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Abstract—Recently, brain-inspired hyperdimensional comput-
ing (HDC), an emerging neuro-symbolic computing scheme that
imitates human brain functions to process information using
abstract and high-dimensional patterns, has seen increasing ap-
plications in multiple application domains and deployment in
edge-cloud collaborative processing. However, sending sensitive
data to the cloud for inference may face severe privacy threats.
Unfortunately, HDC is particularly vulnerable to privacy threats
due to its reversible nature. To address this challenge, we propose
PP-HDC, a novel privacy-preserving inference framework for
HDC. PP-HDC is designed to protect the privacy of both inference
input and output. To preserve the privacy of inference input,
we propose a novel hash-encoding approach in high-dimensional
space by implementing a sliding-window-based transformation on
the input hypervector (HV). By leveraging the unique mathemati-
cal properties of HDC, we are able to seamlessly perform training
and inference on the hash-encoded HV with negligible overhead.
For inference output privacy, we propose a multi-model inference
approach to encrypt the inference results by leveraging the unique
structure of HDC item memories and ensuring the inference result
is only accessible to the owner with a proper key. We evaluate
PP-HDC on three datasets and demonstrate that PP-HDC enhances
privacy-preserving effects compared with state-of-the-art works
while incurring minimal accuracy loss.

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging Non-

von Neumann computing neuro-symbolic scheme inspired by

the intricate functionality of the brain. HDC has gained sig-

nificant traction in diverse domains and has shown remarkable

advantages over deep neural networks (DNNs). Notably, by of-

fering smaller model sizes, less computation cost, and one-shot

learning capabilities, HDC becomes a promising alternative to

DNNs [7]. Recently, HDC has been implemented in edge-cloud

collaborative processing scenarios, e.g., machine learning as

a service (MLaaS), including cloud computing and federated

learning due to its notable processing efficiency [10], [19].

Despite the growing popularity of HDC, the privacy threat

of HDC models is still under-investigated. This is particularly

important in the context of edge-cloud collaborative processing.

Transmitting sensitive data from edge users to the cloud for

inference raises significant privacy concerns, since untrusted

cloud hosts may expose the data to suspicious parties [8].

Unfortunately, HDC is indeed particularly vulnerable to

privacy threats due to its reversible nature. Unlike non-linear

operations introduced in DNNs, HDC hardly maintains any pri-

vacy since its fully reversible computation [12]. Prive-HD [12]

attempted to preserve privacy by applying certain modifications

on the data hypervectors (HVs), the data representation in HDC,

through quantization and noise injection.

However, the effects of such strategies are considerably

limited and the accuracy drops due to the modifications on the

HDC model. To address these challenges, we propose PP-HDC,

a novel privacy-preserving strategy to protect both the inference

input and output of HDC. Our main contributions are as

follows: (1) In PP-HDC, we propose a novel HV hash-encoding

approach, designed to preserve the privacy of inference input.

The proposed hash-encoding can be seamlessly integrated into

the HDC pipeline since it preserves the distance properties

between HVs, enabling direct training and inference on the

hashed HVs. (2) In PP-HDC, we propose a novel multi-model

inference approach for protecting the privacy of inference

output, which is largely overlooked in existing research [12],

[10]. Leveraging the unique item memory structure of HDC,

PP-HDC ensures that only the user with the right key can access

the inference results. (3) Furthermore, We perform extensive

evaluations of PP-HDC on three datasets containing sensitive

information. Compared to previous work [12] which introduces

more than 10% accuracy degradation, PP-HDC introduces

negligible accuracy loss at less than 1%. (4) We conduct a

comprehensive security validation analysis of PP-HDC against

two attacks, namely the brute force attack on recover inference

input and inference output knowledge attack. The experimental

results and analysis demonstrate that PP-HDC can provide ef-

fective privacy preservation in both inference input and output.

