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Abstract

We study unconstrained Online Linear Optimization with Lipschitz losses. The goal is to simultane-
ously achieve (z) second order gradient adaptivity; and (i¢) comparator norm adaptivity also known
as “parameter freeness” in the literature. Existing regret bounds (Cutkosky and Orabona, 2018;
Mhammedi and Koolen, 2020; Jacobsen and Cutkosky, 2022) have the suboptimal O(+/Vr log Vi)
dependence on the gradient variance Vi, while the present work improves it to the optimal rate
O(\/Vr) using a novel continuous-time-inspired algorithm, without any impractical doubling trick.
This result can be extended to the setting with unknown Lipschitz constant, eliminating the range
ratio problem from prior works (Mhammedi and Koolen, 2020).

Concretely, we first show that the aimed simultaneous adaptivity can be achieved fairly easily
in a continuous time analogue of the problem, where the environment is modeled by an arbitrary
continuous semimartingale. Then, our key innovation is a new discretization argument that pre-
serves such adaptivity in the discrete time adversarial setting. This refines a non-gradient-adaptive
discretization argument from (Harvey et al., 2023), both algorithmically and analytically, which
could be of independent interest.!

Keywords: adaptive online learning, scale-free online learning, continuous time method

1. Introduction

We study unconstrained Online Linear Optimization (OLO) with Lipschitz losses,” which is a
repeated game between us (the learner) and an adversarial environment denoted by Env. In each
(the t-th) round, with a mutually known Lipschitz constant G:

1. We make a decision z; € R? based on the observations before the ¢-th round.

2. The environment Enuv reveals a loss gradient g; € R? dependent on our decision history
x1,...,Ts which satisfies the Lipschitz condition with respect to the Euclidean norm, ||g:|| < G.

3. We suffer the linear loss (g¢, zy).

1. Future versions available at https://arxiv.org/abs/2309.16044.
2. In a black-box manner, solutions of this problem can also solve bounded domain Online Convex Optimization (OCO)
with Lipschitz losses, as shown in (Orabona, 2023, Section 2.3) and (Cutkosky, 2020, Section 4).
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The game ends after 7" rounds, and then, our total loss is compared to that of an arbitrary fixed
decision u € R?. Without knowing the time horizon T, the environment Env and the comparator w,
the goal is to guarantee low regret, defined as

[M]=

Regretp(Env,u) := (g1, xe —u) .

t=1

In a nutshell, the present work uses a novel and practical strategy to achieve the tightest known regret
upper bound (even including a near-optimal leading constant) that depends simultaneously on the
loss gradients g1, . . ., gr and the comparator .

To be concrete, let us survey a bit more of the context. Existing research on regret minimization
started from the minimax regime: under the additional assumption of ||u|| < D, it has been long
known that Online Gradient Descent (OGD) (Zinkevich, 2003) guarantees the optimal upper bound

on the worst case regret, SUp gy,,,.||4|<p Regretp(Env,u) < O (DG\/T). Refining such worst

case optimality by instance optimality, improvements have been achieved under the notion of adaptive
online learning, with gradient adaptivity and comparator adaptivity being the two prominent types.

* Gradient adaptivity aims at bounding sup,,<p Regret,(Env, u) by a function of the observed
gradient sequence ¢, ..., gr. Using learning rates dependent on past observations, OGD can
achieve the optimal second order gradient adaptive bound (McMahan and Streeter, 2010; Duchi
etal., 2011)

sup Regretp(Env,u) <O (D VT> , (1)
lull<D
where Vp = Z;le llg¢||? is the (uncentered) gradient variance. This has been a hallmark of

practical online learning algorithms, popularized by the massive success of ADAGRAD (Duchi
et al., 2011).

* Comparator adaptivity aims at bounding sup z,,,, Regret,(Env, u) by a function of the comparator
u. Without imposing the extra bounded-u assumption, one could use a dual space framework to
achieve the optimal bound (McMahan and Orabona, 2014; Zhang et al., 2022a)

sup Regret(Env,u) < O <||u|] G+/Tlog ||u|]> . ()

Env

Due to the absence of learning rates, such algorithms are also called “parameter-free” (Orabona
and Pdl, 2016) in the literature. They have exhibited the potential to reduce hyperparameter tuning
in the modern deep learning workflow (Orabona and Tommasi, 2017; Cutkosky et al., 2023).

While both types of adaptivity are well-studied separately, achieving them simultaneously is an
active research direction, which we call simultaneous adaptivity. A series of works (Cutkosky and
Orabona, 2018; Mhammedi and Koolen, 2020; Jacobsen and Cutkosky, 2022) proposed drastically
different approaches to obtain simultaneously adaptive regret bounds like?

Regretp(Env,u) < O <||u|] \/VT log(G—2 ||ul| VT)> , 3)

3. Omitting an additive O (||u|| Glog(G~? ||u|| Vr)) term for clarity. Essentially, it means the order of V7 is considered
“more important” than the order of |||, which fits into the convention of the field.
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whose dependence on the gradient variance Vr alone is O (\/VT log VT) rather than the standard
optimal rate O ( V4 VT) from Eq.(1). Roughly speaking (with subtleties explained in Appendix A),

Eq.(3) can be improved to the optimal rate O <||u|| v/ Vrlog Hu||) through the classical doubling

trick — restarting the algorithm with a doubling “confidence hyperparameter” whenever the observed
gradient variance exceeds a doubling threshold. However, such a restarting scheme is notoriously
impractical (also explained in Appendix A), thus doing so will violate the key practical considerations
that motivated adaptive online learning in the first place. The first goal of this paper, on the quantitative

side, is to achieve the optimal O (HuH V/ Vrlog HuH) bound without the doubling trick.

To this end, we will take a detour through the continuous time (CT), first solving a CT analogue
of the problem, and then converting the solution back to discrete time (DT). Quantitatively, our goal
above can be seen as the gradient adaptive refinement of (Zhang et al., 2022a) — without considering
gradient adaptivity, the latter showed that an algorithm designed in CT natively achieves the optimal
comparator adaptive bound, Eq.(2), while earlier algorithms designed in DT relied on the doubling
trick. Broadly speaking, such a result exemplifies a higher level observation: while various benefits
of the CT approach have been demonstrated in online learning before (Kapralov and Panigrahy,
2011; Drenska and Kohn, 2020; Kobzar et al., 2020; Zhang et al., 2022b; Harvey et al., 2023), it
remains somewhat unsatisfactory that no existing work (to the best of our knowledge) used it to
obtain DT gradient adaptive regret bounds, even though the CT analogue of gradient adaptivity is
often natural* and fairly standard to achieve (Freund, 2009; Harvey et al., 2023). In other words, one
would expect the CT approach to make gradient adaptivity easier as well, but such a benefit has not
been demonstrated in the literature.

The key reason of this limitation appears to be the crudity of existing discretization arguments,
i.e., the modification applied to a CT algorithm and its analysis to make them work well in DT. The
state-of-the-art technique, due to (Harvey et al., 2023), replaces the continuous derivative in potential-
based CT algorithms® by the discrete derivative, and consequently, the standard It6’s formula in
the CT regret analysis by the discrete It0’s formula. Applying the discrete derivative amounts to
implicitly assuming the worst case gradient magnitude (||g;|| = G), therefore any gradient adaptivity
in CT is lost in DT by construction. The second goal of this paper, on the technical side, is to propose
a refined discretization argument that preserves such gradient adaptivity.

