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ABSTRACT
We introduce RexBDDs, binary decision diagrams (BDDs) that ex-
ploit reduction opportunities well beyond those of reduced ordered
BDDs, zero-suppressed BDDs, and recent proposals integratingmul-
tiple reduction rules. RexBDDs also leverage (output) complement
�ags and (input) swap �ags to potentially decrease the number of
nodes by a factor of four. We de�ne a reduced form of RexBDDs
that ensures canonicity, and use a set of benchmarks to demon-
strate their superior storage and runtime requirements compared
to previous alternatives.
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1 INTRODUCTION
Binary decision diagrams (BDDs) have greatly helped a variety of
industrial applications, from VLSI design to circuit and protocol
veri�cation. Ordered BDDs are directed acyclic graphs where each
nonterminal node belongs to a level, corresponding to one of !
input variables, and are often a compact option to encode a boolean
function. To ensure canonicity, they forbid duplicate nodes, and
enforce reduction rules to interpret level-skipping edges. The two
most popular canonical forms are reduced ordered BDDs [4] (we
call them FBDDs) and zero-suppressed BDDs [10] (we call them
ZBDDs), which use di�erent reduction rules and are best suited to
di�erent applications, depending on which reduction eliminates
the most nodes, but this may not be easy to know a priori.

The recently proposed tagged BDDs (tBDDs) [12] and chain re-
duced BDDs (cBDDs) [5] combine these reductions; ESRBDDs [3]
o�er even greater �exibility by explicitly labeling each edge with
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Figure 1: BDDs encoding (¬G3 ^ G2 ^ G1) _ (G3 ^ ¬(G2 ^ G1)).

one of three reductions, while CESRBDDs [2] allow �ve reductions
and complement �ags [1].

We extend these ideas by using further symmetric reductions on
edges, and incorporating complement and swap [11] �ags. We show
that the resulting rule-on-edge, complement and swap �ags BDDs
(RexBDDs) can be made canonical, and con�rm their e�ciency
through an extensive set of benchmarks.

2 BACKGROUND AND RELATEDWORK
2.1 Quasi/Fully-reduced, Zero-suppressed BDDs

D��������� 1. An !-variable ordered BDD (OBDD) is an edge-
labeled directed acyclic graph where the terminal nodes are 0 and
1, at level 0, while each nonterminal node ? belongs to a level
? .lvl = : 2 {1, ..., !}, corresponding to the domain of boolean
variable G: , and has an edge to a 0-child, ? [0], and an edge to a
1-child, ? [1], satisfying : > ? [0] .lvl and : > ? [1] .lvl (this is the
ordered property). The 0-child is also known as the “low” or “L”
child, and the 1-child as the “high” or “H” child; graphically, these
edges are shown using a dashed or solid line, respectively. É

If we give ameaning to long edges (from a node at level: to a node
at level ⌘ < :�1, skipping levels :�1, ...,⌘+1) a BDD node encodes
a boolean function of boolean variables. Three main options have
been proposed: QBDDs [7], FBDDs [4], and ZBDDs [10]; in Fig. 1,
the functions encoded by the nodes are 5B = 0, 5C = G1, 5D = 1, 5E =
G1, 5@ = G1^G2, 5A = G1 ^ G2, and 5? = (G3^G2^G1)_ (G3^G2 ^ G1).

To re�ect the sharing of nodes and for consistency with our
RexBDDs de�nition, we assume a BDD has a set R of root edges,
each conceptually originating from level ! + 1 and encoding a
function B!

! B of interest, where B = {0, 1}. Thus, “the function
encoded by BDD 4” means that R = {4}.

D��������� 2. An !-variable OBDD is a quasi-reduced BDD
(QBDD) if it has no duplicates (no nodes ? and @ at level : >0 exist
with ? [0]=@ [0] and ? [1]=@ [1]) and no long edges: if node ? is at
level : >0, then ? [0] .lvl=? [1] .lvl=:�1. Function 5

G [1,: ]
? : B:

! B
encoded by QBDD node ? at level : is:

5
G [1,: ]
? =

(
5
G [1,:�1]
? [G: ]

if ? .lvl > 0
? if ? is node 0 or 1. É

QBDD root edges are unlabeled and point to level-! nodes.
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D��������� 3. An!-variable OBDD is a fully-reduced BDD (FBDD)
if it has no duplicates and no redundant nodes: no nonterminal node
? has ? [0]=? [1]. Function 5

G [1,!]
? :B!

!B encoded by FBDD node
? at level : is:

5
G [1,!]
? =

(
5
G [1,:�1]
? [G: ]

if ? .lvl > 0
? if ? is node 0 or 1. É

FBDD root edges are unlabeled and point to nodes at any level;
a long edge means that skipped variables are don’t-cares. In Fig. 1,
nodes B and D are redundant, thus removed, they encode the con-
stants 0 and 1. FBDDs are e�ective for functions whose value often
remains the same if some variable value �ips.