II. RELATED WORK

The development of machine learning as a service (MLaaS)

has witnessed remarkable growth in recent years, driven by the

proliferation of edge devices and diverse learning tasks. Mean-

while, the requirement for privacy-preserving machine learning

(PPML) solutions is also increasing due to privacy concerns in

the ML community. One conventional privacy-preserving solu-

tion is differential privacy [5], [6], which can preserve privacy

and train the ML model by introducing perturbation and noise

to data. However, differential privacy is not extended to the

inference phase [8], where the privacy of inference input and

output demand to be protected. Homomorphic encryption (HE)

algorithm [17] has emerged as a popular solution for preserving

privacy during inference HE allows computing functions or

operations on encrypted data without deciphering, and different

operations on encrypted data require diverse implementations

of HE [1], [2], [3]. CryptoNets [8] implements one of the first

HE-based DNNs inference frameworks. However, the adoption

of the HE approach comes with significant inefficiency and

computational overhead [10].
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In the context of HDC, few studies have focused on data

security and privacy concerns within HDC processing. Re-

cently, SecureHD [10] implements an HDC cloud computing

framework based on Multi-party Computation (MPC), which

protects data security by encryption during data transmission.

Prive-HD [12] proposes the first privacy-preserving approach

for HDC, which provides differential privacy protection during

the HDC training and inference process. Moreover, PRID [9]

addresses the defense of the HDC model against model in-

version attacks and provides privacy preservation approaches

through noise injection and HV quantization.

III. PRELIMINARIES

A. General HDC Arithmetic

Hypervectors (HVs) are the basic components of HDC which

are high-dimensional and holographic vectors with i.i.d. ele-

ments [11]. HDC has two main arithmetic operations, bundling

(+) and binding (7), as elaborated in Eq. (1). Different op-

erations make HDC able to aggregate information and gen-

erate new representations. The bundling operation performs

an element-wise addition on the two input HVs, while the

binding operation multiplies two HVs element-wisely. For the

calculation result, the bundling operation creates the third

HV similar to the two input HV and the multiply operation

generates the third HV different from the two input HVs [11].
#     »

HVi +
#      »

HVj = ïhvi1 + hvj1, . . . , hvid + hvjdï
#     »

HVi 7
#      »

HVj = ïhvi1 7 hvj1, . . . , hvid 7 hvjdï
(1)

In this paper, we use the cosine similarity δ, provided as

Eq. (2), to measure the similarity of information between HVs.

δ(
#     »

HVi,
#      »

HVj) =

#     »

HVi ·
#      »

HVj

||
#     »

HVi|| × ||
#      »

HVj ||
(2)

B. General HDC Process

The implementation of HDC consists of the encoding pro-

cess, training, and inference process. First of all, the HDC

encoding process involves projecting a data sample into an

HV the encoding function can be domain-specific. Here we

adopt the ID-based encoding strategy similar to the previous

work [10], where we utilize N Base HVs in item memories

(IMs) that map N features spatially. After the encoding process,

all the data samples in datasets are embedded into HVs during

the process of HDC. However, the encoded HV has a natural

drawback in privacy, which will be discussed in Sec. IV.

Secondly, the training process involves establishing associa-

tive memories (AMs) across the entire training set. For the

training set containing C classes of samples, each training

sample is encoded into an HV
#       »

HV i where i corresponds to

the label of the sample. The HDC training process, represented

by Eq. (3), aggregates (bundles) HVs with the same label

together. The resulting AMs consists of C class HVs namely

{
#         »

HVL1
, . . . ,

#           »

HVLC
}, representing C classes of samples.

AM = {
#          »

HVL1
, . . . ,

#           »

HVLC
} = {

∑ #       »

HV
1
, . . . ,

∑ #         »

HV
C} (3)

Last but not least, the inference process involves predicting

the category of a query data sample in the testing set. Firstly,

each query data Q is encoded into an HV named query HV
#        »

HVQ based on the same set of IMs and encoding strategy.

Then we measure the cosine similarity (δ) between the query

HV and all the C class HVs in AMs. As Eq. (4) indicates, the

index of the highest similarity denotes the inference outcome

x of the query HV
#        »

HVQ.

x = argmax(δ(
#        »

HVQ,
#          »

HVL1
), . . . , δ(

#        »

HVQ,
#           »

HVLC
)) (4)

IV. HDC PRIVACY THREAT MODEL

In this section, we analyze the inherent privacy vulnerabilities

of HDC, which is consistent with the previous work [12].

Within the context of HDC-based MLaaS, users initiate the

process by encoding their raw inputs into HVs and transmitting

them to the cloud for subsequent processing. However, the

data privacy of users is not secured. Since the HDC encoding

only relies on binding and bundling, which are fully linear

and reversible, the information encoded in HVs can be easily

decoded and reconstructed [12]. As a result, the reversible

HVs allow potential adversaries to reconstruct the original

information from the raw inputs.