1.1. Contribution

We first show that in a CT analogue of our OLO problem, simultaneous adaptivity is actually easy
to obtain by combining It6’s formula and the Backward Heat Equation (BHE). Building on this
intuition, our main result is a new DT algorithm achieving the following regret bound without the
doubling trick. With an arbitrary hyperparameter € > 0, in the asymptotic regime of large ||u/|| and
Vr,

Regretr(Env,u) <e-O (\/VT> + [|ul| - O <\/VT log(||ulle=1) V Glog(||ul] 5_1)) .

This is the first simultaneously adaptive regret bound matching the optimal O(+/V7) rate (with
respect to Vr alone), improving a series of prior works (Cutkosky and Orabona, 2018; Mhammedi

4. Example: in finance, the gradient variance is analogous to the price volatility. This is ubiquitous in the continuous
time modeling of financial instruments, such as the geometric Brownian motion.
5. A perhaps better-known name is Follow the Regularized Leader (FTRL) (Abernethy et al., 2008).
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and Koolen, 2020; Jacobsen and Cutkosky, 2022). Furthermore, given any hyperparameter o > %
the multiplying constant on the leading order term ||u|| /Vr log(]|ul] 1) is v/4a, almost® matching
the v/2 lower bound from (Zhang et al., 2022a). This is the first result characterizing the leading
constant optimality in simultaneously adaptive online learning.

In addition, we generalize the above to the setting without a known Lipschitz constant (G, making
the algorithm and its regret bound scale-free. Since the hyperparameter ¢ is truly “unitless” in our
algorithm design, there is no need to estimate the scale of the loss gradients (maxc(.7] [|g:]|) at
the beginning, which eliminates the range ratio problem from existing solutions (Mhammedi and
Koolen, 2020; Jacobsen and Cutkosky, 2022).” This keeps the algebra simple, while also avoiding
the standard range-ratio-induced penalties in the scale-free regret bound.

Technically, our key innovation is a new gradient adaptive discretization argument, refining the
non-adaptive one from (Harvey et al., 2023). The essential idea is connecting the CT algorithm
and its DT analogue via a change of variables, which allows using the exact BHE from CT to
simplify the complicated algebra in DT. For our specific problem of simultaneous adaptivity, this
procedure is arguably easier and more intuitive than existing approaches (Cutkosky and Orabona,
2018; Mhammedi and Koolen, 2020; Jacobsen and Cutkosky, 2022) that tackle DT directly.

1.2. Notation

Let C12(X) be the class of bivariate functions on an open set X', continuously differentiable in their
first argument and twice continuously differentiable in their second argument. For any ® € C12(X),
let 01 ® and 0> be its first order partial derivatives with respect to the first and the second argument
of ®. Similarly, 011 P, 012P and 020 P denote the second order partial derivatives (010® = 021 9P).
For all = and u, define @ (z) := sup,[zy — ®(x,y)], i.e., the Fenchel conjugate of ® with respect to
its second argument.

We define the imaginary error function as erfi(z) = [ exp(u?)du; this is scaled by /7/2 from
the conventional definition, thus can also be queried from standard software packages like SCIPY
and JAX. Let erfi~! be its inverse function.

ITx(x) is the Euclidean projection of x onto a closed convex set X'. log represents natural
logarithm when the base is omitted. Throughout this paper, ||-|| denotes the Euclidean norm.

2. Related work

To streamline the exposition, a detailed discussion of existing works on simultaneously adaptive
online learning is deferred to Appendix A.

Continuous time approach Our result fits into an emerging direction of online learning: exploiting
the synergy between CT and DT algorithms. Concrete benefits in DT, including better bounds and
simpler analyses, have been demonstrated in various settings of minimax online learning (Bayraktar
et al., 2020; Drenska and Kohn, 2020; Kobzar et al., 2020; Wang and Kohn, 2022; Harvey et al., 2023)
and adaptive online learning (Kapralov and Panigrahy, 2011; Daniely and Mansour, 2019; Portella

6. There is an additive factor on Vi proportional to (a — %)_IGZ. For any fixed o > % this additive factor is negligible
in the large- V7 regime, but we cannot pick @ = %

7. Clarification: existing works (Mhammedi and Koolen, 2020; Jacobsen and Cutkosky, 2022) proposed various
techniques to mitigate the range ratio problem, while our approach does not encounter this problem by default. See
Section 5 for a detailed explanation.
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et al., 2022; Zhang et al., 2022a,b). Conversely, such a synergy can benefit traditional “model-based”
CT decision making as well; for example, Abernethy et al. (2012, 2013) showed that the celebrated
Black-Scholes model (Black and Scholes, 1973) for option pricing can be derived as the scaling limit
of a DT adversarial online learning model, which provides a strong justification of its validity.

Most of these works established the synergy via potential-based algorithms. Roughly speaking,®
the decision at time ¢ has the form ¢ (.S;), which denotes the derivative of a potential function ¢,
evaluated at a “sufficient statistic” .Sy that summarizes the history. In the CT regime, the crucial
simplicity is that a suitable ¢, satisfies a Partial Differential Equation (PDE), thus finding it can be
a tractable task. The tricky step is to properly convert this CT algorithm to DT and quantify their
performance discrepancy, which we call the discretization argument.

The most natural idea is to apply the CT algorithm to DT as is, and characterize the performance
discrepancy using Taylor’s theorem (Abernethy et al., 2013; Kobzar et al., 2020). However, this
approach requires a terminal condition at a fixed time horizon 7', which is missing from many
common settings of adaptive online learning. Harvey et al. (2023) proposed a particularly strong
and elegant alternative: replacing the standard derivative ¢;(.S;) in the CT algorithm by the discrete
derivative, e.g., %[gbt(St + G) — ¢4(S; — G)]. Then, the performance discrepancy between CT
and DT can be characterized by a DT analogue of the PDE, which can be analyzed in a principled
manner. Such an analysis has been adopted in several recent works (Greenstreet et al., 2022; Portella
et al., 2022; Zhang et al., 2022a,b), but the downside is that any gradient adaptive upgrade on the CT
algorithm (not hard to obtain, as shown in Section 3) is lost in DT by construction. The present work
addresses this limitation.

3. Warm up: Adaptivity in continuous time

To begin with, we study a one dimensional continuous time analogue of the unconstrained OLO
problem, in order to demonstrate the inherent simplicity of simultaneous adaptivity. The restriction
to 1D is justified by a well-known polar-decomposition technique from (Cutkosky and Orabona,
2018), which will be made concrete in Section 4.

Technically, much of this section is standard: the critical use of Itd6’s formula in CT online
learning was pioneered by Freund (2009) and greatly streamlined by Harvey et al. (Harvey et al.,
2023, Appendix B). Our treatment of simultaneous adaptivity will follow Harvey et al.’s argument
and a classical loss-regret duality from (McMahan and Orabona, 2014). Nonetheless, it embodies the
key intuition, thus paves the way for our main contribution on the discretization argument.

3.1. Setting

Unlike the DT adversarial setting universally recognized as a repeated game, the definition of a
reasonable CT analogue has been elusive. First, following (Harvey et al., 2023), we model the
combined actions of the CT environment, i.e., the CT analogue of the gradient sum 2221 gi, as an
arbitrary continuous semimartingale denoted by S; (t € Rzo),g with Sy = 0 — examples include

8. For clarity, we do not account for gradient adaptivity in this discussion. Essentially, the idea of second order gradient
adaptivity is replacing ¢ by the running gradient variance V; = >°'_ | ||g: 2.

9. In DT, the gradient sum 22:1 g 1s a classical quantity for dual space online learning algorithms, sometimes called the
“sufficient statistic”. In the CT analogue, we essentially assume the sufficient statistic evolves as a stochastic process
with a very general law. Our treatment has a slight difference from (Harvey et al., 2023): the latter models | S¢| rather
than St.
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the Brownian motion and the It6 process.'® Such an assumption is motivated by the analysis:
semimartingales form the largest class of integrators with respect to which the It6 integral can be
defined; “continuous” means that the sample paths are continuous almost surely — this avoids the
jump-correction terms in the Itd’s formula.