D��������� 4. An !-variable OBDD is a zero-suppressed BDD
(ZBDD) if it has no duplicates and no high-zero nodes: no nonter-
minal node ? has ? [1] =0. Function 5

G [1,=]

? : B=
! B encoded by

ZBDD node ? at level : w.r.t. a level = � : is:

5
G [1,=]

? =

8>>>>><
>>>>>:

0 if =>: ^ 9⌘ 2 {:+1, ...,=}, G⌘ =1
5
G [1,: ]
? if =>: ^ 8⌘ 2 {:+1, ...,=}, G⌘ =0
5
G [1,:�1]
? [G: ]

if ==: >0
? if ==: =0. É

ZBDD root edges are unlabeled and point to nodes at any level;
a long edge means that the function has value 0 if any skipped
variable has value 1. In Fig. 1, nodes B and E are high-zero, thus
removed. ZBDDs are e�ective for sparse functions whose value
often is 0 when some variable has value 1.

2.2 Canonicity, E�ciency, and Prior Proposals
QBDDs, FBDDs, and ZBDDs are canonical: for a �xed variable order
mapping G1, ..., G! to levels, every function 5 : B!

! B has a unique
representation in each of them.

A QBDD is always at least as large as the FBDD or ZBDD encod-
ing the same function, but whether FBDDs or ZBDDs are best for
an application largely depends on the number of redundant and
high-zero nodes the QBDD would have. The size di�erence can be
up to a factor of !/2, but the best choice may not be clear a priori
andmay even change as the computation evolves. Most importantly,
choosing FBDDs means forgoing the savings of ZBDDs, and vice
versa. This prompted BDD extensions integrating both reductions.

In 2017, van Dijk proposed two versions of tagged BDDs (tB-
DDs) [12], one where FBDD reductions are used from the source
node to a “tag level” and ZBDD reductions after that until the target
node, the other where ZBDD reductions are used �rst and FBDD
reductions second; a node stores three levels, its own plus one for
each outgoing edge. In 2018, Bryant proposed two versions of chain-
reduced BDDs [5], cFBDDs, where FBDD nodes encode chains of
high-zero nodes, and cZBDDs, where ZBDD nodes encode chains
of redundant nodes; a node stores two levels, its own plus the one
where the chain would have ended. For both chained and tagged
BDDs, their two versions can result in di�erent BDD sizes, and
choosing between them is even more di�cult (although less criti-
cal) than between FBDDs and ZBDDs. In 2019, Babar et al. proposed
edge-speci�ed reduction BDDs (ESRBDDs) [3], where long edges
specify whether skipped levels mean redundant, high-zero, or low-
zero nodes; in 2022 they extended them [2], to include high-one and
low-one nodes and complement �ags (discussed next).

2.3 Complement and Swap Flags
Further savings can be achieved using (output) complement �ags [1]
or (input complement) swap �ags [11]. A complement �ag 2 or a
swap �ag B is associated with each edge to node ? , including root
edges. If 2 =1, the value of 5? must be complemented; if B =1, the
value of the variable G: associated with ? must be complemented
prior to evaluating 5? , i.e., we swap the 0-child and 1-child of ? .

If canonicity is enforced, complement or swap �ags can each
eliminate up to 50% of the nodes; together, up to 75% of the nodes.
Canonicity conditions for complement �ags were de�ned a decade
later [6, 8], only for FBDDs: the complement �ag of 0-edges must be
0 (thus, we only store the complement �ag for 1-edges), terminal 1
is represented with a complement �ag to terminal 0, and only either
? encoding 5? or ? encoding 5? = ¬5? may be present, speci�cally
? if 5? (0, ..., 0) = 0, ? otherwise. Canonicity conditions for swap
�ags were also de�ned only for FBDDs: given a lexicographic order
� on edges, a nonterminal node ? must satisfy ? [0] = hB0,@0i �
? [1] = hB1,@1i, i.e., either the children @0 and @1 are di�erent and
@0 < @1 (e.g., based on their memory address) or @0 = @1 = @
and B0 = 0 < B1 = 1. Note that node ? is not redundant in the
latter case even if its children coincide, because functions 5h0,@i
and 5h1,@i are di�erent: 5h0,@i = 5@ while 5h1,@i = 5e@ , where ⌘=@.lvl
and 5e@ (G1, ..., G⌘�1, G⌘) = 5@ (G1, ..., G⌘�1, G⌘); �nally, swap �ags to
terminal nodes are not meaningful, so they must be 0.

