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Abstract— Indoor localization has become increasingly vital
for many applications from tracking assets to delivering
personalized services. Yet, achieving pinpoint accuracy remains
a challenge due to variations across indoor environments and
devices used to assist with localization. Another emerging
challenge is adversarial attacks on indoor localization systems
that not only threaten service integrity but also reduce
localization accuracy. To combat these challenges, we introduce
CALLOC, a novel framework designed to resist adversarial
attacks and variations across indoor environments and devices
that reduce system accuracy and reliability. CALLOC employs a
novel adaptive curriculum learning approach with a domain
specific lightweight scaled-dot product attention neural
network, tailored for adversarial and variation resilience in
practical use cases with resource constrained mobile devices.
Experimental evaluations demonstrate that CALLOC can
achieve improvements of up to 6.03X in mean error and 4.6x in
worst-case error against state-of-the-art indoor localization
frameworks, across diverse building floorplans, mobile devices,
and adversarial attacks scenarios.

Keywords— Wi-Fi Fingerprinting, Indoor localization,
Adversarial Attacks, Machine Learning, Curriculum Learning.

1. INTRODUCTION

Indoor localization involves the precise determination of
the location of devices or individuals within indoor spaces. It
has extensive applications across many domains, including
asset management, assistive healthcare, navigation within
buildings, and the provision of context-aware services [1].
Tech giants such as Apple, Google, and Microsoft are heavily
investing in indoor localization research to enhance the
accuracy and reliability of indoor location-based services [2].
However, achieving high-location accuracy in real-world
indoor scenarios remains an open challenge [1].

Traditional navigation systems, such as Global Positioning
System (GPS), heavily rely on satellite signals and clear sky
visibility, making them less effective for indoor use.
Recognizing this limitation, researchers have redirected their
focus towards alternative wireless infrastructures for
localization in indoor spaces, including Wi-F1, Bluetooth, and
Zigbee [3]. Among these, Wi-Fi-based localization systems
that use received signal strength (RSS) have gained traction
due to the widespread availability of Wi-Fi and the ability of
modem embedded and IoT devices to capture Wi-Fi RSS [3].

Wi-F1 RSS-based approaches leverage data from Wi-Fi
access points (APs) to determine the positions of mobile and
IoT devices within indoor environments. In this context, two
methodologies have emerged: propagation model-based and
fingerprinting model-based localization systems. Propagation
model-based systems employ geometric models such as
trilateration and triangulation to determine mobile device
location using Wi-Fi RSS [4]. Unfortunately, these systems
can be susceptible to inaccuracies from environmental factors
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such as signal variability caused by obstacles, human
mterference, signal attenuation, multi-path fading, and
shadowing [4]. Fingerprinting model-based systems do not
rely on geometric models but instead create a database of Wi-
Fi signal patterns (“fingerprints™) collected throughout the
indoor space. Fingerprinting models are more robust to
fading/shadowing/attenuation effects and have demonstrated
higher accuracies than propagation model-based methods [3].
Fingerprinting systems consist of two phases: an offline
phase for initially constructing the fingerprint database and an
online phase for real-time localization. In the online phase,
signal patterns may change unpredictably due to factors such
as noise in the environment and device variations (devices
capturing dissimilar fingerprints at the same location) [5].
These factors can lead to inaccuracies in location estimations.
To address these limitations, machine learning (ML)
techniques can be used to learn from data patterns in the
offline phase and adjust predictions in the online phase [6]. By
combining the strengths of fingerprinting models with ML,
researchers have made significant strides in improving the
accuracy and reliability of indoor localization solutions [7].
However, ML-based systems are vulnerable to attacks
from adversaries who can exploit vulnerabilities in ML
models and subtly alter input data to launch adversarial attacks
[8]. InFig. 1, we illustrate the impact of a well-known FGSM
adversarial attack [27] on three ML-based indoor localization
solutions that use K-Nearest Neighbors (KNN) [ 13], Gaussian
Process Classifier (GPC) [14], and Deep Neural Networks
(DNN) [15]. The high loss in accuracy from such attacks can
lead to dire consequences, as ML-based indoor localization
solutions are often relied upon for decision-making [8][9].
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Fig. 1: Accuracy reduction (increase in locahzatlon error) in three ML-based
indoor localization solutions [13]-[15] due to adversarial attacks
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ML-based RSS fingerprinting indoor localization
solutions are also susceptible to other security threats such as
AP spoofing, AP signal manipulation, and malicious APs
[11]. Mitigating the effect of unpredictable RSS fluctuations
due to attacks, as well as environmental and device variations,
without compromising localization accuracy remains a
formidable challenge. Very few prior works address security
and robustness in ML-based indoor localization solutions.
Even fewer address challenges from adversarial attacks.

