
Learning to Transform for Generalizable Instance-wise Invariance

Utkarsh Singhal1 Carlos Esteves3 Ameesh Makadia3 Stella X. Yu1,2

1 UC Berkeley 2 University of Michigan 3 Google Research

Abstract

Computer vision research has long aimed to build systems
that are robust to spatial transformations found in natural
data. Traditionally, this is done using data augmentation
or hard-coding invariances into the architecture. However,
too much or too little invariance can hurt, and the correct
amount is unknown a priori and dependent on the instance.
Ideally, the appropriate invariance would be learned from
data and inferred at test-time.

We treat invariance as a prediction problem. Given any
image, we use a normalizing flow to predict a distribution
over transformations and average the predictions over them.
Since this distribution only depends on the instance, we can
align instances before classifying them and generalize invari-
ance across classes. The same distribution can also be used
to adapt to out-of-distribution poses. This normalizing flow
is trained end-to-end and can learn a much larger range of
transformations than Augerino and InstaAug. When used as
data augmentation, our method shows accuracy and robust-
ness gains on CIFAR 10, CIFAR10-LT, and TinyImageNet.

1. Introduction

One of the most impressive abilities of the human vi-
sual system is its robustness to geometric transformations.
Objects in the visual world often undergo rotation, transla-
tion, etc., producing many variations in the observed image.
Nonetheless, we classify them reliably and efficiently.

Any robust classifier must encode information about the
expected geometric transformations, either explicitly (e.g.,
through architecture) or implicitly (e.g., invariant features).
What would this knowledge look like for humans?

Scientists have extensively investigated this question [1].
We know that it generalizes to novel (but similar) categories,
e.g., we can instantly recognize a new symbol from many
poses after seeing it just once [2]. For unfamiliar categories
or poses, we can learn the invariance over time [3]. Finally,
while we quickly recognize objects in typical poses, we can
also adapt to “out-of-distribution” poses with processes like
mental rotation [4]. These properties help us robustly handle
novel categories and novel poses (Figure 1).

In contrast, modern classifiers based on deep learning are

Figure 1: Our goal is to build flexible, adaptive, and gen-
eralizable invariances. Flexible: The ideal invariance is
flexible and instance-dependent. Different objects in differ-
ent poses require different degrees of invariance. Too much
hurts accuracy, and too little hurts robustness. Adaptive:
The model should adapt to unexpected (out-of-distribution)
poses. The figure above shows mental rotation, a process by
which humans align unfamiliar objects in unexpected poses
to classify them. Generalizable: Knowledge of invariances
should generalize from previous experience, e.g., learning
bilateral symmetry for horses and transferring it to zebras.

brittle [5]. While these methods have achieved super-human
accuracy on curated datasets like ImageNet [6], they are
unreliable in the real world [7], showing poor generalization
and even causing fatal outcomes in systems relying on com-
puter vision [8]. Thus, robust classification has long been an
aim of computer vision research [5, 9]. This paper asks:

Can we replicate this flexible, generalizable, and adaptive
invariance in artificial neural networks?

For some transformations (e.g., translation), the invari-
ance can be hard-coded into the architecture. This insight
has led to important approaches like Convolutional Neural
Networks [10, 11]. However, this approach imposes severe
architecture restrictions and thus has limited applicability.

An alternative approach to robustness is data augmenta-
tion [12]. Input data is transformed through a predefined set
of transformations, and the neural network learns to perform
the task reliably despite these transformations. Its success
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Figure 2: Our image classification pipeline. The normalizing
flow model predicts a distribution over image transforma-
tions. Samples from this distribution are passed to a differ-
entiable augmented, which transforms the input image into
a set of augmented images. The images are passed to a clas-
sifier, and predictions are averaged. Crucially, the transform
distribution gϕ can generalize across classes and datasets.

and wide applicability have made it ubiquitous in deep learn-
ing. However, data augmentation is unreliable since the
learned invariance breaks under distribution shifts and fails
to transfer from head classes to tail classes in imbalanced
classification settings [13].

Both these approaches prescribe the invariances while
assuming a known set of transformations. However, the
correct set of invariances is often unknown a priori, and
a mismatch can be harmful [14, 15, 12]. For instance, in
fine-grained visual recognition, rotation invariance can help
with flower categories but hurt animal recognition [16].

A recent line of methods [14, 17, 15] aims to learn the
useful invariances. Augerino [14] learns a range of transfor-
mations shared across the entire dataset, producing better
generalizing models. However, these methods use a fixed
range of transformations for all inputs, thus failing to be flex-
ible. InstaAug [15] learns an instance-specific augmentation
range for each transformation, achieving higher accuracy on
datasets such as TinyImageNet due to its flexibility. However,
since InstaAug learns a range for each parameter separately,
it cannot represent multi-modal or joint distributions (e.g., it
cannot discover rotations from the set of all affine matrices).
Additionally, these approaches don’t explore generalization
across classes and adaptation to unexpected poses (Figure 1).

We take inspiration from Learned-Miller et al. [2] and
model the relationship between the observed image and its
class as a graphical model (Figures 2 and 5). We also repre-
sent the instance-wise distribution of transformations using
a normalizing flow and apply it to robust classification. Our
experiments show that the properties like adaptability and
generalizability emerge naturally in this framework.

Contributions: (1) We propose a normalizing flow model
to learn the image-conditional transformation distribution.
(2) Our model can represent multi-modal and joint distribu-
tions over transformations, being able to model more com-
plex invariances, and (3) helps achieve higher test accuracy
on datasets such as CIFAR10, CIFAR10-LongTail (Figure 3),
and TinyImageNet. Finally, (4) combined with our graphical
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Figure 3: Our method delivers strong gains for imbalanced
classification. On CIFAR10-LT with 5000 to 500 instances
per class from head to tail (black curve), our class-agnostic
instance-wise transform distribution helps boost the classifi-
cation accuracy by large margins (red bars) over the standard
softmax baseline (blue bars) especially for the tail classes.

model, this model forms a flexible, generalizable, and adap-
tive form of invariance. It can be used to (a) align the dataset
and discover prototypes like congealing [2], (b) adapt to
unexpected poses like mental rotation [3], and (c) transfer
invariance across classes like GAN-based methods [13].

