
Neural Networks 173 (2024) 106152

Available online 1 February 2024
0893-6080/© 2024 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Data-driven learning of chaotic dynamical systems using Discrete-Temporal
Sobolev Networks
Connor Kennedy, Trace Crowdis, Haoran Hu, Sankaran Vaidyanathan, Hong-Kun Zhang ∗

Department of Mathematics & Statistics, University of Massachusetts, Amherst, MA 01003, USA

A R T I C L E I N F O

Keywords:
Lorenz system
Neural network
LSTM
Physical Informed Neural Network
Chaotic system
Prediction

A B S T R A C T

We introduce the Discrete-Temporal Sobolev Network (DTSN), a neural network loss function that assists
dynamical system forecasting by minimizing variational differences between the network output and the
training data via a temporal Sobolev norm. This approach is entirely data-driven, architecture agnostic, and
does not require derivative information from the estimated system. The DTSN is particularly well suited to
chaotic dynamical systems as it minimizes noise in the network output which is crucial for such sensitive
systems. For our test cases we consider discrete approximations of the Lorenz-63 system and the Chua
circuit. For the network architectures we use the Long Short-Term Memory (LSTM) and the Transformer.
The performance of the DTSN is compared with the standard MSE loss for both architectures, as well as
with the Physics Informed Neural Network (PINN) loss for the LSTM. The DTSN loss is shown to substantially
improve accuracy for both architectures, while requiring less information than the PINN and without noticeably
increasing computational time, thereby demonstrating its potential to improve neural network forecasting of
dynamical systems.

1. Introduction

The study of chaotic dynamical systems universally leads to diffi-
culties in numerical analysis and simulation. It is these difficulties in
simulation that lead to the initial discovery of the field with Edward
Lorenz’s seminal work on the Lorenz-63 system (Lorenz, 1963). This
simplified fluid convection model was found to have inherent complex-
ities, such as the existence of nonzero Lyapunov exponents (Viswanath,
1998) and the presence of a strange attractor (Sparrow, 1982), which
would become hallmarks of what we now understand to be chaotic
systems. Despite its simplicity in comparison to other models that
have been introduced since Lorenz’s work, these properties prove to
be so fundamentally challenging to numerical methods that the sys-
tem still serves as an invaluable example to test new, more powerful
computational tools. We also consider the Chua circuit as another test
case chaotic dynamical system. The Chua circuit is a rare example
of a physically realizable system in a lab setting that is chaotic and
can be described via a simple set of ordinary differential equations
(ODE) (Galias, 1997). The Chua circuit is also nonlinear via a lack of
smoothness in a resistance term rather than via a product as in the
Lorenz system, and thus provides a qualitatively different example of a
chaotic system to consider.

∗ Corresponding author.
E-mail addresses: conmkennedy@umass.edu (C. Kennedy), tcrowdis@umass.edu (T. Crowdis), haoranhu@umass.edu (H. Hu), sankaranv@cs.umass.edu

(S. Vaidyanathan), hongkunz@umass.edu (H.-K. Zhang).

In this paper, we consider the use of neural network models for
dynamical system prediction. While basic feed-forward networks in
principle are universal function approximators (Hornik, Stinchcombe,
& White, 1989), a variety of different network architectures have
been developed to achieve better accuracy on dynamical systems.
One such method is the Long Short-Term Memory (LSTM) network,
a particular form of Recurrent Neural Network (RNN) which uses the
dependence between sequential data points to better perform predic-
tions (Hochreiter & Schmidhuber, 1997). We also consider the Physics
Informed Neural Network (PINN), which uses a loss function that
incorporates knowledge of a system’s governing equations to better
improve training (Raissi, Perdikaris, & Karniadakis, 2017). The Trans-
former architecture has seen some use in dynamical systems as well,
despite initially being developed for natural language processing tasks.
The Transformer uses a self-attention scheme where the degree of
connection between input data points is learned and stored in the form
of attention vectors (Vaswani et al., 2017).

Many variants of these above methods have also been tested on
the Lorenz system and related systems to demonstrate their efficacy.
The LSTM has been combined with methods of incorporating partially
available data to improve predictions on the Lorenz-63 system (Dubois,
Gomez, Planckaert, & Perret, 2020). A probabilistic approach referred

https://doi.org/10.1016/j.neunet.2024.106152
Received 28 April 2023; Received in revised form 1 January 2024; Accepted 28 January 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:conmkennedy@umass.edu
mailto:tcrowdis@umass.edu
mailto:haoranhu@umass.edu
mailto:sankaranv@cs.umass.edu
mailto:hongkunz@umass.edu
https://doi.org/10.1016/j.neunet.2024.106152
https://doi.org/10.1016/j.neunet.2024.106152
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106152&domain=pdf

Neural Networks 173 (2024) 106152

2

C. Kennedy et al.

Fig. 1. A basic outline of the first-order DTSN network, which defines a system GNN . The network assigns prediction labels to paired samples of input data independently and
then compares the difference to the difference of the true labels. Further details are described in Section 3.1.

to as the Mean Stochastic Model has been applied to prevent deviation
from the attractor (Vlachas, Byeon, Wan, Sapsis, & Koumoutsakos,
2018). The LSTM has also been compared to other methods such as
reservoir computing methods in predictions on the related, but more
complicated Lorenz-96 system (Chattopadhyay, Hassanzadeh, & Subra-
manian, 2020; Lorenz, 1995). There have also been some applications
of the PINN to the Lorenz-63 system with notable success (Lu, Meng,
Mao, & Karniadakis, 2019). These two methods need not be distinct,
and there have been promising examples of using LSTM architectures
with PINN loss functions (Zhang, Liu, & Sun, 2020), as well as PINN
losses being applied to other RNNs (Yucesan & Viana, 2021). The PINN
does however requires knowledge of the underlying governing equa-
tions for the given system, which are often unknown. The Transformer’s
applications to dynamical systems are less explored, but there has been
some research (Cholakov & Kolev, 2021), with a few applications to the
Lorenz system (Shalova & Oseledets, 2020), and at least one interesting
reformulation using a Koopman embedding to process the data (Geneva
& Zabaras, 2022). The Chua circuit has also seen some study via not
the LSTM but a Locally Recurrent Neural Networks to learn about the
properties of its attractor (Cannas, Cincotti, Marchesi, & Pilo, 2001),
as well as earlier study via Cellular Neural Networks (Arena, Baglio,
Fortuna, & Manganaro, 1995). The investigation of the Chua circuit via
neural networks has been limited overall though.

We propose a new method, the Discrete-Temporal Sobolev Network
(DTSN), which is fully data-driven and reduces the need for known
prior information about the system. The DTSN includes a loss term
that measures the mean square error (MSE) between the difference
in successive steps of the network output and those same differences
for the true data. A basic overview of the concept is included in
Fig. 1. On the local level for a single prediction, this bears similarity to
estimation via Taylor polynomials, where knowledge of the derivative
at a known point is used to improve estimation. When averaged across
a training set this acts similarly to minimization over a Sobolev norm
with respect to time. We recall that Sobolev norms act as sums of Lp

norms over the derivatives of two functions, measuring the difference
in how the functions move as well as their overall values. Our usage of
finite differences mimics the concepts of the Sobolev norm but without
requiring knowledge of the derivatives from our given data set.

The DTSN also has several features that make it notably robust. It
may be easily extended to higher orders by simply looking at higher
order differences. These distinct loss terms for different orders may also
have their relative importance set as learnable parameters, allowing
terms of greater importance to contribute more substantially to the
overall loss. The loss function also uses short to moderate lengths orbits

of the system for training data, which are often more accessible than
large clusters of initial points as needed in some PINN approaches (Lu
et al., 2019). By using a collection of multiple short orbits for the system
we can still prevent overfitting to a given data set while maintaining
the needed data format.

The DTSN can be seen as an extension of RNN based models trained
with the PINN loss. Similar to the RNN approach, we wish to use
information from the interdependence of successive steps to improve
the network’s accuracy, only now we look at the interdependence of
outputs from the network, rather than inputs from the data set. From
the PINN we see that it is valuable to not only match a data set point for
point in training, but to appropriately match the behavior of differences
(or derivatives) for these points. In contrast with the PINN, the DTSN
does not require prior knowledge about the system being modeled.
Experiments conducted within this paper demonstrate that the DTSN
loss applied to an LSTM architecture actually outperforms the PINN
loss applied to this same architecture.

However, evaluating this architecture on a chaotic system presents
challenges with data generation. The numerical issues with any chaotic
system mean that even with exact knowledge of the equations it is
difficult to generate medium to long length trajectories without an
exceptionally high number of stored digits and very high order approx-
imation schemes, this is explicitly well-known in the case of the Lorenz
system (Estep & Johnson, 2011). One can rely on shadowing lemmas
to guarantee generated trajectories match for some unknown initial
condition but some chaotic systems like the Lorenz system contains
singularities which make the process of verifying these shadows more
complicated (Araujo & Pacifico, 2010; Coomes, Koçak, & Palmer, 1994;
Hayes & Jackson, 2003). Thus we propose treating a simple discretiza-
tion of a given chaotic system to be the ground truth itself for testing
the network’s capabilities. This substitute system still retains all the
essential chaotic properties of the flow while being vastly easier to
compute sample trajectories. This method of treating a discretization as
the ground truth for evaluation of a prediction scheme may be useful
for many dynamical systems where there are also difficulties in the
generation of data. For such systems though one would likely wish to
verify that any crucial qualitative properties of the system (positive
Lyapunov exponents, topological equivalence of attractors, etc.) are
preserved under the discretization, a process we verify for the Lorenz
system in Section 4.1.2.

The overall structure of the paper is given as follows. In Section 2
we give an overview of background information and notation for the
paper. Section 2.1 defines the form in which data is batched for our
methods as well as outlining notation for all considered loss functions.

