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Abstract—Recently, brain-inspired hyperdimensional comput-
ing (HDC), an emerging neuro-symbolic computing scheme that
imitates human brain functions to process information using
abstract and high-dimensional patterns, has seen increasing ap-
plications in multiple application domains and deployment in
edge-cloud collaborative processing. However, sending sensitive
data to the cloud for inference may face severe privacy threats.
Unfortunately, HDC is particularly vulnerable to privacy threats
due to its reversible nature. To address this challenge, we propose
PP-HDC, a novel privacy-preserving inference framework for
HDC. PP-HDC is designed to protect the privacy of both inference
input and output. To preserve the privacy of inference input,
we propose a novel hash-encoding approach in high-dimensional
space by implementing a sliding-window-based transformation on
the input hypervector (HV). By leveraging the unique mathemati-
cal properties of HDC, we are able to seamlessly perform training
and inference on the hash-encoded HV with negligible overhead.
For inference output privacy, we propose a multi-model inference
approach to encrypt the inference results by leveraging the unique
structure of HDC item memories and ensuring the inference result
is only accessible to the owner with a proper key. We evaluate
PP-HDC on three datasets and demonstrate that PP—HDC enhances
privacy-preserving effects compared with state-of-the-art works
while incurring minimal accuracy loss.

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging Non-
von Neumann computing neuro-symbolic scheme inspired by
the intricate functionality of the brain. HDC has gained sig-
nificant traction in diverse domains and has shown remarkable
advantages over deep neural networks (DNNs). Notably, by of-
fering smaller model sizes, less computation cost, and one-shot
learning capabilities, HDC becomes a promising alternative to
DNNs [7]. Recently, HDC has been implemented in edge-cloud
collaborative processing scenarios, e.g., machine learning as
a service (MLaaS), including cloud computing and federated
learning due to its notable processing efficiency [10], [19].

Despite the growing popularity of HDC, the privacy threat
of HDC models is still under-investigated. This is particularly
important in the context of edge-cloud collaborative processing.
Transmitting sensitive data from edge users to the cloud for
inference raises significant privacy concerns, since untrusted
cloud hosts may expose the data to suspicious parties [8].

Unfortunately, HDC is indeed particularly vulnerable to
privacy threats due to its reversible nature. Unlike non-linear
operations introduced in DNNs, HDC hardly maintains any pri-
vacy since its fully reversible computation [12]. Prive-HD [12]
attempted to preserve privacy by applying certain modifications
on the data hypervectors (HVs), the data representation in HDC,
through quantization and noise injection.

However, the effects of such strategies are considerably
limited and the accuracy drops due to the modifications on the
HDC model. To address these challenges, we propose PP—HDC,
a novel privacy-preserving strategy to protect both the inference
input and output of HDC. Our main contributions are as
follows: (1) In PP—HDC, we propose a novel HV hash-encoding
approach, designed to preserve the privacy of inference input.
The proposed hash-encoding can be seamlessly integrated into
the HDC pipeline since it preserves the distance properties
between HVs, enabling direct training and inference on the
hashed HVs. (2) In PP-HDC, we propose a novel multi-model
inference approach for protecting the privacy of inference
output, which is largely overlooked in existing research [12],
[10]. Leveraging the unique item memory structure of HDC,
PP-HDC ensures that only the user with the right key can access
the inference results. (3) Furthermore, We perform extensive
evaluations of PP—HDC on three datasets containing sensitive
information. Compared to previous work [12] which introduces
more than 10% accuracy degradation, PP—HDC introduces
negligible accuracy loss at less than 1%. (4) We conduct a
comprehensive security validation analysis of PP—HDC against
two attacks, namely the brute force attack on recover inference
input and inference output knowledge attack. The experimental
results and analysis demonstrate that PP—HDC can provide ef-
fective privacy preservation in both inference input and output.

