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Abstract—Graph neural networks (GNNs) have demonstrated
effectiveness across diverse application domains by leveraging
graph information to uncover intrinsic correlations alongside
feature representation. This enables GNNs to explore richer
information compared to conventional neural networks, resulting
in enhanced predictive performance. However, the integration
of graph-structured data into the learning process poses two
challenges. First, the sparsity and irregularity of the graph
representation result in inefficient and expensive memory accesses
on throughput-oriented accelerators, such as GPUs. Second, as
GNN training involves interleaved graph operations to extract
topological information and neural operations to update node or
edge embeddings, the joint optimization of these two operations
on accelerators is challenging due to their distinct resource
requirements. Among GNN graph operations, graph attention
which helps focus GNN training on highly correlated nodes is
critical to training performance and model accuracy. However,
our profiling of representative GNNs reveals that irregular mem-
ory access during graph attention accounts for the dominating
overhead in GNN training.

To address this issue, this paper proposes a more efficient
graph attention method MEGA to accelerate GNN training.
MEGA converts the original graph representation into one that
regularizes memory access patterns for graph attention. Specifi-
cally, during preprocessing, MEGA traverses a graph to derive a
schedule for graph attention and uses the schedule to reorganize
the graph representation for optimized memory access. MEGA
explores several techniques to balance memory access efficiency
and preserve the original graph properties to avoid the loss of
model accuracy. Experimental results with representative GNNs
and graph data sets show that MEGA consistently outperforms
conventional graph attention methods with up to 3x speedup.

Index Terms—Graph Neural Networks, GPU Computing,
Memory Access patterns, Data transaction

I. INTRODUCTION

Graph Neural Networks (GNNs) have gained widespread
popularity and have been adopted in various machine learning
applications, including recommended systems [1], molecular
interfaces studies [2], physics system modeling, and disease
classification [3]. During the learning process of GNNs, gen-
eral information can be extracted using conventional neural op-
erators, e.g. linear projection, and pooling layers. Meanwhile,
graph operators enforce a local context, which magnifies
the inner correlation of data [4] and improves the learning
capability.

Graph attention is a mechanism employed in GNNs to
assign importance or attention to different nodes and edges to
selectively focus on relevant information while disregarding ir-
relevant or noisy data. The attention mechanism has also been
explored in other learning algorithms. The transformer [5],
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Fig. 1: Graph Attention vs Global Attention.

a trending model for natural language processing (NLP),
employs a global attention mechanism to compute correlation
coefficients between every pair of words in a sentence. As a
result, a more accurate semantic correlation can be learned
between distinct words. The effectiveness of the attention
mechanism in transformers has been demonstrated in extensive
experiments and real-world applications [6]. Crucially, the
high degree of parallelism and scalability inherent in the trans-
former mechanism and the effectiveness of global attention
enable efficient processing of vast amounts of data, leading to
the rapid evolution of large language models (LLMs).

It is possible to employ global attention in GNN training
with a hypothetical fully connected graph in which edges are
represented using an adjacent matrix and non-existing edges
are all zeros. While global attention can be done through
dense matrix operations and result in efficient and regularized
memory accesses, it involves significantly redundant graph
data, and its computational cost scales quadratically with the
number of nodes as shown in Figure 1a.

On the other hand, graph attention does not incur redundant
graph computation but requires that training follows the actual
graph paths for performing attention. Such graph topology
information and graph traversal utilities are typically provided
by a third-party graph library. As real-world graphs exhibit
sparse properties [7], graph attention significantly reduces the
attention volume compared to global graph attention but at a
cost of irregular and expensive memory access.

We quantify the overhead due to irregular memory access
in graph attention and compare it with that in global attention
in Figure 1b. We perform graph attention and global attention,
respectively, on two graphs with the same number of nodes,
one real-world, sparse graph, and one fully connected graph.
We measure the time required to complete the graph attention



and global attention and plot their ratio in Figure 1b. A ratio
larger than 1 indicates that graph attention takes more time to
complete even with less computation than global attention. The
results in Figure 1b suggest that as the graph grows bigger and
becomes more sparse (e.g., smaller feature dimension), graph
attention incurs increasing overhead compared to global atten-
tion, highlighting the need to address the memory bottleneck
in graph attention.

Recent works proposed ideas to address GNN inefficiency
on GPU [8]-[10]. These studies suggest systematic optimiza-
tions, modifying low-level libraries through the analysis of
input graph data and customizing on-device GNN compute
kernels for different graphs with additional scheduling guid-
ance passed to GPUs. In this study, we focus on optimizing the
execution efficiency of GNNs on GPU by attaining a nuanced
balance between resource efficiency in graph attention and the
execution efficiency of global attention. Unlike the existing
work, our approach does not necessitate modifications to low-
level libraries. Inspired by GPU’s high efficiency for dense ma-
trix operations that effectively hide the costly off-chip memory
operations [11] [12], we explore novel graph representations
to regularize memory access patterns during graph attention,
instead of tailoring GPU kernels to accommodate irregular
graph accesses. The optimized access pattern not only enables
sequential and coalesced memory accesses on GPUs but also
facilitates data reuse during GNN training.

