RexBDDs: Reduction-on-Edge Complement-and-Swap
Binary Decision Diagrams

Andrew S. Miner

Iowa State University

Gianfranco Ciardo
Iowa State University

Ames, IA, USA Ames, IA, USA
ciardo@iastate.edu asminer@iastate.edu
ABSTRACT

We introduce RexBDDs, binary decision diagrams (BDDs) that ex-
ploit reduction opportunities well beyond those of reduced ordered
BDDs, zero-suppressed BDDs, and recent proposals integrating mul-
tiple reduction rules. RexBDDs also leverage (output) complement
flags and (input) swap flags to potentially decrease the number of
nodes by a factor of four. We define a reduced form of RexBDDs
that ensures canonicity, and use a set of benchmarks to demon-
strate their superior storage and runtime requirements compared
to previous alternatives.

KEYWORDS

Binary decision diagrams, canonicity

ACM Reference Format:

Gianfranco Ciardo, Andrew S. Miner, Lichuan Deng, and Junaid Babar. 2024.
RexBDDs: Reduction-on-Edge Complement-and-Swap Binary Decision Di-
agrams. In 61st ACM/IEEE Design Automation Conference (DAC ’24), June
23-27, 2024, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3649329.3656533

1 INTRODUCTION

Binary decision diagrams (BDDs) have greatly helped a variety of
industrial applications, from VLSI design to circuit and protocol
verification. Ordered BDDs are directed acyclic graphs where each
nonterminal node belongs to a level, corresponding to one of L
input variables, and are often a compact option to encode a boolean
function. To ensure canonicity, they forbid duplicate nodes, and
enforce reduction rules to interpret level-skipping edges. The two
most popular canonical forms are reduced ordered BDDs [4] (we
call them FBDDs) and zero-suppressed BDDs [10] (we call them
ZBDDs), which use different reduction rules and are best suited to
different applications, depending on which reduction eliminates
the most nodes, but this may not be easy to know a priori.

The recently proposed tagged BDDs (tBDDs) [12] and chain re-
duced BDDs (cBDDs) [5] combine these reductions; ESRBDDs [3]
offer even greater flexibility by explicitly labeling each edge with

The work of the first three authors was supported in part by National Science Founda-
tion under grant CCF-2212142.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06

https://doi.org/10.1145/3649329.3656533

Lichuan Deng Junaid Babar
Iowa State University Collins Aerospace
Ames, IA, USA Cedar Rapids, IA, USA
lcdeng@iastate.edu junaid.babar@collins.com
Level 3

Figure 1: BDDs encoding (—x3 A x2 A x1) V (x3 A =(x2 A x1)).

one of three reductions, while CESRBDDs [2] allow five reductions
and complement flags [1].

We extend these ideas by using further symmetric reductions on
edges, and incorporating complement and swap [11] flags. We show
that the resulting rule-on-edge, complement and swap flags BDDs
(RexBDDs) can be made canonical, and confirm their efficiency
through an extensive set of benchmarks.

2 BACKGROUND AND RELATED WORK

2.1 Quasi/Fully-reduced, Zero-suppressed BDDs

DEFINITION 1. An L-variable ordered BDD (OBDD) is an edge-
labeled directed acyclic graph where the terminal nodes are 0 and
1, at level 0, while each nonterminal node p belongs to a level
p.Wl =k € {1,..,L}, corresponding to the domain of boolean
variable xi, and has an edge to a 0-child, p[0], and an edge to a
1-child, p[1], satisfying k > p[0].Ivl and k > p[1].IvI (this is the
ordered property). The 0-child is also known as the “low” or “L”
child, and the 1-child as the “high” or “H” child; graphically, these

edges are shown using a dashed or solid line, respectively. O

If we give a meaning to long edges (from a node at level k to a node
atlevel h < k—1, skipping levels k—1, ..., h+1) a BDD node encodes
a boolean function of boolean variables. Three main options have
been proposed: QBDDs [7], FBDDs [4], and ZBDDs [10]; in Fig. 1,
the functions encoded by the nodes are f; =0, fi = x1, fu =1, f, =
X1 fq = x1Ax2, fr = X1 Axg,and fp = (X3 AxaAx1) V(%3 AX2 A X1).

To reflect the sharing of nodes and for consistency with our
RexBDDs definition, we assume a BDD has a set R of root edges,
each conceptually originating from level L + 1 and encoding a
function BL — B of interest, where B = {0, 1}. Thus, “the function
encoded by BDD e” means that R = {e}.

DEFINITION 2. An L-variable OBDD is a quasi-reduced BDD
(OBDD) if it has no duplicates (no nodes p and q at level k >0 exist
with p[0] =¢[0] and p[1] =¢[1]) and no long edges: if node p is at
level k>0, then p[0].Ivl=p[1].lv/=k-1. Function f, ") : B¥ — B
encoded by QBDD node p at level k is:

X -
£k ={ f;,[[;:] !