2. Related Work

Mental rotation in humans: Shepard and Metzler [4]
were among the first to measure the amount of time taken by
humans to recognize a rotated object. They found that the
response time increased linearly with rotation, suggesting a
dynamic process like mental rotation for recognizing objects
in unfamiliar poses. Tarr and Pinker [1] further study mental
rotation as a theory of invariant object recognition, contrast-
ing it against invariant features and a multiple-view theory.
Cooper and Shepard [18] found that revealing identity and
orientation information beforehand helped the subjects make
constant-time predictions. Hock and Tromley [19] found that
the recognition time is nearly constant for characters per-
ceived as “upright” over a large range of rotations. However,
outside that range (and for characters with narrow “upright”
ranges), the recognition time follows the same linear relation-
ship, indicating mental rotation is needed when the object
is detected as “not upright.” Koriat and Norman [3] investi-
gated mental rotation as a function of familiarity, finding that
humans adapt to unfamiliar objects with practice, gaining
robustness to small rotations around the upright pose. The
response curve thus becomes flatter around the upright pose.
These works suggest a flexible, adaptive, and general form
of robustness in the human vision.

Invariance in Neural Networks: Neural networks in-
variant to natural transformations have long been a cen-
tral goal in deep learning research [9]. Bouchacourt et
al. [12] and Madan et al. [5] studied the invariances present
in modern models. One of the earliest successes in-
cludes architectures like Convolutional Neural Networks
[10, 11], and more recently, applications such as medi-
cal image analysis [20, 21, 22], cosmology [23, 24], and



physics/chemistry [25, 26, 27]. Kondor and Trivedi [28] and
Cohen et al. [29] established a general theory of equivariant
neural networks based on representation theory. Finzi et
al. [30] combined equivariant and non-equivariant blocks
through a residual connection.

The dominant way to add invariance into neural networks
is data augmentation. Dao et al. [31] shows that to a first-
order approximation, data augmentation is equivalent to
averaging features over transformations. Bouchacourt et
al. [12] found data augmentation to be crucial for invari-
ance in many modern computer vision architectures. Zhou
et al. [13] demonstrated a key failing of data augmentation
in imbalanced classification and used a GAN to generate a
broad set of variants for every instance. Our method is com-
plementary to theirs and can be combined in future work.
We also note that the experiments in this paper only use
affine image transformations and yet achieve comparable
accuracy to theirs on CIFAR10LT. Congealing [2] aligns
all the images in a class, simultaneously producing a proto-
type and inferring the relative pose of each example. The
aligned dataset can be used for robust recognition, and the
learned pose distribution can be used for new classes. How-
ever, this method assumes the transformation distribution is
class-wise, whereas we model it for every instance. Learned
canonicalization [32] learns an energy function that is mini-
mized at test time to align the input to a canonical orientation.
Spatial Transformer Networks [33] predict a transformation
from the input image in an attempt to rectify it and improve
classification accuracy. However, STNs cannot represent a
distribution of transformations. Probabilistic Spatial Trans-
former Networks [34] model the conditional distribution
using a Gaussian distribution with mean and variance pre-
dicted by a neural network. In contrast, we use a normalizing
flow model. We also study the generalizability as well as
adaptation to unexpected poses.

Augerino: [14] aims to learn the ideal range of invari-
ances for any given dataset. It uses the reparametrization
trick and learns the range of uniform distribution over each
transformation parameter separately (e.g., range of transla-
tions, rotations, etc.). This ability allows Augerino to learn
the useful range of augmentations (and thus invariances) di-
rectly and produce more robust models with higher general-
ization. However, Augerino is sensitive to the regularization
amount and the parametrization of the augmentation range
(Table 3). LILA [17] tackles this problem using marginal
likelihood methods. However, for both Augerino and LILA,
the resulting invariance is shared among all classes, even
though different classes (such as 0 and 6 in a digit classifica-
tion setting) may have entirely different ideal augmentation
distributions. Figure 4 illustrates how these limitations lead
Augerino to learn an overly restricted augmentation range.

InstaAug: [15] fixes the inflexibility of Augerino by
predicting the augmentation ranges for every instance and
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Figure 4: Our normalizing flow model can represent input-
dependent, multi-modal, and joint distributions over aug-
mentation parameters. (top) We illustrate three samples,
each with a different set of correct augmentations. Augerino
learns a range shared between all samples, so the learned
range is too restrictive. InstaAug learns an instance-wise
range but cannot handle a non-axis-aligned augmentation
set (middle). In contrast, our model can adapt to the loss
landscape and produce the largest possible set. (middle)
Augerino [14] fails to learn augmentations in challenging
settings. Learned rotation range for a version of Mario-Iggy
with ±90◦ rotation range. The class boundaries touch each
other, so some instances lie close to the boundary, and thus,
global augmentation schemes like [14, 17] are forced to learn
a range of 0. Our method learns the correct range. (bottom)
InstaAug fails to capture the distribution for a multi-modal
version of the Mario-Iggy dataset.

provides a theoretical argument connecting it to generaliza-
tion error. In our knowledge, it is the first work to do so.
This allows for larger effective ranges and, thus, impressive
generalization gains in image classification and contrastive
learning settings. However, while InstaAug is instance-wise,
it models the range of each parameter separately (the mean-
field assumption). Thus, it cannot represent multi-modal or
joint distributions (Figure 4). Like Augerino, the represen-
tational limitations greatly limit the set of learnable trans-
formations, especially for complex augmentation classes
like image cropping [15], necessitating tricks like selecting
among a pre-defined set of crops. Furthermore, InstaAug is
sensitive to parametrization (see Figure 7 and Table 3).



