PHYSICAL REVIEW FLUIDS 8, 110501 (2023)

Traveling Faraday waves
Jian H. Guan®,' Connor W. Magoon ®,! Matthew Durey ®,?
Roberto Camassa,' and Pedro J. Sdenz® "
'Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
2School of Mathematics & Statistics, University of Glasgow,
University Place, Glasgow G12 8QQ, United Kingdom

® (Received 17 March 2023; published 16 November 2023)

This paper is associated with a video winner of a 2022 American Physical Society’s
Division of Fluids Dynamics (DFD) Milton van Dyke Award for work presented at the
DFD Gallery of Fluid Motion. The original video is available online at the Gallery of Fluid
Motion, https://doi.org/10.1103/APS.DFD.2022.GFM.V0040

DOI: 10.1103/PhysRevFluids.8.110501

When a liquid layer is subjected to a sinusoidal vertical vibration, there exists a critical driving
acceleration, known as the Faraday threshold, above which the entire free surface becomes unstable
to a standing field of waves [1]. These so-called “Faraday waves” are subharmonic, oscillating at
half the frequency of the imposed vibration, and monochromatic, with a wavelength X prescribed by
the standard capillary-gravity wave dispersion relation [2] [Fig. 1(a)]. As the forcing amplitude is
further increased, there is a second threshold, known as the order-disorder threshold [3,4], beyond
which a secondary instability triggers a transition to a spatiotemporally chaotic state in which the
wave pattern is in continuous erratic motion [Fig. 1(b)]. Notably, the surface Faraday dynamics is
coupled to flows in the bulk of the liquid layer: Standing Faraday patterns generate relatively well-
ordered oscillatory flows [5—7], while chaotic waves lead to a self-sustained state of spontaneous
nucleation, irregular motion, and sudden annihilation of defects (dislocations of pattern lines) known
as “defect-mediated turbulence” [8—11]. Faraday waves thus provide an excellent platform to study
nonlinear dynamics and pattern formation driven far from equilibrium [12].

The transition from standing [Fig. 1(a)] to chaotic [Fig. 1(b)] Faraday dynamics is significantly
affected by the shape and size of the fluid bath [3]. When the bath is large relative to the Faraday
wavelength A, the transition to the spatiotemporal chaotic state is characterized by a sharp decline
in the translational correlation and long-range orientation order of the pattern, and the emergence
of temporal fluctuations with frequency increasing with the driving amplitude [3,4]. When the
Faraday waves are confined to small domains, however, the pattern remains ordered at higher
forcing accelerations, and secondary instabilities may lead to coherent motion before chaos sets
in and dominates the dynamics. In particular, Faraday waves inside a narrow annular channel may
exhibit the nucleation/annihilation of one wavelength, the development of a secondary frequency,
and a “drift” instability wherein the pattern begins to rotate slowly at a constant speed [13,14]. The
mechanism responsible for this drift instability was rationalized theoretically by Martin et al. [15]
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FIG. 1. Symmetry-breaking of Faraday waves. (a) Standing surface waves emerging when a liquid layer is
vibrated vertically at a driving acceleration just above the so-called Faraday threshold. (b) The uniform Faraday
pattern becomes chaotic as the driving acceleration is increased further due to a secondary order-disorder
instability. (c), (d) Faraday waves in an annular channel start to rotate at rate 2 when the channel width W, the
Faraday wavelength A, and the capillary length /. are all comparable. The symmetry is spontaneously broken;
the direction of motion, (c) clockwise or (d) counterclockwise, is random, but persistent once one direction is
selected.

in terms of the coupling between the oscillatory surface waves and the underlying streaming
flows [16-18] generated near the bottom boundary, which become unstable for sufficiently high
driving leading to the development of a direct-current (dc) flow [15]. The study of Faraday waves
in quasi-one-dimensional channels has mainly focused on large waves (low frequencies) confined
to narrow channels to minimize three-dimensional (3D) effects [19,20]. In this gravity-dominated
regime, the drift instability has been largely considered a secondary effect owing to its relatively
insignificant magnitude, typically below 0.01 mm/s [13,14].

Here, we present a new Faraday instability arising in annular pools when the Faraday wavelength
A, channel width W, and capillary length /. are all comparable. We generate this instability by
vertically vibrating 3D-printed channels filled with either water or silicone oils mounted on an
electromagnetic shaker, which we imaged from either an oblique or top view with a color high-speed
camera. In this capillary-dominated regime, for which the interface shape is dominated by the
menisci at the vertical walls [Fig. 1(c)], the Faraday pattern starts to translate as the driving
acceleration is increased, with translation speeds (=10 mm/s) up to three orders of magnitude
higher than that of the drift instability [Fig. 1(c)]. The sense of rotation, either clockwise or
counterclockwise [Figs. 1(c) and 1(d)], is random but persistent once a direction is selected. We refer
to this spontaneous symmetry-breaking instability as the “traveling” Faraday instability by virtue of
its unprecedented translational speeds. Moreover, we note that our experiments are performed in the
deep-fluid limit, when the channel depth H is large relative to A, thus distinguishing the traveling
instability from the drift instability. In so doing, the interaction between the Faraday waves and the
bottom boundary is removed, and the lateral walls of the channel thus emerge as the main source of
streaming flows. Our experiments, along with simulations, collectively show that the magnitude of
the streaming flows generated by the Faraday waves is significantly amplified by capillary effects,
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FIG. 2. Traveling Faraday waves in complex geometries. Traveling Faraday waves may also move along
(a) channels with variable curvature, and (b) more complicated networks including both straight and curved
sections. (c¢) The direction of motion can be fixed by including ratchets on the channel’s vertical walls.
(d) Small-scale fluid pumps may be created by connecting channels with ratcheted walls to a secondary fluid
channel. Drops of blue dye have been added in (d) to demonstrate the fluid’s unidirectional transport.

including wettability and contact-line dynamics. We extend our investigation to demonstrate that
the traveling instability is a robust effect that arises for different channel geometries, including
channels of various curvatures [Fig. 2(a)], and more complex flow networks with straight and

FIG. 3. Transport of floating objects. A 3D-printed figurine suspended on the liquid-gas interface is
transported along the channel by traveling Faraday waves, illustrating the potential of this instability as a new
mechanism for the transport of granular materials floating on interfaces. The speed of the object is proportional
to the wave speed. An image of Michael Faraday was digitally added in reference to the title of the video, “Run,
Faraday, run,” and the playful reference to the famous line “Run, Forrest, run” from the movie Forrest Gump.
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curved sections [Fig. 2(b)]. Across the various channel shapes, we found the wave speed remained
of the same order of magnitude, provided the channel width was unaltered. We also demonstrate
that the direction of motion may be enforced through physical biases in the confining channels,
such as ratchet walls, which force the Faraday waves and underlying streaming flows to move
in a prescribed direction [Fig. 2(c)]. Exploiting this ratchet concept, we create small-scale fluid
pumps by connecting two ratcheted annular channels to a secondary linear channel in which fluid is
transported in a particular direction [Fig. 2(d)]. Furthermore, the traveling Faraday instability may
be also harnessed to transport solid objects suspended on the free surface (Fig. 3).
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