Neural Networks 173 (2024) 106152

3

C. Kennedy et al.

Section 2.2 briefly reviews the PINN. In Section 3.1 we explicitly define
the DTSN network approach and in Section 3.2 we discuss in greater
detail the connection with Sobolev norms. In Section 4.1 we discuss
the issues with appropriately generating data for the Lorenz system
and introduce an alternative discrete system that circumvents these
problems. Section 4.2 briefly introduces the Chua circuit as another
considered dynamical system to test the DTSN on. Section 5 outlines
how the experiments were set up and how the baselines were defined.
Section 6 presents the testing results of all the considered networks
and compares them. In Section 7 final discussion and speculation on
future directions of research are given. Appendix B provides some
technical background on the Lorenz system and Lyapunov exponents
while Appendix A reviews the shadowing lemma.

2. Preliminaries

2.1. Data formatting and notation

In this section, we introduce some relevant notation for the data sets
considered and loss functions, as well as some key assumptions needed
for batching. We consider a discrete map Fℎ ∶ Rd

→ Rd , which acts as
some discrete approximation of continuous chaotic flow �t ∶ Rd

→ Rd

over a fixed time ℎ. Using this discrete map Fℎ we generate a length N

orbit denoted by:

�N = {x1, x2,… , xN}, (1)

where xk = (xk,1, xk,2,… , xkm
) ∈ Rd is the kth location of the orbit. Our

goal is to design a neural network GNN to learn the dynamical system
Fℎ, based on the information provided by one or more orbits of the
form �N .

We first fix a sample size m g 1. The samples in orbit �N are grouped
into overlapping samples Xi of m consecutive points. Explicitly this
form is given by:

Xi = (xi,… , xi+m), 1 f i f N − m. (2)

This collection of samples Xi is denoted as our data set . The usage
of consecutive data values in the individual samples is necessary for the
implementation of the LSTM and Transformer, as both architectures use
the relationship between these iterates to improve prediction. We then
split the data set  into the training set train, validation set val, and
test set test. For each sample Xi = (xi,… , xi+m) ∈ train, we denote the
true label as Ytrue(Xi) ∶= Fℎ(xi+m).

We randomly group samples Xi into batches denoted by batcℎ in
the usual manner for performing stochastic gradient descent (Zinke-
vich, Weimer, Li, & Smola, 2010). Our goal is to design an effective loss
function (batcℎ) ∶= ({GNN (Xi), Ytrue(Xi) ∶ Xi ∈ batcℎ}), which is
defined on the predicted and true labels for a given batch. We compare
this to the standard mean square error (MSE) loss. We recall the MSE
loss measures the distance between the labels GNN (Xi) and Ytrue(Xi) by
the following:

MSE (batcℎ) ∶=
1

|batcℎ|
∑

Xi∈batcℎ

‖GNN (Xi) − Ytrue(Xi)‖22. (3)

Here |batcℎ| is the cardinality of the batch. To implement our DTSN
loss, as well as the PINN loss, we will need to constrain the types of
batches considered. Any given batch batcℎ must be able to be divided
into sub-batches of the form A, such that

A = {Xi,Xi+1} = {(xi,… , xm+i), (xi+1,… , xm+i+1)}. (4)

We also define the set batcℎ,1 as:

batcℎ,1 = {Xi ∈ batcℎ ∶ Xi+1 ∈ batcℎ}. (5)

We thus have that for each sample Xi inbatcℎ we must include
the sample immediately before it or after it. The set batcℎ,1 simply
denotes all the samples from the orbit for which the next sample is still

in the same batch, in order to avoid having to consider two cases in
later definitions. We see this grouping together of samples into batches
mirrors the grouping of points into samples from Eq. (2). Thus the
similarity between RNN requirements on the input data structure and
the DTSN requirement on the output data structure is made explicit.

Lastly, we generalize this notion of batching for cases where we
wish to observe dependencies between l sequential outputs. In this
case, we would require batches to be capable of being divided into
sub-batches A of the form

A = {Xi,Xi+1,…Xi+l}. (6)

Now the batches used for training the network always come in blocks
that produce l sequential labels. We also define the set batcℎ,j analo-
gously to batcℎ,1 by

batcℎ,j = {Xi ∈ batcℎ ∶ Xi+1,…Xi+j ∈ batcℎ}. (7)

Finally, we remark that if the network produces an output of l time
steps for a given sample then no special formatting of the batches
is needed, we already have successive iterates available to the loss
function. We will work with networks that only perform prediction for
one step at a time within this paper for simplicity, but we leave this
remark to note the ease of implementation in cases of longer prediction
times.

2.2. Physics informed neural network

We now briefly review the loss function from the Physics Informed
Neural Network (PINN), with a slight modification we impose to work
with systems of difference equations, like those used in discretizations
of continuous systems considered in Section 4.1. A PINN is a neural
network whose loss function has been modified to respect a physical
law that the studied system is assumed to obey. Assume we have
a d-dimensional ODE system (an analogous construction for partial
differential equations PDEs also exists) given by Raissi et al. (2017):

GODE (x) = ẋ + FODE (x) = 0. (8)

Then, in addition to the standard MSE loss function, MSE , a second
term is included with the following form:

P ,1(batcℎ) =
1

|batcℎ|
∑

Xi∈batcℎ

|GODE (GNN (Xi))|2. (9)

With total loss given by

PINN,1(batcℎ) = MSE (batcℎ) + P ,1(batcℎ). (10)

The P ,1 term measures how well the output of the network adheres
to the governing equations of the system. This type of loss function has
been shown to be particularly powerful for systems where underlying
equations are known (Cuomo et al., 2022). Because this is solely a
modification of the loss function, it can be paired with several types of
neural network architectures. In particular, its combination with LSTM
networks, called the LSTM-PINN, is one of several examples that have
had notable success (Yucesan & Viana, 2021; Zhang et al., 2020). To
implement this method on a discretized dynamical system, we will need
to modify it slightly, as the underlying system we wish the network to
learn is given by a system of difference equations. Assume F ∶ Rd

→ Rd

is a known function defining a system of difference equations by

xn+1 = F (xn). (11)

We assume a data set  with sub-batches of the form in Eq. (4)
when we perform stochastic gradient descent. We also define a pair
of hyperparameters �1, �2 > 0 to act as weights. We then finally may
define P , a discrete version of P ,1, by:

P (batcℎ,1) =
1

|batcℎ,1|
∑

Xi∈batcℎ,1

|(f (GNN (Xi)) − GNN (Xi+1))|2. (12)

Neural Networks 173 (2024) 106152

4

C. Kennedy et al.

Fig. 2. Left: Here we compare a test signal of a simple polynomial f (x) = (x − 2)3 + (x − 2)2 − x + 2 with a signal perturbed by p(x) = 0.005 sin(300x − 0.7). Right: The perturbed
signal has very rapid oscillation despite the closeness in the L2 norm. These are the perturbations that the Sobolev norm picks up.

With total loss given by

PINN (batcℎ) = �1MSE (batcℎ) + �2P (batcℎ). (13)

We see this is essentially the same as the definition for P ,1, but
for a system of difference equations. We note that while in realistic
settings we could use knowledge of the equations to directly perform
predictions, the usage of this term is primarily to serve as a point of
comparison to the DTSN. We shall see in Section 6 that the LSTM-PINN
outperforms the LSTM-MSE network, and variation of the weights �1
and �2 during training can improve the accuracy further.

3. The discrete-temporal Sobolev neural network

3.1. Defining the DTSN neural network

We now define the DTSN loss function. We assume the sub-batch
restriction of (4), which allows the relationship between outputs of
the network to be used in our loss function. We then define �ai on a
sequence {ai}

N
i=1

by �ai = ai+1 − ai. We may now define our first new
loss function term, D1

, by:

D1
(batcℎ) =

1

|batcℎ,1|
∑

Xi∈batcℎ1

|�GNN (Xi) − �Ytrue(Xi)|2. (14)

We see that this is similar to the form of P , but D1
compares how

the differences of network outputs match the differences of the training
data, rather than how they match a set of known underlying equations.
We call this network utilizing this new loss term a Discrete-Temporal
Sobolev Network (DTSN), due to it functioning as an approximation
of a discrete-temporal Sobolev norm (further details are outlined in
Section 3.2). We construct the total loss function DTSN,1, in a similar
manner to PINN with similar weighting terms �1, �2:

DTSN,1(batcℎ) = �1MSE (batcℎ) + �2D1
(batcℎ). (15)

This narrows the field of possible solutions by disallowing examples
where the data points are matched closely but the rate of change
|�GNN (Xi) − �Ytrue(Xi)| is substantially off (see Fig. 2 for an example).
Preventing these inaccurate fluctuations can also reduce the accumula-
tion of small errors, which we know for a chaotic system can rapidly
build over the course of estimation. In addition, we note that the DTSN
loss is fully data-driven, removing the substantial requirements of prior
knowledge of the PINN. Eq. (15) describes the first order form of
the DTSN, which we show in Section 6 notably improves prediction
accuracy.

We now draw some parallels between the DTSN and the classic
Taylor expansion to give some intuition to the DTSN’s capabilities as
well as how it may be generalized to higher orders. We recall that if a

function f ∶ R → R is l times differentiable at point a, then there exists
ql ∶ R → R with lim

x→a
ql(x) = 0 such that:

f (t) = f (a)+f ′(a)(t−a)+
f ′′(a)

1
(t−a)2+⋯

f (l)(a)

l!
(t−a)l+ql(t)(t−a)

l . (16)

We also consider a slight modification of the theorem to better fit our
current situation. Given an orbit of points � = (x1, x2,… , xm) for a map
�ℎ (the fixed time ℎ map for a flow �t) we see that

xn = xn−1 +)t�t(xn−1)(ℎ) +
)2
t
�t(xn−1)

2
(ℎ)2 +⋯

)l
t
�t(xn−1)

l!
(ℎ)l + ql(t)(ℎ)

l .