In this paper, we present CALLOC, a novel framework
designed to address the challenges posed by environmental
noise, device variations, and the often-overlooked aspect of
adversarial security during indoor localization. Our novel
contributions as part of the CALLOC framework are:
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¢ We develop a novel curriculum learning technique, akin to
a knowledgeable teacher guiding a student through
progressively complex subjects, to systematically enhance
the ML model’s resilience to RSS fluctuations.

e We propose a lightweight domain-specific ML model
based on scaled dot product attention neural networks for
location prediction on resource constrained devices.

e We perform extensive analysis on real-world data to
evaluate CALLOC under different adversarial attacks,
mobile devices, and building floorplans, and contrast our
performance against the state-of-the-art approaches.

II. RELATED WORK

Various classical ML algorithms such as Naive Bayes
[12], KNN [13], and GPC [14] have been investigated to
tackle challenges arising from RSS fingerprint variations due
to environmental noise from changes over time in density of
people, movement of equipment, etc. However, these
approaches do not effectively address issues related to device
heterogeneity and adversarial attacks. Device heterogeneity
refers to situations where two devices capturing Wi-Fi RSS
fingerprints at the same location and time exhibit dissimilar
fingerprint patterns, due to disparities in hardware (Wi-Fi
chipset) and firmware (noise filtering stack).

More sophisticated ML algorithms based on deep neural
networks (DNNs) [15] and convolutional neural networks
(CNNs) [16] have emerged in recent years to tackle the
complex interplay of environmental noise factors and device
heterogeneity. Examples include ANVIL [17][18] which
incorporates a multi-headed attention layer with DNNG,
SANGRIA [19] which integrates a domain-specific stacked
autoencoder and a categorical gradient-boosted tree classifier,
WiDeep [14] which combines a de-noising autoencoder with
GPC, and the VITAL framework in [20] which uses vision
transformers. These advanced ML approaches are shown to
outperform their classical ML, counterparts when mitigating
environmental factors and device heterogeneity. Nevertheless,
these works do not consider the crucial challenges associated
with adversarial attacks, which are intended to mislead the ML
model and are more challenging to address.

Few efforts have addressed attacks on indoor localization
solutions. The frameworks in [22], [23] and [25] address the
challenges associated with random AP attacks and data
privacy but fail to address challenges from adversarial attacks
or environmental and device variations. Adversarial attacks,
which involve introducing small perturbations into input data,
have been explored in various domains, including computer
vision, natural language processing, and edge computing, but
not as much for indoor localization [8].

To the best of our knowledge, the only prior works that
focus on adversarial attacks during indoor localization are [24]
and [26]. Advloc [24] leverages DNNs and incorporates a few
adversarial samples into the offline training phase to bolster
the ML model's resilience against adversarial attacks in the
online phase. The work in [26] also employs DNNs but
considers a solution with channel state information (CST) data
instead of RSS, rendering it out of scope for our study, because
most mobile and [oT devices cannot capture Wi-Fi CSI data.
These approaches also do not consider real-world challenges
posed by environmental variations and device heterogeneity,
which further reduce indoor localization accuracy.

III. ADVERSARIAL ATTACK FORMULATION

Adversarial attacks in indoor localization systems
encompass the manipulation or spoofing of wireless signals,

