where (a) follows from Lemma F.2, and the last inequality follows from the analysis in the proof of Lemma F.3, and from

the fact that
1 A N
>Q( >>>36Xp<—25K2).

(t) 041(:)_ 1(:)1
1o (1)

Lemma F.6. Given k > 2, Induction Hypothesis F.1 holds for allt <Tj j, = O(M), and at iteration t =T j, + 1,
we have

a. B Y < —0.491og(K);

Thus, we obtain

F.2.3. END OF PHASE |

b. Attnl =0 (KO 49) lfxquery = Vg and -Pmput e&:

imbal*

X . log(K) K!8 X
Proof. The existence of T} , = O(T) directly follows from Lemma F.3.

It is easy to verify that Induction Hypothesis F.1 holds at ¢ = 0. Now we suppose Induction Hypothesis F.1 holds for all
iterations < ¢ — 1, and prove it holds at ¢.

By Lemma F.3, we have oz,(ffl) > (0. Thus A,(f) A(t b + noz(t b

(t) _ 4(0) 1By B (t)
obtain A; — A} < O(—*i55"%) which further implies A; < O(log(K)/K°0%).

For m # 1, k, by Lemma E.5, we have

> 0. Moreover, combining Lemmas F.3 and F.4, we

AW _ 40 L g® _ g
Byl < O(——F K' B——"%) < O(log(K)/K).
The proof for the second statement is deferred to the next phase (Lemma F.7). O]
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F.3. Phase II: Switching of Leading Influence
During phase I, Bz(:)1 significantly decreases, resulting in a decrease in Attngt), while other Attnﬁf ) with n > 1 remain

approximately at the order of © (+). By the end of phase I, (Attn")? decreases to O(44s ), leading to a decrease in

|B,(:)1| as it approaches towards a,(f). At this point, phase II begins. Shortly after entering this phase, the prior dominant role

of the decrease of B,(Ct)1 in learning dynamics diminishes as \6,(:)1| reaches the same order of magnitude as ag).

For k > 1, define
Ty 2 max{t > T1y, : A — BY) < 1.011og(K)}.
We next state the following induction hypothesis which holds during phase II.
Induction Hypothesis F2. For T} ;, <t < T j, the following holds
a. A,(:) is monotonically increasing and Ag) € [0,0.52log(K)];
b. B](:)l is monotonically decreasing and B,(:)l € [-0.511og(K), —0.49log(K)];

AP +|BY)
K

c. |B,(€tzl| =0O( : l) forany n # 1, k.

F.3.1. TECHNICAL LEMMAS
We first introduce several technical lemmas that will be used for the proof of Induction Hypothesis F.2.

Lemma K.7. Suppose Induction Hypothesis F.2 holds at iteration T\ j, <t < T3 . If Zguery = Vi, and Piypye € E} o the
following holds

1. Attn” € [ (L), Ot
2. Attngt) € [Q (), O (gom));
3. 1— Attn” — Attnl” > Q(1).
Proof. Since Tquery = Vi, and |Vi| > 0 for Py € & pa» We have

Vierr

(t) _
Attn,’ = B0
JEN] €

V| exp(A")
Y st Vel exp(B{)) + Vil exp(AL))
B 1
Zm;ék ‘\‘1);?” exp(Bz(f,zn - Al(ct)) +1

By Induction Hypothesis F.2,
e form # 1, k, we have e~ 05 ~0.52log(K) < exp(B,(fzn — A,(f)) < O,

e form = 1, e~ 1-01log(K) < eXp(Bl(ct,)l _ Al(ct)) < e,

Combining with the fact that 3, ‘I];;LI‘ = O(K)) for Pnput € &t 1> We obtain

1
Attnl” > 0 <K> :

Moreover, since Nl;‘:fl‘ is still at the order of ©(K), we have

1

1
<O —== |-
e—o(%)—o.wlog(m(ﬂ’—lvll — 1) 4 e-totlog(x) Ml 4 g T (K0-48>
Vil Vil

Attnl" <
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We next analyze Attngt) as

V1| exp(By)))

Attn]) = ® ®
Zm;ﬁk [Vin| eXP(Bk,m) + [Vi|exp(A4;7)
- 1
D omAlk ‘IV |‘ exp(B(t) — B(t)) ||v i exp(A(t) B,(:)l) +1

By Induction Hypothesis F.2,

e form # 1, k, we have

041 —OCED < oxp(BY!) — BY)) < 051 108(I+O(5E),

o form = 1, e0-49108(K) < eXP(Az(ct) _ Bl(:)ﬁ < 1-01log(K)

Thus, we obtain

Attn!) > L s ).
L= 05110g(K)+O(1°g(K>)(N| ITkI —-1) +e1.o1log(1r()+0(%)% +1 K051

On the other hand,

eo.4glog(K)—0(l°g,§K>)({)v ~1)

1— Attn!" >

> Q(1).
60.4910g(1<)7o<%)(wi —1)4+1 o
1]

Thus, we obtain
1— Attnl” — Attn(? > Q(1).
O

Lemma F.8. Suppose Induction Hypothesis F.2 holds at iteration T j, < t < T5 p. If Tguery = Vi and Biyps € Epps fOT
n # 1, k, the following holds

Atta® — O (1 — Attn!" —Attni”) .