3. Methods
We begin by describing our probabilistic model. We de-

rive its inference equation and training loss and compare it
to existing methods. We then construct a normalizing flow
model to represent the conditional transform distribution.
We also derive an analytical expression for the model’s ap-
proximate invariance. Finally, we describe the mean-shift
algorithm for adapting to out-of-distribution poses.

C Class

L
Latent
Image T Transform

IImage

fθ

AT

gϕ

Miller et al.
Ours (inference)

Figure 5: Our graphical model inspired by Miller et al. [2].
Shaded nodes represent variables observed in data (C, I).
In contrast to Miller et al., we only model the inference
process and assume that T is instance-wise, not classwise.
Our flow model gϕ predicts image-conditional transform,
and the classifier fθ classifies the resulting image L.

Graphical model: We follow the model described in
Figure 5. Here, C refers to the class, I refers to the observed
image, L refers to the latent image (equivalent to the proto-
type in [2]), and T refers to the unobserved transformation
parameters connecting the latent image and the observed
image. The latent image is produced by passing the pair
(I, T ) through a differentiable augmenter A, which applies
the transform to the observed image, i.e., L = AT (I).

One notable difference to Miller et al. [2] is that our distri-
bution is instance-wise (similar to [15]), not class-wise. This
allows for a more general conditional distribution model.

Given the values C,L, T, I , the model defines a joint
probability distribution P (C,L, T, I):

P (C,L, T, I) = P (C|L)P (L|T, I)P (T |I)P (I) (1)

and the conditional class probability P (C|I) as:

P (C|I) =
∫
L,T

P (T |I)P (L|T, I)P (C|L)dLdT (2)

Since L = AT (I), this can be further simplified to:

P (C|I) =
∫
T

P (T |I)P (C|L = AT (I))dT (3)

= ET∼P (T |I)
[
P (C|L = AT (I))

]
(4)

Thus, the predicted class probability is averaged over trans-
formations sampled from the conditional transform distribu-
tion P (T |I). This is analogous to the idea of “test-time aug-
mentations” used in image classification literature. Augerino

-π -π/2 0 π/2 π

Rotation

Learned Distribution for Mario-Iggy

Learned Distribution

Classification Loss

Figure 6: The ideal learned distribution maximizes the range
while minimizing the overall classification loss

assumes that the transformation T is independent of I . In-
staAug models T as a uniform distribution conditioned on
I . PSTN [34] arrives at the same expression and uses a
Gaussian distribution. All these frameworks can be viewed
as different approximations in this formulation. However,
we also analyze the invariance properties of this formulation
and applications of P (T |I).

Neural network approximation: We approximate each
of the key distributions P (C|L) and P (T |I) with neural
networks. Our fθ(C;L) is a simple classifier, and gϕ(T ; I)
is a normalizing flow model [35] which takes in the image I:

fθ(C;L) ≈ P (C|L), gϕ(T ; I) ≈ P (T |I) (5)

Since L = AT (I), we use fθ(C;L), fθ(C;T, I) and
fθ(C;AT (I)) interchangeably.

Inference: The expression for P (C|I) then becomes:

pθ,ϕ(C|I) =
∫
T

gϕ(T ; I)fθ(C;AT (I))dT (6)

= ET∼gϕ(T ;I)

[
fθ(C;AT (I))

]
(7)

This equation describes the act of sampling transformations
from the normalizing flow model and averaging the classifier
predictions over the sampled transformations.

Classifier loss: During training, we observe (I, C) pairs.
We train the classifier fθ by maximizing a lower bound to
the average log pθ,ϕ(C|I). It is common to use Jensen’s
inequality to make this tractable:

log pθ,ϕ(C|I) ≥ ET∼gϕ(T ;I)

[
log fθ(C;AT (I))

]
(8)

and maximize the resulting lower bound instead. This further
reduces to the loss function Lclassifier:

Lclassifier = ET∼gϕ(T ;I)

[
− log fθ(C;AT (I))

]
(9)

which is simply the cross-entropy loss averaged over sam-
pled augmentations.

Augmenter loss: Intuitively, we would like the transform
distribution gϕ to have a large diversity of augmentations
and minimal classification loss (see Figure 6). However,
in practice, minimizing the classification loss leads to gϕ
collapsing to a single peak (0-variance distribution) as the
model overfits to the training data (as observed in Augerino
[14] without regularization).

Since our normalizing flow model already produces log
probability for each generated sample, entropy regularization



is a natural match for our method. We penalize the average
log gϕ for sampled transformations:

Laugmenter = Lclassifier + αET∼gϕ

[
log gϕ(T ; I)

]
(10)

This regularization is a generalization of the one used
by Augerino, since for uniform distributions, log p ∝
− log(width). InstaAug derives a similar expression as a
Lagrange relaxation of entropy constraints and applies it to
simple distributions like uniform and categorical.

We apply it to normalizing flows, which can model more
general distributions, and our graphical model helps us un-
derstand this loss and connect it to variational inference.

Understanding entropy regularization: Here, we an-
alyze the form of the distribution learned through entropy
regularization. Consider the following loss:

Laugmenter[gϕ] = Lclassifier[gϕ]− αH[gϕ] (11)

where α ∈ R+ is a regularization constant and H[gϕ] is the
entropy of the distribution gϕ. This expression reduces to:

= ET∼gϕ(T ;I)

[
α log gϕ(T ; I)− log fθ(C;AT (I))

]
We rescale this loss by λ = 1

α to simplify:

≡ ET∼gϕ(T ;I)

[
log gϕ(T ; I)− λ log fθ(C;AT (I))

]
Note that this loss is equivalent to a KL-divergence between
gϕ and a special target distribution p̃λθ (T |C, I):

Laugmenter[gϕ] = KL
[
gϕ(T ; I)|| p̃λθ (T |C, I)

]
where the target distribution p̃λθ (T |C, I) is defined as:

p̃λθ (T |C, I) =
1

Z(λ)
fθ(C;T, I)λ

where Z ∈ R+ is a normalization constant and λ ∈ R+ is a
temperature constant. This distribution is formed by comput-
ing pθ,ϕ(C|T, I)λ over transforms T and normalizing them.
Thus, it assigns a higher probability to the transformations
with lower classification loss. λ here is analogous to the tem-
perature parameter in softmax, and large values of λ make
the distribution highly peaked. In contrast, small values
suppress peaks and make the distribution less ill-behaved
as a target. λ → 0 corresponds to a uniform distribution,
whereas λ → ∞ collapses the distribution to the single
transformation that minimizes the classification loss.