To achieve this goal, we propose a More Efficient Graph
Attention mechanism (MEGA) to reorganize a graph for
optimizing memory accesses in graph attention. The key
design of MEGA is a preprocessing stage that determines
a graph traversal schedule for graph attention later during
GNN training. The preprocessing occurs on the CPU and is
decoupled from the interleaved graph and neural operations
on the GPU. MEGA derives a new graph representation in
which graph vertexes are sorted according to the order they
are accessed in the predetermined graph traversal schedule
and placed along the diagonal of the new adjacency matrix.
This new graph representation enables dense neural operations
along the diagonal with aligned, regularized, and coalesced
memory access. Similar to global graph attention that involves
redundant computation to emulate a fully connected graph,
MEGA also requires virtual edges that do not exist in the
original graph to determine a graph traversal schedule or
a path to (almost) fully cover all vertexes in the graph.
MEGA leverages the Weisfeiler-Lehman (WL) method [13]
to quantify the similarity (isomorphism) between the original
graph representation and the proposed diagonal-oriented rep-
resentation. MEGA also devise an adaptive diagonal attention
approach to dynamically adjust the width of the diagonal (or
attention window size) to maintain graph isomorphism.

We have implemented MEGA in PyTorch and evaluated its
performance against conventional graph attention approaches.
Experimental results with four representative graph datasets
and two GNN configurations show that MEGA consistently
outperforms conventional graph attention in training speed
while incurring moderate space overhead and achieving com-
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Fig. 2: GNNs primary operators.

parable model performance (accuracy).

II. GRAPH ATTENTION
A. Background

The graph attention layer utilized for updating node features
in SOTA GNNs [14] comprises two fundamental operators,
depicted in the equation below.

h,, = func (wh,, aggregateven,, (hv,€u,u) )

the red part highlights the graph operation that aggregates
neighboring information of node h, with edge weight e, ,,
and the blue part indicates the subsequent neural operation
that updates h!, for the next layer.

Each operator is depicted in Figure 2. About graph operators
shown in part (a), the arrows signify the data flow from vertex
embeddings to edge embeddings for scatter operations and
vice versa for gather operations. The required embeddings for
the target node are typically discretely located in memory
indexed by ID, making them challenging to access in a
coalesced manner. Graph operations serve as an unavoidable
prerequisite, attaining the messages from neighboring nodes.
In part (b), the neural operations update all edges or vertices
embeddings with element-wise activation, residual connection,
or linear projection. In neural operations, identical trainable
parameters and operations are shared across all embeddings,
eliminating the guidance by graph information for complex
data transactions.

Both types of operations are intricately intertwined, with no
overlap between them. Delays in either operation can have a
detrimental impact on the overall efficiency of the model.

B. Related Work

This section pertains to the latest research works that
made significant contributions toward enhancing the GNNs
efficiency.

1) Graph Transformer: Graph Transformers have gained
popularity in graph learning due to their attributes of high
parallelism and robust performance. The graph-agnostic global
attention module is adapted for message passing. To enforce
the learning of local context, topology information is encoded
as structural embeddings [15] [16] [17] or positional embed-
dings [18] [19] [20] [21] [22]. These embeddings are appended
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Fig. 3: Graph example for demonstration (a) and its corresponding adjacency format (b) The workflow of the forward pass of
a graph attention layer on GPU. Bolden frames in the figures signify the required nodes and edges for computation (c).

to nodes as additional features. However, edge features are
often overlooked in these works, and graph Transformers run
the risk of overfitting to positional or structural encodings [23].

Although graph transformers execute efficiently, their global
attention entails a trade-off in the form of substantial attention
complexity, scaling quadratically as O(n?) with node number
n, which becomes limiting as the graph size grows too large.
Some studies suggest the use of linear transformers (partial
graph attention) as a viable solution to mitigate this challenge.
Notable examples include Linformer [24], Reformer [25],
Longformer [26], Performer [27], and BigBird [28].

2) Systematic Optimization: Optimizations from a system-
atic perspective are proposed in various works [8]-[10]. These
works identify significant bottlenecks and propose correspond-
ing solutions. To exemplify these bottlenecks, we consider
a graph attention update concerning node h; in the graph
depicted in Figure 3a. The subsequent explanations elaborate
on these identified bottlenecks.