While not discussed in their original introduction, it is easy to
see that complement or swap �ags can also be used in QBDDs, with
one caveat for the latter: if ? is a redundant QBDD node with ? [0] =
hB,@i and ? [1] = hB,@i, then ? =e? , and swap �ags to ? must be 0.
FBDDs with both complement and swap �ags were proposed in [11],
but a subtle canonicity issue remained undiscovered for years [9]:
consider a node ? with ? [0] = h20,B0,@i and ? [1] = h21,B1,@i, where
28 and B8 are the complement and swap �ags on edge 8 . If 20 = 0,
21 =1, and B0 =B1, ? is legal node, but complements or swap �ags
on edges to ? have the same e�ect, i.e., ? =e? and ? = e? . Thus, we
arbitrarily forbid setting a swap �ag to such nodes.

3 REXBDDS
3.1 Unreduced RexBDDs
We �rst introduce the semantics of unreduced RexBDDs.

D��������� 5. An !-variable OBDD is a reduction-on-edge
complement-and-swap BDD (RexBDD) with edges hd,2,B,@i, where
d 2 {X, EL0, EL1, EH0, EH1, AL0, AL1, AH0, AH1} is a reduction rule, 2 2B
is a complement �ag, B 2B is a swap �ag, and @ is the target node. If
? [E]= hd,2,B,@i, we write ? [E] .A =d , ? [E] .2 =2 , ? [E] .B =B , ? [E] .==@.
Function 5

G [1,=]

hd,2,B,? i
encoded by hd,2,B,?i w.r.t level =�? .lvl is:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

if ? .lvl===0, 2 � ?

if ? .lvl==>0, 2 � 5
G [1,=�1]
? [B�G= ]

if ? .lvl=: <=^d =X, 5
G [1,: ]
hd,2,B,? i

if ? .lvl=: <=^d =ELC , G:+1^···^G= ? 5
G [1,: ]
hd,2,B,? i

:C 8C 2B
if ? .lvl=: <=^d =ALC , G:+1_···_G= ? 5

G [1,: ]
hd,2,B,? i

:C 8C 2B
if ? .lvl=: <=^d =EHC , G:+1_···_G= ? C : 5

G [1,: ]
hd,2,B,? i

8C 2B

if ? .lvl=: <=^d =AHC , G:+1^···^G= ? C : 5
G [1,: ]
hd,2,B,? i

8C 2B

(� means “exclusive-or”, U?V :W is V if U is true, else W ). É
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Thus, X means skipped variables are irrelevant along that path,
ELC means the function has value C if any skipped variable is 0, EHC
means the function has value C if any skipped variable is 1, ALC
means the function has value C if all skipped variables are 0, and
AHC means the function has value C if all skipped variables are 1 (see
Fig. 2). Then, if B =1, the variable of the target nonterminal node
@ is complemented (B is irrelevant if @ is a terminal node), and, if
2 =1, the value of the function encoded by @ is complemented. All
RexBDD root edges are also of the form hd,2,B,@i.

3.2 Complementing a Function
In RexBDDs, complementing a functionmust extend to the meaning
of the reduction rules attached to edges (including root edges).

D��������� 6. The complement d of a rule d is de�ned as X=X,
ELC =ELC , EHC =EHC , ALC =ALC , AHC =AHC ; that of an edge 4 = hd,2,B,?i
as ¬4 = hd,2,B,?i. For convenience, we let 0 � d = d , 1 � d = d , and
1 � 4 = h1 � d,1 � 2,B,?i. É

The following theorem states that complementing an edge com-
plements the function it encodes.

T������ 1. For any edge hd,2,B,?i and any level =�? .lvl,
5
G [1,=]

¬hd,2,B,? i
=¬5

G [1,=]

hd,2,B,? i
, thus 5 G [1,=]

1�hd,2,B,? i
= 1 � 5

G [1,=]

hd,2,B,? i
.

3.3 Challenges to RexBDD Canonicity
Interactions between RexBDD features pose canonicity challenges.
We now examine each of them and its resolution.
Restrictions on terminal nodes, complement �ags, swaps �ags.With
complement �ags, canonicity allows only one terminal (we choose
0, thus hd,2,B,1i is changed into the equivalent hd,2,B,0i), and limits
complement �ags to one of the outgoing edges of a nonterminal
node ? (we require ? [0] .2 = 0). For FBDDs, if ? [0] .2 = 1, we store
instead ? i.e., we toggle the �ags of ?’s two outgoing edges (and tog-
gle the complement �ag of any edge now pointing to ? , to preserve
the value of any encoded function); for RexBDDs following the
same idea is more complicated, as it must also take into account the
use of swap �ags on incoming edges and the presence of reduction
rules on outgoing edges. With swap �ags, canonicity forbids them
on edges pointing to terminal nodes.
Meta-reductions for shorter edges. Function 5