Next, for any continuous semimartingale S, one can define its quadratic variation process,
denoted by [S];. Intuitively, [S]; is the CT analogue of the 1D gradient variance V; = Y¢_; g7.
For the standard Brownian motion, [S]; = ¢. For the Itd’s process, [S]; = fg o2 ds, where ¢ is the
diffusion coefficient of S (note that o is itself a stochastic process).

After characterizing the CT environment, let us turn to the CT learner. We consider the potential
framework. The learner fixes a potential function ¢ € C12(X) at the beginning, where X’ is an open
set containing R>o x R. The learner’s decision against the environment S is 92¢([S]¢, —S¢), which
is a continuous process — this mirrors the standard FTRL family in DT (Orabona, 2023, Chapter 7).
Furthermore, the “adversarialness” of the DT setting is analogous to the fact that the law of the CT
environment .S can depend on the learner’s potential function ¢.

With the above, the learner’s total loss is the It integral fOT 020([S]t, —St) dS; (Revuz and Yor,
2013, Definition 1V.2.9), and any fixed comparator v induces the total loss u.S7. The goal of this CT
problem is thus choosing ¢ to minimize the continuous time regret,

T
Regret$ T (Env,u) == </ 20 ([S]t, —St)d5t> — uST.
0

3.2. Analysis

The crucial simplicity of the CT setting can be seen in the following theorem. This is new to the
literature, but just a combination of steps in (Harvey et al., 2023, Theorem B.2) and (Orabona, 2023,
Theorem 9.6).

Theorem 1 If ¢ € C12(X) satisfies the Backward Heat Equation (BHE) 016 + %622(]5 =0, then
forallT € R>q and u € R, almost surely,

Regret$ T (Env, u) < ¢(0,0) + Dls)p ().

Here we follow the notation from Section 1.2: ¢*(-) is the Fenchel conjugate of ¢ with respect to its
second argument.

Let us include the proof for completeness, which also highlights the ideal type of analysis that
the DT regime should also follow. The central component is the Itd’s formula, i.e., the stochastic
analogue of the chain rule. The specific version below combines two results from (Revuz and Yor,
2013): Proposition IV.1.18, and Remark 1 after Theorem IV.3.3.

Lemma 2 (Ité’s formula) If f € CY?(X) and X is a continuous semimartingale, then for all
T € R>o, almost surely,

f([X]r, X7) — f (0, X0)

T T 1
— [Cour @t xaxi+ [ |ons (X1 X0+ p0m (X)X aix
0 0

10. 1t6’s process is a general form of diffusion defined by a differential equation dS; = o dB; + u: dt, where B is the
standard Brownian motion. Here, the diffusion coefficient o and the drift coefficient p are both stochastic processes.
Rigorous definitions of relevant stochastic process concepts can be found in (Revuz and Yor, 2013).
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In the language of the potential framework, the It6’s formula is a potential verification argument
(on f), but in the strongest form: an equality. The regret bound can then be proved with ease.

Proof [Proof of Theorem 1] Applying Lemma 2 with f <— —¢ and X < —S, and further using the
BHE 0, ¢ + %322¢ = 0 to eliminate the integral with respect to [S], we have

Regret$ ! (Env,u) = ¢ (0,0) — uSt — ¢ ([S]r, —ST)

< ¢(0,0) + Sup [uy — & ([SlT,y)] -

The proof is complete by plugging in the definition of the Fenchel conjugate gb’[kS}T (u). |

It remains to pick a specific potential function ¢. Similar to (Zhang et al., 2022a; Harvey et al.,
2023), with arbitrary constants £, > 0, we define

o T(z,y) =eVr +6 (2/ Ao erfi(u)du — 1) , 4)
0

which satisfies the BHE. Also, the shift § on the first argument x ensures ¢ € C12(R5 5 x R).
Plugging in the Fenchel conjugate computation from (Zhang et al., 2022a, Theorem 4), Theorem 1

becomes
|ul )
log(1+—— ) +1
\/ g( V2e

Regret$ ! (Env,u) < e\/[S]r + 6 + |u] /2 ([S]r + 9)
With e = 1, Regret$T (Enwv, u) = O <|u| V[S]r log |u|), which is the desirable CT simultaneously
adaptive bound, analogous to the O <|u| /Vrlog \u|) bound we aim for in DT. Furthermore, the

leading constant v/2 in Eq.(5) matches the optimal leading constant in the DT setting (Zhang et al.,
2022a).

To conclude, the key takeaway is that in CT, one can use the 1t6’s formula and the Backward
Heat Equation to achieve an “ideal form” of simultaneous adaptivity fairly easily. In some sense, they
capture the important problem structure, which suggests that their DT analogues could potentially
improve and simplify prior works (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020;
Jacobsen and Cutkosky, 2022) that do not exploit such structures. Next, we make this intuition
concrete.

&)

4. Main result: Refined discretization

In this section, we consider a DT setting that slightly generalizes the one at the beginning of this
paper. Let us assume the Lipschitz constant G is unknown, but at the beginning of each (the ¢-th)
round we have access to a hint h; which satisfies hy > hy_1 and ||g¢|| < h; (initially, assume hy = hy
and ||g1]| > 0 w.l.o.g.). Such a setting is motivated by (Cutkosky, 2019), where designing a full
Lipschitzness-adaptive algorithm can be reduced to solving this OLO problem with hints; details
will be discussed in Section 5. For clarity, one may think of h; = G when G is known.

Our solution centers around a 1D potential function ®; defined by a change of variables. With
hyperparameters €, «, k; > 0 and 2z; > khy, define

(pt(V7S) = ¢(V+Zt+ktS7S)7 (6)
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where

o(z,y) = evax (2/0@ erfi(u)du — 1> .

Here, ¢ is a generalization of the CT potential (4), satisfying 01¢ + ad22¢ = 0, the generalized
Backward Heat Equation with constant c. It can be verified that ¢ € C1?(R+q x R).

Intuitively, ®, is the potential function we apply in the ¢-th round, therefore k; and z; should be
functions of the hint h;. By a simple dimensional analysis, z; h?, ks o< ht, while € and « are real
numbers. Also, the definition of ®;(V, S) is only valid when S is larger than a threshold, since the
first argument of ¢ can only be positive — the choice of z; and k; will ensure that all the “interesting”
values of S are above this threshold.

4.1. Algorithm

Similar to many other comparator adaptive OLO algorithms, our algorithm has a two-level hierarchi-
cal structure. On the high level is the meta algorithm from (Cutkosky and Orabona, 2018, Section 3),
decomposing the OLO problem on R? into two independent subtasks: learning the direction and
the magnitude of the comparator. Direction learning is handled by gradient adaptive OGD on a unit
norm ball. Magnitude learning is handled by the novel 1D base algorithm employing the potential
function ®,, followed by a constraint-imposing technique (Cutkosky, 2020, Section 4) which restricts
its output from R to R>q.

Concretely, we present the important 1D base algorithm as Algorithm 1, while the meta algorithm
is presented as Algorithm 2. Since the base algorithm is updated using the surrogate feedback
provided by the meta algorithm, we denote these surrogate algorithmic quantities with tilde.