Un-coalesced memory access GPUs favor continuous access
patterns, thus facilitating coalesced access [29]. The irregu-
larity of graphs poses difficulties in addressing space locality,
where required neighboring operands are placed in discon-
tinuous memory locations, shown by the h; and hg in the
memory layout Figure ¢ 3 . This hinders coalesced accessing,
resulting in an abundance of costly loads or stores directed
to off-chip memory. To improve the locality of the workload,
GNNAdvisor [8] employed a reorder policy [30] to rearrange
node indexes so that vertices sharing dense connections are
assigned consecutive ID values and co-located in memory.
As a result, embeddings can be accessed with better locality.
Given the diverse spectrum of graph topology types, a univer-
sal reordering solution is not adept at effectively addressing
the nuances inherent in various graph characteristics [31].
An alternative study [32] discerned that adopting an appro-

priate graph storage format holds the potential for enhancing
the efficiency of GNNs during training.

Significant workload imbalance. Real-world graphs often
display a highly skewed degree distribution. Concurrently,
aggregation tasks are structured around targeting nodes within
the graphs. This arrangement leads to significant variance in
the workload assigned to each computation unit, determined by
the node degree. To address the issue of imbalanced workload
and the potential elongation of tail-latency arising from exces-
sive workload, [8] introduces a neighbor grouping strategy. In
this approach, computation units handling an excessive number
of neighbor nodes are subdivided into smaller units, aligning
with the average node degree. Subsequently, the outcomes
generated by multiple computation units are aggregated into
global memory using atomic instructions, thereby obviating
the need for explicit data exchange. It is noteworthy that the
implementation of this solution requires additional instructions
to guide the optimization process.

Redundant data transaction. In GNNs with multiple stacked
graph attention modules, the operations involving the graph
and neural aspects are intricately intertwined. Due to dis-
parate computational characteristics, identical data undergoes
repetitive data transactions through frequent graph and neural
kernel calls, as exemplified by the loading of hy and hg two
times in Figure 3c. To address this issue, studies [9], [10]
introduce intentional kernel fusion. This approach considers
factors such as the minimal data visibility range and the
equitable distribution of threads within warps, occasionally
requiring additional effort for various aggregation approaches.

III. PRELIMINARY

1) Models: The graph attention module is pivotal in
discerning distinctions among various GNN configurations,
directly impacting their performance and efficiency when



applied across different datasets. Consequently, the ensuing
discussion will primarily revolve around the attention modules
of the test models as elaborated below.

Gated Graph ConvNet (GCN) [33]: Employs batch normal-
ization and residual connection to update both edges and nodes
embeddings. The aggregation coefficient is determined by a
normalized value of the sigmoid of updated edge embeddings,
allowing node embeddings to be updated afterward.

Graph Transformer (GT) [18]: Adopts the mechanism from
the transformer for computing graph attention coefficients.
Within its attention module, multiple attention heads are
enabled to discover richer information. Embeddings are then
updated following a residual connection and layer normaliza-
tion.

Both configurations frequently launch dependent graphs and
neural operations, forming a non-overlapping serial compute
graph. Struggling in between any point can throttle the overall
efficiency. GT contains more trainable parameters and more
frequent neural operations, theoretically achieving stronger
learning capability at the cost of more computing effort. From
a system perspective, greater occupation by highly efficient
kernels can amortize the poor efficiency of the rest. However,
end-to-end speedup is not always guaranteed with better
execution efficiency, as convergence is not strictly correlated
with model efficiency or the volume of trainable parameters
across different datasets.

Table I provides an overview of the characteristics of the test
models. The parameter volumes indicate the cumulative count
of trainable parameters. The count of graph operations encom-
passes actions like scattering and gathering. GT demonstrates
a heightened level of operations in both neural and scattering
aspects due to its involvement in additional query, and key
operations based on the graph.

TABLE I: Model Configuration Statistics.

GCN GT
Parameter Volume 5d? 1442
Scatter(edges) calls x1 X5
Gather(nodes) calls X2 X2

2) Datasets: The downstream tasks for GNNs encompass
graph prediction, node prediction, and edge prediction. Our
study concentrates on graph prediction tasks that generate
a single scalar value per graph. This scalar value remains
invariant across both the original and augmented output data.
To conduct our investigation, we employ four graph datasets
that encompass both graph regression and graph classification
tasks

ZINC dataset [34] and the AQSOL dataset [35] are widely
recognized molecular graph datasets primarily employed for
regression tasks. These tasks involve the prediction of molecu-
lar properties, where the node features serve as representations
of atom types, and the edge features convey information about
the bonds existing between atoms.