G [1,=]

hd,2,B,@i
encoded by

hd,2,B,@i is independent of d if @.lvl==. If nonterminal node ? has a
short edge ? [E]= hd,2,B,@i to a nonterminal node@ with@.lvl=? .lvl�
1>0, we force d to be themeta-rule N= {X, EL0, EL1, EH0, EH1, AL0, AL1,
AH0, AH1}. If ? [E] skips instead one variable, i.e., @.lvl=? .lvl�2>0,
then, for C 2B, d =ELC and d =ALC have the same meaning and so do
d =EHC and d =AHC , thus we force d 2 {X, L0, L1, H0, H1}, de�ning the
meta-rules LC = {ELC , ALC } and HC = {EHC , AHC }. Of course, the same
restriction on using meta-reductions applies to root edges pointing
to nodes at level ! or ! � 1, and the de�nition of the complement
d of a reduction rule d is extended to meta-rules by applying it to
each element in the set of of equivalent rules.
Forbidden patterns. Just as FBDDs and ZBDDs, canonical RexBDDs
forbid nodes representable by edges. Fig. 3 shows all such node
patterns and the equivalent “replacement” edges, when @<0, i.e.,
when at most one child of ? is 0. Having multiple rules in RexB-
DDs makes these replacements nontrivial. For example, if all edges
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Figure 2: RexBDD rules when skipping two levels; C 2 B and
the missing reduction rules are N (explained later).
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Figure 3: Forbidden patterns when at most one child of ? is 0.
?

0

C,2,0

0

X,2,0 X,2,0

)(a) ?

0

B,2,0

0

N,2,0 N,2,0

)(b) ?

0

D,2,0

0

X,2,0 L2 |EL2 ,2,0
H2 |AH2 ,2,0

)(c) ?

0

R,2,0

0

H2 |EH2 ,2,0
L2 |AL2 ,2,0

X,2,0

)(d)

Figure 4: Forbidden patterns when both children of ? are 0.

pointing to node ? of Fig. 3(c) are of the form hELC ,20,0,?i, we can
replace them with edges hELC ,20 �2,B,@i and remove node ? , be-
cause edges hELC ,20,0,?i and hELC ,2,B,@i are “compatible”. However,
if even just one of them is, for example, of the form hX,20,0,?i, then
we cannot just bypass node ? using a longer edge, because edges
hX,20,0,?i and hELC ,2,B,@i are “incompatible”: neither hELC ,20 �2,B,@i
nor hX,20 �2,B,@i would encode the function encoded by hX,20,0,?i.

Meta-reduction for patterns to terminal 0. When both children of
a node ? at level : are 0, the pattern describes a speci�c function
of variables G [1,: ] , which may be equivalent to multiple long(er)
edges, thus we represent it with special meta-reductions allowed
only on edges pointing to 0. Fig. 4 shows the four relevant patterns
and their equivalent edges:
(a) encodes 2 2 B, equivalent to meta-edge hC,2,0,0i = {hX,2,0,0i,
hEL2 ,2,0,0i, hEH2 ,2,0,0i, hAL2 ,2,0,0i, hAH2 ,2,0,0i}, where “C” stands for
“constant”.
(b) applicable if : = 1, encodes 2 � G1, equivalent to hB,2,0,0i =
{hEL2 ,2,0,0i, hEH2 ,2,0,0i, hAL2 ,2,0,0i, hAH2 ,2,0,0i}, where “B” stands
for “bottom variable”.
(c) encodes 2 �

”:
⌘=1 G⌘ , equivalent to hD,2,0,0i = {hEL2 ,2,0,0i,

hAH2 ,2,0,0i}, where “D” stands for “and”.
(d) encodes 2 �

‘:
⌘=1 G⌘ , equivalent to hR,2,0,0i = {hEH2 ,2,0,0i,

hAL2 ,2,0,0i}, where “R” stands for “or”.
The restriction on meta-edges applies to root edges pointing to

0, and the de�nition of complement extends to meta-edges.

Irrelevant swap �ags. Unlike FBDDs, RexBDDs may have a nonre-
dundant node ? with ? [0] = ? [1] = hd,2,B,@i, as long as d < X; a
swap �ag on an edge to such ? has no e�ect: ? =e? , thus we require
it to be 0.