typically transmitted by Wi-Fi APs. These attacks can
originate from three primary points: the transmitter side (i.e.,
APs), the receiver side (i.e., mobile devices), or the channel
side. In the context of Wi-Fi-based indoor localization, Wi-Fi
RSS signals, measured in decibels referenced to one milliwatt
(dBm) and typically ranging from -100 dBm (weak signal) to
0 dBm (strong signal), are very susceptible to manipulation,
particularly when considering attacks from the channel side,
(see example in Fig. 2). Channel side attacks offer a distinct
advantage due to the open nature of wireless channels,
rendering them a preferred choice for adversaries. In contrast,
injecting perturbations through the transmitter side (APs)
proves more challenging, primarily due to stringent security
measures. Meanwhile, attacks on the receiver side necessitate
unauthorized access to personal devices, adding an extra layer
of complexity. In our considered attack scenario in this work,
we concentrate on channel side attacks within a white-box
context. Here, we assume that the attacker possesses
comprehensive information about building floorplans, Wi-Fi
AP locations, and has access to the ML model's training
parameters. This white-box approach is motivated by the
attacker's capacity to craft subtle perturbations designed to
deceive the ML model with minimal alterations.

With Adversary

' __| .(F‘:D AP:1

Without Adversary

((:‘K)D AP:1

@

AP:2

& } ((:l))

S \“‘w AP:3
i . Fingerprint
Y

o ((i/-\)n)
(@] o
A i AP:4

i
'
Target medimd m(,h-m .
oLnraﬂon d Smartphone

Location
Fig. 2: Illustration of indoor localization system with and without
adversarial attacks — A:1 (weak attack), A:2 (strong attack)

A. Adversarial Attack Mechanism

In this section, we describe the adversarial attack
mechanisms we consider in this work that can compromise the
robustness of indoor localization systems. Our analysis
centers on man-in-the-middle (MITM) attacks from the
channel side. MITM attacks are a well-known class of
adversarial techniques wherein an adversary positions
themselves between communication flows to manipulate data
exchanges. In the context of indoor localization, an adversary
can insert themselves between a mobile device and the
targeted Wi-Fi AP used for localization, as shown in Fig. 2.
By introducing perturbations to the signals exchanged
between the device and APs, the attacker can mislead the ML
model (deployed on the mobile device) to provide incorrect
location estimates. MITM attacks are challenging to detect,
especially in large indoor environments.

To the best of our knowledge, this is the first exploration
of MITM-based attacks in indoor localization. MITM attacks
offer a distinct advantage in the context of a white box
scenario, empowering adversaries to craft potent and precisely
targeted channel-side attacks. We explore two well-
recognized variants: signal manipulation and spoofing attacks:
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o Signal manipulation attacks: These attacks involve
altering Wi-Fi signals to provide misleading information
to the indoor localization system. They can distort the
RSS data from a Wi-Fi AP, leading to incorrect location
estimates. Adversaries may use signal manipulation to
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misguide the ML model by injecting perturbations into
the RSS data, as shown in Fig. 2 (A:1).

o Signal spoofing attacks: These attacks involve the
creation of counterfeit wireless signals designed to
closely mimic legitimate APs. In these attacks,
adversaries replicate essential characteristics of a target
Wi-Fi AP, such as its MAC address and operating
channel. By effectively emulating a genuine AP, the
spoofing adversary generates their own RSS data, which
outwardly resembles that of the legitimate AP.
However, the crucial distinction lies in the carefully
crafted perturbations introduced into these counterfeit
signals. These perturbations are strategically
incorporated to mislead the ML model, resulting in
mnaccurate location estimates, as shown in Fig. 2 (A:2).
This method contrasts with signal manipulation attacks,
where genuine RSS data is directly tampered with,
whereas signal spoofing attacks involve the fabrication
of signals that closely resemble legitimate ones.

B. White-Box Adversarial Attack Formulation

In the context of indoor localization security, as discussed
above, the main strategy employed in various attack scenarios
involves altering RSS data with carefully planned
modifications to deceive the ML model. To recreate these
scenarios in a real-world white-box environment, we employ
three popular methods for crafting white-box adversarial
attacks. These methods include FGSM [27], PGD [28], and
MIM [29]. Each of these techniques serves a unique purpose
in aiding our understanding of adversarial attacks on indoor
localization systems. These techniques are described below:

o FKast gradient sign method (FGSM): FGSM is a one-step,
non-iterative attack method that calculates the adversarial
perturbation based on the gradient of the ML model loss
function. It then applies this perturbation directly to the
input data. It is employed in indoor localization to perturb
the RSS data from a targeted Wi-Fi AP. The attack
focuses on manipulating RSS data at a single step by
adding small but deliberate changes. The FGSM attack
can be mathematically represented as follows:

Koy = X + €= sign(VJ(X, 1) 5

where X4, is the adversarial example (perturbed RSS
data), X is the original RSS data, € is the magnitude of the
perturbation, FJ/(X)Y) are the gradients of the loss
function, and Y 1s the true label (actual location).

o Projected gradient descent (PGD): PGD is an iterative
adversarial attack method that refines the perturbation in
multiple steps. In each step, it calculates the gradients of
the ML model loss function with respect to the input data
and updates the perturbation. This iterative process aims
to find a stronger perturbation for deceiving the model.
Unlike FGSM, which operates in a single step, PGD
iteratively enhances the perturbation. The PGD attack can
be mathematically represented as follows:

Xpav = clip{ X + a» (VJ(X,Y),€)} ()]

where X (original RSS data) is adjusted iteratively. The
perturbations are controlled by & (alpha) and capped (clip
Jfunction) at a perturbation magnitude €.

o Momentum iterative method (MIM): MIM is another
iterative adversarial attack approach designed to refine
perturbations across multiple steps. In each iteration, it
computes the gradients of the ML model loss function
relative to the input data and updates the perturbation,

gradually strengthening it to deceive the model
effectively. MIM distinguishes itself from PGD by
introducing momentum into the optimization process,
which allows it to converge more efficiently and find
effective perturbations, making it particularly potent for
crafting adversarial examples. The MIM attack can be
mathematically represented by equation (2) from PGD.

C. Adversarial Data Generation

To evaluate the indoor localization systems' resilience
against MITM attacks and their variants, we harness FGSM,
PGD, and MIM to craft adversarial data. These techniques
allow us to generate MITM-like attacks and systematically
assess the robustness of our system. One crucial parameter in
crafting adversarial examples is €, representing the attack
strength. Varying € from 0.1 to 0.5 allows us to examine the
impact of different attack strengths on the system. As we
increase € , the attack strength intensifies, causing
perturbations in RSS data to become more pronounced, as
shown in Fig. 2 (A:2 has higher ¢ than A:1). By
encompassing this range of € values, we are able to explore
the system's response to a spectrum of adversarial intensities.

Additionally, we consider the parameter o, which
denotes the number of targeted Wi-Fi APs chosen for attack.
The example in Fig. 2 shows the case of o = 1. This selection
of specific APs is essential as it mirrors the attacker's choice
in the real world. Crafting adversarial data for this subset of
APs allows us to evaluate the model's robustness in scenarios
where certain APs are compromised. By assessing the
system's performance against MITM attacks with varying €
and o, we can gain insights into a frameworks capacity to
withstand adversarial threats across different conditions.
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Fig. 3: Overview of the CALLOC framework: offline and online phases

IV. CALLOC FRAMEWORK

The CALLOC framework consists of two phases: an
offline and an online phase, as shown in Fig. 3.

In the offline phase, we begin by collecting RSS
fingerprints from various reference points (RPs) in a building
using a single device (see section V.A). Initially, this data
collection occurs without any adversarial interference (6 =0,
€ = 0). To enhance model robustness against adversarial
threats, we employ a novel curriculum that systematically
introduces attacks on different APs (o) (see section IV.A).
This curriculum has a dual purpose: it guides the model’s
learning trajectory and progressively challenges it with
escalating adversarial scenarios by targeting different subsets
of APs (increasing o).

Once the lesson is selected from the curriculum, we
utilize domain-specific neural networks (see section I[V.B) to
transform both the lesson and the original attack-free data
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into lower-dimensional hyperspaces: HF (curriculum data)
and H° (original data), as shown in Fig. 3, where i is the
lesson number. Hf captures essential curriculum features,
while H? captures original data features along with random
dropouts and Gaussian noise, to simulate real-world
environmental and device variations. This augmentation
enhances the model’s adaptability to practical scenarios.

These hyperspaces, along with RP locations, serve as
inputs for the attention layer within the model, requiring Q
(query), K (key), and V7 (value) inputs (see section IV.C).
HE is assigned to (), H° to K, and RP locations to V. The
attention mechanism enables the model to focus on relevant
information within the hyperspaces and RP locations,
allowing it to capture crucial patterns that contributes towards
accurate indoor localization predictions. The attention output
is then passed to a fully connected layer responsible for
predicting RP locations for unknown fingerprints collected
during the online phase, as shown in Fig. 3. Throughout the
training process, we closely monitor the loss function of the
final fully connected layer (see section IV.D). This
monitoring continues until the final lesson is completed.