CSL dataset [36] comprises 4 types of regular graphs
characterized by edges forming a cycle, and it incorporates

skip-links connecting nodes. CYCLES dataset [37] consists
of similar cycles while others do not where the cycles contain
fixed lengths. Both of these datasets are synthetically gen-
erated with the specific purpose of assessing the expressive
capabilities.

Table II provides an overview of datasets. These statistics
furnish valuable insights into both the computational and com-
munication volumes associated with graphs and the frequency
of data transactions per node. It is noteworthy that all the test
datasets demonstrate sparsity characteristics. Furthermore, it
is pertinent to observe that the majority of real-world graphs
similarly exhibit sparse properties [7].

TABLE II: Graph Statistics.

Datasets train validation test nodes  edges  sparsity
ZINC 10000 1000 1000 23 50 0.096
AQSOL 7985 996 996 18 36 0.148
CSL 90 30 30 41 164 0.098
CYCLS 9000 1000 10000 49 88 0.036
TABLE III: Graph Statistics.
Datasets  pu(o(d))  o(dmin) 0(dmaz)  0(dmean)  p(e€)
ZINC 0.5116 0.0059 0.1998 0.0052 0.94
AQSOL 0.6255 0.0987 0.3106 0.0511 0.87
CSL 0.0 0.0 0.0 0.0 1.0
CYCLS 0.4737 0.0 0.5045 0.0241 0.71

We present our observations on datasets in Table III. The
graph datasets exhibit small values for the average degree
variance p(o(d)), indicating a consistent degree distribution
shape shared across each instance. This consistency is further
supported by the diminutive values of o (dmean)s O (dmin)s
and o(dmax). Additionally, we conducted the Kolmogorov-
Smirnov test [38] on graph degree distributions, where the
proximity of these p(e) values to 1 signifies a high degree
of similarity among the distributions across different datasets.
This characteristic allows us to apply a similar unfolding
policy across graphs within each dataset, enabling batching
for higher parallelism while minimizing padding waste.

A. Profiling results

To analyze the impact of datasets and model configurations
on training efficiency, we gathered various metrics using the
Nvidia profiling tool nvprof on the GPU, focusing on various
on-device compute kernels.

The baseline method involves using the graph library dgl
for graph operations. To accelerate the graph attention process
in the dgl module, the cub module is utilized for sorting
embeddings based on given indices, facilitating fast fetching
of neighbors during graph attention for the targeted node. The
sgemm kernel represents the matrix multiplication for linear
projection, a highly optimized operation on the GPU.

We initiated an evaluation of the Stream Multiprocessor
efficiency, a metric indicating GPU utilization concerning
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independent kernels, as depicted in Figure 4. For this as-
sessment, we configured the batch size to 64 and the hidden
dimension to 128. As expected, the SM efficiency exhibited
by the ”sgemm” kernel significantly outperforms that of both
”cub” and ”dgl” kernels by a considerable margin. The overall
efficiency is impacted by the computational load introduced by
graph operations. Subsequently, We collected run time percent-
age attributed to each GPU kernel including M emcpy for two
batch size settings. As the results of batching within GNNs
hold the potential to influence these overhead percentages due
to the inherent variations in graph sizes and structures. In
Figure 5, the hidden dimension is fixed at 64, and the batch
size varies between 128 and 256. The overhead associated
with graph kernels witnessed an amortization effect with larger
batch sizes, concomitant with an increased allocation of work
time to the sgemm kernel. It is important to mention that
the CSL dataset maintained a consistent graph size across the
entire dataset, resulting in an unaltered overall percentage.
The GT module consistently shows a higher percentage
of utilization of graph operations compared to GCN. This
difference is attributed to the GT module’s execution of five
times more scattering operations related to edge features, as
illustrated in Table I. Despite the GT module having ap-
proximately three times more trainable parameters associated
with neural operations, utilization by sgemm is still less than
GCN. This observation implies that graph-related operations
have a more dominant influence on determining the overall
efficiency of the model. Different datasets also yield diverse
profiling outcomes. This variance in results is caused by
multiple factors, including variations in degree variance and

graph sparsity. For instance, the ZINC dataset exhibits a higher
percentage of graph operations due to its elevated sparsity
value (Table II) and degree mean (Table III).

We collected other system metrics, including the count
of Warp-level instructions for global loads, the percentage
of stalls attributed to the absence of required input by the
instruction, and the number of calls made by each kernel on
all major kernels shown in Figure 9. Both graph kernels cub
and dgl exhibit a notable deficiency in data locality, evidenced
by the substantial percentage of stalls and the excessive
volume of global loads observed during their execution. As a
result, it becomes abundantly clear that the irregular memory
layout emerges as the predominant factor contributing to the
efficiency bottleneck encountered within the domain of GNNss.