P p if pisnode 0 or 1. O

if p.Ivl > 0

QOBDD root edges are unlabeled and point to level-L nodes.

https://orcid.org/0000-0002-4906-6145
https://orcid.org/0000-0002-7737-6888
https://orcid.org/0009-0007-2388-0222
https://orcid.org/0009-0005-7917-6571
https://doi.org/10.1145/3649329.3656533
https://doi.org/10.1145/3649329.3656533

DAC 24, June 23-27, 2024, San Francisco, CA, USA

DEFINITION 3. An L-variable OBDD is a fully-reduced BDD (FBDD)
if it has no duplicates and no redundant nodes: no nonterminal node
p has p[0] =p[1]. Function f;([l’L] :BL - B encoded by FBDD node
p atlevel k is:

[1k-1]
fX[I)L] = { f;([xk]

P P if pisnode0or 1.0

if p.Ivl > 0

FBDD root edges are unlabeled and point to nodes at any level;
a long edge means that skipped variables are don’t-cares. In Fig. 1,
nodes s and u are redundant, thus removed, they encode the con-
stants 0 and 1. FBDDs are effective for functions whose value often
remains the same if some variable value flips.

DEFINITION 4. An L-variable OBDD is a zero-suppressed BDD
(ZBDD) if it has no duplicates and no high-zero nodes: no nonter-
minal node p has p[1] =0. Function f;“’"] : B" — B encoded by
ZBDD node p at level k w.r.t. alevel n > k is:

(] ifn>k A3he{k+1,..,n}, xp=1
i _ giltl] if n>k AVhe{k+1,...n}, x,=0
P T AR
f: (] ifn=k>0
p ifn=k=0.0
ZBDD root edges are unlabeled and point to nodes at any level;
a long edge means that the function has value 0 if any skipped
variable has value 1. In Fig. 1, nodes s and v are high-zero, thus
removed. ZBDDs are effective for sparse functions whose value
often is 0 when some variable has value 1.

2.2 Canonicity, Efficiency, and Prior Proposals

QBDDs, FBDDs, and ZBDDs are canonical: for a fixed variable order
mapping x1, ..., xr. to levels, every function f : BX — B has a unique
representation in each of them.

A QBDD is always at least as large as the FBDD or ZBDD encod-
ing the same function, but whether FBDDs or ZBDDs are best for
an application largely depends on the number of redundant and
high-zero nodes the QBDD would have. The size difference can be
up to a factor of L/2, but the best choice may not be clear a priori
and may even change as the computation evolves. Most importantly,
choosing FBDDs means forgoing the savings of ZBDDs, and vice
versa. This prompted BDD extensions integrating both reductions.

In 2017, van Dijk proposed two versions of tagged BDDs (tB-
DDs) [12], one where FBDD reductions are used from the source
node to a “tag level” and ZBDD reductions after that until the target
node, the other where ZBDD reductions are used first and FBDD
reductions second; a node stores three levels, its own plus one for
each outgoing edge. In 2018, Bryant proposed two versions of chain-
reduced BDDs [5], cFBDDs, where FBDD nodes encode chains of
high-zero nodes, and ¢ZBDDs, where ZBDD nodes encode chains
of redundant nodes; a node stores two levels, its own plus the one
where the chain would have ended. For both chained and tagged
BDDs, their two versions can result in different BDD sizes, and
choosing between them is even more difficult (although less criti-
cal) than between FBDDs and ZBDDs. In 2019, Babar et al. proposed
edge-specified reduction BDDs (ESRBDDs) [3], where long edges
specify whether skipped levels mean redundant, high-zero, or low-
zero nodes; in 2022 they extended them [2], to include high-one and
low-one nodes and complement flags (discussed next).

Gianfranco Ciardo, Andrew S. Miner, Lichuan Deng, and Junaid Babar

2.3 Complement and Swap Flags

Further savings can be achieved using (output) complement flags [1]
or (input complement) swap flags [11]. A complement flag c or a
swap flag s is associated with each edge to node p, including root
edges. If c=1, the value of f, must be complemented; if s=1, the
value of the variable xj. associated with p must be complemented
prior to evaluating ﬁ, i.e., we swap the 0-child and 1-child of p.

If canonicity is enforced, complement or swap flags can each
eliminate up to 50% of the nodes; together, up to 75% of the nodes.
Canonicity conditions for complement flags were defined a decade
later [6, 8], only for FBDDs: the complement flag of 0-edges must be
0 (thus, we only store the complement flag for 1-edges), terminal 1
is represented with a complement flag to terminal 0, and only either
p encoding fj, or p encoding f5 = —fp may be present, specifically
p if fp(0,...,0) = 0, p otherwise. Canonicity conditions for swap
flags were also defined only for FBDDs: given a lexicographic order
< on edges, a nonterminal node p must satisfy p[0] = (s0,q0) <
pl1] =(s1,q1), i.e., either the children g and g; are different and
qo < q1 (e.g., based on their memory address) or g0 = q1 = ¢
and sp = 0 < s; = 1. Note that node p is not redundant in the
latter case even if its children coincide, because functions f;4)
and fiy 4y are different: fiy 4y = fg while fi1 4) = f5, where h=q.lv
and f5(x1, ... xp—1, xp) = fq (1, ... X1, Xp); finally, swap flags to
terminal nodes are not meaningful, so they must be 0.