Swap �ags equivalent to complement �ags As for FBDDs, a RexBDD
node ? with ? [0] = hd,0,B,@i and ? [1] = hd,1,B,@i satis�es ? =e? and
? =e? , for any rule d ; an edge to ? may then have the complement
�ag set, but not the swap �ag.
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Figure 5: Four ways to represent the same function.
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< 2 any any hN,2,0,2�?i
> any 2 any hN,2,1,2�e?i
= 2 2 2�d0  2�d1 hN,2,0,2�?i if d0 =d1 , ? =e?
= 2 2 2�d0 > 2�d1 hN,2,1,2�e?i if d0 =d1 , ? =e?
= 2 2 2�d0  2�d1 hN,2,0,2�?i if d0 =d1 , ? =e?
= 2 2 2�d0 > 2�d1 hN,2,1,2�e?i if d0 =d1 , ? =e?

Figure 6: Decision logic to choose among ?, ?, e?, ande?.
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Figure 7: No swap �ag B=1 on edges to ?, if e? is a pattern node.

Choosing between ? , ? , e? , ande? . RexBDDs must store only one of
the four nodes ? , ? , e? , ande? shown in Fig. 5, since the four edges
hd,2,B,?i, hd,2,B,?i, hd,2,B,e?i, and hd,2,B,e?i encode the same function
5
G [1,=]

hd,2,B,? i
w.r.t. level = � ? .lvl.

Fig. 6 shows howwe choose: given hN,0,0,?i, with ? [0]=hd0,20,B0,@0i
and ? [1] = hd1 ,21 ,B1 ,@1i, we return canonical edge hN,2,B,?0i en-
coding the same function; the 2 and B �ags identify the node ?0
representing the normalization of ? . This includes cases where the
four nodes collapse into two.
Swap �ag to an edge pointing to the swap of a pattern node. Finally, we
discuss a subtle exception to the decision logic of Fig. 6. Consider
node ? (legal, assuming 0 < @ for any nonterminal node @) in
Fig. 7(a) with ? [0] = hX,C,0,0i and ? [1] = hEHC ,2,B,@i, so that e? is
an EHC -pattern node encoded by edge hEHC ,2,B,@i, Fig. 7(b). Edge
hEHC ,20,1,?i would then encode the same function as hEHC ,20 �2,B,@i,
both cases shown in Fig. 7(c), and both would be legal given the
restrictions listed so far. Thus, we forbid an edge with swap �ag set
to 1 from pointing to node ? , if e? is a pattern node.

If a node ? is such that e? is a pattern node, a further problem
arises: it may be impossible to normalize it. For example, ? in
Fig. 7(a) is not normalized if C = 1, in which case we complement
it by changing it into ?; then ? [0] .= = 0 < ? [1] .= = @, thus ? is
normalized. However, had ? been the swap of the ELC pattern node
of Fig. 3(c), we could still complement it, but not normalize it, as
? [0] .==@ >? [1] .==0, and we cannot swap it to put its outgoing
edges in the right order because the result would be a pattern node.
In other words, we can always have ? [0] .2 = 0, but the full decision
procedure of Fig. 6 must be applied only if e? is not a pattern node.

3.4 Reduced RexBDDs and Their Canonicity
Reduced RexBDDs address all canonicity challenges just discussed.
In addition to the nine reduction rules of unreduced RexBDDs, the

G2 G1 50 51 52 53 54 55 56 57 58 59 510 511 512 513 514 515
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Level

G2

G1

0 0

50:C,0,0
515:C,1,0
51:D,1,0
514:D,0,0
57:R,0,0
58:R,1,0

0

52:N,0,0
513:N,1,0

C,0,0

B,1,0

0

53:N,0,0
512:N,1,0

C,0,0

C,1,0

0

54:N,0,0
511:N,1,0

B,0,0

C,0,0

0

55:N,0,0
510:N,1,0

B,0,0

B,0,0

0

56:N,0,0
59:N,1,0

B,0,0

B,1,0

Figure 8: RexBDDs encoding all functions of two variables.

de�nition uses the meta-reductions N, L0, L1, H0, and H1 for certain
edges pointing to nonterminal nodes, and the meta-reductions C,
B, D, or R for all edges pointing to terminal 0. However, an edge
employing these meta-reductions is equivalent to a speci�c set of
equivalent edges (one of these equivalent edges is consistently used
in our implementation, which then requires only nine reduction
rule “codes”).

D��������� 7. An !-variable RexBDD is reduced if it has:
• No terminal 1.
• No duplicate nodes.
• For any edge pointing to 0, rule C, B, D, or R.
• For any edge pointing to a nonterminal node,
– rule N if the edge does not skip any level;
– rule X, LC , or HC , C 2B, if it skips one level;
– rule X, ELC , EHC , ALC , or AHC , C 2B, otherwise.

• No C, B, D, R, X, ELC , EHC , ALC , or AHC , C 2B, pattern nodes.
• No swap �ag B = 1 on edges to 0 or to a nonterminal ? if
? = e? , if ? = e? , or if e? is a pattern node.