II. RELATED WORK

The development of machine learning as a service (MLaaS)
has witnessed remarkable growth in recent years, driven by the
proliferation of edge devices and diverse learning tasks. Mean-
while, the requirement for privacy-preserving machine learning
(PPML) solutions is also increasing due to privacy concerns in
the ML community. One conventional privacy-preserving solu-
tion is differential privacy [5], [6], which can preserve privacy
and train the ML model by introducing perturbation and noise
to data. However, differential privacy is not extended to the
inference phase [8], where the privacy of inference input and
output demand to be protected. Homomorphic encryption (HE)
algorithm [17] has emerged as a popular solution for preserving
privacy during inference HE allows computing functions or
operations on encrypted data without deciphering, and different
operations on encrypted data require diverse implementations
of HE [1], [2], [3]. CryptoNets [8] implements one of the first
HE-based DNNs inference frameworks. However, the adoption
of the HE approach comes with significant inefficiency and
computational overhead [10].
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In the context of HDC, few studies have focused on data
security and privacy concerns within HDC processing. Re-
cently, SecureHD [10] implements an HDC cloud computing
framework based on Multi-party Computation (MPC), which
protects data security by encryption during data transmission.
Prive-HD [12] proposes the first privacy-preserving approach
for HDC, which provides differential privacy protection during
the HDC training and inference process. Moreover, PRID [9]
addresses the defense of the HDC model against model in-
version attacks and provides privacy preservation approaches
through noise injection and HV quantization.

III. PRELIMINARIES
A. General HDC Arithmetic

Hypervectors (HVs) are the basic components of HDC which
are high-dimensional and holographic vectors with i.i.d. ele-
ments [11]. HDC has two main arithmetic operations, bundling
(4) and binding (x), as elaborated in Eq. (1). Different op-
erations make HDC able to aggregate information and gen-
erate new representations. The bundling operation performs
an element-wise addition on the two input HVs, while the
binding operation multiplies two HVs element-wisely. For the
calculation result, the bundling operation creates the third
HV similar to the two input HV and the multiply operation

generates the third HV different from the two input HVs [11].
TW+H% = (hvi1 + hvja, . .., hvig + hvja) "
m* HV; = (hvi1 * hvjy, . .., hvig * hojq)

In this paper, we use the cosine similarity §, provided as
Eq. (2), to measure the similarity of information between HVs.

— ——s HV, -0V,
S(HV, HV)) = —— "I | )
[HVi|| < [[HV]|

B. General HDC Process

The implementation of HDC consists of the encoding pro-
cess, training, and inference process. First of all, the HDC
encoding process involves projecting a data sample into an
HV the encoding function can be domain-specific. Here we
adopt the I D-based encoding strategy similar to the previous
work [10], where we utilize N Base HVs in item memories
(IMs) that map N features spatially. After the encoding process,
all the data samples in datasets are embedded into HVs during
the process of HDC. However, the encoded HV has a natural
drawback in privacy, which will be discussed in Sec. IV.

Secondly, the training process involves establishing associa-
tive memories (AMs) across the entire training set. For the
training set containing C' classes of samples, each training
sample is encoded into an HV HV*® where i corresponds to
the label of the sample. The HDC training process, represented
by Eq. (3), aggregates (bundles) HVs with the same label
together. The resulting AMs consists of C' class HVs namely
{HVL,,...,HVy}, representing C classes of samples.

AM = {HVy,,...,.HVi .} ={> _HV',....} "HV} ()

Last but not least, the inference process involves predicting
the category of a query data sample in the testing set. Firstly,

each query data Q@ is encoded into an HV named query HV
HVy based on the same set of IMs and encoding strategy.
Then we measure the cosine similarity (6) between the query
HV and all the C class HVs in AMs. As Eq. (4) indicates, the
index of the highest similarity denotes the inference outcome
x of the query HV HVj.

x = argmaz(0(HVg,HVL,),...,0(HVg,HVL,)) 4)

IV. HDC PRrR1VACY THREAT MODEL

In this section, we analyze the inherent privacy vulnerabilities
of HDC, which is consistent with the previous work [12].
Within the context of HDC-based MLaaS, users initiate the
process by encoding their raw inputs into HVs and transmitting
them to the cloud for subsequent processing. However, the
data privacy of users is not secured. Since the HDC encoding
only relies on binding and bundling, which are fully linear
and reversible, the information encoded in HVs can be easily
decoded and reconstructed [12]. As a result, the reversible
HVs allow potential adversaries to reconstruct the original
information from the raw inputs.