K

Proof. Since Zquery = Vi, We have

[Valern Q"o
JE[N] el TRk

Attn() =

Valexp(B})
S i Vil exp(B{),) + [Vl exp(A}Y)

By Induction Hypothesis F.2, for m,n # 1,

e_O(logI((K)) < eXp(B;(:Zn _ B}(Ctzl) < 60(%)_

Combining with the fact that ||v 1 — ©(1) for Poput € Epar» We obtain
Attn) [Val exp(B{))

1 Attn) — Attn") Y Vil exp(BY)))
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1
Vim t t
quﬁk 1 ‘|v \' eXp(Bl(c,Zn - BI(C,ZL)

cof)

F.3.2. CONTROLLING GRADIENT UPDATES IN PHASE II

Lemma F.9. Given k > 1, if Induction Hypothesis F.2 holds at iteration Ty j, <t < T3 1, then a,(f) > 0 and satisfies

( 1
ol >Q<K2>

Proof. By the gradient expression in Lemma D.3, we have

! | Ly = ) Attnl? - | Y Attn” + (1 - Attnf))
m#k

=B | 1{query = vk N Enpar} At - | 3 Attn®” + (1 — Attn{")?

L m#k
+E | H{aquery = 0k N Ept} At - | Attn®” + (1 — Attn{")?
m#k
> Pk - P(P € 1mbal) Attn,(:) Z Attn(t Attng)) {xquery = Uk'} N gifnbal
m#k

1
>Q (K2> )
where the last inequality follows from Lemma D.6, Lemma F.7 and our choice of p.

Lemma F.10. Given k > 1, if Induction Hypothesis F.2 holds at iteration Ty, 1 <t < T}, o, then 51(:)1 < 0 and satisfies

1 bli) o)

Proof. Following the computations similar to those in Lemma F.4, we have

3 Attn()” — Attnl — Attn (1 - Attn”)
m#k

< —(1— Attnl” — Attn{”)(Attn{” + Attnl" — ma. Attn),

Therefore,

(t)
k,1

<E | H{zquery = vk N Epar} Attn(? - | 3 Attn®” — Attn(? — Attn(” (1 — Attn?)
m#k

+E l{xquery =vE N 1mbal }Attn(t) Z Attngrtz)
m#k
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In-context Convergence of Transformers

(@)

< pr - P(Pnput € Eppar) - E (Attngt) + Attn,(ct) — MAaXy£1,k Attnﬁf})
- in imbal

— K051 ) [ {Zquery = vk} N Exfpar

+ Dk 'P( input € 5mbal )
() 1 A N
S pe- | —Q 7oz ) )t 3Pk exp 25K2
1
=-0 (K2.02> J

where (a) follows from Lemma F.7, (b) follows from Lemma F.7 and Lemma D.6, and the last inequality holds since

1 2 N
Ko > P o5

Moreover,

A 2 e =0 - (il st - )

+E [1{xqu = v N T Attn? (Attngt +AttnY (1 _Attn;”))}

(a)
Spk : P( input € 51mbal) [Attn(lt) 'O(Attn(t) + Attl’l ) I {xquery - Uk} N 1mbal}

+ 2pk ! ]P(Rnput € 1mbdlc)
(b) 1 2 IV
<pr- O oot ) ) T 6py, exp 25K2
1
=0 (K1.97> ’

where (a) follows because Attngt) + Attn,(f) (1- Attn,(:)) is upper-bounded by 2 on the event { Pnput € &}, and (b)
follows from Lemma F.7. O

Lemma F.11. If Induction Hypothesis F.2 holds at iteration T} j, < t < Tj i, for any n # 1, k, B satisfies

() ()
)| < oy = Brh
ieo(t7)

Proof. By the gradient expression in Lemma D.3, we have

< E | Yaquy = vn} Attn - [ 30 Attn®” || | (24)
m#k
—8) < E [1{zquey = v} Attn) - (Attnﬁﬁ +AttnY (1 — Attn,(f))ﬂ . (25)

To further bound Equation (24), we have

B < E | H{aquery = vk N Proput € Epar} Attn) - | 3 Attn(D’?
m#k

+E | 1{&query = V& N Pinput € Expa "} At - | S Attn()’?
m#k
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2 1
Spk ']P(Rnput € 1mba1) E |:Attn$zt) : (Attngt) + 0 (K))

+ Pk ]P(Pinput € gitnbalc)

(t)
1 1B AN
< 9 _ 1m
O<K3>+O< e +3pkexp< 25K2>
(t)
1 1Bra
< .
0<K3>+0< " )

To further bound Equation (25), we have

{Zquery = v} N Epar

_5®
k,n

< nE {Attngf) - (Attnﬁﬁ +Attn” (1 — Attn!’ )) | {Zquery = v} N Slmbal} + 20k - P(EEpa)

t
o= Attn'"
K

1— Attn”
: (O <Knk> + Attn (1 - Attnfj))>

o (Attn,(f)(l - Attng)ﬂ)

=2py - IED(‘c/’iafnbal ) + Pk P<glmbal)E

{Zquery = v} N Epar

2 N
+ 6pg exp ( 25K2>

1mbdl

)E

K {xquery = Uk} N gitnbal

(®)

Following from the analysis in Lemma F.9, we have

1 2N
a,(f) >0 (K2> > 6exp <_2anK2) .

(t) O‘g) - 1(:)1
<O| ———1.
|Bk,n| — < K )

Thus, we obtain

F.3.3. END OF PHASE 11

Lemma F.12. Given k > 2, Induction Hypothesis F.2 holds for all T j, <t <15, =T 1 + O(M), and at iteration
t =T + 1, we have

a. AECT“’H) > 0.5log(K);

b. B > _0.5110g(K).

Proof. The existence of Tb j, = T} 1, + O(=2—2— log ) directly follows from Lemmas F.9 and F.10.

It is easy to verify that Induction Hypothesis F.2 holds at T ;, + 1. Now we suppose Induction Hypothesis F.2 holds for all
iterations < ¢ — 1, and prove that it holds at ¢.