In summary, CALLOC’s approach involves a novel
curriculum-based learning and domain-specific hyperspace
transformations with attention, to simultaneously build
resilience to adversarial threats, environmental variations,
and device heterogeneity, while being lightweight for
deployment on mobile and IoT devices. The following
subsections describe the framework in more detail.

A. Curriculum Selection

Our curriculum comprises of 10 distinct lessons. The
curriculum initiation begins with a baseline lesson featuring
0% attacked APs (o =0) and 100% original data. Subsequent
lessons contain higher ¢ and lower number of original data.
For example, the second lesson contains ¢ = 10 (10% attacked
APs) with € =0.1. This progression culminates in the toughest
scenario at lesson 10, with ¢ = 100 and € = 0.1. As we
transform this perturbed data into a lower-dimensional
hyperspace (see section IV.B), we capture nuanced changes
in essential features within the curriculum data (influenced by
€) compared to the original data. This guides the model to
learn how perturbations can affect the RSS inputs.
Consequently, CALLOC becomes resilient against similar
perturbation patterns, even when the attack magnitude (€)
varies, ultimately enhancing its robustness during testing.

Adversarial data is generated using the FGSM technique,
ensuring that the model learns to defend against adversarial
attacks. Note that our approach does not require exposure to
the many other types of adversarial data (e.g., from PGD and
MIM) during training, while still showing robustness to those
attacks in the online phase (see Section V). The selection of
lessons follows a systematic approach, commencing with
lesson 1, where the model learns to handle original data
effectively. After completing each training phase, the model
proceeds to the next lesson in a progressive manner until it
has undergone training across all the lessons.

B. Lower-Dimensional Hyperspace

Once a lesson is selected for training, the next step
involves mapping the lesson data into a lower-dimensional
hyperspace, a crucial step in our training approach. This
mapping aims to retain essential information while reducing

the dimensionality of the input data, making it more
computationally efficient and reducing the risk of overfitting.
We employ two specialized embedding neural networks for
this purpose: one dedicated to the curriculum data and
another to the original data. These networks are designed with
a reduced number of neurons compared to the input features.
The primary motivation behind this dimensionality reduction
1s twotold. First, it enhances the model's ability to generalize
effectively, by focusing on essential features and patterns in
the data. Second, reducing dimensionality serves as a means
of noise reduction. Noise in the data can originate from
environmental factors or device variations. Additionally,
these hyperspaces offer computational efficiency, a crucial
consideration, especially for mobile and IoT device.

The embedding network for the original data
incorporates dropout and Gaussian noise layers. Dropout
randomly removes some neuron outputs during training,
preventing the model from relying too heavily on certain
iput features, thus preventing overfitting. The Gaussian
noise layers add variability to the training process, further
enhancing the model’s robustness across different conditions.

C. Scaled Dot-Product Attention Neural Network

The hyperspaces generated from the curriculum data and
the original data represent lower-dimensional representations
of the input data, respectively. To measure similarities
between these hyperspaces, we employ a scaled dot-product
attention neural network. This attention mechanism takes
three inputs: O (query), K (key), and V" (value). By computing
similarities between elements in ) (HF) and K (H°), the
attention layer enables the network to prioritize relevant
features in the hyperspaces and their corresponding RP
locations. This mathematical process can be expressed as:

Attention(Q,K,V) = Softmax QK" 14 3
e

In this equation, Q represents HF, K represents H?, and
V signifies RP locations. The dot product between () and K,
followed by scaling (,/d; ), generates attention scores. These
scores, after applying the Softmax function, become the
attention weights that capture the model's focus on relevant
information. Higher attention weights suggest that the model
is giving more importance to certain elements in the
hyperspaces. The attention output, consisting of weighted
information, 1s then channeled to a fully connected layer. This
layer is responsible for classifying and predicting RP
locations for unknown fingerprints in the online phase.

D. Adaptive Curriculum

Throughout the training process, we carefully monitor
the loss function of the final fully connected layer. This
monitoring process is vital as any observed increase in loss
during training can be an early indicator of a potential
divergence in the training process. Divergence may indicate
that the model is struggling to adapt to specific data patterns,
which can be influenced by o in the lessons. In response to
this, CALLOC employs an early stopping mechanism to
safeguard optimal performance. When such an increase in
loss is detected, the model reverts to its best-performing
weights, ensuring that it maintains peak performance.