V. PP-HDC FRAMEWORK

An overall architecture of PP—HDC framework is illus-
trated in Fig. 1. Based on the aforementioned circumstances,
we present a comprehensive assessment of the HDC privacy
preservation task. Here PP—HDC provides privacy-preserving
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Fig. 1. Proposed PP—HDC framework. PP—HDC establishes a privacy-preserved
HDC inference pipeline by guarding both inference input privacy and inference
output privacy.

inference by protecting the privacy of two critical components,
including the inference input transmitted from users to the cloud
and the inference output transmitted from the cloud to users. In
this paper, users represent edge devices with limited memory
and computational resources, and rely on cloud computing ser-
vice providers for model execution due to resource constraints,
as used by existing works [10], [19]. We assume that the cloud
server is an untrusted semi-honest server, which may follow
the execution protocol but will attempt to learn as much as it
can. Consistent with the existing work [8], we summarize four
principles for the cloud computing circumstance as follows: (1)
The cloud possesses and stores several pre-trained models. (2)
The user processes encoded representations of sensitive data
and securely transmits them to the cloud. (3) The cloud server
can compute the inference result and provide services based on
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the user’s submission, without access to the original data or the
inference outcome. (4) The user receives the inference result
and decodes the true final inference outcome.

A. Privacy Preservation for Inference Input

In this section, we aim to protect the privacy of the encoded
HV of the raw input data in the HDC-based model. Here we
use notation HVp to represent the original encoded HV. We
propose a hash-encoding scheme for concealing the information
in HVs. Notably, hash-encoding is post-processing on top of
encoded HVs and is feasible for existing encoding approaches
in HDC [7]. After hash—encodin&jhe original HV }1—1/1; will
be projected into a hashed HV H V(> with the same dimensions.

Encoded HV
Hashed HV

Fig. 2. An illustration of HV hash-encoding process with s = 1.

K EIEINEI DD EE D
¥ IV IRV W
LT o oo ]o]1]

The proposed HV hash-encoding scheme includes two steps,
as illustrated in Fig. 2. Initially, we swap the first and last
elements in HVp to the opposite position in the hashed HV
HVc¢ to augment information obfuscation. Subsequently, we
deploy hash-encoding on HVp and project the HVp from HV
space to hashing space. As Eq. (5) indicates, starting from the
second element, PP—HDC multiplies every 2 s+ 1 element to
derive the corresponding element in HV(, where s represents
the number of neighbors associated with the related element.

i+s
hvciznhvpi,(s<i<D—s) 5)
i—8

In PP-HDC, the key attribute of HV hash-encoding lies in
its ability to preserve the distance properties between HVs, and
simultaneously obfuscate the elements in the HVs to conceal
the original information. Essentially, the HV hash-encoding
approach is inspired by and has similar characteristics to the
local sensitive hashing (LSH) approach [14], which is also
widely utilized in privacy-preserving computation field [16],
[15]. LSH contains a series of hash functions and maintains the
distance relationship of data in both input space and hash-code
space with high probability. However, directly deploying LSH
or traditional hash function on HVs will introduce dimension
inconsistency between hash input and output, which is not
feasible to integrate the HV hash-encoding within the HDC
training and inference process. Consequently, inspired by LSH,
we develop HDC-specific hash-encoding, which retains the di-
mensionality and distance relationship and effectively conceals
sensitive information encoded in hashed HV. Given the HDC
algorithm highly depends on the distance relationship compari-
son, fits seamlessly within the HDC pipeline by maintaining the
essential distance relationship between original HVs and hashed
HVs. It is worth mentioning that while our proposed hash-
encoding is effective, it may not be optimal. Although it is out

of the scope of this paper, our future endeavors will optimize
the hash-encoding algorithm by conducting a comprehensive
analysis of the security level and accuracy.

The HV hash-encoding in PP—HDC is non-reversible, which
means the original HVs cannot be fully recovered from the
hashed HVs. The main reason is that some elements are
digested during the hash-encoding process. For instance, as
depicted in Fig. 2, a “0” element in the HV will digest the
elements nearby no matter what the values are. Meanwhile, the
selection of s can also lead to different hash-encoding effects
and information digestion. Moreover, PP—HDC provides the
capability to perform HDC training and inference directly on
the hashed HVs, allowing the training of a hashed HDC model.
Consequently, users can securely transmit the hashed HVs to
the cloud or other users without the risk of privacy leakage.