Form # 1, k, by Lemma F.11, we have

AECTz,k) A(Tl k+1) + |B(T2 k Bé?;l’k+l)|

1B | < B 4o

k,m

— ) < O(log(K)/K).
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Now suppose A(TZ"“+1) < 0.5log(K), then B,(CTf’k—H) < —0.511og(K). Denote the first time that B,(:)l reaches

~0.501log(K) as . Note that ' < T} since 3"}, the change of By}, satisfies |8}}| < log(K). Then for t > T, if

Tquery = Uk and Py € &y the followmg holds:

1. Attn{” € [2 (&), 0(2+));

2. Attn!” < O(zkor).
Therefore, following the analysis similar to those for Lemma F.10, we have
84| <E [1{xqu = v N &yt Attn? (Attn&“ +AttnlV (1 — Attn,(j)))]
+E {1{mquery = e N &y Attnl? - (Attn‘lt) + Attn(V (1 — Attn,(f))ﬂ
<pr -P(P€&a) E [Attngt) O(AttnS” + Attn") | {Zquery = vi} mglmbal}
+ 2pg, - P(Epat”)

(t) 2
1 Loy N
(t)
@
<0 <K0.002> ’

where the last inequality follows from Lemma F.9.

Since |B](€7Tf”"+1) — B,(fl)| > Q(log(K)), we have
AI(CT2,k+1) > |B](€?112,k+1 B(T)| Q(K0-002) | A,(f) > QK02 log(K)),

which contradicts the assumption that A,(CTQ”“H) < 0.51og(K). Therefore, A,(CTQ”“H) > 0.5log(K). Noting that once

B,(:)l drops below —0.501log(K’), it will change much smaller compared to the increase of A,(f). Thus, B,(C)Tf”“ﬂ) >

—0.511og(K).
O

F.4. Phase I1I: Growth of Target Feature

After the transition phase, A,(f) will experience a larger gradient, with the growth of AS) becoming the dominant effect in

this phase. For the k-th feature vy, we define phase III as all iterations 75, < t < T3 j,, where
Ty 2 max {t > Ty AD < 1og(K)} .

We state the following induction hypothesis, which will hold throughout phase III.
Induction Hypothesis F.3. For each Ty j, < t < T3, the following holds:

a. Ag) is monotonically increasing and A(t) € [0.5log(K),log(K)];

b. B,(f)1 is monotonically decreasing and Bl(f)l € [-0.511og(K) — O(lﬁfo(_ﬁ) ), —0.49 log(K)];

f)_H (t)

c. |B,(f21|: ( )foranyn;él k.

F.4.1. TECHNICAL LEMMAS
We first introduce several useful technical lemmas.

Lemma F.13. Suppose Induction Hypothesis F.3 holds at iteration Ty, o < t < Ty, 3. If Tguery = Vi and Piypus € &}, then

imbal’
the following holds
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1 Attnl) = Q (5);
2. Attn{” € [Q (zdsr) , O (gm )i
31— Attn” > Q(1).
Proof. Since Tquery = Vi, and |Vi| > 0 for Pppu € Efpa» We have

Vifers @

eEzTQ(t)vk
JE[N]

Attn"” =

Vi exp(Al")
Sk Vil exp(B{)) + Vil exp(A}Y)
1

Dotk ‘\Y;k\ eXP(B(t) - AD) +1

By Induction Hypothesis F.3, we have
. form # 1, 6_(1og(K)+o(%)) < eXP(Bl(:zn _ A;(.:)) < 60(%)70.51%(1();

. e_(1.5110g(K)+0(%)) < exp(B,(f)l _ Az(f)) < e~ 101log(K),

Thus,
1 1
Attn!) > i >0 () 7
ko= eo(%)_(Jﬁlog(K)(N;}lk\‘hl ~1) +671.0110g(K)‘57}1€\ +1 K05
where the second inequality follows from the fact that Py € Epar-
On the other hand,
1 1
Attn](ft) < 108 (K) S T 1 :
¢ (oBO+OCEE) (Mol ) 11— e7Hgp — x) +1
Thus,
e*(log(K)JrO(%))(w — 1) 4 e~ L0t log(K) M1l
1 - Attn)’ > . Vel P> o).
e*(IOg(K)JFO(gT))(M _ 1) + e¢—1.01 log(K) Wil +1
[Vl Vil
We next analyze Attngt) as follows.
V1| exp BY
Attngt) = i (t)( k’l) (t)
Zm;ék Vin| eXp(Bk,m) + Vil exp(A4;7)
B 1
Vin t t t ¢
D mtk ‘|vk|‘ exp(B,(“) Bzg )1) || eXP(A( ) BIE')l) +1

By Induction Hypothesis F.3,

e form # 1, k, we have

0-49 log(K)—O(*5)) < eXp(BlEj)m, _ Bl(ﬁ) < 60.5110g(K)+0(%);

o form = 1, el-0110e(K) < GXP(A,(f) (t)) el 5110g(K)+O(log(K))
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Thus,

1 1
Attn) < <o),
L= 60.491og(K)70(%)(N|—VM\ — 1) + el01log(K) ||ka +1 K049

1] V1
1

1
= > Q ( > ’
eO(NFJl‘Tk‘ ~1+e 1.51 log (K)+0(resd)) \lvkll +1 K051

Attn!” >

O

Lemma F.14. Suppose Induction Hypothesis F.3 holds at iteration Ts j, <t < T3 . If Tguery = Vi and Piypye € E} oy fOT
n # 1, k, then the following holds

Atta® — O (1 — Attn" — Attni”)

Proof. By Induction Hypothesis F.3, we have

eio(log(K) O(log}((K))'

) < exp(BY), — BY)) < e

Combining with the fact that Wl ©(1) when Py € & s We have

Vnl — imbal®

Attn(® Val exp(B{)) 1 1
© o - O Vi o Lo, =%\%)
1 — Attn, ' — Attn; Zm;él,k Vil eXp(Bk,m) Zm;ﬂ kTon] eXp(Bk,m - Bk,n)