While not discussed in their original introduction, it is easy to
see that complement or swap flags can also be used in QBDDs, with
one caveat for the latter: if p is a redundant QBDD node with p[0] =
(s,q) and p[1] = {s,q), then p =p, and swap flags to p must be 0.
FBDDs with both complement and swap flags were proposed in [11],
but a subtle canonicity issue remained undiscovered for years [9]:
consider a node p with p[0] = {(co,50,9) and p[1] = {c1,51,9), where
c; and s; are the complement and swap flags on edge i. If ¢9 =0,
c1=1, and sp =s1, p is legal node, but complements or swap flags
on edges to p have the same effect, i.e., p=p and p= p. Thus, we
arbitrarily forbid setting a swap flag to such nodes.

3 REXBDDS
3.1 Unreduced RexBDDs

We first introduce the semantics of unreduced RexBDDs.
DEFINITION 5. An L-variable OBDD is a reduction-on-edge
complement-and-swap BDD (RexBDD) with edges (p,c,s,q), where
pe{X,ELo, ELy, EHo, EH1, ALo, AL, AHg, AH1 } is a reduction rule, ce B
is a complement flag, s€B is a swap flag, and q is the target node. If
plol={p,c.s,q), we write p[v].r=p, p[v].c=c, p[v].s=s, p[v].n=g.

Function f;[lc"s]p) encoded by {p,c,s,p) w.r.t level n>p.lvl is:

if p.vl=n=0, c®p

if p.lvl=n>0, c® P[[;g;’]]
: ~ _ [1,K]

if p.wl=k<nAp=X, fj;,c,s,m

if p.lvl=k<nAp=ELs, Xpy1 A
Qf’E[LkI .

Vi 1 <p’c,[sld}:%.t\%teIB%
24 £

Viy | t'f<x,c,s,p) VteB

Lkl vieB

{p.c.s.p)

(@ means “exclusive-or”, a?f:y is B if « is true, else y). O

if p.lvl=k<nAp=ALs, Xpyq V-
if p.lvl=k<nAp=EH;, x4 V-

if p.lvi=k<nAp=AH;, X A Axp 7 t:

RexBDDs: Reduction-on-Edge Complement-and-Swap Binary Decision Diagrams

Thus, X means skipped variables are irrelevant along that path,
EL; means the function has value ¢ if any skipped variable is 0, EH;
means the function has value ¢t if any skipped variable is 1, AL;
means the function has value t if all skipped variables are 0, and
AH; means the function has value ¢ if all skipped variables are 1 (see
Fig. 2). Then, if s=1, the variable of the target nonterminal node
q is complemented (s is irrelevant if g is a terminal node), and, if
c=1, the value of the function encoded by g is complemented. All
RexBDD root edges are also of the form (p,c,s,q).

3.2 Complementing a Function

In RexBDDs, complementing a function must extend to the meaning
of the reduction rules attached to edges (including root edges).

DEFINITION 6. The complement p of a rule p is defined as X=X,
EL,; = EL;, EH; = EH;, A_I_t=AL;, AH; = AHz; that of an edge e = (p,c,s,p)
as —e = (p,c,s,p). For convenience, welet 0® p = p, 1 ® p = p, and
boe=(bdpbdcsp). O

The following theorem states that complementing an edge com-
plements the function it encodes.

THEOREM 1. For any edge (p,c,s,p) and any level n>p.Iv,

[1,n] [1,n] [1,n] [1,n]
=- s thus =b .
Fimsoy="Fresm baipesp) ~ 0 @ pespy

3.3 Challenges to RexBDD Canonicity

Interactions between RexBDD features pose canonicity challenges.
We now examine each of them and its resolution.

Restrictions on terminal nodes, complement flags, swaps flags. With
complement flags, canonicity allows only one terminal (we choose
0, thus (p,c,s,1) is changed into the equivalent (p,c,s,0)), and limits
complement flags to one of the outgoing edges of a nonterminal
node p (we require p[0].c = 0). For FBDDs, if p[0].c = 1, we store
instead p i.e., we toggle the flags of p’s two outgoing edges (and tog-
gle the complement flag of any edge now pointing to p, to preserve
the value of any encoded function); for RexBDDs following the
same idea is more complicated, as it must also take into account the
use of swap flags on incoming edges and the presence of reduction
rules on outgoing edges. With swap flags, canonicity forbids them
on edges pointing to terminal nodes.

Meta-reductions for shorter edges. Function]”:Cp“’"] encoded by

¢,8,q)
(p.c,s,q) is independent of p if g.Ivl=n. If nonterminal node p has a

short edge p[v] ={p,c.s,q) to a nonterminal node q with q.lvi=p.lvi-

1> 0, we force p to be the meta-ruleN={X, ELo, EL1, EHo, EH1, ALo, AL1,
AHo, AH; }. If p[o] skips instead one variable, i.e., g.lvi=p.lvl-2>0,

then, for t € B, p=EL; and p=AL; have the same meaning and so do

p=EH; and p=AH;, thus we force p € {X, Lo, L1, Ho, H1 }, defining the

meta-rules L; ={ELy, AL; } and H; ={EH;, AH; }. Of course, the same

restriction on using meta-reductions applies to root edges pointing

to nodes at level L or L — 1, and the definition of the complement

p of a reduction rule p is extended to meta-rules by applying it to

each element in the set of of equivalent rules.