We also note that when λ = 1, the target distribution
1
Z pθ(C|T, I) is exactly the posterior pθ(T |C, I), assuming
a uniform prior for the unknown pθ(T |I). Different choices
of this prior lead to other loss functions, like a Gaussian prior
penalizing the transformation norm. However, we stick to
the uniform prior for simplicity.

Representing the conditional distribution: Our ap-
proach uses parametrized differentiable augmentations sim-
ilar to Augerino. However, instead of learning the global

range of transformations, we predict a distribution over the
transformations conditioned on the input image. We use an
input-conditional normalizing flow model [35].

A normalizing flow model starts with a simple pre-defined
probability distribution p0, e.g., Normal distribution. For
a sample z0 ∼ p0, it successively applies transformations
f1, f2, . . . , fK , producing a more complicated distribution
by the end. The log probability density of the final sample
is given by log p(zk) = log p0(z0) − log | det dzk

dz0
|, and the

architecture is designed to allow efficient sampling and com-
putation of log p. We use the samples to augment the input
(Figure 2) and log p term in the loss. Our model is based on
RealNVP [36], using a mixture of Gaussians as the base p0.

Given any input image I , we use a convolutional feature
extractor to extract an embedding vector e. This embedding
vector is then projected down to a scale and bias used by each
layer of the normalizing flow and the base distribution. This
normalizing flow model outputs samples s from the augmen-
tation distribution and their corresponding log-probabilities
log p(s). These samples are passed to the differentiable aug-
mentation, which transforms the input image to be processed
by the model (Figure 2) using PyTorch’s grid sample. While
we use affine image transformations for our experiments, our
method generalizes to any differentiable transformation.

Approximate invariance: Here, we formalize the notion
of approximate invariance and connect it to our classifier and
flow model. Intuitively, the approximate invariance in our
method comes from both the augmenter and the classifier.
Their contributions can be divided into (1) the classifier’s
inherent insensitivity to transformations, (2) the width of the
transform distribution being used for averaging, and (3) the
canonicalization effect of the transform distribution. Each of
these properties corresponds to a different theory of object
recognition explained by Tarr and Pinker [1] and connected
to deep neural networks by Kaba et al. [32]. We formalize
this intuitive argument as follows: Given an input image I ,
our model’s output is the classifier prediction averaged over
gϕ(T ; I), i.e. pθ,ϕ(C|I) = ET∼gϕ(T ;I)

[
fθ(C;AT (I))

]
(see equation 9). Let a new image I ′ be formed by trans-
forming the original image by a transformation ∆T , i.e.
I ′ = A∆T (I). Then:

pθ,ϕ(C|I ′) =
∫
T

gϕ(T ;A∆T (I))fθ(C;AT+∆T (I))dT

=

∫
T

gϕ(T −∆T ; I ′)fθ(C;AT (I))dT

Where the last step substitutes T for T + ∆T . Then, the
change in prediction, denoted as err(C; I, I ′), is:

err(C; I, I ′) = |pθ,ϕ(C|I)− pθ,ϕ(C|I ′)|

=
∣∣∣∫

T

[
gϕ(T −∆T ; I ′)− gϕ(T ; I)

]
fθ(C;AT (I))dT

∣∣∣



Next, we derive bounds on this quantity based on gϕ and fθ.
Let S = supp(gϕ(.; I)) ∪ supp(gϕ(.; I

′)) is the support set
of the transform distributions, i.e. all the samples for I and
I ′ are inside S. We can thus limit the integration to S:

=
∣∣∣∫

T∈S

[
gϕ(T −∆T ; I ′)− gϕ(T ; I)

]
fθ(C;AT (I))dT

∣∣∣
Let’s now quantify the behavior of fθ on S. Let M be the
maximum and m be the minimum of fθ on this set, i.e.

M = max
t∈S

fθ(C;AT (I)), m = min
t∈S

fθ(C;AT (I)),

Note that the first term gϕ(T − ∆T ; I ′) − gϕ(T ; I) is the
difference of two probability density functions and so inte-
grates to 0. Thus, if we add a constant value to fθ, it doesn’t
change the whole integral. Subtracting m, we get:∣∣∣ ∫
T∈S

[
gϕ(T −∆T ; I ′)− gϕ(T ; I)

]
(fθ(C;T, I)−m)dT

∣∣∣
Using |

∫
f(x)dx| ≤

∫
|f(x)|dx and |xy| = |x||y| we have:

≤
∫

T∈S

∣∣∣gϕ(T −∆T ; I ′)− gϕ(T ; I)
∣∣∣∣∣∣fθ(C;T, I)−m

∣∣∣dT
≤(M −m)

∫
T∈S

∣∣∣gϕ(T −∆T ; I ′)− gϕ(T ; I)
∣∣∣dT

=2(M −m) TV[gϕ(T −∆T ; I ′)∥ gϕ(T ; I)]

where TV refers to the Total Variation Distance defined as
TV[p∥q] = 1

2

∫
|p(x)− q(x)|dx. In summary:

err(C; I, I ′) ≤ 2(M −m) TV[gϕ(T −∆T ; I ′)∥gϕ(T ; I)]

Thus, the prediction change (err(C; I, I ′)) is upper bounded
by two factors: (1) M −m, which measures how much the
classifier predictions change over the relevant range, and (2)
the total variation distance between the original transform
distribution gϕ(T ; I) and the new version gϕ(T −∆T ; I ′).
This result explains how the method achieves approximate
invariance. If the classifier features are invariant to the input
transformations, we get M −m ≈ 0, and thus error ≈ 0.
The same is true if the transform distribution is approxi-
mately equivariant, i.e. gϕ(T −∆T ; I ′) ≈ gϕ(T ; I).