(17)

Our initial form of the loss D1
can be thought of as similar to the

first-order version of the expansion, going only up until the)t�t term.
With this viewpoint, we see a natural way to define a higher order
version of the loss. This requires the stronger restrictions on sub-batches
given by Eq. (6) for some chosen l. With this restriction, we can apply
a discrete equivalent of the lth derivative on a sequence {ai}

N
i=1

to the
samples. This discrete derivative is given by:

�(l)ai ∶= �(l−1)ai+1 − �(l−1)ai, �(1)ai ∶= ai+1 − ai. (18)

We can then define Dj
, a generalization of D1

, by:

Dj
(batcℎ) =

1

|batcℎ,j |
∑

Xi∈batcℎ,j

|�(j)GNN (Xi) − �(j)Ytrue(Xi)|
2
. (19)

Finally, with a selection of weights {�j}
j=l

j=0
, the total loss function

for the lth order DTSN is given by:

DTSN =
∑

batcℎ

�0MSE (batcℎ) +

l∑

j=1

�jDj
(batcℎ). (20)

We see this allows us to further narrow the range of explored solu-
tions by only allowing possibilities that closely match all differences
up to order l. This may prove especially crucial for systems where
there is an underlying differentiable system that has large higher order
derivatives. In that case substantial future changes may be predicted by
high values of 3rd to 4th-order derivatives that have yet to be clearly
visible in the data points directly or the first derivative. We found that
the simpler loss function in (15) was sufficient for prediction on our
considered dynamical systems, but we still introduce this more general
framework here to be considered for future study on other dynamical
systems.

3.2. Analysis of the DTSN neural network

In this section we provide a deeper analysis of the DTSN. We begin
by considering the usual pointwise MSE loss, which can be thought of

Neural Networks 173 (2024) 106152

5

C. Kennedy et al.

as trying to make the network converge to the true underlying map F

in the simple L2 norm; here we assume the considered phase space is

 ⊂ Rd equipped with normalized Lebesgue measure �.

‖Ytrue − GNN‖2
L2

∶= ∫
 |Ytrue(Xi) − GNN (Xi)|2�. (21)

Because we do not have information about F over the entire phase
space, we use the MSE loss to approximate this integral by sampling
a collection of known points via generated trajectories. We must then
extrapolate from our limited trajectory data to guide predictions of the
behavior across the whole space. The MSE loss crucially does not see
any relationship between separate outputs of the network. While the
learning process may consider multiple outputs simultaneously, it does
not treat the outputs GNN (X1), GNN (X100) as being any more or less
related than the outputs GNN (X1), GNN (X2) for a given collection of
samples. In contrast, the DTSN loss function utilizes the relationships
between successive outputs.

We now consider the first-order DTSN loss. The simple MSE loss
minimized the difference between the network and the true underlying
system in the L2 norm. Is there a corresponding norm or semi-norm
which the DTSN loss minimizes distance in? We will show that the
DTSN minimizes distance in a discrete form of the Sobolev time–space
semi-norm (Abdeljawad & Grohs, 2022). We first consider the standard
Sobolev norm to build up to this more complex notion. The definition
of the standard Sobolev norm is given by:

Definition 1. Assume
 is an open subset of Rd , d ∈ N, 1 f p f ∞.
The Sobolev space W k,p(
) is the set of all functions f ∈ Lp(
) such
that for any multi index � with |�| f k, D�f exists and D�(f) ∈ Lp(
).
We recall that D� is defined as:
(

)

)x1

)�1
(

)

)x2

)�2

…

(
)

)xd

)�d

. (22)

The Sobolev norm is then defined as

‖f‖W k,p ∶= (
∑

0f|�|fk
(‖D�f‖p

Lp(
)
))

1
p . (23)

Before we move on to more complex formulations, we first explore
what information the Sobolev norm has that the standard Lp norm
does not. The metric defined by the Sobolev norm measures not only
the difference between two functions, but also how close their rates of
change are. We note that closeness in the Sobolev norm immediately
implies closeness in the corresponding Lp norm. Meanwhile one can
simply construct an example even in the 1-D case of two functions that
are arbitrarily close in the ‖ ⋅‖L2 norm and arbitrarily far in the ‖ ⋅‖W 1,2

norm.

Consider a function f (t) ∈ C1 on the interval [0, T] and a periodic
function p(t) ∈ C1 with period T . Let � > 0 be a small constant and m0

be a large positive integer. We then consider g(t) = f (t) + �p(m0t). It is
simple to see that

‖f − g‖L2 = ‖�p(m0t)‖L2 f �C1, (24)

here C1 is a constant based on p. Meanwhile, we have that

‖f ′ − g′‖2
L2

= �m0‖p′(m0t)‖ g �m0C2. (25)

Where C2 is another constant based on p′. So if the perturbation
is small in magnitude, but high in frequency, then g(t) is close to f (t)

in the ‖ ⋅ ‖L2 norm while being far in the ‖ ⋅ ‖W 1,2 norm. This more
rigorously quantifies the notion that to be close in the Sobolev norm an
approximation must not oscillate too frequently. We construct a specific
example of a function and corresponding perturbed function in this way
in Fig. 2. We also note that searching for an approximation via this
stronger norm may also prevent trapping in local minima, as a local
minimum in L2 may not be a local minimum in W 1,2 but again the
reverse cannot happen as ‖ ⋅ ‖W 1,2 is a stronger norm than ‖ ⋅ ‖L2 .

Now that we have illustrated the significance of the norm for our
purposes, we begin to broaden the norm to match the context of our
dynamical systems. We first extend this definition in the following
way (Evans, 2022).

Definition 2 (Sobolev and Bochner Space). Assume
 is an open subset
of Rd , d ∈ N, 1 f p f ∞, and B is some Banach space. The Bochner
space Lp(
,B) is defined as the set of all functions F ∶
 → B such
that the following norm is finite on them.

‖F‖Lp(
,B) = ‖(‖F‖B)‖Lp(
). (26)

The corresponding Sobolev space W k,p(
,B) is then defined as the
set of functions F ∈ Lp(
,B) such that for � with |�| f k, D�F exists
and D�(F) ∈ Lp(
,B). The expanded Sobolev norm is then simply
defined by

‖F‖W k,p(
,B) ∶= (
∑

0f|�|fk
(‖(‖D�F‖B)‖

p

Lp(
)
))

1
p . (27)

The notation will be written simply as ‖F‖W k,p if there is no
ambiguity for the codomain B.

We first use this when the codomain B is Rd , which allows us
to apply Sobolev norms to vector valued functions. More complex
codomains will be considered when we approach the time–space norm.

For a dynamical flow we first consider the simple case where we fix
an initial point x0. We may then consider the flow �t to be a function
mapping from a considered finite time interval [0, T] T ∈ (0,∞) to the
space Rd . In this context we may consider the following Sobolev norm

‖�t‖2W 1,2([0,T],Rd)
=

1

T ∫
T

0

‖�t(x0)‖2dt +
1

T ∫
T

0

‖)t�t(x0)‖2dt. (28)

Our network is estimating a discrete approximation of a flow
though. In this case, we may modify (28) to a discrete form where we
denote IN ∶= {1, 2,… , N} to be the considered discrete time interval.:

‖F‖2
W 1,2(IN ,Rd)

=
1

N

N∑

i=0

‖F i(x0)‖2 +
1

N

N∑

i=0

‖�(F i(x0))‖2. (29)

We see this exactly corresponds to the DTSN loss function (15) for
a single batch consisting of one orbit so we have a simple context
where the DTSN loss function and a Sobolev norm correspond well. We
see this notion of closeness in terms of variations still holds with the
discrete form, so long as the variations are not to a degree substantially
smaller than our scale of discretization.

We wish to consider arbitrary starting points over a finite region
though, and thus the 1-D domain is not fully suited for our applica-
tion. In the complete context we have a separated time–space domain
for our system with temporal derivatives. When we consider the full
phase space we introduce the Sobolev time–space semi-norm presented
in Abdeljawad and Grohs (2022).

Definition 3 (Sobolev Time–Space). Let 1 f p, q f ∞, m, n ∈ N, I ⊂⊂ R,
and
 ⊂⊂ Rd . Let W n,p

m,q (I,
) defined as follows

W n,p
m,q

(I,
) = {F ∈ Lq(I,W n,p(
)) ∶)k
t
F ∈ Lq(I,W n,p(
)),∀k f m}.

(30)

The corresponding semi-norm is then defined as

‖F‖W n,p
m,q (I,
) ∶=

∑

kfm
‖)k

t
F‖Lq (I,W n,p(
)) =

∑

kfm
‖(‖)tF‖W n,p(
))‖Lq (I). (31)

Now we see the significance of defining Bochner spaces in Defini-
tion 2. For each chosen length of time considered, we can treat a flow
�t as mapping times from a chosen interval I to maps acting on the
space
. Each such map has a W n,p norm, and those norms are then
integrated with respect to t. We present our discrete-temporal form of
this below:

Neural Networks 173 (2024) 106152

6

C. Kennedy et al.

Definition 4 (Discrete-Temporal Sobolev). Assume F ∶
 → Rd is a map

such that F ∈ W n,p(
,Rd). We may then define the discrete-temporal

Sobolev norm on this map for up to N ∈ N iterations by

‖F‖W̃ n,p
m,q (IN ,
) =

∑

kfm
1

N
(

N∑

j=1

‖�(k)F (j)‖q
W n,p(
)

)1∕q . (32)

If we do not wish to consider spatial derivatives then this simplifies to

‖F‖
W̃

0,p
m,q (IN ,
)

=
∑

kfm
1

N
(

N∑

j=1

‖�(k)F (j)‖q
Lp(
)

)1∕q . (33)

We see the DTSN loss function (20) approximates Eq. (33) in the

case of W̃ 0,2

l,1
({1},
), if there is an appropriately large number of sample

points used to approximate the L2 norms. The norm could be approx-

imated for varying values of N by averaging the DTSN loss applied to

F j for multiple values of j. This could be used to construct a network

that attempts to directly allow approximations for higher iterates of the

map without having to feed outputs of the network back to the network.