Algorithm 1 1D base algorithm
Require: The potential function @, defined in Eq (6). Hints Ay, ho, ... € R>0 satisfying h; > h—1.
Surrogate loss gradients I, 0o, .. . satisfying l; € [—h¢, he] and ZZ 1 I; < hy for all t.
1: Initialize Vy = 0, Sp = 0.
2: fort=1,2,...do
3 Observe the hint h; and use it to define k; and z; in the potential function ®,.
4:  Predict §iy = Do®¢(Vi_1, 5 1).
5
6
7

Receive the surrogate loss gradient l;.
LetV;f V;f 1+lt,and5t St l_lt
: end for

Notice that Algorithm 1 requires a somewhat nonstandard condition, Zz 1 l; < ht for all ¢.
This is to ensure that the update 7; = (92(1),5(1/} 1S, 1) is well-defined: S;_1 = — Z i > —hy,
therefore with z; > k.h;, we always have Vt 1+2+ ktSt 1 > 0, which complies with the positivity
requirement on the first argument of ¢. The following lemma, proved in Appendix D, shows that
the surrogate losses defined by the meta algorithm indeed satisfy this requirement, thus the entire
algorithm procedure is well-posed.

Lemma 3 (Well-posedness) The surrogate loss l; defined in Algorithm 2 satisfies Zle i < hy for
all t.
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Algorithm 2 Meta algorithm on R,
1: Define A;4 as a copy of Algorithm 1. Define .Ag as OGD on the d-dimensional unit Lo norm

ball, with adaptive learning rate 7; = 1/2/3'_, ||g:||>. The initialization of Ag is arbitrary.
2: fort=1,2,...do
Query A4 for its prediction gy € R. Let y; = IIr_ ().
Query Ag for its prediction w; € RY; |Jwy| < 1.
Predict x; = wy;, receive the loss gradient g; € R,
Send g; as the surrogate loss gradient to Ag.
Define I; = (g4, w¢), and

N R

i le,  Lge > Liys,
! 0, else.

8:  Sendl, as the surrogate loss gradient to A14.
9: end for

4.2. Analysis

Turning to the analysis, our key innovation is the following lemma.

Lemma 4 (Key lemma: one step potential bound) Letec > 0, a > % and for all t, ky = 2hy and

Z = 1220?‘j14 h?. Then, the 1D potential functions satisfy

(V42 S+ ) = 01 (V, ) — cr®(V, ) <0,
forallV.>0,S8 > —hs_1 and ¢ € [—hy — min(S,0), hy).

This is a potential verification argument, serving a similar purpose as the It6’s formula in the CT
analysis (Lemma 2). The condition on ¢ simply means we require ¢ € [—hy, hy] and S + ¢ > —hy.
With the lemma, one can take a telescopic sum with ¢ = —I;, which returns a cumulative loss

upper bound of the 1D base algorithm (Algorithm 1): EL ftgjt < Py (0,0) — Dy (VT, S'T). Then,
similar to what we did in CT, the regret bound of Algorithm 1 follows from the loss-regret duality
(McMahan and Orabona, 2014) and a Fenchel conjugate computation (Lemma 12).
Now let us sketch the proof of Lemma 4.
Proof sketch of Lemma 4 The proof is structured into three steps.
1. Proving ®,(V,S) < &,_1(V, 5).
This is due to 91 ¢(x,y) < 0. After that, we have
(V+c? S+0c) = 1(V, 8) = ca®(V,S) < BV + ¢, 5+¢) — 0V, 5) — cOP4(V, 5),
and it suffices to show RHS < 0. Since all the subscripts are ¢ now, let us simply drop this
subscript from ®, z and k, and write G in place of h;.

2. Convert checking ® to checking ¢, using the change of variables.

Let us define
frs(c) =V + % S +c¢)— 0(V,8) — ct®(V, S).
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The task now is showing fy s(c) < 0. Taking the derivatives with respect to c,

frs(c) =2c01®(V + ¢, S + ) + B2(V + ¢, S + ¢) — B, 2(V, 5),

1 () = 200® + 42911 P + 4cDyp a<1>‘
frs(e) 1@+ 4eon® + 4c01® + O (V4c2,5+c)

< 20,® + 4G2011® + 4G 912 +a22<1>‘ ,
(V4¢2,5+c)

where the final subscript means all the involved partial derivatives are evaluated at (V +c2, S +c).

Notice that fy,s(0) = f{,5(0) = 0. Therefore, to prove fy,s(c) < 0, it suffices to show

fi5(c) < 0 for all considered values of V, S and c.

Crucially, due to the change of variables, partial derivatives of ® can be easily rewritten using
partial derivatives of ¢ (Appendix B). Plugging that in, it suffices to verify the following two
cases.

Casel. If912®(V +c% S+ ¢) <0, then

2000 + (k — 2G)2811¢ +2(k — 2G) 0120 + 822¢‘(V+02+z+k(5'+c) s <0.

Case2. If912®(V +c% S+ ¢) > 0, then

2016 + (k +2G)°0n¢ + 2(k + 2G)126 + 822¢‘(V+c2+z+k(5+c) S+c) < 0.

. Controlling 011¢ and 012¢ by picking k£ and z, and applying the BHE.

Closely examining the above two inequalities on ¢, one could notice a striking similarity with the
BHE 01¢ + £922¢ = 0, which the ideal CT potential ¢°T was designed to satisty, cf., Eq.(4).
In particular, if one could drop the two annoying terms, 011¢ and 012¢, then gZ)CT already fits
into the above two cases with equality. Essentially, the exhibited similarity is due to the fact that
both ¢ (in DT) and QSCT (in CT) have their “time variable” (i.e., their first argument) growing
according to the quadratic variation of the environment. Therefore, it appears to be an important
problem structure, rather than a coincidence that happens to work in our favor.

With that, our idea is to pick £ and z such that the annoying residual terms are upper bounded
by a small constant multiplying 022¢. Then, we can still use the BHE 01¢ + ads¢ = 0,
but with a different diffusivity constant o > %, to control the LHS of the above two cases.
Eventually, this will only cost us a slightly suboptimal leading constant in the regret bound

(/43 =V2= Via).

Formally, to this end, notice that k& = 2G trivially satisfies Case 1. Case 2 is a bit more involved,
but from the full expressions of 011¢, J12¢ and 0220, it is not hard to see that a large enough
z > %GQ suffices. This completes the proof. |

With Lemma 4 above, it is fairly straightforward to obtain the regret bound of the 1D base

algorithm (Lemma 13), as we sketched earlier. Then, since the meta algorithm is simply the
combination of two existing black-box reductions, its regret bound follows from (Cutkosky and
Orabona, 2018, Theorem 2) and (Cutkosky, 2020, Theorem 2). This returns the following theorem
as the main result of this paper.

10
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Theorem 5 (Main result) Withe > 0, o > % ki = 2hy and z; = 1220?‘;*'{1 h?, Algorithm 2 guaran-
tees forall T € N and u € R?,

Regrety(Env,u) < z—:\/a (VT + 27 + k‘Tg) + ||| (S + 2\/2VT) ,

where

S = dakr (1 + log2 [[u] e + 1))2 + 4o (Vr + 27) (1 +Iog(2 uf e L + 1)) .

Theorem 5 contains the precise regret bound without any big-Oh. Nonetheless, one could use
asymptotic orders to make it more interpretable (see Appendix D for the derivation).

12 4
Regrety(Env,u) < € <\/Oé <VT + 2a+1h%> + 4ahT>
a —_

+ llull O (v/Vrlog(ule 1) V hr log(lull = ™))

which is simultaneously valid in two regimes: (i) ||ul| > € and Vp > h%; and (ii) v = 0.
In comparator adaptive online learning, regret bounds of this form are said to characterize the
loss-regret tradeoff (Zhang et al., 2022a): with a small €, one could ensure that the cumulative
loss Regret(Enwv,0) is low, while only sacrificing a y/log(e~1) penalty on the leading term of
the regret bound. We also note that the additive logarithmic “residual” term hr log(||ul| e~!) is
standard in simultaneously adaptive regret bounds, and not removable in some sense (Cutkosky,
2018, Section 5.5.1).