Mean-shift for handling out-of-distribution poses:
While the conditional transformation distribution gϕ(T ; I)
can adjust to in-distribution pose variation, this approach
does not work for out-of-distribution poses (see Figure 10).
We use a modified version of the well-known mean-shift
algorithm. Instead of sampling points from a dataset and
weighting them with a kernel, we directly use gϕ samples.

The core idea is to push the image closer to a local mode
where our models may work better. We start with image I0
and the transform parameter T0 = 0. Then, at every step:

Tk := Tk−1 + γET∼gϕ(T ;Ik−1)[T ], Ik := ATk
(I0)

where γ ∈ R+ is the step size. In summary, the algorithm re-
peatedly samples from the conditional distribution, computes
the mean, and accumulates the result into T .

Since our method learns an input-conditional probability
distribution, the mean of the augmentation transformation
ET∼gϕ(T ;I)[T ] for any given image is an estimate of the
difference between the local mode and the current transform
T . Thus, each step moves the image closer to the local mode,
which is the fixed point for this process.

4. Experiments
We benchmark accuracy on datasets such as CIFAR10

and TinyImageNet, and plot the learned transformation dis-
tribution for toy examples on Mario-Iggy [14] and MNIST.
Finally, we test applications of the learned distribution. The
code and scripts to reproduce all the results can be found at
https://github.com/sutkarsh/flow_inv/

CIFAR10 FMNIST MNIST CIFAR10-LT

Baseline 74.1 ± 0.5 89.6 ± 0.2 99.1 ± 0.02 70.8 ± 0.8
Augerino 79.0 ± 1 90.1 ± 0.1 98.3 ± 0.1 63.6 ± 1.3
LILA 84.2 ± 0.8 91.9 ± 0.2 99.4 ± 0.02 76.4 ± 0.9
Ours 86.8 ± 0.4 92.3 ± 1.4 99.2 ± 0.1 78.1 ± 1

Gain (+2.6) (+0.4) (-0.2) (+1.7)

Table 1: Classification accuracy on the modified ResNet used
by LILA [17]. Numbers for baselines reproduced from [17].
Our method helps the classifier achieve the highest test accu-
racy on CIFAR10 and CIFAR10-LT(rho=10). Imbalanced
classification is particularly challenging since invariances
learned through augmentations do not transfer from head
classes to tail classes [13]. We note that our method is com-
plementary to LILA and can be combined in future work.

CIFAR10: We benchmark our method against Augerino
and LILA [17] on learning affine image transformations for
CIFAR10 classification. We use the models and libraries
provided by [17]. We use a RealNVP flow [36] with per-
mutation mixing, 12 affine coupling layers, and a 2-layer
MLP of width 64 for each layer. We turn the input into an
embedding using a 5-layer CNN and append this embed-
ding to each layer’s MLP input as well as project it to the
parameters of the base distribution, which is a mixture of
Gaussians. We also add a tanh at the end of the flow to
ensure the produced distribution stays within bounds. Please
see the supplementary material for more details. Using a
modified ResNet18 [37], and train our model for 200 epochs.
We report the accuracy in Section 4. Our method is able to

https://github.com/sutkarsh/flow_inv/


achieve a 7.8% test accuracy gain compared to Augerino and
2.6% against LILA. We note that our method is still based
on maximum likelihood; thus, LILA’s marginal likelihood
method is complementary to ours. These methods may be
combined for even higher accuracy in future work. We also
report the accuracies for MNIST and FashionMNIST.

Imbalanced CIFAR-10 Classification: Imbalanced clas-
sification is a challenging setting for invariance learning. As
shown by [13], invariances learned through data augmenta-
tion do not transfer from head classes to tail classes. This
is especially harmful since the tail classes, due to a small
number of examples, benefit the most from the invariance.
CIFAR10-LT is an imbalanced version of CIFAR10 where
the smallest class is 10x smaller than the largest. Here, we
outperform Augerino by 14.5% and LILA by 1.7%.

Augerino 13-layer CIFAR10: We also evaluate our
method on Augerino’s 13-layer network, re-using the same
hyperparameters as the LILA experiments Section 4. Our
method achieves 94.3% test accuracy (0.5% gain).

No Aug. Fast AA Augerino Ours

Acc 90.6 92.65 93.8 94.3 ± 0.08

Table 2: Test accuracies for Augerino’s 13-layer model.
Baseline numbers quoted from [14].

TinyImageNet Classification: We evaluate our method
against InstaAug on the TinyImageNet dataset. This 64x64
dataset contains 200 classes. The goal of this task is to
learn cropping augmentations. A crop can be parametrized
with four parameters: (centerx, centery,width, height), so
we represent it with a 4-dimensional distribution. Please see
the supplementary material for more details.

Cropping is a challenging augmentation to learn since the
crop location and size are correlated. InstaAug’s mean-field
representation cannot represent this, so achieves low accu-
racy without the location-related parameterization (LRP).
LRP consists of 321 pre-defined crops and predicts the prob-
ability of each crop. This approach does not scale to high
dimensional distributions (e.g. specifying more transforma-
tions). In contrast, our method can achieve high accuracy
without LRP, beating InstaAug by nearly 11% (Table 3).

Learned invariance visualization Mario-Iggy is a toy
dataset from [14] consisting of rotated versions of two im-
ages. Upright and upside-down images are classified as
different classes, and each sample lies within ±45◦ of its
class prototype. As the total range of rotations can be eas-
ily varied, this dataset is useful for studying learned invari-
ance. We consider two variations: ±90◦ rotation range,
and Multi-modal dataset with 3 modes.