Moreover, CALLOC's curriculum 1is not static; it 1s a
responsive component that fine-tunes the model's training
approach. After reverting to the best weights, the curriculum
1s carefully adjusted by reducing o by steps of two in the
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lesson data. This adjustment allows for the management of
data complexity and further improves the model's
adaptability. The curriculum adapts alongside the model,
ensuring that the training process is tailored to the evolving
needs of the model. Once the training process successtully
reduces loss, indicating improved adaptation, the model
advances to the next lesson. This dynamic procedure
continues iteratively until the final lesson is completed,
resulting in a model well-prepared to handle uncertainties in
real-world scenarios.

V. EXPERIMENTAL RESULTS

A. Experimental setup

In our experiments, we evaluate CALLOC's performance
in real-world scenarios across various adversarial attacks. We
also compare CALLOC against state-of-the-art frameworks,
including AdvLoc [24], SANGRIA [19], ANVIL [17], and
WiDeep [15]. CALLOC exclusively trains on adversarial
samples generated via FGSM, maintaining a small constant €
value of 0.1 throughout the curriculum while varying o.
Furthermore, we conduct an extensive analysis of CALLOC's
resilience across diverse mobile devices and building
floorplans. The details of the heterogeneous mobile devices
selected for evaluation are presented in Table .

TABLE I: SMARTPHONES DETAILS

Manufacturer Model Acronym
BLU Vivo 8 BLU
HTC Ull HIC

Samsung Galaxy S7 57
LG V20 LG

Motorola 72 MOTO

Oneplus 3 OP3

The building floorplans considered in our experiments
encompass variations in path length, visible APs, and
environmental noise characteristics (see Table II). Data
collection involves the devices selected, with an allocation of
5 fingerprints per RP per building for training and reserving
1 fingerprint per RP per device per building for testing
purposes. The OP3 device serves as our designated device to
capture training data. The RPs maintain a physical granularity
of 1 meter. We plan to open-source the dataset from this
study, to benefit the indoor localization community [10].

TABLE II. BUILDING FLOORPLAN DETAILS

Building Number [Visible APs{Path Length Characteristics
Building 1 156 64 meters Wood and Concrete
Building 2 125 62 meters | Heavy Metallic Equipments
Building 3 78 88 meters Wood, Concrete, Metal
Building 4 112 68 meters Wood, Concrete, Metal
Building 5 218 60 meters | Wide Spaces, Wood, Metal

CALLOC utilizes domain-specific embedding neural
networks, each composed of 128 neurons, utilizing mean
square error as the loss function for both hyperspaces. In the
HP network, we empirically determine and set dropout rate
to 0.2 and Gaussian noise to 0.32. The final fully connected
layer is designed to classify the RP classes , resulting in a total
of 65,239 trainable parameters. These parameters are
distributed as follows: 42,496 trainable parameters in both the
embedding layers, 18,961 in the attention layer, and 3,782 in
the final fully connected layer, achieving a compact model
size of 254.84 kB (kilobytes), for efficient deployment.

B. CALLOC Evaluations: Devices, Floorplons and Attacks

In this section, we assess CALLOC's performance across
smartphones and buildings under different adversarial attack
methods. Fig. 4 presents heatmaps corresponding to changes
in indoor localization accuracy under FGSM, PGD, and MIM
attacks. The heatmaps display the mean localization error in
meters. The experiments are conducted over varying €
(ranging from 0.1 to 0.5) and ¢ (ranging from 10 to 100)
values, to represent diverse real-world adversarial attack
scenarios. The tests across multiple buildings are meant to
capture a variety of environmental noise scenarios. Lastly, the
model is trained on the OP3 device and tested on all devices,
to capture scenarios of noise due to device heterogeneity.
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Fig. 4: Localization errors across different devices, buildings, and attacks