The key strength of this bound is that, the dependence on V7 alone is O(y/Vr), matching the
optimal gradient adaptive bound achieved by OGD, and improving prior works on simultaneous adap-
tivity (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020; Jacobsen and Cutkosky, 2022).
Furthermore, in the regime of large ||u|| and V7, the leading order term is \/4aVr log(|ul| 1),
where the multiplying constant v/4cv almost matches the v/2 lower bound from (Zhang et al., 2022a).

5. Extension: Unknown Lipschitz constant without hints

Finally, we discuss the full extension of our main result to the setting with unknown G, removing
the need of hints. This follows from a reduction to our Section 4, developed by (Cutkosky, 2019;
Mhammedi and Koolen, 2020). Let us define G; := max;<; ||g¢||, and w.lo.g., G := Gr.

The essential idea is the following. Without knowing G, we use the hint h; as a guess of the
“running Lipschitz constant” G, before observing ||¢;||. Naturally, h; = G;_; makes a reasonable
guess, but there is always some chance of “surprise”, where ||g¢|| > G;_1, and the analysis from
Section 4 breaks. To fix this issue, instead of feeding the algorithm the true gradient g;, one could
feed its clipped version, gy = g:G—1/G. Now, hy = G is always a valid hint for the clipped
gradient g, therefore our main result (Theorem 5) can be applied in a black-box manner.

Ultimately, we care about the regret evaluated on the true gradients g;.7, rather than the clipped
gradients g;.7. Their difference is related to the magnitude of the predictions ||x;||, thus one could
use the standard constraint-imposing technique (Cutkosky, 2020, Theorem 2) once again to control it.
In combination, this yields the following lemma (Mhammedi and Koolen, 2020, Corollary 3).

11
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Lemma 6 If we denote the simultaneously adaptive regret bound in our Theorem 5 as a function
R(u, Vip, hr), then there exists an algorithm taking ours as a black-box subroutine, guaranteeing

Regrety(Env,u) < R(u, Vy,G) + G |Ju® + G /rt11<ajcht + G |Jul],

where By = 2221 lg:ll /G-

Notably, this algorithm needs neither the knowledge of G, nor any other oracle knowledge like
hints. Moreover, no restarting (e.g., the doubling trick) is required. In the special case with bounded
domain (||z¢]| , ||u|| < D), a simplified variant of this procedure guarantees an even smaller bound,
Regretr(Env,u) < R(u, Vpr,G) + 2DG.

The strength of our main result can be demonstrated in this general setting as well.

* First, the algorithm obtained from Section 4 and Lemma 6 is scale-free (Orabona and Pil, 2018),
in the sense that if all the loss gradients are scaled by ¢ € R, then the prediction x; of the
algorithm remains unchanged, and the above (G-adaptive regret bound is scaled by exactly c. This
is a favorable property in practice, also satisfied by prior works (Mhammedi and Koolen, 2020;
Jacobsen and Cutkosky, 2022) which we quantitatively improve.

* Second, we eliminate the range ratio problem in prior works (Mhammedi and Koolen, 2020;
Jacobsen and Cutkosky, 2022). For OLO with hints, existing analogues of our Theorem 5 have the
shape like Regret(Env,u) < O (||u|| vV log(||ul] VT/h%)), where the range ratio Vi /h? can
be arbitrarily large despite being inside the log. Using a restarting trick (Mhammedi and Koolen,
2020) or a somewhat more complicated “soft-thresholding” on the prediction z; (Jacobsen and
Cutkosky, 2022), one could replace this range ratio by poly(7"). However, this sacrifices either
the practicality of the algorithm or its analytical simplicity, and in both cases, one is left with a
suboptimal /log I" multiplicative factor on the leading term of the regret bound.

Essentially, such a range ratio problem originated in (Mhammedi and Koolen, 2020) due to the
existence of “unit” in their confidence hyperparameter . Analogous to (McMahan and Orabona,
2014; Orabona and P4él, 2016), the paper applies the potential function

B(V,S) = ——e 5
o) = TR P oy on, [T )

where ¢ has the unit of G? due to a dimensional analysis. If G is known, then one could pick
£ o< G?, leading to the regret bound Eq.(3). Without knowing G, since ¢ needs to be determined at
the beginning, the feasible choice becomes € oc h? — this replaces G in Eq.(3) by h7, causing the
range ratio problem.

Our algorithm has an important difference. The confidence hyperparameter ¢ in our potential
function Eq.(6) is “unitless”, therefore when selecting it at the beginning, we do not need a guess
of G. This eliminates the range ratio problem, since there are no Vi /h? or G//h; terms in our
regret bound at all. Neither restarting nor soft-thresholding is needed. The takeaway is that, such
a range ratio problem appears to be an analytical artifact due to certain unit inconsistency (and
ultimately, the suboptimal loss-regret tradeoff (Zhang et al., 2022a)), which can be eliminated by a
better design of the potential function.

12
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6. Conclusion

The present work studies how to achieve simultaneous gradient and comparator adaptivity in
OLO with Lipschitz losses. A new continuous-time-inspired algorithm is proposed, improving
the O(+/V log V) regret bound from prior works (with respect to the gradient variance V7 alone)
to the optimal rate O(/V7). The crucial technique is a new discretization argument that preserves
gradient adaptivity from CT to DT, improving an already powerful, but non-gradient-adaptive one
from the literature. This could be of broader applicability, and a natural step forward is exploiting the
benefits of this technique in other online learning problems of interest. Finally, the extension to the
setting with unknown Lipschitz constant is discussed, where our algorithm is made scale-free.
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Appendix A. More related work

Simultaneous adaptivity Within the two types of adaptive online learning, comparator adaptivity
is often considered more challenging than gradient adaptivity. Therefore, existing works on the
simultaneous adaptivity problem (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020;
Jacobsen and Cutkosky, 2022) are all built on the core algorithmic frameworks of comparator
adaptivity, with various “gradient adaptive modifications”. Let us take a closer look.

* The state-of-the-art result for comparator adaptivity alone is due to (Zhang et al., 2022a), which
achieved not only the order-optimal regret bound Eq.(2), but also the optimal leading constant
/2, improving a series of earlier works (Streeter and Mcmahan, 2012; McMahan and Orabona,
2014; Orabona and Pal, 2016). The key technique is a CT analysis of dual space OLO algorithms
(specifically, the potential framework), combining the potential verification argument from (Harvey
et al., 2023) and the loss-regret duality from (McMahan and Orabona, 2014).

» Simultaneous gradient and comparator adaptivity was achieved in (Cutkosky and Orabona, 2018)
for the first time, cf., Eq.(3). It relied on a refined version of a coin betting algorithm (Orabona and
Pal, 2016), with the betting fractions selected separately by online learning. It has been shown that
coin betting is a variant of the potential framework with a suboptimal loss-regret tradeoff (Zhang
et al., 2022a), which is inherently tied to suboptimal logarithmic factors in the regret bound.

* Mhammedi and Koolen (2020) designed different potential-based algorithms achieving Eq.(3).
Unique to this work is a novel computer-aided analysis: a suitable potential function candidate
(inspired by (McMahan and Orabona, 2014; Orabona and Pal, 2016)) was first guessed, and then
verified using MATHEMATICA. It is possible that the same approach could verify better guesses
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b}

that achieve our goal. The difficulty is that, the success would be subject to “good intuitions’
combined with the capability of the software, which is not well-understood yet.