Forbidden patterns. Just as FBDDs and ZBDDs, canonical RexBDDs
forbid nodes representable by edges. Fig. 3 shows all such node
patterns and the equivalent “replacement” edges, when q+#0, i.e.,
when at most one child of p is 0. Having multiple rules in RexB-
DDs makes these replacements nontrivial. For example, if all edges

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Figure 2: RexBDD rules when skipping two levels; ¢t € B and
the missing reduction rules are N (explained later).

e = Laes = Elscs
X0/ \Nes X0 " \L¢|[ELscs L,|AL,Ls
(a) = X ' 1 é
N\Xcs’ N|Xcs
(e) = Hpes ﬂEH,L‘S = AHpcs
Nes |\ Xt,0 HflEHtCS X,t,0 Ht\AHtcs
;
Oln

Figure 3: Forbidden patterns when at most one child of piso.

@@)=cco ®@)=8co ©(p) D.c,0 (d)=Rc0
LlELCCO Hz|EHzc,0
XcO\ XcO NcO\ NcO XcO\ I'HAH 0 LolALoc0 !

Figure 4: Forbidden patterns when both children of p are 0.

= AL,cs

pointing to node p of Fig. 3(c) are of the form (EL;,c’,0,p), we can
replace them with edges (EL;,c’ @c,s,q) and remove node p, be-
cause edges (EL,c,0,p) and (ELs,c,s,g) are “compatible”. However,
if even just one of them is, for example, of the form (X,c’,0,p), then
we cannot just bypass node p using a longer edge, because edges
(X,c’,0,p) and (ELs,c,s,q) are “incompatible”: neither (EL;,¢” ®e,s,q)
nor (X,c’ ®c,s,q) would encode the function encoded by (X,c’,0,p).

Meta-reduction for patterns to terminal 0. When both children of
anode p at level k are 0, the pattern describes a specific function
of variables x|y x|, which may be equivalent to multiple long(er)
edges, thus we represent it with special meta-reductions allowed
only on edges pointing to 0. Fig. 4 shows the four relevant patterns
and their equivalent edges:
(a) encodes ¢ € B, equivalent to meta-edge (C,c,0,0) = {(X,c,0,0),
(EL¢,c,0,0), (EHc,c,0,0), {AL,c,0,0), (AH¢,c,0,0) }, where “C” stands for
“constant”.
(b) applicable if k = 1, encodes ¢ @ x1, equivalent to (B,c,0,0) =
{(EL¢,c,0,0), (EHz,c,0,0), (ALc,C,0,0), (AHz,c,0,0)}, where “B” stands
for “bottom variable”.
(c) encodes ¢ & /\];l:1 Xy, equivalent to (D,c,0,0) = {(EL,c,0,0),
(AHg,,0,0) }, where “D” stands for “and”.
(d) encodes ¢ & \/];lzlxh, equivalent to (R,c,0,0) = {(EHzc,0,0),
(ALc,c,0,0)}, where “R” stands for “or”.

The restriction on meta-edges applies to root edges pointing to
0, and the definition of complement extends to meta-edges.

Irrelevant swap flags. Unlike FBDDs, RexBDDs may have a nonre-
dundant node p with p[0] = p[1] = (p.c.;s.q), aslong as p #X; a
swap flag on an edge to such p has no effect: p=p, thus we require
it to be 0.

Swap flags equivalent to complement flags As for FBDDs, a RexBDD
node p with p[0] =(p,0,s,q) and p[1] =(p,1,5,q) satisfies p=p and
Pp=p, for any rule p; an edge to p may then have the complement
flag set, but not the swap flag.

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Pb:CosSh PbCbsSb 1

® @

PaCasSa Pp.Cps Sp !

Figure 5: Four ways to represent the same function.

Gianfranco Ciardo, Andrew S. Miner, Lichuan Deng, and Junaid Babar

xexi|fo i fofs fa s fo fi fs o fio fur fiz fi3 fis fis
o 0/0OO0OO0O0OO0OO0OO0OTI1TT1 1 1 1 1 1 1
0o 1{0000111100O0 0 1 1 1 1
1 0/00110011001 1 0 0 1 1
11101 010101010 1 0 1 0 1
Level £:€00 ANOO ANOO fiN0O fN0O fi:N0O
fisCL0 fisNL0 fiuNLO firNLO fioNLO fo:N10
AD10
*2 fi40,0,0
frR0,0 J\B1o J\cuo [\coo [\Boo ! \B1o
x| fR1,0 i i i i !

0

ri-l €00\ €00\ B,0,0\ B,0,0\ B0,0\

Figure 8: RexBDDs encoding all functions of two variables.