B. MEGA Design

Our proposed approach aims to expedite the end-to-end
training process without compromising model performance.
The key idea is to enhance runtime GPU memory efficiency. In
MEGA , graph data is reorganized to facilitate sequential access
while maintaining a trivially relaxed graph isomorphism. This
involves assimilating graph information into the reorganized
embedding ordering, enabling subsequent efficient window-
sized attention within graph operations.

The notations used in this study are provided in Table IV.
The input graph is represented in the coordinate format as a list
of vertex pairs, where (v, vgs) denotes an edge belonging to
the set E. For simplicity, we assume the graph to be undirected
in the following algorithm, with minor adjustments needed for
directed graphs.

TABLE IV: Notations.

Symbom Definition

G Graph topology

1% Set of vertices in G

E Set of edges in G

n number vertices; n = |V/|
m number edges;m = |E|
dv) degree of vertex v

N (v) unvisited neighbors of vertex v
size(.) function returning the size of a set
P Nodes index within path

U unvisited nodes index by path
0 edge coverage percentage

Graph Reorganization

Sparse fetching is frequently employed when accessing data
of connected neighbors for a targeted node during graph
attention, resulting in a significant volume of costly data
access. Drawing inspiration from the notion that one can learn
the topology of a maze after traversing it entirely, we propose
an alternative perspective on the graph, referred to as a “path”.
The graph is restructured into a path representation while
retaining the original graph properties. By accessing data along
the path, the visiting sequence during attention is ensured to
be serialized.

To restructure the entire graph, the path must traverse the
complete graph. However, accomplishing a traversal of a
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Fig. 6: GPU Kernels Profiling.

complete graph without revisiting nodes is extremely difficult
and oftentimes infeasible, as extensively studied in Eulerian
path analysis [39]. We formulate our traversal objective with
a relaxed requirement: The traversing agent is initialized at a
specific node in the graph. When a dead end is encountered
during traversal, the agent is allowed to jump to any node with
unvisited neighbors. Eventually, the traversal terminates once
all edges or a certain percentage of edges (denoted as #) have
been visited by the agent.

Preserving Graph Properties

All traversal objectives need to be achieved under a prereq-
uisite: the path-based representation must preserve its isomor-
phism to ensure the correctness of graph attention.

We leveraged the Weisfeiler-Lehman (WL) method [13]
to cross-verify the isomorphism between the original graph
and the respective path representation. The key idea of the
WL algorithm is to assign unique labels to every vertex.
In subsequent steps, vertex labels are repeatedly updated
with the concatenation of all labels of neighboring nodes,
including self-label. Graph discrepancy can be determined by
the difference among the updated labeling strings.

To maintain the local context of the graph in our path
format, it is necessary for consecutive node appearances to be
connected in the original graph. An exception arises when all
neighbors of the current node have been visited, in which case
the subsequent node is selected from unconnected nodes. The
newly initiated path is connected to the preceding path through
a virtual edge, signifying the absence of actual connections
in the original graph. This virtual edge also introduces the
potential for exploring hypothetical connections, as jumping
nodes are frequently selected within densely connected clus-
ters in cases where no direct connections exist in the provided
graph. The objective is formulated as follows for picking the
subsequent candidate:

(D

nodenept = argmax SiZ€(n (v)nP[—w:))

v denotes subsequent candidates, and w represents the
window size, indicating the visible range for nodes v appearing
in the path. The window size can be adaptively tuned based on
the mean degree of the input processing graph. As exemplified
in Figure 7, the window size of the path is configured to
1. The objective equation identifies the node that maximizes
the set intersection. This mechanism ensures correctness in
one-hop aggregation and theoretically maximizes isomorphism
with multi-hops.

Limiting vertex revisit Memory redundancy is inevitable
when node revisits occur in our graph traversal policy. When
the number of revisits reaches a certain threshold, the benefits
of serialized memory access are offset by the additional mem-
ory that needs to be accessed due to redundancy. Therefore,
limiting revisiting in the path is extremely important.
Accomplishing this goal presents a challenge owing to the
diverse characteristics exhibited by real-world graphs. These
graphs demonstrate a range of degree distributions, such as
uniform, normal, and predominantly power distributions [40].
Thus, an adaptive traversing policy becomes imperative to
accommodate these varied graph characteristics. Two primary
objectives are formulated for constraining revisiting:

o Minimize the incidence of commencing a new path from
nodes with an even degree.
« Enlarge the path width when nodes possess a high degree.