* Most recently, Jacobsen and Cutkosky (2022) achieved Eq.(3) (modulo log(log) factors) using a
variant of Online Mirror Descent (OMD). This is a primal space approach fundamentally different
from all the dual space approaches discussed above, therefore several related questions remain
open. For example, it is unclear if results like (Zhang et al., 2022a) (on comparator adaptivity
alone, based on a CT analysis) can also be achieved using this primal space approach.

During our revision, we also notice that the algorithm from (Jacobsen and Cutkosky, 2022) with a
different hyperparameter setting (not reported there) might achieve the O(+/Vr) regret bound as
well, without the extra log(Vr) factor. We are currently verifying such an observation with the
authors, and the outcome will be incorporated into the arXiv version of this work.

» Besides the above, one can also achieve simultaneous adaptivity using a powerful aggregation
approach (Chen et al., 2021). This approach is formulated for a much more general setting, but
on an unbounded domain, it requires increased computation, i.e., O(\/T ) per round, making it
somewhat incomparable to the other baselines surveyed above.

In light of these works, the present paper aims to use a better CT workflow than (Zhang et al.,
2022a) to improve the results of (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020;
Jacobsen and Cutkosky, 2022). There are also techniques relaxing the assumption of knowing the
Lipschitz constant GG (Cutkosky, 2019; Mhammedi and Koolen, 2020). We study this setting as an
extension of our main result.

Existing bound + doubling trick We mention in Section 1 that the doubling trick can roughly
turn an existing regret bound Eq.(3) (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020;
Jacobsen and Cutkosky, 2022) to the form we aim for. Here is an explanation.

Concretely, using O to hide log(log) factors, (Jacobsen and Cutkosky, 2022, Theorem 1) achieves

Regret(u) < O | G + |ul| \/VT log <W + 1> vV Glog (HuH\éW + 1)

3

With a known V7 budget, setting ¢ = O(+/V7/G) yields the desirable bound O(||ul| \/Vz log [|ul]),
up to a “morally secondary term” ||u|| G'log ||u||. Applying the standard doubling trick can relax
the known-V7 assumption. The only small price to pay is that the secondary term is multiplied by
O(logT).

Apart from that, (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020) cannot be applied
similarly due to a tuning issue. Even knowing V7, the parameter € there cannot be set accordingly to

achieve the O(||u|| /Vr log ||ul||) regret bound we aim for.

Weakness of doubling trick Section 1 also claims that the doubling trick is impractical. To
justify this claim, we first refer the readers to an empirical study: (Besson and Kaufmann, 2018,
Section 5) evaluated several versions of the doubling trick in the bandit setting. In almost all cases,
the combination of the fixed-T" algorithm and the doubling trick performs considerably worse than
the “intrinsically anytime” algorithm with weaker theoretical guarantees; and especially, such a
performance gap widens with each restart. There is a theoretical support for this: the doubling trick
incurs an extra multiplicative constant, which is at least 3 (Besson and Kaufmann, 2018, Section 5).
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It means for our problem, the combination of existing regret bounds and the doubling trick cannot
achieve (or get close to) the optimal leading constant.

In addition, we would argue that the doubling trick is aesthetically unsatisfactory. Restarting
wastes data and causes large “jumps” in the decision sequence, which are often undesirable. Therefore,
although the doubling trick can be theoretically sufficient (e.g., making fixed-learning-rate OGD
anytime), more streamlined solutions are typically favored (e.g., time-varying learning rates).

Appendix B. Basics of the potential function

For the two potential functions defined in Section 4, we compute their derivatives as follows. Starting
from ¢,

10(e.) =~ e v ).

dax

82¢(x7y) = eerfl <\/ZE> )
2 2
eva [y y
gz, y) = 4;;»2 <M 1> €xp <4am) ’
2
___ % Y
2
__ ¢ Y
822¢($, y) - 2\/@ exp (40&(E> .

Due to the change of variables, the derivatives of ®; can be concisely represented by the derivatives

of ¢.

NPV, S) = ho(V + 2z + kS, S),
1@:(V,S) = k01 dp(V + 2zt + k.S, S) + 020(V + 2 + kS, S),
1P (V,S) = 0no(V + 2z + k.S, S),
012P+(V, S) = k0110(V + 2zt + kS, S) + 0120(V + 2z + kS, ),
Do2®4(V,S) = k}on1d(V + 24 + ki S, S) + 2k 0120(V + 2 + kS, S) + Do2d(V + 2 + kiS5, S).
Next, we present two simple lemmas on the potential function ®;. The first lemma shows ®; is

convex in its second argument. The second lemma shows the negativity of 92®(V,S) when S < 0.

Lemma 7 (Convexity) Ife,a,k; > 0and z; > kihy, then the potential function ®(V, S) satisfies
020®P4(V,S) > 0forallV>0and S > —hy.

Proof [Proof of Lemma 7] Let us drop all the subscript ¢ and let G = h;. Define the shorthands
r=V+z+kSandy=S5.ForallV > 0and S > —G, we have z > 0, therefore

922®(V, S) = K*0116(x, y) + 2kO12¢(w,y) + 26p(x, y)
_eva (VN (EY e 2y 2
= 132 P <404:U> (204:6 Tk o * a
_ &/ (y2><k‘2y2+k2+2(v+2)).

 4a3/2 exp dax 20 «
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The RHS is strictly positive. |
Lemma 8 (The sign of prediction) If c,a,k; > 0 and z, > kihy, then the potential function
O,(V, S) satisfies 02P+(V,S) < 0forall V> 0and —hy < S <0.

Proof [Proof of Lemma 8] Same as before, drop all the subscript ¢. Let us check d2®(V,0) < 0.
Indeed,

eky/a
h®(V,0) =ko1d(V + 2,0) + o(V + 2,0) = —————— < 0.
b (V,0) = KONG(V +2,0) +80(V + 2,0) = — Z0EL
Moreover, ®(V, S) is convex with respect to its second argument, due to Lemma 7. |

The final two basic lemmas concern the property of the erfi function.
Lemma9 Forall x > 1, erfi(z) > exp(z?) /2.

Proof [Proof of Lemma 9] Let f(z) = erfi(z) — exp(x?)/2z. f(1) = erfi(1) — e/2 > 0. For all
x>1,

(@) = 57 ex(s?) > 0,

which means f(x) > 0 for all z > 1. [ |

Lemma 10 Forall 2 > 0, erfi~!(z) < 14 /log(z + 1).

Proof [Proof of Lemma 10] We first show erfi(z) > exp(x? — 2) — 1 for all z > 0. Let f(x) =
erfi(x) — exp(z? — ) + 1, then f(0) = 0,

f'(z) = exp(2® — ) - [exp(z) — (2z — 1)].

It is easy to verify exp(z) > (2x — 1) for all z > 0.
Next, for any y > 0 let 2 = erfi~!(y), which is also nonnegative. From the first step,

y = exfi(z) > exp [(a:— ;)2 - i] 1,

therefore
1 1
x < §+ \/1 +log(y+1) <1+ /log(y +1).
Substituting =z = erfi~!(y) completes the proof. [ |
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Appendix C. Analysis of the base algorithm

The key step of our analysis is the following potential verification argument.

Lemma 11 (Key lemma: one step potential bound) Let ¢ > 0, o > % and for all t, k; = 2h,

and z; = 1225_+f1 h?. Then, the 1D potential functions satisfy

(bt(v + 025 S+ C) - Qtfl(‘/v S) - CaZ(Pt(V’ S) < Oa
forallV.>0,S8 > —hi_1and c € [—h; — min(S,0), hy.

Proof [Proof of Lemma 4] The first, preparatory step is to show ®;(V,S5) < &;_;(V,S) for all
V > 0and S > —h;_1. To see this, notice that

Qi(V,S) = &(V + 2t + kS, S),

D1(V,S) = ¢(V + 2e-1 + k15, 5).
From Appendix B, 01¢(x,y) < 0 for all z > 0 and y € R. Furthermore, compare the first argument

on the above right hand sides,

12 4

12a + 4
20 — 1
=V + Zt—1 + kt_ls.