(asq) vs (bysp) | ca cp Pa Vs Pp Output Notes
< c any any | (N,c,0,c®p)
>lany ¢ any [(N,c,Lc®dp)
=| ¢ c|c®pg < c®pp|(Ncocdp) ifpa:pb,p:E
=| ¢ c|c®pg>cdpp|(Nelcdp)|if pa=pp, =D
=| ¢ T|cdpg <c®pp | (Nc,0,cdp)|if pa=pp, p=p
=| ¢ C|cdpg>cdpy |{NCLCcdD) |if pa=pp, p=D

Figure 6: Decision logic to choose among p, p, p, and p.

@ 0 (c) EHne',1 EHpd'®cs (d) x.c’,1 X,c’,0
o
X, tO EH, C,s @
0 EHpcs,| | EHpes

|
EHzc.s !
(b) @ = EH[CS

/
xzo Etz.c.s Xt0/ .
EHtcx’

00

X.t,0

Figure 7: No swap flag s=1 on edges to p, if p is a pattern node.

Choosing between p, p, p, and 5 RexBDDs must store only one of
the four nodes p, P, p, and p shown in Fig. 5, since the four edges
(p,c5,p), {p,C,5,p), {p,c,5,p), and {p,c,5,p) encode the same function

(p[lé"s]w w.rt. level n > p.lvl.

Fig. 6 shows how we choose: given (N,0,0,p), with p[0]=(pa,ca.Sa.qa)

and p[1] = {pp.cp,Spqp)> We return canonical edge (N,c,s,p’) en-
coding the same function; the ¢ and s flags identify the node p’
representing the normalization of p. This includes cases where the
four nodes collapse into two.

Swap flag to an edge pointing to the swap of a pattern node. Finally, we
discuss a subtle exception to the decision logic of Fig. 6. Consider
node p (legal, assuming 0 < g for any nonterminal node q) in
Fig. 7(a) with p[0] = (X,,0,0) and p[1] = (EHsc,5.9), so that p is
an EH;-pattern node encoded by edge (EHy,c,s,q), Fig. 7(b). Edge
(EHg,c,1,p) would then encode the same function as (EH;,c” ®¢,s,q),
both cases shown in Fig. 7(c), and both would be legal given the
restrictions listed so far. Thus, we forbid an edge with swap flag set
to 1 from pointing to node p, if p is a pattern node.

If a node p is such that p is a pattern node, a further problem
arises: it may be impossible to normalize it. For example, p in
Fig. 7(a) is not normalized if ¢ = 1, in which case we complement
it by changing it into p; then p[0].n = 0 < p[1].n = ¢, thus p is
normalized. However, had p been the swap of the EL; pattern node
of Fig. 3(c), we could still complement it, but not normalize it, as
p[0].n=g>p[1].n=0, and we cannot swap it to put its outgoing
edges in the right order because the result would be a pattern node.
In other words, we can always have p[0].c = 0, but the full decision
procedure of Fig. 6 must be applied only if p is not a pattern node.

3.4 Reduced RexBDDs and Their Canonicity

Reduced RexBDDs address all canonicity challenges just discussed.
In addition to the nine reduction rules of unreduced RexBDDs, the

definition uses the meta-reductions N, Lo, L1, Ho, and H; for certain
edges pointing to nonterminal nodes, and the meta-reductions C,
B, D, or R for all edges pointing to terminal 0. However, an edge
employing these meta-reductions is equivalent to a specific set of
equivalent edges (one of these equivalent edges is consistently used
in our implementation, which then requires only nine reduction
rule “codes”).

DEFINITION 7. An L-variable RexBDD is reduced if it has:

No terminal 1.

No duplicate nodes.

For any edge pointing to 0, rule C, B, D, or R.

For any edge pointing to a nonterminal node,

- rule N if the edge does not skip any level;

— rule X, L, or H, t€B, if it skips one level;

— rule X, EL¢, EHy, ALy, or AHg, t €B, otherwise.

No C,B,D,R, X,EL;, EHy, AL, or AH;, t € B, pattern nodes.

e No swap flag s = 1 on edges to 0 or to a nonterminal p if
p =p,if p = p, or if p is a pattern node.

e No nonterminal node p with p[0].c = 1.

e Nononterminal node p with p[0].n>p[1].n,or p[0].n=p[1].n,

p[0].s=1,and p[1].s=0, or p[0].n=p[1].n, p[0].s=p[1].s,and

pl0].r>p[1].cdp[1].r, for arbitrary orders on nonterminal

nodes and terminal node 0, and on the reduction rules, unless

p is a pattern node. m]

In RexBDD terminology, FBDDs and ZBDDs correspond to for-
bidding duplicate nodes and X or EHy pattern nodes, respectively.
We now assume all RexBDDs are reduced.

Fig. 8 shows the canonical RexBDD encoding of all 22°=16 func-
tions of two boolean variables x; and x3. Unlike QBDDs, FBDDs,
and ZBDDs, RexBDDs have no nodes at level 1.

We now state the following theorems (proof omitted).