The ideal augmentation distribution for Mario-Iggy
dataset is ±90◦ around the class prototype. As the input
image rotates, the augmentation distribution shifts such that
the resulting augmented image distribution is constant. Our

Method Acc (%) +LRP(%)

Baseline 55.1 —
Random Crop 64.5 —

Augerino 55.0 —
InstaAug 54.4 66.0
Ours 65.4 66.0

Table 3: TinyIN classification accuracy on PreActResNet
used by InstaAug, with and without location-relation pa-
rameterization. InstaAug is limited by its mean-field repre-
sentation, performing poorly without LRP. In contrast, our
method performs well regardless of parametrization.
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Figure 7: Our model learns the rotation constraint from data,
while InstaAug fails to represent non-axis-aligned distribu-
tions. The goal of the “rotation discovery” task is to learn the
joint distribution of affine matrix parameters such that the re-
sult is rotation. (w1, w2) pairs on diagonal (i.e., w1 = −w2)
correspond to exact rotations and thus incur a small classifi-
cation loss. (a) Relative error to the nearest rotation matrix.
The ideal distribution of augmentations is in the form of
a diagonal strip. (b) InstaAug produces a small square as
its mean-field parametrization is unable to represent corre-
lations between two parameters. (c) Our model learns to
produce samples on the diagonal and learns a much larger
range than InstaAug. (d) We plot the histogram of relative
errors of the produced samples to the nearest rotation ma-
trix. It is much smaller than the random affine baseline. Our
model learns the joint distribution and discovers rotations
from the full set of affine parameters, while InstaAug fails.

model trained on Mario-Iggy can reliably learn an invari-
ant augmentation distribution (Figure 4). In the challenging
multimodal distribution setting, our model can represent the
three modes, whereas InstaAug fails.

Representing joint distributions: We test the ability
of our normalizing flow to represent joint distributions by
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Figure 8: Our method learns flexible instance-wise augmen-
tation distributions. We illustrate learned invariance for a
subset of MNIST digits (0,1,5,6,9). The classes 0,1,5 can
be learned with full invariance, whereas 6 and 9 require
partial invariance (±90◦). Our model (top) can learn the
correct instance-dependent range, whereas Augerino (mid-
dle) instead learns a much narrower shared invariance for
all classes. (bottom) A plot of the classwise learned rota-
tional invariance for our model over time. Classes 0, 1, and
5 achieve close to full rotational invariance, whereas 6 and 9
achieve close to ±90◦ rotational invariance.

intentionally sampling from a larger set of transformations
and letting the model learn the useful subset. Specifically,
we start from the Lie algebra parametrization of affine trans-
forms (used by Augerino). For rotation by r radians, the
transformation matrix is:

TAugerino(r) = exp

 0 r 0
−r 0 0
0 0 1

 (12)

For this experiment, we generalize this formulation as:

TDecoupled(a, b, c, d, e, f) = exp

a b c
d e f
0 0 1

 (13)

This matrix represents a rotation if b = −d. Since the Mario-
Iggy dataset only contains rotations, the goal is to produce
samples such that b = −d. Samples that do not follow this
constraint will be out-of-distribution. Figure 7 shows that,
unlike our model, InstaAug [15] fails to learn rotation trans-
forms for Mario-Iggy, even though skewed samples incur
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Figure 9: Invariance transfer from head classes to tail classes
in imbalanced classification. We follow Zhou et al. [13] (Fig
3) and plot the expected KL-divergence under image rota-
tions for RotMNIST-LT and CIFAR10-LT (lower is better).
RotMNIST-LT is a long-tail version of the MNIST dataset
where each image has been randomly rotated. As Zhou et
al. [13] shows, neural networks learn rotational invariance
for head classes (indicated by low eKLD) but fail to trans-
fer this invariance to tail classes. This problem persists for
Augerino to a lesser extent. In contrast, our method success-
fully transfers invariance across classes. This effect is even
more pronounced for CIFAR10-LT (±10◦ rotations)

a higher loss. This is due to InstaAug’s mean-field model,
which predicts the range for each parameter separately, thus
preventing it from following the b = −d constraint. In con-
trast, our model learns to represent this joint distribution.
We further test our model’s ability to learn the rotation con-
straint on all 6 affine parameters. Figure 7 also shows the
deviation of sampled transformations from a true rotation
matrix. Our learned distribution is concentrated close to the
rotation transformations, showing that our method can start
from a large group of transformations and learn to constrain
it to only what is useful for the dataset and task.

Learning selective invariance for MNIST: We test our
model’s selective invariance ability on the MNIST dataset
(specifically 0,1,5,6,9) and visualize the augmentation range
for a few examples as well as class averages (see Figure 8).
For digits 0, 1, and 5, which can be recognized from any
rotation, the learned rotation range corresponds to the entire
360◦, whereas for 6 and 9, which may be confused with each
other, the range is only 180◦. In contrast, augerino learns a
constant range. We find the same trend at the class level.

Generalizing invariance across classes: Zhou et al. [13]
shows that invariances learned from head classes fail to trans-
fer to tail classes. This is a major drawback of traditional
data augmentation. We test generalization across classes by
plotting the same metric as [13] (expected KL divergence)
across a range of rotations for CIFAR10-LT and RotMNIST-
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Figure 10: The conditional augmentation distribution can be used to align an image dataset, discover prototypes similar to
congealing [2], and adapt to out-of-distribution poses. (a) Example of the mean shift algorithm aligning a digit belonging to an
unseen class. (b-d) Figures showing the modified mean-shift algorithm. For a given input, we repeatedly compute the mean of
the conditional transform distribution and perturb the input in that direction, pushing the input close to a local mode. As a result,
the mean of the transformation distribution slowly shifts to 0 while the estimated pose gets closer to the true pose. (e) Modified
mean-shift algorithm can add robustness against unexpected poses without reducing accuracy. We plot each CIFAR10 model’s
accuracy as images rotate at test time. Augerino is susceptible to large rotations since they are out-of-distribution for CIFAR10.
The baseline trained with augmentations is robust but inaccurate. Our method with mean-shift achieves high accuracy for both
in-distribution and out-of-distribution rotations. (f) Demonstration of an augmentation distribution aligning rotated (±90◦)
versions of a single image. We separately apply mean-shift to each rotated image and observe that they converge to the same
mode. Unlike [2], there is no joint optimization, and each image is “aligned” separately. This alignment also works for MNIST
images even though the model has only trained on Mario-Iggy. (g) We apply the model trained on Mario-Iggy to align each
class in the MNIST test set, and we make the task more challenging by adding ±45◦ rotations to each image. The top row
shows the average class image before alignment, and the bottom row shows images after alignment. We successfully discover
prototypes for 0, 1, 3, 8, 9, whereas for classes like 4, 6, the model fails due to multiple possible modes.