B. Privacy Preservation for Inference Output

In the context of MLaaS, the unencrypted inference result of
the user’s data will be exposed to the cloud, which can pose a
serious risk to user data privacy. However, prior research [10],
[12] has largely overlooked the inference output privacy. To ad-
dress this gap, we propose a multi-model-based HDC inference
approach to protect the privacy of inference output on the cloud.
The multi-model-based inference stems from the attribute of the
HDC algorithm, where the base HVs should be the same during
the encoding of class HVs and query HVs. In other words, HDC
necessitates that all training and testing samples utilize the same
IM for encoding. Any mismatch of IMs will lead to accuracy
degradation to the level of random guessing. This phenomenon
is caused by the quasi-orthogonality of randomly generated
base HVs in IMs. We will further discuss the observation based
on our experimental results in Sec. VI-D.

Inspired by this inherent property of HDC, the multi-model
inference comprises the following process: We first generate
k different sets of IMs {IMj, ..., IM}} and train k hashed
HDC models based on HV hash-encoding in PP—HDC. Each
set of IMs is matched one-to-one with a hashed model. The &
hashed models and the corresponding k& sets of IMs are publicly
accessible to all the users. Subsequently, the user can select
one of the k IMs provided on the cloud to encode and hash-
encode their input data and transmit the hashed HVs to the
cloud for inference. When the user selects one of the & IMs,
denoted as IM;, a private key v; is generated simultaneously
to signify the index of the chosen IM. On the cloud side,
the user’s hashed HV is concurrently processed by all the &
pre-trained hashed HDC models for inference. Consequently,
the cloud provides the k-length encrypted inference result to
the user instead of a single inference outcome. The cloud has
no knowledge of which inference outcome corresponds to the
user’s true inference result, the privacy of the user’s inference
output remains secured. Upon receiving the encrypted inference
result, the user can simply decode the true inference outcome
through the private key.
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VI. EXPERIMENT RESULTS
A. Experimental Setup

In order to assess the privacy-preserving performance
of PP-HDC, we conduct experiments on three real image
datasets, MNIST [13], Breast MNIST (BREAST) and Pneu-
monia MNIST (PNEU)[18]. These three datasets encompass a
range of tasks, from handwritten digit recognition to medical
image classification, while all of these image datasets neces-
sitate a privacy-preserving strategy to protect data privacy and
inference privacy from leakage.

In our experiments, we implement PP—HDC using Python on
a Raspberry Pi, to comprehensively evaluate the performance
and overhead of PP—HDC. To quantitatively evaluate the privacy
preservation achieved by PP—-HDC, we utilize two metrics,
the peak signal-to-noise ratio (PSNR) and mean squared error
(MSE), similar to the approach in the previous work [12]. In
our experiment, we compare the PSNR and the MSE values
between the original image and reconstructed images generated
from the hashed HV to assess the efficacy of PP—HDC pri-
vacy preservation. The PSNR metric indicates the quality of
reconstruction results from the corresponding HV and the MSE
metric quantifies the deviation between the original and the
reconstructed images. Lower PSNR and higher MSE indicate
stronger privacy preservation performance.

B. Hash-encoding Configuration

To determine the optimal hyperparameter in PP—HDC, we
conduct a comprehensive analysis on the s in hash-encoding.
Here we conduct an ablation experiment where we select
different values of s in {1,2,3}. As shown in the left side
of Fig. 3, the increase in the value of s leads to a quite minor
influence on the PSNR of the reversed-engineered image, with
a difference of approximately 1%. However, the accuracy of
PP-HDC has a noticeable degradation due to the increase of s.
On the right side of Fig. 3, when we select s = 3 instead of 1,
the accuracy for MNIST declines by over 15% compared with
the baseline (s = 0). The phenomenon is consistent with other
datasets. Hence, we select s = 1 in PP—HDC for all subsequent
experiments since s = 1 is enough to achieve satisfactory
privacy preservation and maintain acceptable accuracy.

Decoded

PP-HDC (s =1)

= MNIST
[ BREAST
3 PNEU

21 B

PSNR: 38.431 PSNR: 7.377
PP-HDC (s=2) PP-HDC (s = 3)

o
©

Accuracy

e
0

0.7

1 2 3
Number of s

PSNR: 7.147
Fig. 3. Impact of different value of s in PP—HDC. left: Different values of s
yield similar degrees of information obfuscation. right: Accuracy comparison
of different hashed HDC models using varying values of s.