THEOREM 2. RexBDDs are universal: given g: Bl — B, there is

a RexBDD edge (p,c,s,p) such that fx pesp) - 9

THEOREM 3. RexBDDs are canonical: given level n and edges

(p:0,5,q), {p’ic’s’q’) s.t. max{q.Wl, ¢’ .WI} <n, 1ff3216"sI o= (/)[Zg,ls',q')’

then (1) c=¢’, s=s", g=¢’ and (2) if q.lvi<n, then p=p’.

THEOREM 4. Let the prefix C, S, or CS indicate QBDDs or FBDDs
with complement flags, swap flags, or both. Then, the number V
of nodes needed to encode any given function f : BL — B using
BDD variant VBDD satisfies: Q >7>Rex,
0>CQ>CsQ, 0>50>CsQ, F>CF> CSF,

O>F, CQO>CF>Rex, SQ>SF>Rex, CSQ3>CSF

(9}
»
]
v
o
el

RexBDDs: Reduction-on-Edge Complement-and-Swap Binary Decision Diagrams

CSFBDD yN,0,0 RexBDD yN,0,0

Figure 10: Patterns in a binary APPLY operation on RexBDDs.

Note that we may have CSF < Rex: Fig. 9 shows how this can
happen (such pathological case arises also in CESRBDDs).

3.5 RexBDD Elementwise Operations

Element-wise operations, such as AND, OR, and NOT, can be im-
plemented using modified versions of the BDD AppLy algorithm
[4], for each of the BDD variants. Given any function f encoded by
edge e, building f is an O(1) operation for variants with comple-
ment flags: simply toggle the complement flag of e and, in the case
of CESRBDDs and RexBDDs, also complement the reduction rule.
For the other variants, we must instead build the complement of
all nodes reached from e; letting their number be |e|, this requires
O(|e|) time. ZBDDs may require additional computation, as any
long edges must be expanded into a chain of high-one nodes.

For binary operations, such as AND, the AppLy algorithm simul-
taneously traverses both argument BDDs, and builds the result,
using a memorization table to avoid duplicated computation. To
fully exploit long edges in variants with different reduction rules,
in particular RexBDDs, one must consider all possible pairs of edge
reductions. This can be greatly simplified, as every long edge corre-
sponds to either the Low or High pattern of Fig. 10: EL, EL1, AHo,
and AH; fit the Low pattern, EHo, EH1, ALo, and AL fit the High pat-
tern, and X fits both patterns (with w = x or y = z). Then, we only
need to consider three combinations: the AND of two Low patterns,
the AND of two High patterns, and the AND of a Low and High
pattern. The first two produce a pattern of the same type, where
the bottom nodes and edges are obtained by recursively building
the AND of the matching edges on the inputs; for example, the
AND of two Low patterns builds w = w1 A wy and ex = ey, A ey,.
The bottoms of the repeating pattern nodes (nodes pj or gy in the
figure) must be at the same level; if necessary, patterns are broken
to ensure this. The produced pattern may or may not correspond
to a long edge; if not, the nodes in the pattern must be built (for
example, if both w and x are non-terminal nodes). Building the
AND of a Low and High pattern produces, instead, the “umbrella”
pattern of Fig. 10, where the h nodes are a High pattern, and the [
nodes are a Low pattern.

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

4 EXPERIMENTAL RESULTS

We implemented reduced RexBDDs in a prototype library, which
we use to compare the size of (C/S/CS)QBDDs/FBDDs, ZBDDs,
ESRBDDs, CESRBDDs (obtained by selectively restricting flags or
reductions in our prototype), and RexBDDs when encoding all 232
functions of five variables. We do not consider chained or tagged
BDDs, as they never experimentally outperform CESRBDDs in [2].
Then, we compare these variants on a set of common benchmarks
with many variables, to highlight the advantages of RexBDDs on
larger applications. All required elementwise operations are imple-
mented using AND and NOT, i.e,, f V g is computed as ~(—=f A —g).

We count BDD nodes to be implementation-independent. All
nodes store “pointers” to their children and to the “next” node in
the unique table; non-quasi-reduced variants store an integer level;
complement, swap, or both flags require 1, 2, or 3 bits; n reductions
require [log, n] bits (4 for ESRBDDs, 5 for CESRBDDs, 7 for RexB-
DDs). Our index-based prototype “packs” all this information in 192
bits (24 bytes, the same as three 64-bit pointers), so the additional
10 bits required by RexBDDs w.r.t FBDDs or ZBDDs are “free”.

4.1 Encoding All Functions of Five Variables

Fig. 11 reports the number of nonterminal nodes per level, and
in total, for each BDD variant. Either complement or swap flags
reduce the total number of nodes required to encode all 232 func-
tions by almost 50%, both flags reduce them by almost 75%, while
the reduction choice (Q, F, Z, or edge-specified) has minimal im-
pact. However, the average number of nodes to encode one generic
function shows major differences: w.r.t. QBDDs, no-flag variants,
FBDDs, ZBDDs, and ESRBDDs, require resp. 22%, 22%, and 36%
fewer nodes; one-flag variants, CQBDDs, SQBDDs, CFBDDs, SF-
BDDs, and CESRBDDs, require resp. 18%, 11%, 33%, 33%, and 43%
fewer nodes; both-flag variants, CSQBDD, CSFBDDs, and RexBDD,
require resp. 23%, 38%, and 47% fewer nodes.