Let’s represent a set of node degrees in the graph as
D = d,...,d,. The theoretical lower bound of revisiting
number can be optimistically achieved with a window size w,
expressed as ), . [4:] —n, where n is the node appearance
number, ensuring each node appears at least once. Increasing
w enlarges the coverage on popular nodes with more connected
neighbors, which are often considered more significant for
contributing to the learning context. Reframing the objective
equation 1 as our traversing agent action policy yields the
following:
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Pli+1] = argmax Size(n,, nPy_u.i) 2)
v

Py represents the last visited node so far. A candidate
maximizing correlation with the previous w nodes in the path
is heuristically selected for visiting in the subsequent step.
Candidates v for equation 2 are filtered according to the
following conditions in descending order of priority:

{u| ueUuée N(pm) }
{ul w € Py , Ny > 0} if not Empty
U else

if not Empty

v =

Initially, the agent scans the unvisited neighbors of node
ppi)- This process continues until the neighborhood N (P[i])
is exhausted. Subsequently, candidates are selected from the
visited nodes with remaining unvisited neighbors, denoted by
{u| v € Py , Ny > 0}. If both pools of previous candidates
are empty, nodes are then chosen from the set of unvisited
nodes U.

We provide pseudocode shown in Table 1 incorporating the
above objectives. Two key data structures are used to minimize
the search space. The neighbors dictionary A/, initialized at
line 1, s initialized at line 1, stores the set of unvisited
neighbors for each vertex. In each iteration, the selected
candidate is removed from the neighbor set of the previous
vertex, and the process is terminated until all neighbor sets are
empty, ensuring that the search space monotonically decreases.
The stack stk, declared at line 1, stores the visited nodes
with remaining unvisited neighbors. The Last-In-First-Out
mechanism ensures that the topmost vertex popped from the
stack is the most correlated to the recently traversed path.
The algorithm continues until all nodes have been visited, and
a certain ratio 6 of edges have been traversed. The desired
outcome exemplified by this algorithm is illustrated in Figure
7, with the input graph shown in Figure 3a.

Lastly, our approach enables the option to drop edges during
the traversal process. As elucidated by the work [41], there
are instances in which GNNs that rely on fixed topology
aggregation may lead to overfitting and a diminishment of
their generalization capacity.

Algorithm 1 Objective Graph traversal.

0: //return number of neighbors of v in previous w traversed
nodes

0: function CORRELATE(v)

0:  return size of Ncyrry N P_uy

0: end function

0: //return reordered data sequence

0: function MAIN(G, o, w)

0: P < list

0: stk < stack

0: N < dict for store Un-visited neighbors

0 U <« Un-visited vertex set

0 curr < starting vertex

0: for src,dst + edge_pairs in G do

0 neighbors|src|.append(dst)

0: end for

0 P.add(curr)

0 U .remove(curr)

0 while not (U # ()) or visited edge ratio > « do

0: pre,ns < curr,neighbors[curr]

0: if ns # () then

0: curr < argmax, [correlate(v) for v in ns]

0 else if stk # () then

0 Stprp() until Af(stk.top()) 7& 0

0 curr < stk.pop()

0 else

0 curr <— arg max,|correlate(v) for v in U]

0 end if

0 ‘P.add(curr)

0 N{curr)-remove(pre)

0 IIN (pre)-remove(curr) for un-directed graph

0 U .remove(curr)

0 if NVcurry) # 0 then

0 stk.push(curr)

0 end if

0: end while

0: return P

0: end function=0

C. Adaptive Diagonal Attention

Embeddings with a designated sequence (path-based repre-
sentation) are prepared for loading into the model, given that
the graph is imparted with a specific ordering and avoids the
need for topology information. During graph attention, neigh-
boring nodes are placed consecutively in memory, maximizing
memory efficiency with more coalesced memory access. This
memory alignment aligns seamlessly with diagonal attention,
wherein nodes aggregate messages along a windowed diag-
onal depicted by the colored grid in the adjacency matrix,
as illustrated in Figure 7. Nodes with degree values higher
than the window size can be accommodated through multiple
appearances in the path, as exemplified by nodes hs and hg.
For graphs with higher average degrees, the window size can
be adaptively enlarged to cover more edges while requiring



fewer node appearances.

This diagonal attention mechanism resonates with the con-
cept presented in longformer [26] for NLP tasks. It im-
poses a fixed attention range on surrounding words, grounded
in the assumption that words situated far from the current con-
text contribute minimally to the learning process. The analogy
between graph attention and longformer is discernible to a
certain extent. Popular nodes that have more neighbors exert
more influence [42] [43] [44] and receive greater attention,
while a majority of nodes share similar low degree value. Akin
to crucial words may manifest multiple times in a sentence.

The integration of diagonal attention also mitigates re-
dundant computations associated with bidirectional edges. In
conventional implementations, the update of edge embeddings
occurs twice during the message-passing process when aggre-
gates are initiated twice by two nodes connected with the same
edge. By organizing the adjacency matrix of the original to
maintain symmetry around the diagonal in MEGA, results on
one side can be reused and applied to the corresponding side,
as operands and operations are identical.