We do not pursue this method within the present paper to focus on

verifying the core concepts of the DTSN but it is an interesting direction

for further research. If spatial derivative information is available, one

could also simply incorporate that to allow approximation of the norm

in Eq. (32).

With these definitions in place, we compare our approach to the

existing work in applying Sobolev norms to neural networks. The work

of Abdeljawad and Grohs (2022) considers the ability of a network

to act as a universal approximator in the norm of (30), proving well-

posedness similar to the classic universal approximator property of

multilayer networks proven in Hornik et al. (1989). The proof of Abdel-

jawad and Grohs (2022) does not propose a particular method of train-

ing to achieve such approximation though as we are. In the Sobolev

Neural Network (SNN) (Czarnecki, Osindero, Jaderberg, Swirszcz, &

Pascanu, 2017), there is no discretization of a flow, just immediately

the system is already a map, the derivatives are spatial rather than tem-

poral, and derivative data is assumed to be known. Our method differs

from the SNN most crucially in that last way, in how little information

is assumed to be known; only the trajectory is necessary, with no direct

information on any derivatives. The DTSN loss can also be applied to

systems which are simply a map from a space to itself rather than a

discretization for a flow, still using the method of differences between

successive iterations. Some substantial complications may arise in such

systems, as generally discrete chaotic systems have singularities, often

dense singularities, and thus methods stochastic gradient descent suffer

from instability issues. There may still be useful ways to apply the DTSN

concept to such systems, which we hope to expand on in future work.

Overall the DTSN acts as a broadly viable method of applying concept

of Sobolev theory to the loss function of a neural network.

We additionally see how the DTSN contrasts with the PINN. While

there is an obvious advantage that the DTSN requires less knowledge

of the system, there is also the subtle improvement over the PINN’s

tendency to ‘‘violate causality’’ (Wang, Sankaran, & Perdikaris, 2022).

This is a problem where PINNs tend to match later portions of a

trajectory but not earlier steps, creating inconsistency in its estimates

of trajectories. The DTSN however enforces consistency from step to

step, and thus we expect it to be especially well-suited to preserving

causality. Indeed, even the first order DTSN can still see dependen-

cies between any two points in a trajectory via a chain of one step

dependencies, and thus we expect that perturbations in the early steps

should appropriately be reflected in the network’s prediction of later

steps. There are still many questions about the nature of the DTSN loss

function and the work done so far points to some exciting possibilities

for further exploration.

Fig. 3. Plot of solutions near the Lorenz attractor, using the same initial point
(−10,−7, 35), generated by two numerical methods from scipy.integrate package:
odeint for orbit 1 and solv−iv for orbit 2.

4. Considered dynamical systems

4.1. Discrete Lorenz map

4.1.1. The Lorenz flow
The Lorenz-63 system of temporal variable t, three spatial variables

x, y, z and parameters �, �, � > 0, is given by Lorenz (1963):

dx

dt
= �(y − x),

dy

dt
= x(� − z) − y,

dz

dt
= xy − �z.

(34)

We recall that the system is chaotic for certain values of the param-
eters, and throughout this paper we take them to be the classic example
(�, �, �) = (10, 28, 8∕3). For a further review of the system’s properties
please refer to Appendix B. In order to test the prediction accuracy of
an approximation scheme, we first must generate a known orbit � for
the system. This however proves to be problematic due to the chaotic
nature of the system. We first demonstrate this with a specific example.

We choose an initial point, P = (−10,−7, 35), and simulate the
flow from this point for 2000 iterations with time step ℎ = 0.01 using
the Lorenz flow equation. This is done via two different approxima-
tion methods for solving differential equations provided by the SciPy
package in Python: odeint and solv−iv (Virtanen et al., 2020).
The first algorithm, odeint, acts as a first-order initial value problem
solver for the Lorenz system. This function is built on LSODA from
FORTRAN’s ODEPACK which dynamically switches between the non-
stiff Adams–Moulton method and the stiff Backwards Differentiation
Formula method with default relative tolerance of 1e-3 and abso-
lute tolerance e−6 (Petzold, 1983). Meanwhile, the default integration
method of solv−iv is the Runge–Kutta–Fehlberg method (RK45).

For t ∈ (0, 10), we can see these two solutions arrive at completely
different points after 400 of the 2000 iterations, see Fig. 3. We see in
Fig. 4 that even as early as t = 5 we get vastly different values for
the position of the particle between the two approximation schemes.
These findings are consistent with general results on the difficulty of
consistent generation of orbits for the Lorenz system (Estep & Johnson,
2011).

This is a fundamental difficulty in the study of chaotic dynamical
systems, especially flows. To simulate a given flow �t, we are restricted
to estimating repeated applications of the flow over a fixed time inter-
val ℎ, given by �ℎ. The exact form of �ℎ cannot be analytically found,
so we must consider some form of approximation Fℎ. We may consider
this approximation to essentially be a perturbation of the original time
ℎ map �ℎ.

Neural Networks 173 (2024) 106152

7

C. Kennedy et al.

Fig. 4. Plot of the x-coordinate solutions of the Lorenz system, using the same
initial condition (−10,−7, 35), generated by two numerical methods from scipy.integrate
package: odeint (blue) and solv−iv (orange).

This creates potential issues with the validity of available machine
learning methods when using a data set that is artificially generated
from simulations of the Lorenz system or any chaotic dynamical system.
Improvements in computability can be made with higher order approx-
imations and more preserved digits, however, the computational cost
becomes very expensive (Estep & Johnson, 2011). One could potentially
appeal to a form of the shadowing lemma in this case, which we further
describe in Appendix A. A form of the lemma suggests that the two
approximation methods considered here may both be close to true
orbits, but for two distinct starting points, which may both be different
from the true starting point (−10,−7, 35). Even with the shadowing
lemma however, for the Lorenz system such approximated trajectories
that ‘‘shadow’’ true trajectories may only do so for a limited length of
time, dependent on the error at each step (Hayes & Jackson, 2003).

We consider the following general framing for the usage of artifi-
cially generated data used to benchmark a neural network’s capabili-
ties. Assume a chaotic flow �t and an approximation scheme Fℎ of the
time ℎ map �ℎ. We assume that the following holds for some given
function g.

‖�ℎ − Fℎ‖ < O(g(ℎ)) (35)

Here ‖ ⋅‖ is simply whatever norm is considered most relevant, usually
the supremum norm, and g(ℎ) denotes whatever form the considered
error has, usually a power of ℎ. If testing shows the neural network
can learn the approximation Fℎ up to order O(g̃(ℎ)) for 0 f g̃ f g, we
have:

‖�ℎ − GNN‖ f ‖�ℎ − Fℎ‖ + ‖GNN − Fℎ‖ < O(g(ℎ)) + O(g̃(ℎ)) = O(g(ℎ)).

(36)

Thus the testing can only tell us if the network can approximate
the original system better than Fℎ. Therefore the network is inherently
limited by the accuracy of the discretization scheme used to train the
network.

To circumvent these difficulties, we propose an alternative concep-
tualization for empirically evaluating learned models of a dynamical
system. We take a given discrete approximation Fℎ, to be the ground
truth on which we test the network. We thus have a direct form for this
discrete system and are only limited by floating point arithmetic error
in generating our data set; this is further addressed in Appendix B. As
will be shown in Section 4.1.2, this approximate system still preserves
the most crucial properties in the Lorenz system case, and thus still
serves as a useful method to perform benchmark testing for a predictive
neural network. This conceptualization is ultimately important to the
study of any chaotic flow, as these complications are in no way unique
to the Lorenz system. Any attempt at generating training data from a
chaotic flow model encounters these same issues and thus requires care-
ful consideration of what particular approximation scheme is chosen,
as that approximation is what the network is technically learning from
in artificial data testing.

4.1.2. Discretizing the Lorenz system
We choose the following simple map Fℎ ∶ R3

→ R3 to act as
our discrete approximation of the Lorenz system, with ℎ = 0.01 fixed
throughout the paper. The map is given by (x1, y1, z1) = Fℎ(x0, y0, z0),
with (x1, y1, z1) defined as:

x1 = x0 + �(y0 − x0)ℎ,

y1 = (1 − ℎ)y0 + x0(� − z0)ℎ,

z1 = (1 − ℎ�)z0 + ℎx0y0.

(37)

We can see that this is the simple Euler approximation for Eqs. (34),
and thus Fℎ converges to �ℎ in the small ℎ limit. We can verify
that all of the major dynamical properties of the Lorenz flow are still
preserved under this simple, first-order approximation. The Lyapunov
spectrum of the system is estimated to be 1.041,−0.001,−14.992 (for
further details, see Appendix B). The existence of a positive Lyapunov
exponent crucially tells us that the system is still chaotic, while the
existence of a negative exponent tells us that the time-reversed version
of the system is chaotic. The sum of the exponents is negative, meaning
that the system is dissipative and any collection of initial conditions has
its volume tend to zero under repeated iterations of the map. These
comprise the most important local properties of the Lorenz flow.

The system also preserves the attractor of the system, at least on
the topological level. The discretization is known to have an attractor
that is topologically equivalent to that of the original Lorenz system for
ℎ < 0.0265 (see Eq. (18) of Letellier & Mendes, 2005). This attractor is
close to the case for the flow with the alternate set of chaotic parameter
values (80, 3, 0.25). Thus the discrete system retains all properties which
are dependent on the topological character of the attractor.