• No nonterminal node ? with ? [0] .2 = 1.
• Nononterminal node ? with ? [0] .=>? [1] .=, or ? [0] .==? [1] .=,
? [0] .B=1, and ? [1] .B=0, or ? [0] .==? [1] .=, ? [0] .B=? [1] .B , and
? [0] .A>? [1] .2�? [1] .A , for arbitrary orders on nonterminal
nodes and terminal node 0, and on the reduction rules, unlesse? is a pattern node. É

In RexBDD terminology, FBDDs and ZBDDs correspond to for-
bidding duplicate nodes and X or EH0 pattern nodes, respectively.
We now assume all RexBDDs are reduced.

Fig. 8 shows the canonical RexBDD encoding of all 22
2
=16 func-

tions of two boolean variables G1 and G2. Unlike QBDDs, FBDDs,
and ZBDDs, RexBDDs have no nodes at level 1.

We now state the following theorems (proof omitted).

T������ 2. RexBDDs are universal: given 6 : B!
! B, there is

a RexBDD edge hd,2,B,?i such that 5 G [1,!]
hd,2,B,? i

= 6.

T������ 3. RexBDDs are canonical: given level = and edges
hd,2,B,@i, hd0,20,B0,@0i s.t.max{@.lvl,@0 .lvl}=, if 5 G [1,=]

hd,2,B,@i
= 5

G [1,=]

hd 0,20,B0,@0i
,

then (1) 2 =20, B =B0, @=@0 and (2) if @.lvl<=, then d =d0.

T������ 4. Let the pre�x C, S, or CS indicate QBDDs or FBDDs
with complement �ags, swap �ags, or both. Then, the number +
of nodes needed to encode any given function 5 : B!

! B using
BDD variant +BDD satis�es: Q�Z�Rex,
Q�CQ�CSQ, Q� SQ�CSQ, F�CF�CSF, F� SF�CSF,
Q� F, CQ�CF�Rex, SQ� SF�Rex, CSQ�CSF, CSQ�Rex.
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G5

G4

G3

G2

G1

0

?

@

A

0

CSFBDD N,0,0

X,0,0 X,0,1

N,0,0
X,0,0

X,0,0
X,1,0

?

@ A

B

0

RexBDD N,0,0
N,0,0 N,0,0

EH0,0,0
EH0,0,0 EL0,0,0

EL0,0,0

X,0,0 X,1,0

Figure 9: CSFBDD and RexBDD for ((¬G5^¬G3)_(G5^G3))^G2.

Low: ?0

?1
... N,0,0
?:

G
F

X,2F ,BF N,0,0

X,2F ,BF

X,2F ,BF 4G

High: @0

@1
...N,0,0
@:

~
I

X,2I ,BIN,0,0

X,2I ,BI

X,2I ,BI4~

Umbrella: D0

⌘1 ;1
. .
.N,0,0 . . .

N,0,0
⌘: ;:

GIF~ FI

N,0,0 N,0,0

X,2,B X,2,B

4F~ X,2,B X,2,B 4GI

Figure 10: Patterns in a binaryA���� operation on RexBDDs.

Note that we may have CSF < Rex: Fig. 9 shows how this can
happen (such pathological case arises also in CESRBDDs).

3.5 RexBDD Elementwise Operations
Element-wise operations, such as AND, OR, and NOT, can be im-
plemented using modi�ed versions of the BDD A���� algorithm
[4], for each of the BDD variants. Given any function 5 encoded by
edge 4 , building 5̄ is an O(1) operation for variants with comple-
ment �ags: simply toggle the complement �ag of 4 and, in the case
of CESRBDDs and RexBDDs, also complement the reduction rule.
For the other variants, we must instead build the complement of
all nodes reached from 4; letting their number be |4 |, this requires
O(|4 |) time. ZBDDs may require additional computation, as any
long edges must be expanded into a chain of high-one nodes.

For binary operations, such as AND, the A���� algorithm simul-
taneously traverses both argument BDDs, and builds the result,
using a memorization table to avoid duplicated computation. To
fully exploit long edges in variants with di�erent reduction rules,
in particular RexBDDs, one must consider all possible pairs of edge
reductions. This can be greatly simpli�ed, as every long edge corre-
sponds to either the Low or High pattern of Fig. 10: EL0, EL1, AH0,
and AH1 �t the Low pattern, EH0, EH1, AL0, and AL1 �t the High pat-
tern, and X �ts both patterns (withF = G or ~ = I). Then, we only
need to consider three combinations: the AND of two Low patterns,
the AND of two High patterns, and the AND of a Low and High
pattern. The �rst two produce a pattern of the same type, where
the bottom nodes and edges are obtained by recursively building
the AND of the matching edges on the inputs; for example, the
AND of two Low patterns builds F = F1 ^F2 and 4G = 4G1 ^ 4G2 .
The bottoms of the repeating pattern nodes (nodes ?: or @: in the
�gure) must be at the same level; if necessary, patterns are broken
to ensure this. The produced pattern may or may not correspond
to a long edge; if not, the nodes in the pattern must be built (for
example, if both F and G are non-terminal nodes). Building the
AND of a Low and High pattern produces, instead, the “umbrella”
pattern of Fig. 10, where the ⌘ nodes are a High pattern, and the ;
nodes are a Low pattern.