IV. EVALUATION

In this section, we present evaluation results aimed at
addressing the following inquiries:

o To what extent does the path representation preserve
graph characteristics? (IV-B1)

o To what degree does the graph attention achieve opti-
mization in the context of MEGA ? (IV-B2)(IV-B4)

o How effectively is the learning performance preserved
when utilizing the path representation? (IV-B4)

A. Evaluation Methodology

Experimental setup.

Experiments were carried out on a GPU server equipped
with GeForce GTX 1080 GPUs and a CPU featuring 16
cores (Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz) with
PCI-e 3.0x16. The dependency configurations utilized for
these experiments adhere to the specifications detailed in
the reference [45]. The L2 cache capacity of GTX 1080
GPUs is 2048 KB, which proves inadequate for caching node
and edge embeddings. Consequently, the majority of memory
access for graph operations is directed to the global memory,
which boasts a capacity of 12 GB but incurs higher costs.
This discrepancy in efficiency between serialized access and
randomized access becomes more pronounced as a result.

The evaluations were conducted using the Mega and a
baseline method DGL with two model configurations, GT
and GCN, across four datasets as detailed in Section III
In each experimental setup, both methods employed models
with identical parameter counts. When comparing the end-
to-end speedup, we ensured that path representations in Mega
encompassed all nodes and edges present in the original graph,
thus maintaining equitable workloads across respective graphs.
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Fig. 8: Isomorphism Evaluation.

B. Evaluation Results

1) Isomorphism Results : The evaluation of graph isomor-
phism utilizes the WL test, as elaborated in Section III-B. The
similarity score is computed between the path representation
and the original graph, where a score of 1 indicates complete
graph identity. We conducted a comparative analysis between
the path-based representation and the full labels set (aggrega-
tion results by global attention) to assess the ability of each
attention approach to maintain graph characteristics across two
prevalent graph sparsity levels illustrated in Figure 8 as 0.05
and 1. Graph sparsity is defined as the ratio of the actual
number of edges to the edges of the fully connected graph.

The labels p and g denote path representation and global
attention with respective node numbers. As indicated by the
results in Figure 8, the path representation consistently ensures
identity in 1-hop aggregation. The similarity coefficient may
fluctuate as the aggregation hop count grows. Nonetheless, the
majority of information is preserved and can be compensated
for by the resilience of neural networks, resulting in compa-
rable performance.

2) Systematic Results : The SM efficiency and the stall
percentage due to memory are identified as critical indexes re-
vealing model inefficiency in Section III-A and are utilized to
evaluate the optimization of the proposed method. We set the
batch size and hidden dimension as 64 and 128, respectively,
as these values exhibited the poorest efficiency during the
execution of conventional graph attention in previous profiling.

For each metric, we calculated a normalized value to
estimate the overall performance. This was achieved by con-
sidering the invocation number of kernels participating in the
workflow and averaging the metric measurements across each
kernel type, employing the following equation:

> ke metricy X ny
> kex Mk

K represents the set of GPU kernel names called during
the executions and ny indicates the number of calls for that
kernel.

Based on the evaluation results shown in Figure 9, Mega
consistently demonstrates stable high SM efficiency and low
stall percentage in all settings. The varying efficiency exhibited
by DGL under different settings can be attributed to the varied
frequency of graph operations across model settings and the
distinct data statistics. For example, GT involves five times
more aggregation operations than GCN, resulting in the SM
efficiency of the DGL method with GT being only a quarter
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Fig. 9: memory metrics.

of that of GCN, mainly due to more occupation by inefficient
graph operations. Remarkably, the efficiency of Mega remains
unaffected by these variations.

As anticipated, the diagonal attention along the path rep-
resentation regularizes graph operations as dense operations,
resulting in a reduced occurrence of stalls due to graph irreg-
ularities and mitigates performance fluctuations when faced
with different datasets or models.

3) Runtime Results: Results for epoch execution time with
common batch sizes settings as 64, 128, and 256, are presented
in Figure 10. The dense compute kernel sgemm is identified
for providing the best efficiency, and its percentage occupation
is also provided to assess the overall efficiency.

The Mega method demonstrates less epoch overhead and
greater occupation by sgemm across all settings. However,
the epoch speedup achieved by Mega does not exhibit an
increase as the batch size grows. This observation aligns with
our assumption that a larger computation volume for neural
operations can amortize the lag caused by graph operations.

As anticipated, Mega provides substantial efficiency im-
provement for GT and comparatively minimal improvement
for GCN, as GT involves more graph operations. This provides
further compelling evidence that Mega effectively bridges the
efficiency gap between graph operations and neural operations.