F.4.2. CONTROLLING GRADIENT UPDATES IN PHASE III

Lemma F.15. At each iteration T3, <t < T3y, if Induction Hypothesis I.3 holds, then a,(f) > 0 and satisfies

(t) >0 (K115)

Proof. By the gradient expression in Lemma D.3, we have

041(:) =E | 1{zquey = vr} Attn(*) Z Attng,fb)2 +(1- Attnl(:))2
m#k

= E | Hoquery = v N Epar} At [ 37 Attn®” + (1 — Attn{")?
m#k

2
+E | H{aquery = 05 N Gt At - | D7 Attn)” + (1 — Attn)?
m#k

> pi - P(Puoput € Efp)E | Attn!” - ZAttn(t (1— Attnl")?
m#k

{xquery = vk} N Sitnbal

> Pi - P(Rnpul € 1mbdl)E [Attl’l](:) ( Attl’l](: )2 | {xQuery - Uk} N mbal}

1
=9 ()

where the last inequality follows from Lemma D.6, Lemma F.13 and our choice of py. O
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Lemma F.16. Given k > 1, if Induction Hypothesis I.3 holds at iteration Ty, o <t < T, 3, then B < 0 satisfies

1 04,(:)
K201 ;O 0.48 :

Proof. Following the computations similar to those for Lemma F.4, we have

851 <

3 Attn()” — Attnl) — Attn) (1 - Attn”)
m#k

< —(1— Attn” — Attn(")(Attnl” + Attn) — max Attn().

Therefore,

B < E | 1{Zquery = v N Efypu} Attn” Attn®” — Attnl? — Attn (1 — Attn'?)
k,1 query imbal 1 k k
m#k

2
+E [ 1H{zquery = vk N Eppal }Attn(t) Z Attngfb)
m#k

(a)
< pi- ]P( input € 81mbal ) + Pk ]P)( input € glmbal)

(Attn{” + Attn” — max,, .1, Attnl)) .
_Q( 1 kKO.E)l 7 ) {-Tquery = Uk} N gimbal

(b) 1 . N

< pe- |9 ot + 3pk exp 25K2
1

= -0 <K2.01) ’

where both (a) and (b) follow from Lemma F.13, and the last inequality holds since

1 2 IV
Lot > €xp 25K2

‘E

Moreover, we have

B, <E [1{xquery — 01 N Proput € Efp} Attnl” - (Attn, + Attng (1 — Attnk.))}

+E [1{xquery = 0k N Proput € Epa+ Attn” - (Attn; + Attny (1 — Attnk))}

<pk - P(Pput € Epar) - E[Attn; -O(Attn; + Attng) | {zquery = vi} N Epal
+ 2py. - ]P)(Rnpul S |mbalc)

1 O[(t) 2 N
<P\ O\ 005 ) ) T O\ oas | T6Prexp 25K2
(®)
Y
o)

where the last inequality follows from Lemma F.15.

Lemma F.17. If Induction Hypothesis F.3 holds at iteration T j, < t < T3, then for any n # 1, k, ﬂ,itl satisfies

(t) O‘S) - I(ct)l
<O|—=].
|Bk,n| — < K )
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Proof. By the gradient computation in Lemma D.3, we have

B <E | ey = v} Attn® - [ 3 Aten()” | |, 26)
m#k
B, < E[Hgey = v} Attn? - (Attn) + Aten’ (1 - Aten())] . 27)

We further bound Equation (26) as

2
B < E | Haquery = vk N Proput € Enpar} At - | 3 Attnl)
m#£k

2
+E 1{xquery =vE N Pinput € 51);1balc} Attngf) : Z Attn%)
m#k

2 1
Spk : P(-Pmput € 1mbd1) E |:Attn7(1t) : (Attngt) +0 (K))

+ Pk - P(Pinput € Emnpar”)

1 |5k1 A N
< ) __ “im
O(K3>+O< Ve +6pkexp< 25K2)
(t)
1 |ﬁk1
< - .
<0 )+0< 3

We then further bound Equation (27) as

{xquery = Uk} n -Pinput € glmbd]

—8") < pE [Attnff) : (Attngp + Attn( (1 — Attn,(j))) | {Zquery = U} N Paput € Slmbdl]

o= Attn”
K

()
1— Att
: (O <Kn’f> + Attnl” (1 - Attn}f’))

o <Attn§:>(1 — Attn(")? >

+ Pk - IP>(Pmpllt € lmbalc)

=pi - P(Pinput € Empar”) + P - P(Pinput € Eipnpar) E

{Zquery = v} N mbal‘|

2 N
+6pkexp< )

<pr. - P(Efpa) E 25K2

ol?
< — .
<0 i

Following from the analysis in Lemma F.15, we have

1
a,(:) >Q (K1.5) .

I {Zquery = vk} N Epar

Thus, we obtain
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F.4.3. END OF PHASE III

Lemma F.18. Given k > 1, Induction Hypothesis F.3 holds for all To j, < t < T3 = To + O(M), and at
iteration t = T3}, + 1, we have

a. A,(CTS”"H) > log(K);
b. Attny, = Q1) if guery = v and Py € &}

mbal*

Proof. The existence of T3, = 15, + O(M) directly follows from Lemma F.15.

It is easy to verify Induction Hypothesis F.3 holds at t = T5 ;, + 1. Now we suppose Induction Hypothesis F.3 holds for all
iterations < ¢t — 1, and prove it holds at t.
By Lemma F.15, we have 04,(:_1) > 0. Thus A,(:) = Ag_l) + 7704,(:_1) > 0.51og(K). Morover, by Lemma F.16, we have

AP TRt : N
|B,(f)1 - B,(CTf’k+1)| < O(=+—4ds—) which immediately implies that

By} > ~O(log(K)/K**®) — 0.51 log(K).