While the choice of the Euler approximation was made due to the
simplicity with which these properties could be verified, we note that
other approximations such as the Runge–Kutta method could also be
considered for the Lorenz system or other systems. The significance is
in verifying certain properties of the chosen approximation scheme.

4.2. Chua circuit

We also consider the Chua circuit as an example of a chaotic system
to test the DTSN on. The Chua circuit is the first example of a broader
category of systems referred to as ‘‘Multiscroll Attractors’’ (Galias,
1997; Lü & Chen, 2006). The name ‘‘Multiscroll’’ is due to the shape
of trajectories looking like multiple discs, somewhat similar to the
Lorenz system, though not equivalent. The Chua circuit is explicitly the
simplest case of an electrical circuit meeting the basic criteria to display
chaotic behavior (Kennedy, 1993).

• one or more nonlinear elements,
• one or more locally active resistors,
• three or more energy-storage elements.

The circuit exists as a more concrete example of chaos than the Lorenz
system, as it is a physical system which can be precisely described via
a simple ODE system with chaotic behavior, as opposed to the Lorenz
system acting as a heavily simplified model of an atmospheric system.
The original Chua Circuit is described physically in Fig. 5.

The governing ODE system is then given by the following: (Lü &
Chen, 2006)

dvC1

dt
=

1

RC1

(vC1
− vC2

) −
1

C1

g(vC1
), (38)

dvC2

dt
=

1

RC2

(vC1
− vC2

) −
1

C1

iL, (39)

diL

dt
= −

1

L
vC2

. (40)

Constants C1, C2 are the capacitance of each capacitor, R the resis-
tance of the linear resistor, L the inductance. The function g is given
by

g(vC1
) = m1vC1

+
1

2
(m0 − m1)(|vC1

− b1| + |vC1
− b2|). (41)

Neural Networks 173 (2024) 106152

8

C. Kennedy et al.

Fig. 5. We demonstrate a simple diagram of the basic Chua Circuit. L is an inductor,
C1 , C2 are capacitors, R a resistor, NR a nonlinear resistor, and Vs is the source voltage
for the system.

The simple nonlinearity of g, being given by a piecewise linear function,
is enough to create chaotic dynamics for this system as shown through
positive topological entropy of the Poincare map (Galias, 1997). It
also has estimated positive Lyapunov exponents (Parlitz, 1993) and a
variety of other analyses of its chaotic behavior have been conducted
such as bifurcation analyses (Madan, 1993).

We present the above equations to intuitively show how the gov-
erning equations arise from the circuit, though in simulations we use
a change of coordinates to an equivalent system which is easier to
work with. Analyzing the circuit using Kirchhoff’s circuit laws, the
dynamics of Chua’s circuit can be accurately modeled in simulations
by means of a system of three nonlinear ordinary differential equations
in the variables x(t), y(t), and z(t), which represent the voltages across
the capacitors C1 and C2 and the electric current in the inductor
L (Kuznetsov et al., 2022) respectively. The Chua’s circuit equations,
which produce the Chua attractor in certain parameter regimes, are
then given by:

dx

dt
= � (y − x − g(x)) ,

dy

dt
= x − y + z,

dz

dt
= −�y.

Where g(x) is a piecewise linear function:

g(x) = m1x + 0.5(m0 − m1) (|x + 1| − |x − 1|) .

The system is discretized into a simple Euler approximation in
the same manner as in Section 4.1.2 due to similar complications in
the ability to directly approximate this chaotic system. We treat this
discretized system as our considered form of the Chua circuit for the
remainder of the paper. We make the following choice of parameters
for the system which are known to create a chaotic regime: � =

15.6, � = 1∕L = 28, m2 = −1.143, m1 = −0.714. A diagram of a
generated trajectory for this discretization is included in Fig. 6. With
our dynamical systems well defined we now move on to experiment
design.

5. Experiment design

For our experiments we consider two cases for artificially generating
data. In the standard case, we generate a single trajectory of our
dynamical system, with time step size ℎ = 0.01 over the time interval
[0, 100], see Fig. 7. The orbit is further split so that the first 60% is
used for training (interval [0, 60]), the next 20% for validation (interval
[60, 80]), and the final 20% for test data (interval [80, 100]. Fig. 8
demonstrates the three data sets. Moreover, in the second case, we
consider 400 distinct orbits, each taken with time step size ℎ = 0.01

Fig. 6. Generated trajectory for the Chua circuit, note the two ‘‘scrolls’’ appearing in
its attracting set. A single orbit over t ∈ [0, 100] with initial condition (0.7, 0, 0) and
time step 0.001. The coloration changes each increment of 20 time units for ease of
visibility.

Fig. 7. A single trajectory for the Lorentz System, over t ∈ [0, 100] with initial condition
(10, 10, 10) and time step 0.01.

and time interval [0, 5]. 100 orbits are chosen to form the training set,
200 for the validation set, and 100 for the testing set. In this multiple
orbit case batches may be formed using samples from multiple orbits
simultaneously, thus allowing the network to perform training where
it matches more than one orbit at a time. The batch size during the
training is taken to be 500 for all the neural networks. We still require
the sub-batch restriction as outlined in (4) in order to still apply the
DTSN loss. This approach functions essentially as a compromise which
has the sequential data needed for the LSTM-DTSN architecture while
still considering the broader phase space rather than a single orbit.
In contrast with the method of Lu et al. (2019), where a lattice of
initial conditions was used to train a PINN, our approach is more easily
applicable for real physical systems due to the greater ease in sampling
several trajectories for a short time as opposed to a large number of
initial conditions.

Our first considered architecture for testing is a standard LSTM
network (Hochreiter & Schmidhuber, 1997), which serves as a well
understood and natural choice for the prediction of time-series data.
The code of Madondo and Gibbons (2018) serves as the base for our
particular implementation. Our choice of hyperparameters is given by
Table 1. We consider the size m for samples Xi passed to the LSTM
to be 4 (as defined in Eq. (2)) which gives us the dimension for our

Neural Networks 173 (2024) 106152

9

C. Kennedy et al.

Fig. 8. The Training, Validation and Test sets created from the single orbit.

Table 1
Hyperparameters for LSTM-DTSN network.

Layer type Output dimension No. of parameters

Input Layer (4,3) 0
LSTM1 100 44000
LSTM2 100 80400
Dense Output Layer (1,3) 909

input layer as 4 time steps, each corresponding to a point in R3 hence
our input dimension (4, 3) corresponding to R3 tensored with itself 4
times. We then have 100 LSTM neurons, each made up of 4 LSTM cells
each corresponding to one input time step, with the neuron producing
a single output. Each neuron in the next layer ‘‘LSTM2’’ has 100 cells,
corresponding to the 100 outputs of the previous layer, and each
neuron producing a single output. Finally the ‘‘Dense Output Layer’’ is
a simple fully connected layer that outputs a single time step prediction
for the network’s final output.

The implementation of the LSTM with the MSE loss function (3) is
denoted as LSTM-MSE, the one applying the PINN loss function (13) as
LSTM-PINN, and the one applying the DTSN loss (15) as LSTM-DTSN.
In all cases the Adam optimizer is used to perform training (Kingma &
Ba, 2014), and the learning rate is fixed at 0.0001 for the LSTM-MSE
and LSTM-DTSN.

In early testing to find baselines we also considered the ‘‘Mean
Absolute Error’’ (MAE) as an alternative to the MSE, the MAE simply
being given by the same definition as the MSE but with no squaring
on terms. We found that this loss performed significantly less well in
training the network than the MSE in all cases, which is consistent
with general findings on the usage of neural networks in time-series
prediction (Jadon, Patil, & Jadon, 2022). We thus consider only the
MSE as the standard baseline loss function. Similarly we also note that
the LSTM is shown to consistently outperform simple feed forward
neural networks in time-series prediction (Hochreiter & Schmidhuber,
1997), thus we do not consider the feed forward network in this
context.

We found that the LSTM-PINN performed well with a change in the
values of �1, �2 every 10 epochs during training, with a change in the
learning rate after 30 epochs; the values of these parameter changes
are given in Table 3. We found that starting with a higher value of �1
and then shifting the weight to �2 allowed the network to achieve rapid
improvement in the early stages of training, while reaching high final
accuracy at the end of training.

The Transformer (Vaswani et al., 2017) is also considered here. This
neural network was originally developed for natural language process-
ing tasks, which has had several adaptations to prediction in dynamical
systems. For our implementation, we use 128 Time Distributed Dense
linear layers and then split into 8 heads for multi-head attention. We
then calculate the attention weights for scaled dot product attention,
and finally after concatenating the heads we apply one final Time

Distributed Dense linear layer. For the linear layers, we tried both
Dense layers and Time Distributed Dense layers and found the latter
to produce smoother, more accurate results. The encoder layer consists
of multi-head attention and Dense layers followed by dropout. The
output of the network is still a single step, to maintain parity with the
LSTM method. The dimension for the query, key, and value vectors is
dq = dk = dv = 64. We use the Adam optimizer with �1 = 0.9, �2 = 0.98,
� = 1e − 9 and the custom learning rate scheduler given in Vaswani
et al. (2017):

learning rate = d−0.5
model ∗ min(step_num−0.5, step_num ∗ warmup_steps−1.5).

(42)

Two main alterations were applied to this network method to
improve its performance. First, we use a model-agnostic vector repre-
sentation of time, Time2Vector (Kazemi et al., 2019), to better handle
the time-series data of our dynamical system. We also replace the
standard ReLU activation function with Sigmoid weighted Linear Units
(SiLU) (Elfwing, Uchibe, & Doya, 2018). This was found to remove the
need to rescale the data set during training, and improved the accuracy
of the network’s predictions.