PSNR: 6.804

C. Evaluation of Privacy Preservation for Inference Input

The experimental results are denoted in Fig. 4, HV hash-
encoding leads to a negligible decline in accuracy (0.5% on the

MNIST dataset, 0.7% on the BREAST dataset and 1% on the
PNEU dataset), which outperforms the Prive-HD [12] that intro-
duces more than 15% accuracy drop [12]. Additionally, we also
quantify the computational overhead of the HV hash-encoding
by assessing the extra energy consumption on Raspberry Pi. As
presented in Fig. 4, our results reveal that PP—HDC only incurs
2.1%, 4.2% and 4.9% extra energy overhead.
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§0 9 0.045
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< 0.8 0.02w

0.7 MNIST BREAST PNEU 0.00

[ Original HDC Accuracy [ Original HDC Energy
I PP-HDC Accuracy I PP-HDC Energy

Fig. 4. Comparison of accuracy and energy efficiency between the original
HDC model and PP—HDC. PP-HDC provides inference input privacy preser-
vation with negligible accuracy drop and computational overhead.

Furthermore, we compare the information obfuscation of
different approaches across three datasets, and the experi-
mental results are presented in Fig. 5. Here we utilize the
MNIST dataset as an example. The first column denotes that,
without any privacy preservation, the reconstructed image will
expose almost all the information. In the second column,
we implement the 1-bit quantization and dimension masking
approaches proposed in Prive-HD [12], yet the reconstructed
image is sufficiently clear. However, as depicted in the third
column, the reconstruction image from the HV hashed by
PP-HDC exhibits minimal information disclosure. According to
our observation, the PSNR of the reconstructed image from the
hashed HV is only 7.126 dB, which achieves 1.5X lower PSNR
than the PSNR of the reconstruction obtained from Prive-
HD (10.824 dB). PP—HDC demonstrates superior information
concealing compared to the previous approaches.

D. Evaluation of Privacy Preservation for Inference Output

Here we investigate the performance of privacy preservation
on the inference output. We select k& = 7 which means we
pre-train seven different models based on seven different sets
of item memories (IMs). Notably, the proposed multi-model
inference approach demonstrates no accuracy loss since it does
not disturb the inference process itself. We evaluate the query
HVs encoded with seven IMs on seven different pre-trained
models, as Fig. 6 illustrates, the inference results are presented
as a (7,7) matrix. Each element indicates the accuracy of
the HDC model corresponding to the IMs pair. For instance,
the element (7,j) denotes the accuracy of the query HVs
encoded with IM; while the model is established with IM;.
One noteworthy observation is that when the selected IMs are
mismatched, i.e., ¢ # j, the inference accuracy is close to
random guessing, where the class HVs and query HVs are
orthogonal. On the contrary, if and only if 7 = 7, the inference
accuracy remains at the original level without any loss, as
demonstrated by the diagonal elements in the inference matrix.
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Fig. 5. The privacy preservation performance comparison of different approaches across three datasets. Each result contains three columns that illustrate the
following: (1) The reconstructed image of the original HV using HDC decoding, (2) The reconstructed image of HV implemented with the Prive-HD approach,

and (3) The reconstructed image of the PP—HDC hashed HV.
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Fig. 6. Evaluation of multi-model inference in PP—HDC. Only the private key indicates the correct inference outcome in the encrypted inference result.

VII. SECURITY VALIDATION ANALYSIS

In this section, we primarily focus on the information leakage
hazard of PP—HDC, the adversary can retrieve information from
the inference input (the hashed HV) and inference output (the
encrypted inference result).

A. Threat Model

As mentioned in Sec. V, the cloud provider is an untrusted
semi-honest server. Additionally, we consider some malicious
users in the MLaaS environment are also honest-but-curious
(HBC), which means they can eavesdrop and spy on other users.
According to the threat model we considered, the adversary can
be either the cloud or malicious users, and have access to all
of the k£ sets of item memories (IMs) and the k pre-trained
models. Furthermore, the adversary is well-informed about the
proposed privacy preservation methodology in PP—HDC.

B. Information Recovery of the Original HV

Under this attack scenario, the adversary aims to retrieve
the original HV from the hashed HV. To model this attack,
the Z3 SMT solver [4] was utilized with a model that was
given a 5-symbol hashed HV sub-vector and iteratively solved
to determine all possible input patterns for the given hashed
output. As shown in Fig. 7, each 5-symbol hashed HV block
was fed with the seven inputs from the original HV.