For m # 1, k, by Lemma F.17, we have

(t) _ A(Tz,k"rl) + |Bl(€1i)1 _ Bl(c?,k+1)|

B0, <o A ) < O(log(K)/K).

The proof for the second statement is deferred to the next phase (Lemma F.19). O

F.5. Phase I'V: Convergence

Att = T3, + 1, the desired attention structure for the query token associated with feature vy, has already been achieved. In
this final phase, we establish that these structures, including each under-represented feature, indeed represent the solutions
toward which the algorithm converges.

Given any 0 < € < 1, for k > 2, define

1 —Lim K imKO.51 %
bt (T ()
I €

Induction Hypothesis F.4. For T3 ), <t < T} ;. suppose polylog(K) > log(%). Then the following holds.

a. Aff) is monotonically increasing and AS) € [log(K), O(log(K/€))];
b. B,(:)l is monotonically decreasing and

log(K
By} € |~0.51log(K) — O ( Cf’(gé%)) ,—0.49 1og(K)]

c. B,(le is monotonically decreasing and |B,(:Zl| = O(%) forany n # 1, k.

F.5.1. TECHNICAL LEMMAS
We first introduce several useful technical lemmas.

Lemma F.19. Suppose Induction Hypothesis F.4 holds at iteration T5 ), <t < Tj) o If Tguery = Vi, and Py € &y then
the following holds.

1. Attn” = Q(1);

2. (1- Attn,(:))2 > Q(e) = Q(exp (— polylog(K))).

52



In-context Convergence of Transformers

Proof. Since Zquery = v, We have

Vil exp(AY)

Attn” = ® 0)
Ymi [Vmlexp(By ) + Vil exp(4)7)
B 1

By Induction Hypothesis F.4, we have
e form # 1, k:

exp(B,, (t) — Ag)) < OB —log (K) <

O(IOE(K)-H?KOlleg(K))710g(K) <0 i
e < %)

o form =1, exp(B () A(t)) < O(%tm)-

:

Therefore,

1
0 () (= 1)+ Ol 5] + 1

Attnl) >

> Q(1).

On the other hand, we have

>t \‘\;k‘ eXp(B(t) _A(t))

Vm t
Sk Tt exp(BL), — A) +1

1— Attn” =

(@)  exp(minm,1k B - A(t))(N‘;ll:l}ll 1)+ exp( A(t

exp(ming,£1 x B(t) — A(t )(% -1+ eXp(BI(:)1 — A( ))

exp(mmm7,g;€ B A(t))(& 1)+ exp(B,(f1 A(t)

)t
[V
v
Um )

1|| _|_ 1
Ly
Uim

Y

exp(ming, 4, By A(t )(U=EE ) 4 exp(BY), — AD) - (Lfm +1
k

1_Um K I,im j0-49 t
(L 1 1U;: ) exp(~AL)
(G5 -1+ ) exp(-A0) +1

> Q(e?),

where (a) follows from the fact that 7 increases w.r.t. > 0. O

Lemma F.20. Suppose Induction Hypothesis F.4 holds at iteration T5 j, <t < T4 & If Tguery = vi, and Py € &, then

imbal’
the following holds.

1. AttnY = © <1Atm’“> forn # 1, k;

(t) (t)
2. Attn{) € [Q(lﬁﬁiﬂ‘k ),0 (1;?522‘k )]

Proof. We first have

Attn®  [Valexp(B{"))
1—Attnl) S, [Vl exp(BL),)

If n # 1, by Induction Hypothesis F.4, we have
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. form 7& 17 k’ efo(log(K)I;log(é)) S exp(Bl(iZn . B](J:ZL) S eo(log(K)glog(e))’

e form =1, e’o'Sllog(K)70(10g<f}<{/€)) < GXP(BI(:)1 - Bl(ctzz) <0.

Note that when Py € Epa» We have % = ©(1), and \‘1‘2‘\ = O(K). Then combining with the fact that — log(e) <
polylog(K), we obtain

Attn®  ilen(B) 1 _ <1>
1—Attng” Y Vmlexp(BY)) 3,4 hetexp(BY), - B')) K

For n = 1, by Induction Hypothesis F.4, we have

e0.49log(l<)70(%) < eXp(B,(:Zn . B}(gt)l) SO'SUOg(K)JrO(%),

for m # 1. Combining with the fact that IK}"" = O (4 ) when Py € Efpa» and — log(e) < polylog(K), we have
Attn!” 1 1 1

o ® [Vl ® R O( log(K/©) )=0 (0 49) ;
1 — Attn, Zm# DA eXp(Bkm — Bkm) K - % . e0-491og(K)—O(=E L) | KO.

and

Attn!") 1 1 1
= > O e )>Q (0 51) )
1- At Y, Melep(l) —B0) T K L oot r0=GE) K0

F.5.2. CONTROLLING GRADIENT UPDATES IN PHASE IV

Lemma F.21. At each iteration T ), <t < T} ., if Induction Hypothesis F:4 holds, then a,(:) > 0 and satisfies

20 (5).

Proof. The analysis is similar to that for Lemma F.15, but we need to be more careful about the lower bound of 1 — Attn,(f).
By the gradient expression, we have

o) = E | Haquey = vi} Attn” - [ 37 Attn()” + (1 - Attn")?
m#k

> pi-B(P € EE [Attnl” . | 3 Attn®)’ + (1 — Attn(?)? | | {2gury = 04} N E7

m#k
> pi - P(P € £)E [Attn;” (1= Attn")? | {zquery = vx} N E]
€
>0 ()
- K
where the last inequality follows from Lemma F.19 and our choice of py. O

Lemma F.22. At each iteration T, <t < Ty ;, if Induction Hypothesis F.4 holds, then given k > 2, ﬁ,(:)l satisfies

()
a
-0 (K(;CAQ) < Bl(ctzt <
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Proof. Following the computations similar to those for Lemma F.4, we have

3~ Attn()” — Attn” — Attn” (1 — Attn(")
m#k
< —(1— Attn” — Attn(")(Attnl" + Attn) — max, Attn)).