4) End-to-End Result. : The convergence time serves as
the primary criterion for assessing the speedup achieved by the
MEGA method. All models employed are configured based on
performance-oriented studies respected to test datasets [45]
[18].

To illustrate real-time speedup in evaluation coordinates,
the x-axis represents wall clocks in seconds, while the y-axis
represents the loss/accuracy indicating model performance.

MEGA demonstrates acceleration across all datasets to vary-
ing degrees. For the zinc dataset, utilizing the GT config-
uration, the time required by MEGA converges to optimal
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results in half the time compared to the baseline approach
(Figure 12). Similarly, in the agsol dataset (Figure 11), csl
dataset (Figure 13), and cycles dataset using GCN configura-
tion (Figure 14), MEGA achieves approximately x2.6, x2.2,
and x1.6 speedup.

5) End-to-End Results with Edge Droping : We further
assess Mega with Edge Dropping enabled in our path rep-
resentation. It is important to note that the benefits of edge-
dropping are not universally applicable across all datasets. In
our experiments, 20% of edges are randomly dropped within
every graph and its respective path representation when tested
with the agsol dataset. Results reveal that Mega achieved a
notable speedup of 5.9x while maintaining the same level of
accuracy, as depicted in Figure 15.

6) Distributed Communication Analysis : In the context of
distributed learning, concerning communication analysis, the
theoretical communication volume required for a partitioned
graph is determined to be O(y/logklogn), as studied in
distributed graph communication research [46]. This volume
exhibits linear growth with the number of nodes n and the
partition number k, this usually requires expensive all-to-all
communication. The partition of the path representation in
Mega reduces this communication overhead to only two com-
munications for adjacent path partitions theoretically, resulting
in a distributed manner with O(k) communication effort.
Although the path representation introduces an increase in the
value of n due to embedding rearrangement, the associated
tradeoff is deemed justifiable, given that this value does not
surpass a certain degree.

7) Limitations : The principal advantage of our approach
lies in its ability to serialize the graph access pattern while
minimizing memory overhead, thereby enhancing access effi-
ciency.

To maximize access efficiency, it is imperative to restrict
node re-visitation, avoiding the risk of potentially extending
overall execution time. Consequently, achieving comprehen-
sive coverage of the graph through a succinct path-based
representation becomes paramount. Although real-world graph
topologies span a spectrum, our traversal algorithm neces-
sitates meticulous calibration to accommodate diverse graph
characteristics.

Neglecting to preserve graph attributes can precipitate a
degradation in performance, while failure to curb node redun-
dancy may nullify the gains in access efficiency.

8) Discussion & Future work : In various works aimed at
optimizing systems for machine learning, a recurring trade-off
between performance and efficiency is observed, e.g., model
pruning and model quantization. These methodologies strive
to achieve significant efficiency gains while minimizing any
compromise to the predictive capabilities of the model. For
instance, model pruning techniques, in DeJa vu [47], identify
contextual model sparsity, thereby reducing the computational
workload associated with model inference.

Our work aims to devise an access-efficient path repre-
sentation that encapsulates meaningful graph characteristics.
Furthermore, empirical studies conducted in SparseGAT [48],
demonstrate that a substantial portion of edges within real-
world graphs can be eliminated without detrimental effects on
model performance. Conversely, the removal of such edges
can lead to performance enhancements in certain scenarios,
albeit with the caveat of inducing noise during the learning
process. MEGA , by extending its capabilities to explore graph
sparsity akin to SparseGAT, also alleviates the computational
burden associated with graph traversal by reducing the number
of edges traversed along a path. For heterogeneous graph
scenarios, MEGA can leverage the idea in HAN [49], MEGA
can arrange multiple paths to cover distinct node types, sub-
sequently merging hierarchically.

The effectiveness of MEGA also renders it suitable for
applications governed by stringent latency constraints. MEGA
can be applied with DYGAT [50], facilitates real-time stroke
classification conducive to online handwriting interaction.

V. CONCLUSION

We introduce Mega, a method that enhances the runtime
efficiency of graph attention on GPUs. Throughout our evalua-
tions, we substantiate the effectiveness of Mega by comparing
it to the conventional message-passing method. Our method
reveals a superior memory accessing efficiency, while con-
currently maintaining a comparable level of model predicting
performance. The path-based graph employed in Mega proves
to be a nontrivial representation that seamlessly contributes to
GNNs learning, and it is a promising avenue for further ex-
ploration, demonstrating its potential to accommodate a wide
spectrum of datasets. The inherent regularized communication
pattern and efficiency in data processing offered by Mega
allow GNNs to align with the ongoing trend of expanding
model sizes.
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