4 EXPERIMENTAL RESULTS
We implemented reduced RexBDDs in a prototype library, which
we use to compare the size of (C/S/CS)QBDDs/FBDDs, ZBDDs,
ESRBDDs, CESRBDDs (obtained by selectively restricting �ags or
reductions in our prototype), and RexBDDs when encoding all 232
functions of �ve variables. We do not consider chained or tagged
BDDs, as they never experimentally outperform CESRBDDs in [2].
Then, we compare these variants on a set of common benchmarks
with many variables, to highlight the advantages of RexBDDs on
larger applications. All required elementwise operations are imple-
mented using AND and NOT, i.e., 5 _6 is computed as ¬(¬5 ^¬6).

We count BDD nodes to be implementation-independent. All
nodes store “pointers” to their children and to the “next” node in
the unique table; non-quasi-reduced variants store an integer level;
complement, swap, or both �ags require 1, 2, or 3 bits; = reductions
require dlog2 =2e bits (4 for ESRBDDs, 5 for CESRBDDs, 7 for RexB-
DDs). Our index-based prototype “packs” all this information in 192
bits (24 bytes, the same as three 64-bit pointers), so the additional
10 bits required by RexBDDs w.r.t FBDDs or ZBDDs are “free”.

4.1 Encoding All Functions of Five Variables
Fig. 11 reports the number of nonterminal nodes per level, and
in total, for each BDD variant. Either complement or swap �ags
reduce the total number of nodes required to encode all 232 func-
tions by almost 50%, both �ags reduce them by almost 75%, while
the reduction choice (Q, F, Z, or edge-speci�ed) has minimal im-
pact. However, the average number of nodes to encode one generic
function shows major di�erences: w.r.t. QBDDs, no-�ag variants,
FBDDs, ZBDDs, and ESRBDDs, require resp. 22%, 22%, and 36%
fewer nodes; one-�ag variants, CQBDDs, SQBDDs, CFBDDs, SF-
BDDs, and CESRBDDs, require resp. 18%, 11%, 33%, 33%, and 43%
fewer nodes; both-�ag variants, CSQBDD, CSFBDDs, and RexBDD,
require resp. 23%, 38%, and 47% fewer nodes.

Fig. 13 reports more detailed distributional data: the number
of functions encoded using 0,1,...,19 nonterminal nodes, for each
BDD variant. RexBDDs are the best: only RexBDDs and CSFBDDs
require at most 12 nodes, but more functions require 12 nodes with
CSFBDDs than with RexBDDs.

4.2 Results from Common Benchmarks
First, we report results from encoding (together) all output bits
for circuits in IWLS’93 benchmark https://ddd.fit.cvut.cz/

www/prj/Benchmarks/ using our 12 BDD variants and the variable
order in the blif input �le, on a MacBook Pro with an 8-core
M1 Pro chip and 16GB RAM. Of these, we eliminated 5 “huge”
circuits requiring >500M peak nodes for QBDDs (C2670, C3540,
C6288, C7552, and i10) and 42 “small” circuits requiring <10K peak
nodes for QBDDs (runtimes less than 0.06 seconds for QBDDs,
0.01 seconds for RexBDDs), leaving 27 “large” circuits (runtimes
from 0.01 to 30 seconds for QBDDs, from 0.005 to 4.3 seconds for
RexBDDs). Fig. 12 shows the geometric mean score for each variant:

B2>A4 (+ ) = 27
qŒ27

==1 d+ (=)/min{dQ (=), ..., dRex (=)},

where d+ (=) is the �nal or peak number of nodes, or seconds, to
generate all outputs of circuit = with variant + . B2>A4 (+ ) = 1 if
variant + is always the best. Fig. 12 also has results for huge circuit

https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ddd.fit.cvut.cz/www/prj/Benchmarks/
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Level QBDD CQBDD SQBDD CSQBDD FBDD CFBDD SFBDD CSFBDD ZBDD ESRBDD CESRBDD RexBDD
1 4 2 3 2 2 1 1 1 2 0 0 0
2 16 8 10 6 12 6 6 4 12 12 6 5
3 256 128 136 72 240 120 120 64 240 216 96 56
4 65,536 32,768 32,896 16,512 65,280 32,640 32,640 16,384 65,280 64,848 32,256 16,206
5 4,294,967,296 2,147,483,648 2,147,516,416 1,073,774,592 4,294,901,760 2,147,450,880 2,147,450,880 1,073,741,824 4,294,901,760 4,294,772,064 2,147,321,857 1,073,677,827