Therefore,

B < E | Mgy = v N Epa} Attnl” - [ 37 Attn®” — Attn(? — Attn(V (1 — Attn")
m#k

2
+ ]E l{xquery = Vg N g:nbal }Attn(t) Z Attng,tl)
m#k

o (1— Attn,(f))z)
K0.51

(a)

< pi ']P( input € gmbal)

{Zquery = v} N gii}bal‘|

+pk ]P(glmbal )

<pj - (_Q (W)) + 3pi exp ( 2;](\;)

< 0.

where (a) follows from Lemma F.20, and the last inequality holds since

€ o exp(— polylog(K)) S oxp < ciQmN>

K051 — KO0.51

Moreover,

B} B [1{rqury = v 1 &} Attn(” - (Attn(” + Aten(’ (1 - Attn(”)) |
+E [l{xquery =0 N Epa’} Attn? - (Attn@ +Attn(” (1 — Attn,(f)))]
<pi - P(Pinput € Eppar) - B ['O(Attngt)(l - Attnl(: ) [ {Zquery = v&} 0 51Tnbal}
+ 2pk ]P)(glmbal )

(t) 2
ay, N
=0 (KO 49) O < 25K2>

O

Lemma F.23. At each iteration Ts ), <t < Ty ,, if Induction Hypothesis I'4 holds, then given k > 2, for any n # 1, k,

©
()
«
=, <Ik{> < Bl <o.
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Proof. Note that conditioned on the event {Tquery = i} N & by Lemmas F.19 and F.20, we have Attn,(f) = Q(1),

*
imbal®
max,, z; Attn,, = O (o). Thus, we obtain

S Attn®)’ — Attn®) — Attn” (1 — Attn() < max Attn() > Attnl) — Attnl” (1 — Attn ")
m#k m#k

— —(1— Attn{")(Attn" — max Attn®)
< -1 — Attnl"). (28)
Therefore,

B < E [1{zqery = ve N E*} Attn® Attn®” — Attn® — Attn (1 — Attn')
kn query k k
m#k

+E | 1{Zquery = ve N Epa“} Attn - | > Attn)
m#k

1 — Attny,)?
Spk . IP( input S 51mbal) |:Q(([(k))

o () e (552

<0

{Zquery = &} N E™| + pr - P(Phoput € Epar”)

b

where the last inequality holds since

€ exp(— polylog(K)) iV
K > K > exp 25K2

Moreover, we have

_ﬁl(ct,zl < prE {Attnﬁf) : (Attngf) + Attnl(ct)(l - Attn,(f))) | {Zquery = vx} N 5ifnbal} + 2pkP(Efpar”)
[ 1— Attn)
K

A N
+ 6px, exp( 25K2)

r ) ¢
_xlo <Attnk (1- Attn,i))2>

< e |6 )-0 (Attn,g”u — Attn(" ))

{Zquery = v} N gifnbal]

{Tquery = vk} N Eupar

K 25K2

2 " N
+6pkexp< >

F.5.3. END OF PHASE IV
Lemma F.24. Given k > 1, and 0 < e < 1, suppose polylog(K) > log(%). Then Induction Hypothesis F.4 holds for all

_1
Typ <t <T5, =Tap + O(FIBE 2)y

e , and at iteration t = T | + 1, we have

1. Ek(QT‘i’“-H) < %,‘

2. If Tguery = Vi and Pypyy € EXLp oy we have (1 — Attn (T4 "+1)) < O(e).

imbal’
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Klog(Kefé))

e directly follows from Lemma F.21.

Proof. The existence of Ty ; = T3 1, + O(

It is easy to verify Induction Hypothesis F.4 holds at ¢ = 75 , + 1. Now we suppose Induction Hypothesis F.4 holds for all
iterations < ¢ — 1, and prove it holds at t.

(t=1)

By Lemma F.21, we have oz,(f_l) > 0. Thus A,(: A(75 Dy nay, > log(K). Moreover, by Lemma F.22, we have

4B _ ATt

t (T3,,+1)
By - By V| < (k).

which immediately implies

By} > —0(A}) /K*¥) — O(log(K) /K %) — 0.51 log(K).

For m # 1, k, by Lemma F.23, we have
(®) (T3,x+1)
A — AP

BY _ pTsuth)
| |<o(F—1

k,m k,m

) < O(log(K/€)/K).

Thus
IB{),] < Ollog(K/e)/K) + O(log(K)/K) = O(log(K /€)/K).

Atiteration t = Ty . + 1, we have

_ rim im 7-0.51 3
A,gt)Zlog((e(l Ly )K+U1 K _€> <<3> _1>>.
Ly €

Thus when {Zquery = U} N { Pinput € &b }> We oObtain

S il exp(BL, — A7)

t m#k |V
1— Attn,(c) = S %: e‘xp(B(t) B Aff)) 1

exp(max,,£1,k B(t) - A(t))(w -1+ eXp(B(t) EC

S —— kB(t) _ A(t))(w ~1) +exp(B,(f)1 A(t))
exp(1 — AL) (UL — 1) + exp(~0.49 log(K) — A) Ui,m

" exp(1— AP) (B 1) + exp(—0.49log(K) — AL) T 41
(= A, )

((CEEERYT ) ep(—AL) +1

(G-

(B2 =1)"1+1
= (¢/3)>.