Fig. 13 reports more detailed distributional data: the number
of functions encoded using 0,1,...,19 nonterminal nodes, for each
BDD variant. RexBDDs are the best: only RexBDDs and CSFBDDs
require at most 12 nodes, but more functions require 12 nodes with
CSFBDDs than with RexBDDs.

4.2 Results from Common Benchmarks

First, we report results from encoding (together) all output bits
for circuits in IWLS 93 benchmark https://ddd.fit.cvut.cz/
www/prj/Benchmarks/ using our 12 BDD variants and the variable
order in the blif input file, on a MacBook Pro with an 8-core
M1 Pro chip and 16GB RAM. Of these, we eliminated 5 “huge”
circuits requiring >500M peak nodes for QBDDs (C2679, C3540,
6288, 7552, and 110) and 42 “small” circuits requiring <10K peak
nodes for QBDDs (runtimes less than 0.06 seconds for QBDDs,
0.01 seconds for RexBDDs), leaving 27 “large” circuits (runtimes
from 0.01 to 30 seconds for QBDDs, from 0.005 to 4.3 seconds for
RexBDDs). Fig. 12 shows the geometric mean score for each variant:

score(V) = 3T1ZL, pv (n) fmin{pg(n), .. prex ()},

where py (n) is the final or peak number of nodes, or seconds, to
generate all outputs of circuit n with variant V. score(V) =1 if
variant V is always the best. Fig. 12 also has results for huge circuit

https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ddd.fit.cvut.cz/www/prj/Benchmarks/

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Gianfranco Ciardo, Andrew S. Miner, Lichuan Deng, and Junaid Babar

Level| QBDD CQBDD SQBDD CSQBDD FBDD CFBDD SFBDD CSFBDD ZBDD ESRBDD| CESRBDD RexBDD
1 4 2 3 2 2 1 1 1 2 0 0 0
2 16 8 10 6 12 6 6 4 12 12 6 5
3 256 128 136 72 240 120 120 64 240 216 96 56
4 65,536 32,768 32,896 16,512 65,280 32,640 32,640 16,384 65,280 64,848 32,256 16,206
5 4,294,967,296|2,147,483,648|2,147,516,416|1,073,774,592|4,294,901,760|2,147,450,880|2,147,450,880(1,073,741,824|4,294,901,760|4,294,772,064(2,147,321,857|1,07 3,677,827
Total|4,295,033,108)2,147,516,554|2,147,549,461|1,073,791,184/4,294,967,294|2,147,483,647|2,147,483,647|1,073,758,277|4,294,967,294|4,294,837,140|2,147,354,215|1,073,694,094
Avg. 17.389 14.204 15.486 13.338 13.540 11.637 11.637 10.771 13.540 11.174 9.872 9.305

Figure 11: Number of nodes to encode all functions of 5 variables; average nodes to encode one of these functions. Bold is best.

QBDD| CQOBDD| SQBDD| CSQBDD FBDD| CFBDD| SFBDD| CSFBDD| ZBDD| ESRBDD|CESRBDD| RexBDD
score final nodes 5.77 5.27 5.38 4.89 1.39 1.29 1.27 1.17 5.51 1.30 1.10 1.01
score peak nodes 8.59 7.19 8.00 6.74 1.40 1.18 1.27 1.08 8.31 1.32 1.08 1.01
score runtime 9.96 9.47 9.98 9.20 2.28 2.26 2.29 2.08 9.62 2.51 2.11 1.00
C2670 final nodes —|259,311,327 —|259,055,555|33,013,096(18,975,054|32,501,745(18,719,282 —|32,915,387|18,877,279|18,752,067
C2670 peak nodes >500M|407,427,217| >500M|407,164,516(43,218,281|23,728,393|42,699,096/|23,465,692| >500M|43,105,063|23,615,049(23,495,218
C2670 seconds — 20,570 — 19,698 3,183 998 2,992 976 — 2,961 969 862
DictBinComp L =144/ 1,105,092| 1,105,091 1,072,081 1,072,081| 1,104,755| 1,104,754| 1,071,744| 1,071,744| 651,993| 461,155 461,156| 460,971
DictBinFull L =168| 1,267,787 1,267,786 1,235,315| 1,235,315| 1,267,399| 1,267,398| 1,234,927 1,234,927| 844,240 516,408 516,408 516,231
DictihotComp L =1,272| 9,700,754| 9,700,754| 9,668,809| 9,668,809 9,699,268| 9,699,268 9,667,323| 9,667,323|300,271| 300,271 300,271 300,271
DictihotFull L =3,048|22,982,853| 22,982,853|22,950,908| 22,950,908|22,979,590(22,979,590|22,947,645| 22,947,645|300,271 300,271 300,271 300,271

Figure 12: Scores for the 69 IWLS’93 combinational circuits. Detailed results for C2670. Dictionary results. Bold is best.

T T T T I T T
Q

sQ
cQ
Q

S B
7 8 9 10 11 12 13 14 15 16 17 18 19

—o-
-g-

10°

Figure 13: Number (y-axis, in logscale) of functions of five
variablesencoded with 0,...,19 (x-axis) nonterminal nodes.