We also considered the Transformer-based architecture from Geneva
and Zabaras (2022), where a Koopman observable embedding was
used to convert the physical space into a 1D vector representation. We
however found substantial issues in reproducing the performance of
this method, with our attempts to train the network failing to create
adequate improvements in the network’s performance. This may be due
to a difference in the power of computer hardware available to us or
an unknown error in the available code. We therefore used the more
basic implementation of the Transformer outlined previously.

The first order DTSN loss function given by (15) was applied to both
the LSTM and Transformer architectures. In both cases, the hyperpa-
rameter values are fixed at �1 = 0.5, �2 = 0.5, though we did not see
noticeable changes in the results when varying these hyperparameters.
For our experiments, we did not test higher order variation of the DTSN
loss outlined in Eq. (20), as the first-order implementation already
achieved noticeably improved results.

6. Results

Our results on the Lorenz system are summarized in Table 2. In all
cases, the implementation of the DTSN loss function did not result in
any noticeable increase in training time. We see that the DTSN achieves
an order of magnitude improvement over the PINN approach, which
already achieves about one order of magnitude improvement over the
simple MSE loss function. This is despite the PINN using substantially
more information about the system’s behavior. We also note that even
in the Transformer case which performed much less well we still had
a significant improvement in the performance of the network, though

Neural Networks 173 (2024) 106152

10

C. Kennedy et al.

Table 2
Comparison of all considered network approaches for Lorenz system, are
recorded in the form of mean ± standard deviation.

Case Lorenz Test MSE

LSTM-MSE (one orbit) .00467 ± 0.0005

LSTM-PINN (one orbit) .00016 ± 0.00004

Transformer-MSE (one orbit) 0.52192557 ± 0.3

Transformer-DTSN (one orbit) 0.11781909 ± 0.1

LSTM-DTSN (one orbit) 2 ∗ 10−5 ± 4 ∗ 10−6

LSTM-DTSN (multi-orbit) 4.3 ∗ 10−6 ± 6 ∗ 10−7

Table 3
Results during the training and testing of the LSTM-PINN network.

�1 �2 Learning rate Train MSE Test MSE

0.8 0.2 .0005 .00527 .00691
0.5 0.5 .0005 .00115 .00153
0.2 0.8 .0005 .00080 .00088
0.2 0.8 .0001 .00014 .00018
0.1 0.9 .0001 .00013 .00016

not the full multiple orders of magnitude difference seen going from
the LSTM-MSE to the LSTM-DTSN.

Table 3 further describes the results of the LSTM-PINN. Each change
in hyperparameter values was applied after 10 epochs of training,
where at each of these cutoffs the network’s training and testing MSE
had reached a stable point. We see that notable improvements were
able to be made in the early stages, but eventually a limit was found at
the final set of hyperparameter values where further adjustments did
not produce improved results.

Next we consider the multiple orbit case. Under this regime the
DTSN as the test MSE drops all the way to the order of 10−6. We
note this task is theoretically more difficult due to the wider range of
the phase space the network must learn to predict on multiple distinct
orbits. This method is also especially important for highly chaotic cases,
as the shorter orbit lengths mean a given discretization may be much
more accurate to the true underlying system than in cases of longer
orbits. We include a log plot of the testing/validating loss in Fig. 9.
In over 10 conducted trials we found that the plots to reach the same
values in the same number of epochs, thus this figure represents an
average picture of the performance, rather than any exceptional result.
We note how the network rapidly achieved low loss values in a small
number of epochs. The short number of epochs may be explained by
the usage of multiple distinct orbits, which allows the network to much
more rapidly learn general information about the system. We find the
results of the DTSN to be extremely promising, especially considering
how much room there is for further improvement by including higher
order variants.

When initially selecting a greater number of training orbits com-
pared to validation orbits, we observed that the validation loss was
lower than the training loss. To address this, we adjusted the distri-
bution to 100 orbits for training and 200 orbits for validation. This
change resulted in a validation loss that is consistently higher than the
training loss, as illustrated in Fig. 9. Notably, this pattern persisted
even when using the standard MSE loss metric, confirming that the
observed behavior is not an artifact of the DTSN loss function. We
know that RNN architectures, and the LSTM in particular, have some
potential limitations in how accurately they are able to capture chaotic
dynamics (Mikhaeil, Monfared, & Durstewitz, 2022) and some unusual
behaviors may arise as artifacts of how the architecture interacts with
this type of complex dynamics. Overall we believe that this unusual
result is primarily a sign of the incredible inherent challenges of pre-
dictions on chaotic systems and we hope to find new approaches to
further refine our methods in future work.

We also comment on the performance of the Transformer baseline.
Several values for the number of input steps m were considered, as the

Table 4
Final error results from transformer prediction.

Loss function Input steps Test MSE

MSE 3 0.53802687
MSE 6 0.7338447
MSE 9 0.52192557
DTSN 3 0.26652685
DTSN 6 0.35463473
DTSN 9 0.11781909

Table 5
Comparison of LSTM neural network using different loss function for the Chua system,
on dataset generated by a single orbit. The losses are recorded in the form of mean ±

standard deviation.

Neural network LSTM-MSE LSTM-PINN LSTM-DTSN

Chua test MSE .0076 ± 0.0004 3.8 ∗ 10−4 ± 3 ∗ 10−5 6.7 ∗ 10−5 ± 4 ∗ 10−6

architecture is known to work well on larger collections of input data.
The results for several choices of input steps are compiled together
in Table 4. One can see that even compared to the simple LSTM-
MSE network, the performance of the Transformer is substantially
worse. It may be partially explained by the dynamical system being
‘‘memoryless’’, where the true value of the next point in the sequence
is determined entirely by the previous point. In this case, learning long
term dependencies may not be very useful. Given the performance
of Geneva and Zabaras (2022), which we could not reproduce our-
selves, it is also possible that these poor results are due to the data
not being preprocessed in such a way that the network can more easily
train on it. The Transformer initially considered systems where all data
points come from a finite library of possible tokens. For a system with
continuous phase space like the discrete time Lorenz system, the choice
of how to discretize the space may be extremely important to how well
the Transformer can learn the system. In any case, this suggests that the
Transformer cannot be simply applied to predicting chaotic dynamical
systems.

Each of our considered architecture and loss function combinations
were also applied to data generated by the Chua circuit. Performance
of the transformer was found to still be quite poor as well as computa-
tionally costly, and is thus omitted. We also applied the same variation
of hyperparameters as seen in Table 3, The final results on the Chua
circuit are presented in Table 5.

The obtained results on the Chua circuit are very similar in orders
of magnitude to the results on the Lorenz system in Table 2. Thus we
find across these two different chaotic systems the LSTM-DTSN with
multiple orbits is capable of a three orders of magnitude reduction in
test MSE compared to a standard LSTM-MSE network.

7. Discussion

In this paper we proposed the Discrete-Temporal Sobolev Net-
work loss function to improve neural network predictions for time
series, particularly for chaotic dynamical systems. We demonstrated its
performance on the discretized Lorenz System and the Chua circuit.
This showed exceptionally good improvements in performance, with a
minimum of one order of magnitude smaller test MSE than the PINN
approach, two orders of magnitude less than the MSE loss function ap-
proach, and when multiple orbits were used the test MSE was reduced
by another order of magnitude. The DTSN is also highly flexible, able
to be easily adapted to a wide variety of network architectures, though
we restrict to two of the most important architectures for time-series
here to simplify initial analysis. It is especially promising that the DTSN
does not require any substantial increase in computational load for the
network’s training.

Neural Networks 173 (2024) 106152

11

C. Kennedy et al.

Fig. 9. The log plot of the training and validation loss, see (a), as well as the log plot of the training and validation accuracy, see (b), for the LSTM-DTSN neural network on
multiple orbits of the Lorenz system over 50 epochs.

The most immediate direction for future work would be to em-
pirically evaluate the DTSN with more classes of dynamical systems.
We could consider some inherently discrete dynamical systems such
as the Henon map to determine if the method still applies well in
a system which is not a small time discrete approximation. We may
also consider systems which contain many singularities, such as chaotic
billiard flows which have dense singular sets (Nikolai Chernov, 2006),
to evaluate the network’s robustness under lower regularity assump-
tions. The existence of singularities though, which we note nearly all
commonly considered discrete systems possess, does create substantial
complications in training the network. On such a system stochastic
gradient descent may cause approximations to cross singularity lines
and produce dramatically inaccurate results. Such systems would still
be worthy of further research, but would require a more substantial
reevaluation of the network’s fundamental training. Simply testing on
less difficult chaotic systems may also be useful just for simply building
the body of empirical evidence.

One significant idea for future improvement would be in modifica-
tions of our learning algorithm. As shown in the work of Mikhaeil et al.
(2022) there are inherent challenges to the usage of certain RNN ar-
chitectures to forecast chaotic systems. The restrictions imposed in the
LSTM to prevent exploding gradients may also limit the expressibility of
the network. The work of Mikhaeil et al. (2022) however proposes some
means to address these issues in the training of a RNN through what
they call ‘‘sparsely forced Back-Propagation Through Time’’. Applying
this method in tandem with the DTSN would provide a useful test of
how robust our loss function is under an alternative learning algorithm.

Testing on PDE systems may also be significant as that is the context
where PINNs have seen some of their greatest success (Cuomo et al.,
2022). The DTSN is capable of outperforming a PINN method in the
discretization of ODE systems we present, so it would be interesting to
see how it fairs on PDEs or PDE derived systems. We would also like to
consider some practical work on concrete systems to show some appli-
cations of this work. We have some preliminary results on application
of the DTSN to stock price prediction that look promising. We found
the complexity of the stock price modeling substantial enough to be
beyond the scope of the current paper though and leave it for a future
work.