We further derive

Tquery = Vk

~ 1 9
Ly(0") = E 1{Pmpute5;nbal}( Attn()” + (1 — Attn)”
m#k

IN

Tquery = Vg Rnput € gmbal

IA
N~ N~

P 23002 [(0 () 1) 1 At
€
3

o)
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IN
l\:J.\ a

F.6. Proof of Theorem 3.3 for Under-represented Features

Theorem F.25 (Restatement of Theorem 3.3 for Under-represented Features). Suppose p; = O(1) and p, = © (%) for
2<k<K. Forany 0 < € < 1, suppose N > poly(K), and polylog(K) > log(%). We apply GD to train the loss
function given in Equation (4). Then the following results hold.

log(K)K?

1. The prediction error for under-represented feature converges: for v, with2 < k < K, with at most T}, = O( +

K log (K57 % )
€n
2. Attention score concentrates: for each 2 < k < K, if the query token is vy, then after T}, iterations, with probability
at least 1 — e~ 2PN ) the one-layer transformer nearly “pays all attention” to input tokens featuring vy,: (1 —
Attng’“))2 < O(e).

) GD iterations, Li(0(T*)) < L% + ¢ where L} = ©(e P ) is the global minimum of Equation (6);

Proof. The first statement is obtained by letting T, = Ti . T 1, and combining Lemma F.24, Lemma D.10 and Lemma D.11,
which lead to

~ 2 N
Lr(0T)y — £ < L,(0T)) — £0% < £2(0T)) + 3exp (- 2615“}(2> <e

The second statement directly follows from Lemma F.24. [
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G. Analysis for Imbalanced Case: Dominant Feature (Proof of Theorem 3.3 Part II)

In this section, we delve into the analysis of prediction error when the query token features the dominant feature v;. The
training dynamics for the dominant feature v; are relatively straightforward, comprising only a single phase.

Note that at the beginning ¢ = 0, we already have the following lemma.

Lemma G.1. If Tyuery = v1 and Pipus € Ep at t = 0, we have Attngo) =Q(1), Attn,(fo) =0 (%) fork > 1.

imbal’

Thus, the learning process directly enters the convergence phase, which is defined as follows. Given any 0 < € < 1, define

1
1 2\?
T, £ max {t >0: AW —m;aéxBﬁ)ﬂ < log <(Li1m — 1> ((e) — 1))}

Induction Hypothesis G.1. For 0 <t < Tf , suppose polylog(K) > log(1). Then the following holds.

a. A(t) is monotonically increasing and A( € [O O(log(1/e€))];

b. B,i) is monotonically decreasing and O( ) < B(t) < 0forany n # 1.

G.1. Technical Lemmas
We first introduce several useful technical lemmas.

Lemma G.2. Suppose Induction Hypothesis G.1 holds at iteration 0 < ¢ <TY . If Tguery = v1 and €1 € Pinpur, then the
following holds

1. Attnl? = Q(1);
2. (1- Attngt))2 > Q(e) = Q(exp (— polylog(K))).

Proof. Since Tquery = v1, we have

V1| exp(A")

Szt Vel exp(BY)) + V1] exp(A}Y)
_ 1
> mth ‘|11};7:|| eXP(Bz(ch)n A +1

Attnl) =

By Induction Hypothesis G.1, we have

1
Attn{) >
= Vin 0 0
matk “vk‘l exp(B,(w)n - AEC )) +1
> > Q(1).
(leN - ]-) + 1

On the other hand, by the definition of 77 ,, we have

V‘rn
Zm;ﬂ l\vl\‘ exp(B itzn A(t))

Zm?ﬂ ||\{}T|‘ exp(B(th — A( )) +1

1— Attn!" =

(;) exp(min,, £ 31 m A(t )(\vl\ -1
- exp(ming, 1 B A(t )( | -1+l
)
- 1) +1

exp(min,,»+1 B ( )
= ¢ ¢
exp(min,,£1 B( ) _ A( ))(
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exp(max,,£1 Bitzn - Agt) AB(t))(U.m -1)
exp(max,,£1 BSZn - Agt) — AB(t))( -1)+1

Unm

_ 1 _ olylog(K)
(i — D72 — )71 OB ()
T (A = DTH((2)F = 1) (e — 1)em O 1
1

®
where AB( ) = = MaXm£k B( ) — miny, £ B,(:?n = O(%), (a) follows from the fact that 11—% increases w.r.t. x > 0. O

Lemma G.3. Suppose Induction Hypothesis G.1 holds at iteration 0 <t < T . If 7 query = v1 and P € E7, forn # 1,

the following holds
n K ‘

Proof. We first have

Va exp(B)
S i [Vl exp(B{'),) + V1] exp(AT")

Attn{!) =

By Induction Hypothesis G.1, we have

o pogl
7O(plg( )) <exp(B(t) o( 1},{(5))

k,m

-B))<e

e

Combining with the fact that — log(e) < polylog(K), we obtain

Attn®  Wilen(B) 1 _ ( 1 )
6 t - Vi t N |
L-Attn 5 Valep(B),) ¥, e, - B{) K
O
G.2. Controlling Gradient Updates
Lemma G.4. At each iteration 0 <t < Tf’*, if Induction Hypothesis G.1 holds then agt) > 0 and satisfies
ol > Q(e).
Proof. By the gradient expression, we have
2
ol = B | H{aquy = v1} Attn{” - | 37 Attnl)” + (1 - Attn{")?
m#1
>p1- IED(Pmput € Empa) E Attng ’ Z Attn(t) - ‘Attnl(ct))2 {xQUery = vk} N Embal
m#k
> P () (1 _ (t)\2 _ *
> p1 - P(Pput € Epat) B |Attn, " (1 — Attn, ') |[{Zquery = v} N E
> Q(e)
where the last inequality follows from Lemma G.2 and our choice of p;. O
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Lemma G.5. At each iteration 0 <t < T ,, if Induction Hypothesis G.I holds, then for any n # 1, itzl satisfies