In general, as expected, localization accuracy for
CALLOC reduces in the presence of attacks, environmental
variations, and device heterogeneity. However, CALLOC can
limit the accuracy degradation in the presence of variations.
The heatmaps show that CALLOC demonstrates resilience to
device heterogeneity, as it maintains consistent performance
regardless of the testing devices (i.e., low errors across a row
in the heatmaps). Specific devices do exhibit higher
variations in error rates e.g., FGSM-Buildingl-OP3 and
FGSM-Building1-MOTO. This behavior can arise due to
extreme heterogeneity in wireless chipsets and software
stacks across devices, that can cause the captured RSS data
from these devices to vary significantly. Additionally, certain
building floorplans may exhibit higher errors compared to
others, e.g., Building 1 and Building 5. This behavior is due
to different salient features in the building floorplans
contributing to added noises (e.g., greater dynamic density of
people, movement of equipment). Across the three attacks,
FGSM has the least error, while stronger iterative attacks
such as PGD and MIM result in slightly higher errors
compared to FGSM. Nonetheless, CALLOC, equipped with
its specialized curriculum and hyperspace-attention model,
effectively reduces the impact of device heterogeneity and
environmental noise, as well as unpredictable adversarial
attacks, by limiting the increase in indoor localization error.
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Fig. 5: Impact of curriculum learning on different attacks and €

C. Evaluating Impact of Curriculum Learning with €

Next, we assess the impact of the proposed curriculum
learning technique across varying attacks and € values. Fig. 5
presents a plot depicting the responses of different attacks
when subjected to different € values. Each bar represents the
mean response across all testing devices, building floorplans,
and o values ranging from 10 to 100. We also compare these
results with the performance of the CALLOC framework
when curriculum learning is not applied, denoted as NC' (No
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Curriculum). The trends from the results reveal that the
incorporation of curriculum learning bolsters CALLOC's
resilience against varying € values and diverse attack

methods, outperforming the 'NC' approach.
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Fig. 6: Comparing CALLOC against state-of-the-art frameworks.

D. Comparing CALLOC against state-of-the-art

We evaluate CALLOC's performance against state-of-the-
art frameworks across different devices, buildings, € (0.1 to
0.5), and o (1 to 100), as shown in Fig. 6. It can be observed
that CALLOC consistently outperforms its competitors,
showing the lowest maximum (worst-case), and mean errors.
Notably, CALLOC surpasses AdvLoc by 1.77x (mean) and
2.35% (worst-case), due to its novel curriculum learning
strategy and domain-specific hyperspace-attention model. It
also outperforms SANGRIA, which excels in augmentation
to noise but lags in adversarial robustness, by 2.64x (mean)
and 2.92x (worst-case). CALLOC outperforms ANVIL,

which provides

exceptional heterogeneity and noise

resilience due to its strategic multi-headed attention network,
but lags in mitigating adversarial attacks, by 3.77x (mean)
and 4.26x (worst-case). CALLOC outperforms WiDeep by a
remarkable 6.03x (mean) and 4.6x (worst-case). This is due
to the incorporation of GPC in WiDeep, which is extremely
sensitive to noise. These results highlight CALLOC's

exceptional performance in real-world scenarios.
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Fig. 7: Effect of varying attacked APs (0) on Jocalization error

E. Evaluating impact of varying o

We further evaluate CALLOC's response to variations in
the number of attacked APs (o) using different attack
methods, covering ¢ values ranging from 1 to 100, and
compare the results with state-of-the-art frameworks. Fig. 7
illustrates CALLOC's response for different o values
alongside the performance of other frameworks. It is evident
that even small increments in o can significantly reduce
localization accuracy. CALLOC, in response to the FGSM
attack, exhibits relatively stable errors as o increases, unlike
other frameworks. AdvLoc, another framework that also
incorporates a subset of FGSM samples into its training, was
surpassed by CALLOC across FGSM data and more potent
attacks like PGD and MIM. AdvLoc shows a slightly higher
error than CALLOC, with the error increasing starting at o =
60. ANVIL, SANGRIA, and WiDeep show higher errors for
both low and high values of @. These trends hold for PGD and

MIM attacks as well (result plots omitted for brevity).
VI. CONCLUSION

Our proposed CALLOC framework showcases resilience
against adversarial attacks, variations across devices, and
noise across indoor environments. It surpasses achievable
accuracy over state-of-the-art localization frameworks by a

substantial margin, showing improvements of up to 6.03x in
mean errors and 4.6x in worst-case errors.
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