>V +hi ( hi—1 + 25) (S > —hs—1 and hy > hy_1)

Concluding this argument, we have shown ®,(V,S) < ®,_;(V,.S). It means to prove the present
lemma, it suffices to show

OV +c2 S +c)— 0V, 8) — cO®(V,S) <0,

forall V' >0,S > —h; and ¢ € [—h; — min(S, 0), h]. Since all the subscripts are the same ¢, let us
drop them completely to simplify the exposition. Also, let us denote h; = G, which hopefully makes
the “unit” clearer.

Now, let us view our remaining objective as a function of c,

frs(c) =0V +c S +c)—d(V,8S) —cod(V,S).
Taking the derivatives,

frs(€) =2c01®(V + 2, S +¢) + 0 @(V + 2,5+ ¢) — ,2(V, 5),

frs(e) =201@(V + %, S + ¢) + 401 ®(V + ¢, 5 + ¢) + 4cd2®(V + ¢%, S + ¢)
+ 092®(V + %, S + ¢)
<201®(V 4%, S +¢) +4G?01B(V + 2,5 + ¢) + 4G [012@(V + %, S + ¢)|
+ 092®(V + 2,8 +¢). (7
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Note that fy,5(0) = f{, 5(0) = 0. Therefore, to prove fy,s(c) < 0, it suffices to show f{’ 4(c) <0
for all considered values of V', S and c. Also notice that the RHS of Eq.(7) has a striking éimilaﬁty
to the Backward Heat Equation — in fact, after a change of variable, the resulting expressions, namely
Eq.(8) and Eq.(9) below, will resemble the standard BHE on ¢ (01 ¢ + %szqﬁ = 0) plus “lower order
terms”. The main goal of this proof is to control such lower order terms by properly choosing k& and
z.

Concretely, due to the absolute value in Eq.(7), we will analyze two cases. Technically, the first
case is harder, therefore we pick £ to simplify its analysis. The second case is relatively easier to
handle.

Case 1: 92®(V + 2,5 +¢) < 0. Substituting the derivatives of ® by the derivatives of ¢, we
have

I o(c) <20 k —2G)%0 2(k — 2G)0 ) . 8
fvs(e) <2019+ ( )70119 + 2( )0126 + D226 (VA h(540),5+3) ®)

The RHS means we evaluate all the derivative functions at (V + c? + z + k(S +¢), S + ¢). Plugging
in our specific choice of k and «,

" <929 o k=2G
fvvs(c) < 2010+ 22¢’(V+02+z+2(5+0),5+c) ( :

< 2(01¢0 + adxnd) (a0 > % and Lemma 7)

(V+c2+2+42(S+-c),S+c)
=0. (¢ satisfies the BHE with constant «)

Case 2: 012®(V +¢?,8 +¢) > 0. Similar to the first case,

" < 20 k4 2G)%0 2(k 4 2G)0 ) : 9
fvs(e) <2019+ (k+2G) 0116 + 2(k + 2G)012¢ + D229 (VA4 h(54),54+¢) )

Consider the k-dependent terms in Eq.(9), (k + 2G)2011¢ + 2(k + 2G)d126. Our goal is to upper
bound it by (2ac — 1)0a22¢), such that in total, the RHS of Eq.(9) becomes 2(d1 ¢ + adaa¢), which
equals O due to the BHE.

Plugging in the derivatives of ¢ from Appendix B, for all inputs (z, y),

(k4 2G)?011¢ + 2(k + 2G) 126 — (2a — 1)(922@5’(m o)

2

- 4\/;53/2 exp (4195) {(k +2G)? (gi + a> — 2k + 2G)y — 22(20 — 1)]

£ Y’ 2 (v
NG exp | 16G 9 +a ] —8Gy —2z(2a — 1)

We aim to show the bracket on the RHS is negativeatz = V 4+ c? 4+ 2z + k(S +c)and y = S + ¢,
where k = 2G. This amounts to showing

4G%(S + ¢)?

0= V+e+2z+42G(S +c)

+8aG? — (4aG +2G) (S +¢) — 2a — 1)(V + 2 +2) <0.

The idea is that we can pick a large enough 2 to make it hold. Concretely,
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. IfS+c>(),thensinceoz>%,

2 2
o< 4G*(S +¢)
2G(S +¢)
= —4aG(S + ¢) + 8aG? — (2a — 1)z
< 8aG? — (2o —1)z.

+ 8aG? — (4G +2G) (S +¢) — (2a — 1)z

and it suffices to pick

S8
> G2
S a1

* If S+c¢ < 0, then since we require ¢ > —G—min(S, 0), we also have S+c > min(S,0)+c > —G.
As long as z > 4G?,

4G4
< -
o< z — 2G?

< 12aG? +4G* — (20— 1)2.

+ 120G? +2G? — (20— 1)z

It suffices to pick
S 1200 + 4 a2

~ 2a—1 "~

_ 12a+44 2
In summary, z = mG ensures ¢ < 0. Due to the BHE on ¢,

7 < 2(8 0 -
fv,s(c) < 2(01¢ + adz9) (V+c2+24+2G(S+c),5+c)

Combining the two cases completes the proof. |

The following lemma characterizes the Fenchel conjugate of ®; (with respect to its second
argument).

Lemma 12 (Conjugate) With e, o, ky > 0 and z > kihy, for allu > 0,

sup  [uS — @V, S)] < uS + f-:\/a(V + 2zt + ktS),
SE[—ht,OO)

where

2
S = daky (1 + /log(2ue—1 + 1)) +V4a(V + z) (1 + v/log(2ue—1 + 1)) .

Proof [Proof of Lemma 12] Throughout this proof, we drop all the subscript ¢ and write GG in place
of ]’Lt.

We first show that the supremum over S in the Fenchel conjugate is attainable by some S* €
[0,00). To this end, define the function f(S) := uS — ®(V,S). f is continuous, with f'(S) =
u—02®(V, S). Moreover, due to Lemma 7, f is concave on [—G, 00). The existence of S* € [0, c0)
then follows from analyzing the boundary.
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e For all S € [-G,0], we have f'(S) > 0. The reason is u > 0, and 92®(V,.S) < 0 due to
Lemma 8.

* For sufficiently large S, we aim to show f’(S) < 0. Let us begin by writing down 9,®(V, S),
from Appendix B.

S eky/a s2 )
Hd(V, §) = cerfi - .
22(V, 5) = eer <\/4a(V+z+kS)> 2 V+z+kSeXp<4a(V—|—z+k:S)

Now consider large S that satisfies S > \/4a(V + z + kS). Due to an estimate of the erfi function
(Lemma 9),

i S - a(V +z+kS) ( S? >
er exX .
Via(V+z2+kS)) = S P\aa(V+2+kS)

Moreover,

VoV +z+kS) kv  Va(V+z)

S VV F2+kS SYV+z+kS

Therefore,

£ S eky/a S2
®(V,S) = | Serfi -
20(V, 5) lzer <\/4a(V+z—|—k:S)> 2 V+z+ksexp<4a(v+z+k5)>]
€ S
+ Serfi
2 <\/4a(V—|—z+k:S)>

S
fi . 10
o <\/4a(V—|—z+l<:S)> 1o

For sufficiently large S, we have RHS > u, hence f'(S) < 0.

>

| ™

Summarizing the above, we have shown that there exists S* € [0, co) such that

D (u) = . [Squ )uS — PV, S) =uS* — o(V,S5").
c|—G,00

Moreover, S* should satisfy the first order optimality condition f'(S*) = 0, i.e., u = 02 ®(V, S*).
Our goal next is to upper bound S* by a function of u. Again, we analyze two cases.