LT classifiers. Since RotMNIST-LT is a rotationally invari-
ant dataset, we rotate all the images randomly in the ±180◦

range, whereas for CIFAR10-LT we use a ±10◦ range. Our
model achieves significantly lower eKLD, especially for tail
classes (Figure 9), indicating higher robustness.

Aligning image datasets like in Congealing [2]: We
apply the mean-shift algorithm using the augmentation dis-
tribution trained on the Mario-Iggy (45◦) dataset. The Mario-
Iggy dataset contains rotated versions of the Mario image
with one unknown prototype, making it ideal for this test.

For each image, we apply the mean-shift algorithm. Each
step moves the image closer to the local mode. We apply this
procedure for 50 iterations for every image separately. This
process results in all the images in a small neighborhood
agglomerating to the local prototype (Figure 10).

We also tested this approach on MNIST, an out-of-
distribution dataset for the mario-iggy model, and added
±45◦ rotations for an additional challenge. Surprisingly, the
method still aligns images and discovers prototypes (Fig-
ure 10) despite not being trained on any MNIST images.

Robustness to out-of-distribution poses: We benchmark
our model’s ability to handle out-of-distribution poses on
CIFAR10 and measure how the mean-shift method helps the
model adapt to unexpected poses. We plot the classification
accuracy curves in Figure 10 as the inputs rotate. For the
modified mean-shift method, we sample 100 transform sam-
ples, γ = 0.1, and 10 iterations. The fully-invariant baseline
is robust but inaccurate. Augerino, which induces invariance
to a small range of rotations, fails for large rotations. Our
model without mean-shift also fails under large rotations.
However, with mean-shift, it is accurate and robust.

Summary: We propose normalizing flows to learn the
instance-wise distribution of image transformations. It helps
us make robust and better generalizing classifiers, perform
test-time alignment, discover prototypes, transfer invariance,
and achieve higher test accuracy. These results highlight
the potential of flexible, adaptive, and general invariance in
computer vision.
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A. Supplementary Material
We (a) present a class-wise accuracy analysis for

CIFAR10-LT results, (b) present further analysis of the align-
ment experiment, discussing failure modes, and (c) share
experimental details.

A.1. CIFAR-10LT class-wise accuracy

In Figure 11, we take the models from Figure 9 for
CIFAR10-LT and plot the class-wise accuracy for each. We
find that our model achieves higher accuracy for each class,
and the margin is larger for the tail classes.
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Figure 11: Our model achieves higher accuracy than
Augerino and a naive model on every class on CIFAR10-LT,
and the margin is larger for tail classes.

A.2. Mean-shift alignment failure due to multi-
modality

We explore one of the reasons why our mean-shift method
fails to align some digits in Figure 10 when the augmenter is
trained on Mario/Iggy and tested on MNIST. We show that
this algorithm is susceptible to multiple modes as it has no
information about the true pose distribution of the MNIST
digits. In Figure 12, we show three examples of MNIST
digits. We rotate each digit by ±180◦, run the alignment,
and show the rotated and aligned versions superimposed.
We find that for digits such as 4, 6, and 7 there are multiple
modes/orientations onto which the algorithm can converge.
This problem is more prevalent when the variation in poses
in a class is large, leading to a similar kind of blurring of the
post-alignment images as observed in Figure 10.

A.3. Experimental Details

A.3.1 Normalizing flow model

We use RealNVP [36] to model the distributions over trans-
formation parameters with a tanh layer after every mix-

Figure 12: Mean-shift alignment can fail on an unseen
dataset due to multi-modality. We demonstrate three ex-
amples of MNIST digits for an augmenter trained on the
Mario/Iggy dataset. The digits are rotated by ±180◦ and
processed through the mean-shift alignment algorithm. We
find that for digits like 4, 6, 7, the algorithm can converge to
distinct modes, leading to the post-alignment images looking
blurry.

ing step and at the end to ensure the model produces sam-
ples within

[
− 1, 1

]
. The MLP at each layer of the model

has 2 layers of width 32 each. Since the goal is an input-
conditional distribution, we use a pose-embedding CNN to
create an embedding vector e with 32 elements. This vector
is used in two places: (1) it is projected through a learned lin-
ear layer to the base distribution parameters (location, scale,
and the weight of each mode for the conditional mixture of
Gaussians), and (2) it is concatenated to the MLP used by Re-
alNVP at every layer. We scale MLP and projection weights
by 0.01 to initialize them to small values, allowing the flow
model to start as identity. We developed our implementation
on top of normflows [38].

A.3.2 Base Distribution

We use a mixture of Gaussians or uniform random variables
as the base distribution. We further use the Gumbel-softmax
trick [39] to estimate gradients with respect to the weight
of each mode. We found this to be important for learning
equally weighted modes in the multi-modality experiments.



A.3.3 Stabilizing training with PID

A central issue in augmentation learning literature is how to
use the optimal range of augmentations. If the range is too
small, the model overfits, whereas if the range is too wide,
the model underfits. This tradeoff is decided using a regular-
ization constant that controls the augmentation distribution’s
width. Augerino fixes a regularization constant, but the re-
sulting distribution width is difficult to control as it depends
on the ratio of the classification loss and the regularization
constant. This is further complicated by the fact that the
classification loss changes over the course of training [15].