Total 4,295,033,108 2,147,516,554 2,147,549,461 1,073,791,184 4,294,967,294 2,147,483,647 2,147,483,647 1,073,758,277 4,294,967,294 4,294,837,140 2,147,354,215 1,073,694,094
Avg. 17.389 14.204 15.486 13.338 13.540 11.637 11.637 10.771 13.540 11.174 9.872 9.305

Figure 11: Number of nodes to encode all functions of 5 variables; average nodes to encode one of these functions. Bold is best.

QBDD CQBDD SQBDD CSQBDD FBDD CFBDD SFBDD CSFBDD ZBDD ESRBDD CESRBDD RexBDD
B2>A4 �nal nodes 5.77 5.27 5.38 4.89 1.39 1.29 1.27 1.17 5.51 1.30 1.10 1.01
B2>A4 peak nodes 8.59 7.19 8.00 6.74 1.40 1.18 1.27 1.08 8.31 1.32 1.08 1.01
B2>A4 runtime 9.96 9.47 9.98 9.20 2.28 2.26 2.29 2.08 9.62 2.51 2.11 1.00
C2670 �nal nodes — 259,311,327 — 259,055,555 33,013,096 18,975,054 32,501,745 18,719,282 — 32,915,387 18,877,279 18,752,067
C2670 peak nodes >500M 407,427,217 >500M 407,164,516 43,218,281 23,728,393 42,699,096 23,465,692 >500M 43,105,063 23,615,049 23,495,218
C2670 seconds — 20,570 — 19,698 3,183 998 2,992 976 — 2,961 969 862
DictBinComp ! =144 1,105,092 1,105,091 1,072,081 1,072,081 1,104,755 1,104,754 1,071,744 1,071,744 651,993 461,155 461,156 460,971
DictBinFull ! =168 1,267,787 1,267,786 1,235,315 1,235,315 1,267,399 1,267,398 1,234,927 1,234,927 844,240 516,408 516,408 516,231
Dict1hotComp ! =1,272 9,700,754 9,700,754 9,668,809 9,668,809 9,699,268 9,699,268 9,667,323 9,667,323 300,271 300,271 300,271 300,271
Dict1hotFull ! =3,048 22,982,853 22,982,853 22,950,908 22,950,908 22,979,590 22,979,590 22,947,645 22,947,645 300,271 300,271 300,271 300,271

Figure 12: Scores for the 69 IWLS’93 combinational circuits. Detailed results for C2670. Dictionary results. Bold is best.
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Figure 13: Number (y-axis, in logscale) of functions of �ve
variablesencoded with 0,...,19 (x-axis) nonterminal nodes.

c2670; here, too, RexBDDs excel, requiring slightly more �nal (0.2%)
and peak (0.1%) nodes than CSFBDDs, but 11.7% less runtime.

Then, we report on encoding the English words in MacOS �le
/usr/share/dict/words, as done in [5]: 235,886 words of length
from 1 to 24, using either the full 128 ASCII alphabet, or a compact
alphabet of 54 characters, and either a binary or a one-hot encoding.
Fig. 12 shows the number of levels ! and the number of nodes
required by each variant. RexBDDs always require the fewest nodes.
Interestingly, the one-hot encoding requires more levels but has
ZBDDs, ESRBDDs, CESRBDDs, and RexBDDs all tied for the fewest
nodes, regardless of the alphabet; however, when encoding the
complement of this set, all variants require exactly the same number
of nodes as before, except for ZBBDs and ESRBDDs, which become
as bad as QBDDs (not shown).

5 CONCLUSIONS
We introduced RexBDDs, which canonically combine nine reduc-
tions (including those of the two most well-known BDD variants,

FBDDs and ZBDDs) with complement and swap �ags. Benchmark
experiments con�rm that RexBDDs encode many boolean functions
using substantially fewer nodes than any other BDD variant, and
tend to have much better runtimes. Once completed, our prototype
RexBDD library will be a plug-and-play replacement to any BDD li-
brary, as users interact with it by simply creating and manipulating
the boolean functions required by their speci�c application. Users
can then enjoy the bene�ts of both FBDD and ZBDD reductions,
without needing to decide between them a priori.
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