In addition to broader testing of the DTSN, we also consider future
directions on improving the loss function itself. While we used the first
order variant of the DTSN for the experiments in this paper, future work
could make use of the general form of the loss function given in (20).
Broadly speaking, the usage of higher order terms tends to improve
approximation methods up to some point of diminishing returns and

the DTSN loss function should be no exception. A key challenge in
considering higher orders though will be in finding the appropriate
cutoff. A general method for choosing �j terms could also substantially
improve results on more complex systems where high values of the
higher order derivatives (or discrete derivatives) could play a more
significant role.

It may also be useful to expand our loss function to approximate
the more complex forms of our norms given in Eqs. (32) and (33).
In the present work we assume no information on spatial derivatives
is accessible, but such information could be easily incorporated into
a new loss function approximating (32). Even without any additional
information assumptions it may also be useful to consider the approach
of varying the number of steps that are being approximated, equivalent
to varying N in either of these two norms. The direct approximation of
larger step sizes may prove useful in estimating orbits on larger time-
scales, though it may introduce further complications as well. Overall
the DTSN loss function is an approach to network training with many
directions for further improvement, as well as many possibilities for
further application.

CRediT authorship contribution statement

Connor Kennedy: Conceptualization, Formal analysis, Methodol-
ogy, Supervision, Writing – original draft, Writing – review & editing.
Trace Crowdis: Data curation, Investigation, Software, Validation.
Haoran Hu: Data curation, Investigation, Software, Validation, Vi-
sualization, Writing – original draft. Sankaran Vaidyanathan: Data
curation, Resources, Software, Validation. Hong-Kun Zhang: Concep-
tualization, Funding acquisition, Investigation, Methodology, Project
administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Neural Networks 173 (2024) 106152

12

C. Kennedy et al.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors did not use any
generative AI and AI-assisted technologies in the writing process. The
authors take full responsibility for the content of the publication.

Acknowledgments

H.-K. Zhang is partially supported by the National Science Foun-
dation, United States (DMS-2220211), as well as Simons Foundation
Collaboration Grants for Mathematicians, United States (706383).

Appendix A. Shadowing lemmas

For any dynamical system with a positive Lyapunov exponent,
difficulties arise in the simulation of trajectories. The effect is an
exponential growth in distance between trajectories even if they start
arbitrarily close to each other. This causes small estimation errors, or
even simple floating point arithmetic rounding, to eventually lead to
substantial deviation in predicted trajectories (Katok, 1995). In the
case of the Lorenz system there are some additional stability factors,
such that the growth of error may not be quite as large as the large
positive Lyapunov exponent might imply, but this still results in the
requirement of extremely high order for estimation methods, as well
as a high number of digits for variable storage, to generate longer
trajectories (Estep & Johnson, 2011).

The shadowing lemma serves as one method to address this issue,
albeit at a significant cost. Its original form is stated as follows (Katok,
1995) (a corresponding version for a flow is also present in the source):

Lemma 1. Given a map F ∶ M → M of a metric space (M,d) to itself,
define a �-pseudo-orbit as a sequence (xn) of points such that xn+1 belongs
to a �-neighborhood of F (xn).

Then, near a hyperbolic invariant set, the following statement holds:
Let � be a hyperbolic invariant set of a diffeomorphism F . There exists a
neighborhood U of � with the following property: for any � > 0 there exists
� > 0 such that for any (finite or infinite) �-pseudo-orbit that stays in U ,
the orbit also stays in an �-neighborhood of some true orbit. (we refer to
staying within this range of a true orbit to be �-shadowing a true orbit). In
more compact notation:

∀(xn), xn ∈ U, d(xn+1, F (xn)) < � ∃(yn), yn+1 = F (yn),

such that ∀n, xn ∈ U�(yn). (A.1)

This means that for a system with a hyperbolic invariant set (usually
the entire phase space with some equilibria removed), if we have an
estimation method generating the sequence xn, with some small error
�, then the predicted orbit is always within � distance of some true
orbit, though this may be the orbit of something other than our original
starting point. So we guarantee that the estimation is always close to
some real orbit, but we lose control over which specific orbit we are
observing. This works well enough to characterize certain features of
a system, but does pose potential issues with attempting to train a
network to learn how to accurately learn predictions for a given system.

For the Lorenz system however the situation is even worse, as it does
not precisely satisfy the assumptions of the original Shadowing Lemma.
The Lorenz system has singularities present in its hyperbolic invariant
set, and thus does not have the uniform hyperbolicity necessary to
satisfy the Shadowing Lemma (Araujo & Pacifico, 2010). There is an
alternate version of the shadowing lemma which can still hold for such
systems with singular hyperbolicity, but the shadowing result then only
holds for finite trajectories, with further calculations needed to verify
whether shadowing orbits still exist and no general guarantee for their
length (Coomes et al., 1994). It is partially due to these complications
that we introduce the discretized Lorenz system and limit the length

of trajectories considered, so that the only error present is from the
floating point arithmetic and we do not exceed the boundaries of
computability.

Appendix B. Properties of the Lorenz system

In this section we briefly review the general properties of the Lorenz
system and Lyapunov exponents. To provide physical context for the
system we recall that the variable x is proportional to the intensity
of the convection movement, y is proportional to the temperature
difference between updrafts and downdrafts, and z is proportional to
the deviation of the vertical temperature profile from a linear profile.
Meanwhile for the parameters � corresponds to the Prandtl number, a
dimensionless quantity calculated from the ratio between the momen-
tum diffusivity of an entity and its thermal diffusivity. � corresponds
to the Rayleigh number, which characterizes the heat transfer within
a fluid. Finally, � is a value depending on the layer of the atmosphere
the system is assumed to be in Lorenz (1963).

For the classical parameter values of the system, (�, �, �) = (10, 28, 8∕3)

the system has an attracting set with several interesting properties. The
attractor has fractional dimension estimated to be 2.06 ± 0.01 (Benzi,
Paladin, Parisi, & Vulpiani, 1984). Attractors with such dimension are
commonly referred to as strange attractors though the more significant
properties of such attractors lie outside the scope of this paper. The
attractor’s shape roughly corresponds to two annular regions around
2 hyperbolic fixed points for the system (though the true shape is
much more complex due to the dimensionality). Trajectories on the
attractor are aperiodic and the attractor is invariant (Sparrow, 1982).
We crucially note that in Section 4.1.2 that the discretized system
considered has a topologically equivalent attractor, thus while the exact
shape may differ all of these properties are preserved.

The other key property of the system’s dynamics is the general
sensitive dependence on initial conditions for the system. This is ex-
pressed quantitatively by the presence of a positive maximal Lyapunov
exponent (Sparrow, 1982). (While we do not explicitly discuss the Chua
circuit in this section the same concepts of Lyapunov exponents and
estimations still applies to the Chua circuit (Parlitz, 1993).) We recall
the general definition of a maximal Lyapunov exponent for a dynamical
flow (Katok, 1995). Given a flow �t we fix a point x0 and let x1 be an
unfixed point. We define ‖�(t)‖ ∶= ‖�t(x0)−�t(x1)‖. Then the definition
of the maximal Lyapunov exponent is given by:

�e(x0) = lim
t→∞

lim
�(0)→0

1

t
ln

|�(t)|
|�(0)|

(B.1)

The quantity is also approximated by this equation for small values
of �(0) and t:

‖�(t)‖ ≈ ‖�(0)‖e�et. (B.2)

It is this approximation that explains the sensitive dependence
property. Infinitesimally close trajectories diverge from each other
exponentially quickly with a rate given by the maximal Lyapunov
exponent. The exact details are more complex but this serves as a useful
intuition for their behavior. Now for a discrete dynamical system, given
by a differentiable map F , the maximal Lyapunov exponent at point x0
is defined by

�e(x0) = lim
n→∞

1

n

n−1∑

i=0

ln |F ′(F i(x0))|. (B.3)

It is this definition that must be used for our discretized systems defined
in Section 4 as there is no equivalent notion of small values for t in
this case. We note that both of these definitions are only given for a
single point at a time, however for the original Lorenz system and the
discrete system the corresponding Jacobian matrices are constant, thus
the value of all Lyapunov exponents are constant (Katok, 1995).

Neural Networks 173 (2024) 106152

13

C. Kennedy et al.

We also consider the general definition of a Lyapunov exponent
(Viswanath, 1998). Assume we have an n-dimensional dynamical sys-
tem (discrete or continuous) with Jacobian J and initial condition ÿ0

for which the orbit is not periodic. The full set of Lyapunov exponents
�1 g �2 g ⋯ �n for a n-dimensional system are defined by

�i = lim
t→∞

1

t
log �i(JF (t)). (B.4)

where �i is the ith singular value of the Jacobian. This essentially de-
scribes the expanding, or contracting, behavior of the Jacobian across a
collection of vectors spanning all directions. For the discrete map given
by (37) the estimated Lyapunov exponents are 1.041,−0.001,−14.992,
found by averaging on 100 orbits, each of which has length 100000.
The maximal Lyapunov exponent being positive is what lets us know
the system is chaotic, while the summation of the Lyapunov exponents
being negative tells us the system is dissipative. This means that any
volume of initial trajectories tends to zero as time passes, the system
shrinks volumes over time, even though it stretches close trajectories
apart from each other.

References

Abdeljawad, Ahmed, & Grohs, Philipp (2022). Approximations with deep neural
networks in Sobolev time-space. Analysis and Applications, 20, 499–541.

Araujo, Vitor, & Pacifico, Maria (2010). Three-dimensional flows: vol. 53, Springer.
Arena, P., Baglio, S., Fortuna, L., & Manganaro, G. (1995). Chua’s circuit can be

generated by CNN cells. IEEE Transactions on Circuits and Systems I, 42(2), 123–125.
Benzi, R., Paladin, G., Parisi, G., & Vulpiani, A. (1984). On the multifractal nature of

fully developed turbulence and chaotic systems. Journal of Physics A: Mathematical
and General, 17(18), 3521–3531.