InstaAug constrains the distribution entropy to be in some
pre-defined range [Hmin, Hmax] exponentially increasing
the regularization factor with each step until the entropy
returns to the range. In practice, we found this method to
be unstable in practice and difficult to tune. We replace
this implementation with a PID controller, which adjusts
the regularization constant to keep the entropy close to a set
value. PID control is well understood in control systems
literature and significantly easier to tune in practice. The
regularization term increases linearly with the distance to the
target and over time (as opposed to the exponential increase
used by InstaAug), resulting in more stable dynamics.

A.3.4 Pose-embedding CNN

We use a 5-layer CNN architecture similar to the one used
by Augerino [14]. It contains 4 convolutional layers (widths
32, 64, 128, 256 and kernel size 3) and ReLU non-linearity
after each. This is followed by max-pooling and flattening
to a 256-D vector which goes through a learned linear layer
to produce the 32-D embedding.

A.3.5 Figure 2: Mario/Iggy experiments

We use a normalizing flow model with 4 layers, batch size
1024, and learning rate 10−3 with the AdamW [40] opti-
mizer (betas: 0.9, 0.999). We train the classifier without any
augmentations for the first 5 epochs and for 100 epochs in to-
tal. We use the target entropy of 2 nits, with the PID control
constants (0.01, 0.01, 0) (corresponding to PI control). We
further smooth the inputs and outputs of the PID controller
with an exponential moving average with the smoothing
constant 0.9. The base distribution is a conditional uniform
distribution with 1 mode.

A.3.6 MNIST (Classes 0, 1, 5, 6, 9)

We use the same model as the previous experiment, but
with 12 layers for the normalizing flow and 3 modes in the
mixture. We optimize it for 250 epochs.

A.3.7 Multi-modal experiments

We use a similar model as the MNIST classes experiment.
However, we use a batch size 256, and train without augmen-
tations for 3 epochs. We train for a total of 150 epochs and
use a mixture of Gaussians with 120 modes. The Gumbel-
softmax has a temperature of 0.05. We also set the regular-
ization factor to 0.5 (no PID).

A.3.8 Rotation discovery experiments in Figure 4

We use the same model as the multi-modal experiments.
However, we use a batch size of 512, 32 layers, LR 3×10−3,
and regularization factor to 0.002. Finally, we use a frozen
MLP trained on the Mario/Iggy dataset and the augmentation
model described in Equation 23.

A.3.9 Mean-shift alignment experiments

We use the model trained on the Mario/Iggy 45◦, and run
the mean-shift algorithm for 20 iterations with α = 0.1 and
100 transformation samples per iteration. For the CIFAR10
mean-shift experiments in Figure 10, we use 10 iterations,
50 samples, α = 0.1.

A.3.10 eKLD plots

CIFAR10-LT: We use the trained model from CIFAR10-
LT experiments, and rotate each image uniformly between
±10◦. We follow the method used in [13]. RotMNIST-
LT: We construct a fully rotated and long-tail version of the
MNIST dataset with ρ = 10 and train the model with batch
size 128 and 10 modes.

A.3.11 InstaAug experiments

We build upon the InstaAug [15] codebase. Our normalizing
flow model has 12 layers. Since InstaAug already uses a
CNN to convert images into a 321-dimensional embedding,
we no longer use a CNN. We project the embedding through
a learned linear layer to the base distribution parameters and
add the 321-d embedding to each of the RealNVP’s MLP
layers. Without LRP: We follow the same training schedule
as InstaAug, but replace their regularization scheduler with
our PID (kp = 0.1, ki = 0.5) and their crop sampler with
ours. We also set the target entropy to 2.75. We produce
samples as 4-D vectors with entries in the [−1, 1] range. We
then convert this vector to a crop size and crop location. To
speed up the training to match InstaAug’s schedule, we limit
the model predictions to valid crops throughout the train-
ing. To predict valid crop sizes in the range [llim, ulim], we
translate and scale the entries accordingly, and to predict the
valid crop locations, we scale the crop center prediction by
(1 − size). The correlations between valid crop sizes and
centers caused by this scaling are learned by our flow model.



Initially the limits are [0.7, 1], followed by the less restric-
tive limits [0.35, 1] after 20 epochs. With LRP: InstaAug’s
location-related parametrization (LRP) is a categorical dis-
tribution over crop locations and sizes. It already produces a
good distribution of crops for TinyImageNet, so we build on
it. We use InstaAug’s entropy scheduler as well as crop sam-
pler. We combine the two models by adding samples from
our flow to the InstaAug output to increase crop diversity
while maintaining the advantages of LRP.

A.3.12 CIFAR10

We build upon the codebase used by LILA [17] and use their
ResNet 8 − 16 model. We use a regularization factor 0.1
and initial LR 0.1 with the augmenter LR 10−4. We train
the model for 200 epochs and reduce the LR by a factor
of 10 after every 80 epochs. FMNIST: We use regulariza-
tion factor 0.03 and LR 0.03 and augmenter LR 10−3. We
train the model for 250 epochs, reducing the LR by a factor
of 20 every 80 epochs. For MNIST, we reduce the LR to
1e− 3 and decay it by 10 every 15 epochs. CIFAR10-LT:
We use the same hyperparameters as the CIFAR10 exper-
iment but instead reduce the LR by a factor of 20 instead.
Rejection sampling for test-time augmentation: When
the augmentation budget for TTA is small (e.g. ≤ 30 aug-
mentations), we use rejection sampling to select the most
useful augmentations. Specifically, we choose samples w
such that ∥w∥2 < 1. This step significantly reduces the
variance of the output (and thus the augmentations needed),
while ∥w∥2 < 1 still covers the full range for any individual
transformation type (i.e. [−1, 1] along the axis).