€2670; here, too, RexBDDs excel, requiring slightly more final (0.2%)
and peak (0.1%) nodes than CSFBDDs, but 11.7% less runtime.

Then, we report on encoding the English words in MacOS file
/usr/share/dict/words, as done in [5]: 235,886 words of length
from 1 to 24, using either the full 128 ASCII alphabet, or a compact
alphabet of 54 characters, and either a binary or a one-hot encoding.
Fig. 12 shows the number of levels L and the number of nodes
required by each variant. RexBDDs always require the fewest nodes.
Interestingly, the one-hot encoding requires more levels but has
ZBDDs, ESRBDDs, CESRBDDs, and RexBDDs all tied for the fewest
nodes, regardless of the alphabet; however, when encoding the
complement of this set, all variants require exactly the same number
of nodes as before, except for ZBBDs and ESRBDDs, which become
as bad as QBDDs (not shown).

5 CONCLUSIONS

We introduced RexBDDs, which canonically combine nine reduc-
tions (including those of the two most well-known BDD variants,

FBDDs and ZBDDs) with complement and swap flags. Benchmark
experiments confirm that RexBDDs encode many boolean functions

using substantially fewer nodes than any other BDD variant, and
tend to have much better runtimes. Once completed, our prototype
RexBDD library will be a plug-and-play replacement to any BDD li-
brary, as users interact with it by simply creating and manipulating
the boolean functions required by their specific application. Users
can then enjoy the benefits of both FBDD and ZBDD reductions,
without needing to decide between them a priori.

REFERENCES

[1] S.B. Akers. 1978. Functional testing using binary decision diagrams. In Proc. 8th
Int. Symp. on Fault-Tolerant Computing. 75-82.

[2] Junaid Babar, Gianfranco Ciardo, and Andrew Miner. 2022. CESRBDDs: bi-
nary decision diagrams with complemented edges and edge-specified reduc-
tions. Software Tools for Technology Transfer 24 (Feb. 2022), 89-109. https:
//doi.org/10.1007/s10009-021-00640-0

[3] Junaid Babar, Chuan Jiang, Gianfranco Ciardo, and Andrew Miner. 2019. Binary

decision diagrams with edge-specified reductions. In Proc. TACAS. Springer, 303~

318. https://doi.org/10.1007/978-3-030-17465-1_17

Randy E. Bryant. 1986. Graph-based algorithms for boolean function manipula-

tion. IEEE Trans. Comp. 35, 8 (Aug. 1986), 677-691.

Randal E. Bryant. 2018. Chain Reduction for Binary and Zero-Suppressed Deci-

sion Diagrams. In Proc. TACAS. Springer, 81-98.

Kevin Karplus. 1988. Representing boolean functions with if-then-else DAGs. Tech-

nical Report. University of California at Santa Cruz.

Shinji Kimura and Edmund M. Clarke. 1990. A parallel algorithm for constructing

binary decision diagrams. In Proc. ICCD. IEEE CS Press, 220-223.

[8] Jean-Christophe Madre and Jean-Paul Billon. 1988. Proving circuit correctness

using formal comparison between expected and extracted behaviour. In Proc.

ACM/IEEE DAC (Atlantic City, New Jersey, USA). IEEE CS Press, 205-210.

D.M. Miller and R. Drechsler. 1997. Negation and duality in reduced ordered

binary decision diagrams. In 1997 IEEE Pacific Rim Conf. Communications, Com-

puters and Signal Processing, Vol. 2. 692-696. https://doi.org/10.1109/PACRIM.

1997.620354

S. Minato. 2001. Zero-suppressed BDDs and their applications. Software Tools for

Technology Transfer 3 (2001), 156-170.

S. Minato, N. Ishiura, and S. Yajima. 1990. Shared binary decision diagram with

attributed edges for efficient boolean function manipulation. In Proc. ACM/IEEE

DAC. IEEE CS Press, 52-57.

Tom van Dijk, Robert Wille, and Robert Meolic. 2017. Tagged BDDs: combining

reduction rules from different decision diagram types. In Proc. FMCAD (Vienna,

Austria). 108-115.

[9]

[10

(1]

[12

https://doi.org/10.1007/s10009-021-00640-0
https://doi.org/10.1007/s10009-021-00640-0
https://doi.org/10.1007/978-3-030-17465-1_17
https://doi.org/10.1109/PACRIM.1997.620354
https://doi.org/10.1109/PACRIM.1997.620354

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Quasi/Fully-reduced, Zero-suppressed BDDs
	2.2 Canonicity, Efficiency, and Prior Proposals
	2.3 Complement and Swap Flags

	3 RexBDDs
	3.1 Unreduced RexBDDs
	3.2 Complementing a Function
	3.3 Challenges to RexBDD Canonicity
	3.4 Reduced RexBDDs and Their Canonicity
	3.5 RexBDD Elementwise Operations

	4 Experimental Results
	4.1 Encoding All Functions of Five Variables
	4.2 Results from Common Benchmarks

	5 Conclusions
	References