The 5-symbol hashed sub-vector model was chosen as the
influence of the middle three (as through a4) is completely
captured by the output model. Thus, no other hashed output
values would be altered by a change in as through a4. Then the
z3 SMT solver model is iteratively shifted by one symbol over
the entire hashed HV to get the number of possible solutions
(ag through ag) for each 5-symbol block of the hashed HV
(eg through ey). If a given symbol is fixed, meaning that the
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Fig. 7. z3 SMT model utilized to evaluate bits of interest ap through a4. Any
known symbols in ag-ag are set before the model is run.

value is constant for all possible solutions, the constant value
is propagated to the next window of analyzed symbols. Thus,
a map of all known values is kept track of during the analysis
and the results are validated against the original HV.

C. PP—-HDC against Brute Force Attack

According to the PP—HDC configuration, the benchmark HVs
have values in {—1,0,1} and the average number of possible
solutions per seven bits was found to be 207.28 with the number
of fixed symbols being an average of 1745. The reason for the
number of the known symbols of the original HV has to do
with the information loss when multiplying by a “0” during the
HV hash-encoding. A randomly generated HV with elements
in {—1,0,1} has an entropy of approximately 7.7 bits per 7-
symbols of the original output. This equates to the search space
for the adversary of 27-7%10000/7 ~ 911000 Npotably, the search
space is significantly lower than the theoretical search space
of the original HV of 310000 byt the number of unknown
bits remains very large and is not susceptible to brute force
attack. For example, even a supercomputer with 100 billion
cores running at 100 GHz would require 6.7 * 10328! years to
search through the entire 211000 search space, assuming one
HV could be tried every CPU cycle. Additionally, even though
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some of the elements are recoverable in the original HV, the
orthogonality between the HV before and after hash-encoding
means the information in those two HVs is not relevant.

D. PP-HDC against Inference Output Knowledge Attack

In PP-HDC, the primary information accessible to the ad-
versary is the encrypted inference results themselves during the
inference process. However, an untrusted cloud would also have
access to the cosine similarities between the hashed HV and
each of the k pre-trained models. We assume that an adversary
is given the hashed HV input and the encrypted inference
results consist of k inference outcomes from each of the pre-
trained hashed models, similar to the situation depicted in
Fig. 6. The adversary wins if the correct inference results can be
produced with a greater than a 1/k probability. Consequently,
we conduct an inference experiment based on MNIST dataset
with £ = 7, and the experimental results are denoted as Fig.8.
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Fig. 8. An multi-model inference analysis based on PP—HDC, here we select
an image “9” from MNIST dataset and the number of pre-trained models k =
7. Each node represents a one-time similarity measurement between the query
HV and one class HV in the pre-trained model.

Based on our implementation, it is worth mentioning that
PP-HDC provides a solid concealment on inference results by
generating the encrypted inference results following a close
to random distribution over label “0” to “9”. The adversary
cannot access the true prediction outcome by searching over
the encrypted inference results. The experimental results are
consistent with the scenarios aforementioned in Sec. VI-D, the
cosine similarity is close to zero when the IMs are mismatched.
Since the adversary cannot statistically access the true inference
outcome, another way is to select the maximal cosine similarity
as the possible label. However, as indicated in Fig.8, the
maximal similarity achieves 0.154 and points to the label “7”
as the inference outcome while the true inference outcome is
“9” with a cosine similarity of 0.133. Therefore, given the class
vectors alone, the adversary is not able to determine the correct
model being used and is thus unaware of the inference result.

VIII. CONCLUSION

This paper focuses on the privacy-preserving inference of
an emerging neuro-symbolic learning method named HDC.
Specifically, we propose PP—HDC, a privacy-preserving infer-
ence framework for HDC that can preserve privacy on both
inference input and output. By leveraging a novel HV hash-
encoding approach, the hashed HVs preserve their dimensional-
ity and original distance properties in high-dimensional space,
which is essential to the subsequent processing. Our exper-
imental results denote that the proposed HV hash-encoding

in PP—HDC can largely obfuscate the information on the
input data, outperforming existing state-of-the-art methods.
Furthermore, we present a multi-model inference approach
to prevent the cloud from accessing the inference outcome.
Notably, PP—HDC accomplishes the inference input and output
privacy preservation with minimal accuracy drop compared
with existing work. Moreover, we conduct a comprehensive
security validation analysis of PP—HDC. This paper aims to
open up new directions and challenges for future privacy-
preserving and secure HDC model designing.
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