Proof. Note that conditioned on the event {Zquery = v1} N &> by Lemmas G.2 and G.3, we have Attngt) = (1), and
max,,+ Attn{) = O (% ). Thus, we further obtain

3 Attn®” — Attn® — Attn'” (1 — Attn'?)

m#1
< max Attn() >~ Attnl) — Attn{” (1 - Attn{")
m#1
= —(1 - Attn!{”)(Attn(" — max Attn()
< —Q(1 — Attnl"). (29)

Therefore,

) <E | Haquery = v1 N Epa} Attn? - | 37 Attn®? — Attn® — Attn? (1 — Attnl?)
m#1

2
+E 1{l‘query =wv1 N gitnbalc} Attng) . Z Attngfl)
m#1

o[- Attn{")?
K

2 (0(5)) +omew (-5

<0

(a)
S pP1 - ]P(]Dinput S gitnbal) ' E

{wquery = Ul} N Sitnbal +p1 - IPJ(E"l* C)

mbal

where (a) follows from Equation (29) and Lemma G.3, (b) follows from Lemma G.2, and the last inequality holds since

— polylog(K 2 po N
%» exp(— polylog(K)) S exp (_clmpg )

K 25K2
Moreover, we have

61 < piE [Aten - (Aten?) + Aten(” (1 - Attn")) | {Tgey = 01} N Epa| + 221P(Enpa”)

imbal
[ 1-— Attn(t) (t) (t) 2 N
<pE |6 ——]-0 (Attnk (1— Attn )) + 6py exp (_ i >

25 K2
| [ Attn{?(1 — Attnl)? 2 2N
=pE|O < n n ) + 6p;1 exp (—C‘mp )

K 25 K2
(®)
Qg
< .

G.3. End of the Phase

{xquery = Ul} N giTnbal

{Zquery = v1} N Eifnpal

Lemma G.6. S;i'ven 0 < € < 3, suppose polylog(K) > log(%). Then Induction Hypothesis G.1 holds for all 0 < t <
Ti = O(lmg(;ie”), and at iteration t = T , + 1, we have
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1 Ly(0T141) < €/2;

2. If‘xquem = 1and -Pmput c E* (T1 *+1)

imbal’

we have (1 — Attn )2 < O(e).

Proof. We first prove the existence of 77 . Recall that

1
Ti, :max{t 20: 4, —mex By, < log <(La'“ B 1> <<> . l>>}

)

When ¢ € [0, T7 ], we can simply lower bound the update of A,(C — MaX, £k B(

ALY —max BUED > AUFY > 40 4o (E) :
m#k K

tos (s ~1)(2)3 1))
Therefore, at most 77 , = O( ! )

exceeds log ((L%lm ~1)((2)z - 1))

It is easy to verify Induction Hypothesis G.1 holds at ¢ = 0. Now we suppose Induction Hypothesis G.1 holds for all
iterations 0 < ¢ — 1, and prove it holds at ¢.

-1
e = 0(1%(;762)) iterations are needed before A,(:) — MaXm, £k B,(:)m

(t—1) (t) (t—1) alt™b (t—1)
By Lemma G.4, we have o > 0. Thus A;”7 > A; > 0. By Lemma G.5, we have —O | <Bi, < 0.
Thus,

Q=D
B < -t +no( . )

A1) Q=D
< 1 1
<0 < 7 +n0O e

Therefore, Agt) < O(log(1)).

Atiteration t = Tf, 4 1, we have Agt) — MaAXyy£1 B( ) > log (( )((2 )z — 1)) Thus, when {Zquery = v1} N

{Rnput € g1mba1} we obtain
Vin @) _ 4®
1— Attn!"” = Lozl eXp(B )
1 = [Vin | A(t

Zm#l V1] eXp( 1 m )+

exp(max,,z1 B}, — A (g — b
o eXp(maX'm#l B(t) - A )( V1 | ) - 1

exp(max,,z1 B}, — A )z -

IN

exp(max,,£1 B(t) - A(t))( 1 -1H+1
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((L%lm—n(( LD I Y
(D@ ) (-

1

= (¢/2)%.

Similarly, we have

~ 1
L1(6%) = SE | 1{ Poput € Erpr} Z Attnfff +01- Attnff))2

9 Tquery = Vk
m#k

1 1

< ip (Proput € Enpar) * E KO (K) + 1) (1- Attn,(:))2 Zquery = Vk N Pinput € Epal
1 1 €

<=.(1 —1)).=

<3 (o(7) 5

<e€/2.

G.4. Proof of Theorem 3.3 for Dominant Feature

Theorem G.7 (Restatement of Theorem 3.3 for Dominant Feature). Suppose p1 = O(1) and p;, = O (%) for2 <k <K.
Forany 0 < € < 1, suppose N > poly(K), and polylog(K) > log(%). We apply GD to train the loss function given in
Equation (4). Then the following results hold.

1
1. The prediction error for dominant feature converges: for vy, with at most Ty = O(log(;ie”) GD iterations,
L1(0T)) < Lf + ¢ where L} = O(e PV K)) s the global minimum of Equation (6);

2. Attention score concentrates: k = 1, if the query token is vy, then after Ty, iterations, with probability at least
1—e= oK) the one-layer transformer nearly “pays all attention” to input tokens featuring vy,: (1 —Attn,(CTk))2

O(e).

Proof. The first statement is obtained by letting 77 = 77 , + 1, and combining Lemma G.6, Lemma D.10 and Lemma D.11,
which lead to

N 2
L1(07) = L7 < £2(0)) — LY < £,(0™) + Bexp ( 2C5mfj(\g> =

The second statement directly follows from Lemma G.6. O
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