Cannas, Barbara, Cincotti, Silvano, Marchesi, Michele, & Pilo, Fabrizio (2001). Learning
of chua’s circuit attractors by locally recurrent neural networks. Chaos, Solitons, and
Fractals, 12(11), 2109–2115.

Chattopadhyay, Ashesh, Hassanzadeh, Pedram, & Subramanian, Devika (2020). Data-
driven predictions of a multiscale lorenz 96 chaotic system using machine-learning
methods: reservoir computing, artificial neural network, and long short-term
memory network. Nonlinear Processes in Geophysics, 27(3), 373–389.

Cholakov, Radostin, & Kolev, Todor (2021). Transformers predicting the future.
Applying attention in next-frame and time series forecasting, CoRR.

Coomes, Brian A., Koçak, Hüseyin, & Palmer, Kenneth J. (1994). Shadowing orbits of
ordinary differential equations. Journal of Computational and Applied Mathematics,
52(1), 35–43.

Cuomo, Salvatore, Cola, Vincenzo Schiano Di, Giampaolo, Fabio, Rozza, Gianluigi,
Raissi, Maizar, & Piccialli, Francesco (2022). Scientific machine learning through
physics-informed neural networks: Where we are and what’s next, CoRR. abs/2201.
05624.

Czarnecki, Wojciech M., Osindero, Simon, Jaderberg, Max, Swirszcz, Grzegorz, &
Pascanu, Razvan (2017). Sobolev training for neural networks. In I. Guyon, U.
Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in neural information processing systems: vol. 30, Curran Associates,
Inc.

Dubois, Pierre, Gomez, Thomas, Planckaert, Laurent, & Perret, Laurent (2020). Data-
driven predictions of the Lorenz system. Physica D: Nonlinear Phenomena, 408,
Article 132495.

Elfwing, Stefan, Uchibe, Eiji, & Doya, Kenji (2018). Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning. Neural Networks,
107, 3–11, Special issue on deep reinforcement learning.

Estep, Donald, & Johnson, Claes (2011). The computability of the lorenz system.
Mathematical Models & Methods in Applied Sciences, 08.

Evans, Lawrence C. (2022). Partial differential equations: vol. 19, American Mathematical
Society.

Galias, Zbigniew (1997). Positive topological entropy of Chua’s circuit: A computer
assisted proof. International Journal of Bifurcation and Chaos, 7(02), 331–349.

Geneva, Nicholas, & Zabaras, Nicholas (2022). Transformers for modeling physical
systems. Neural Networks, 146, 272–289.

Hayes, Wayne B., & Jackson, Kenneth R. (2003). Rigorous shadowing of numerical
solutions of ordinary differential equations by containment. SIAM Journal on
Numerical Analysis, 41(5), 1948–1973.

Hochreiter, Sepp, & Schmidhuber, Jürgen (1997). Long short-term memory. Neural
Computation, 9, 1735–1780.

Hornik, Kurt, Stinchcombe, Maxwell, & White, Halbert (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5), 359–366.

Jadon, Aryan, Patil, Avinash, & Jadon, Shruti (2022). A comprehensive survey of
regression based loss functions for time series forecasting. arXiv preprint arXiv:
2211.02989.

Katok, Anatole (1995). Introduction to the modern theory of dynamical systems. Cambridge
; New York, NY: Cambridge University Press.

Kazemi, Seyed Mehran, Goel, Rishab, Eghbali, Sepehr, Ramanan, Janahan, Sa-
hota, Jaspreet, Thakur, Sanjay, et al. (2019). Time2vec: Learning a vector
representation of time. arXiv preprint arXiv:1907.05321.

Kennedy, M. P. (1993). Three steps to chaos. I. Evolution. IEEE Transactions on Circuits
and Systems I, 40(10), 640–656.

Kingma, Diederik, & Ba, Jimmy (2014). Adam: A method for stochastic optimization.
International Conference on Learning Representations.

Kuznetsov, Nikolay V., Mokaev, Timur N., Ponomarenko, Vladimir I., Seleznev, E P,
Stankevich, Nataliya V., & Chua, Leon Ong (2022). Hidden attractors in Chua
circuit: mathematical theory meets physical experiments. Nonlinear Dynamics, 111,
5859–5887.

Letellier, Christophe, & Mendes, Eduardo (2005). Robust discretizations versus increase
of the time step for the Lorenz system. Chaos (Woodbury, N.Y.), 15, 13110.

Lorenz, Edward N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric
Sciences, 20(2), 130–141.

Lorenz, E. N. (1995). Predictability: a problem partly solved. In Seminar on predictability,
4-8 September 1995: vol. 1, (pp. 1–18). Shinfield Park, Reading: ECMWF.

Lü, Jinhu, & Chen, Guanrong (2006). Generating multiscroll chaotic attractors: theories,
methods and applications. International Journal of Bifurcation and Chaos, 16(04),
775–858.

Lu, Lu, Meng, Xuhui, Mao, Zhiping, & Karniadakis, George E. (2019). DeepXDE: A deep
learning library for solving differential equations, CoRR. abs/1907.04502.

Madan, Rabinder N. (1993). Chua’s circuit: a paradigm for chaos. WORLD SCIENTIFIC.
Madondo, Malvern, & Gibbons, Thomas E. (2018). Learning and modeling chaos using

LSTM recurrent neural networks. In MICS 2018 proceedings.
Mikhaeil, Jonas M., Monfared, Zahra, & Durstewitz, Daniel (2022). On the difficulty of

learning chaotic dynamics with RNNs.
Nikolai Chernov, Roberto Markarian (2006). Chaotic billiards. American Mathematical

Society.
Parlitz, Ulrich (1993). Lyapunov exponents from Chua’s circuit. Journal of Circuits,

Systems, and Computers, 3(02), 507–523.
Petzold, Linda (1983). Automatic selection of methods for solving stiff and nonstiff

systems of ordinary differential equations. SIAM Journal on Scientific and Statistical
Computing, 4(1), 136–148.

Raissi, Maziar, Perdikaris, Paris, & Karniadakis, George E. (2017). Physics informed
deep learning (part I): data-driven solutions of nonlinear partial differential
equations, CoRR. abs/1711.10561.

Shalova, Anna, & Oseledets, Ivan (2020). Tensorized transformer for dynamical systems
modeling.

Sparrow, Colin (1982). The lorenz equations: bifurcations, chaos, and strange attractors.
New York, NY: Springer.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N., et al. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 30.

Virtanen, Pauli, Gommers, Ralf, Oliphant, Travis E., Haberland, Matt, Reddy, Tyler,
Cournapeau, David, et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17, 261–272.

Viswanath, Divakar (1998). Lyapunov exponents from random fibonacci sequences to the
Lorenz equations (Ph.D. thesis), Cornell University.

Vlachas, Pantelis, Byeon, Wonmin, Wan, Zhong, Sapsis, Themistoklis, & Koumout-
sakos, Petros (2018). Data-driven forecasting of high-dimensional chaotic systems
with long-short term memory networks. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science, 474.

Wang, Sifan, Sankaran, Shyam, & Perdikaris, Paris (2022). Respecting causality is all
you need for training physics-informed neural networks.

Yucesan, Yigit A., & Viana, Felipe A. C. (2021). Hybrid physics-informed neural net-
works for main bearing fatigue prognosis with visual grease inspection. Computers
in Industry, 125, Article 103386.

Zhang, Ruiyang, Liu, Yang, & Sun, Hao (2020). Physics-informed multi-LSTM networks
for metamodeling of nonlinear structures. Computer Methods in Applied Mechanics
and Engineering, 369, Article 113226.

Zinkevich, Martin, Weimer, Markus, Li, Lihong, & Smola, Alex (2010). Parallelized
stochastic gradient descent. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
& A. Culotta (Eds.), Advances in neural information processing systems: vol. 23, Curran
Associates, Inc..

http://refhub.elsevier.com/S0893-6080(24)00076-5/sb1
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb1
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb1
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb2
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb3
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb3
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb3
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb7
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb7
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb7
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb8
http://arxiv.org/abs/2201.05624
http://arxiv.org/abs/2201.05624
http://arxiv.org/abs/2201.05624
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb16
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb16
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb16
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb19
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb19
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb19
http://arxiv.org/abs/2211.02989
http://arxiv.org/abs/2211.02989
http://arxiv.org/abs/2211.02989
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb21
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb21
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb21
http://arxiv.org/abs/1907.05321
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb23
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb23
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb23
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb24
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb24
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb24
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb28
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb28
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb28
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb29
http://arxiv.org/abs/1907.04502
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb31
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb32
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb32
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb32
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb33
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb33
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb33
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb34
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb34
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb34
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb35
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb35
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb35
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb36
http://arxiv.org/abs/1711.10561
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb39
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb39
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb39
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb44
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb44
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb44
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb46
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb46
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb46
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb46
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb46
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47
http://refhub.elsevier.com/S0893-6080(24)00076-5/sb47

	Data-driven learning of chaotic dynamical systems using Discrete-Temporal Sobolev Networks
	Introduction
	Preliminaries
	Data Formatting and Notation
	Physics Informed Neural Network

	The Discrete-Temporal Sobolev Neural Network
	Defining the DTSN neural network
	Analysis of the DTSN neural network

	Considered Dynamical Systems
	Discrete Lorenz Map
	The Lorenz Flow
	Discretizing the Lorenz System

	Chua Circuit
	Experiment Design
	Results

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	Appendix A. Shadowing Lemmas
	Appendix B. Properties of the Lorenz System
	References