Case 1. If S* satisfies S* < \/4a(V + z + kS*), then by taking the square on both sides and
regrouping the terms, we have (5*)% — 4akS* — 4a(V + z) < 0. Solving this quadratic inequality,

1
S* < 5 [404/6 +/(4ak)? + 16a(V + 2)
= 20k + \/4a2k? + 4a(V + 2)

<Adak ++/4a(V + 2).
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Case 2. If S* satisfies S* > \/4a(V + z + kS*), then same as the earlier analysis in the present
proof, Eq.(10), we have

u > Eerﬁ 5 .
2 VAaa(V + 2 + kS*)

For conciseness, define the notation p = erfi—*(2us~"). Then, (S*)? —4akp?S* —4ap?(V +2) < 0.
Solving the quadratic inequality,

1
S* < 3 {4ak‘p2 + V/(4akp?)? + 16ap?(V + z)}
< 2akp® + /4a2k2p* + 4ap?(V + 2)
< dakp® + /4a(V + 2)p.

Now we can combine the above two cases. Specifically, p < 1 + +/log(2ue=! + 1) due to
Lemma 10. Therefore,

2
S* < dak (1 + /log(2ue—1 + 1)) + VAoV 2) (1 + /log(2ue—1 + 1)) .
Define the RHS as S. Then, from the definition of the Fenchel conjugate,

sup  [uS —®(V,9)] =uS* — ®(V,5%)

Se[—G,00)
S*
= uS* —e\/a(V + z + kS*) |2 / VAR v () du — 1]
0
<uS+ey/aV+z+EkS).
Plugging in S completes the proof. |

Combining the previous two lemmas, the following lemma characterizes the regret of the base
algorithm.

Lemma 13 (Regret of the base algorithm) With ¢ > 0, a > %, ki = 2h; and z = 1225f14 h?,
Algorithm 1 guarantees for all T' € N; and @ > 0,

T
> b —a) < a\/a (VT + 27 + k:TS‘) + @S,
t=1
where
_ 2 -
S = daky (1 + /log(2ae—1 + 1)) +4/4a <VT + zT> <1 + +/log(2ae—1 + 1)) .
Proof [Proof of Lemma 13] First, we can obtain a cumulative loss upper bound by simply summing

the one-step potential verification bound (Lemma 4). Letting c = —{;, V =V;_; and S = S;_; in
Lemma 4,

L < Dy (‘thlagtfl) — Py (Vt, gt) ;
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T
> lidi < @ (0,0) = @7 (Vr, Sr) .
t=1
Then, the proof follows from a loss-regret duality and the Fenchel conjugate computation from
Lemma 12.

T
ZZ UYg — u TU + <I>()(0 0) O (VT, ST)

< 9y(0,0) + Se[iggoo) [Sﬁ — o <\7T, SH

12a+ 4
a.
200 — 1

< 5\/a (VT I kTS‘) + 8.

h3 +e\/a (VT+zT+ kTS) +aS

Plugging in S from Lemma 12 completes the proof. |

Appendix D. Analysis of the meta algorithm
First, we prove Lemma 3, which certifies the well-posedness of our algorithm.

Lemma 14 (Well-posedness) The surrogate loss l; defined in Algorithm 2 satisfies 25:1 L < hy
forall t.

Proof [Proof of Lemma 3] First, notice that |lt|< |lt| = [(gt, we)| < e
Next, we prove by induction. Consider — Zl 1 li, which is defined as S;_1 in the base algorithm
(Algorithm 1). Suppose S;_1 > —h¢_1, which trivially holds at ¢ = 1. Let us analyze two cases.

« I S;_1 >0, then — 30 I; = Sp—1 — Iy > Sp—1 — [ly|> —hy.

o If —hyq1 < gt,l < 0, then due to Lemma 8, the prediction y; of the base algorithm satisfies
7 < 0. The meta algorithm projects it to y; = 0. Then, due to our definition of /; in the meta

algorithm,
7 lt7 lt S 07
ly =
0, else,

which is non-positive. Therefore, — 22:1 Li=S_1—0;>8_1>—h1>—h.

An induction completes the proof. |

Next, we prove our main result.

Theorem 5 (Main result) Withe > 0, « > , ki = 2hs and z; = 1223+14 h2 Algorithm 2 guarantees
forallT € Ny andu € RY,

Regrety(Env,u) < 5\/04 (Vi + 20 + krS) + |Ju| (5* + 2\/2VT) ,

where

S = daky (1 + /log(2 [[ul[e—* + 1))2 +VAa (Vr + 21) (1 + /log (2 [[ul[ e + 1)) .
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Proof [Proof of Theorem 5] Since the meta algorithm simply applies two existing black-box reduc-
tions (Cutkosky and Orabona, 2018; Cutkosky, 2020), the proof is straightforward given Lemma 13,
the regret bound of the 1D base algorithm. First, due to a polar decomposition theorem (Cutkosky
and Orabona, 2018, Theorem 2), the regret can be decomposed into the regret of .Ap with respect to
u/||u||, plus the regret of y; with respect to ||u||. Then, the latter is upper-bounded by the regret of 7;
evaluated on the surrogate losses I; — this is because our definition of 1y and I; follows the procedure
of (Cutkosky, 2020, Theorem 2), where a convex constraint can be added to an unconstrained
algorithm without changing its regret bound. In summary, we have

= llul) + IIUHZ {98, we — w/|[ul])

Regret(Env, u)

R
T
Z = [lll) + [l Z g, we = u/|[ul).

The two regret terms on the RHS represent the regret bound of A, and Ag, respectively.
Now, the first term follows from Lemma 13, where

T

T T
S BB =Y (gwn)? < Vi
t=1

t=1

As for the regret of Ag, due to (Orabona, 2023, Theorem 4.14),

T
> {gewe —u/|lul) < 2¢/2V7.
t=1

Combining these two components completes the proof. |

Finally, let us use asymptotic orders to make this bound a bit more interpretable. Consider the

regime of large ||u|| and V7, i.e., |[ul| > € and Vi >> h%. We preserve the dependence on ¢, as

€ is a “confidence hyperparameter” that can get arbitrarily close to 0. In contrast, o is a moderate
constant slightly larger than %, therefore we subsume it by the big-Oh.
Using log(1 + =) < z, we can crudely bound S in Theorem 5 by

S < Sahy (1 +/2ul e 1) 40V + 27) (1 /2 ||u||6*1)
= 8ahy + V4a(Vr + z1) + o (HuH et VT) .

Plugging this crude bound of S into the first term of the regret bound, we have

Regrety (Env, u) < s\/a (Ve + 21 + 16ah3 + 2hpv/Aa(Ve + 21) ) + ¢ (lalle=v/Vr)
+ llull (S +2v/27)
< eva (VVr+ oz +avahr) + o (Ilull Vi) + ull (5 +2v/2V7)
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Next, notice that S = O (\/VT log(||ul|e=1) V hylog(]|ull 5_1)>. Using it to replace the

remaining .S above,

Regrety (Env,u) < ¢ (\/m + 4OéhT> +o (HuH V:%/ZL)
+ ljul) O (v/VrTog(ulle=1) v b log(ull e ™) ) -

The second term can be assimilated into the third term. The result becomes

Regretp(Env,u) < e (\/a (Vr + 27) + 4ahT)

+ llull O (v/VrTog(ulle ) v hr log(lull ™)) . (1)

Note that this bound is not only valid for large ||u||, but also valid when v = 0 (this can be
directly verified from Theorem 5). Therefore, it characterizes the loss-regret tradeoff.
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