V. PP-HDC FRAMEWORK

An overall architecture of PP-HDC framework is illus-

trated in Fig. 1. Based on the aforementioned circumstances,

we present a comprehensive assessment of the HDC privacy

preservation task. Here PP-HDC provides privacy-preserving

User

Inference result

Cloud

Item Memory SetsIM2 IMkIM3 Hashed Models

M1 M2 MkM3

Hashed HVRaw data

Encrypted inference result

ÿ
Private key vi

IM1B1B2
Bn

B1B2
Bn

B1B2
Bn

B1B2
Bn

IMi
Encoded HV

Encoding Hash-encoding

Fig. 1. Proposed PP-HDC framework. PP-HDC establishes a privacy-preserved
HDC inference pipeline by guarding both inference input privacy and inference
output privacy.

inference by protecting the privacy of two critical components,

including the inference input transmitted from users to the cloud

and the inference output transmitted from the cloud to users. In

this paper, users represent edge devices with limited memory

and computational resources, and rely on cloud computing ser-

vice providers for model execution due to resource constraints,

as used by existing works [10], [19]. We assume that the cloud

server is an untrusted semi-honest server, which may follow

the execution protocol but will attempt to learn as much as it

can. Consistent with the existing work [8], we summarize four

principles for the cloud computing circumstance as follows: (1)

The cloud possesses and stores several pre-trained models. (2)

The user processes encoded representations of sensitive data

and securely transmits them to the cloud. (3) The cloud server

can compute the inference result and provide services based on
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the user’s submission, without access to the original data or the

inference outcome. (4) The user receives the inference result

and decodes the true final inference outcome.

A. Privacy Preservation for Inference Input

In this section, we aim to protect the privacy of the encoded

HV of the raw input data in the HDC-based model. Here we

use notation
#       »

HVP to represent the original encoded HV. We

propose a hash-encoding scheme for concealing the information

in HVs. Notably, hash-encoding is post-processing on top of

encoded HVs and is feasible for existing encoding approaches

in HDC [7]. After hash-encoding, the original HV
#       »

HVP will

be projected into a hashed HV
#        »

HVC with the same dimensions.

Encoded HV

Hashed HV

1 -1 -1 1 -1 1 0 1 -1 0

0 1 1 1 -1 0 0 0 0 1

Hash-encoding

Fig. 2. An illustration of HV hash-encoding process with s = 1.

The proposed HV hash-encoding scheme includes two steps,

as illustrated in Fig. 2. Initially, we swap the first and last

elements in
#       »

HVP to the opposite position in the hashed HV
#        »

HVC to augment information obfuscation. Subsequently, we

deploy hash-encoding on
#       »

HVP and project the
#       »

HVP from HV

space to hashing space. As Eq. (5) indicates, starting from the

second element, PP-HDC multiplies every 2 7 s+1 element to

derive the corresponding element in
#        »

HVC , where s represents

the number of neighbors associated with the related element.

hvCi
=

i+s∏

i−s

hvPi
, (s < i < D 2 s) (5)

In PP-HDC, the key attribute of HV hash-encoding lies in

its ability to preserve the distance properties between HVs, and

simultaneously obfuscate the elements in the HVs to conceal

the original information. Essentially, the HV hash-encoding

approach is inspired by and has similar characteristics to the

local sensitive hashing (LSH) approach [14], which is also

widely utilized in privacy-preserving computation field [16],

[15]. LSH contains a series of hash functions and maintains the

distance relationship of data in both input space and hash-code

space with high probability. However, directly deploying LSH

or traditional hash function on HVs will introduce dimension

inconsistency between hash input and output, which is not

feasible to integrate the HV hash-encoding within the HDC

training and inference process. Consequently, inspired by LSH,

we develop HDC-specific hash-encoding, which retains the di-

mensionality and distance relationship and effectively conceals

sensitive information encoded in hashed HV. Given the HDC

algorithm highly depends on the distance relationship compari-

son, fits seamlessly within the HDC pipeline by maintaining the

essential distance relationship between original HVs and hashed

HVs. It is worth mentioning that while our proposed hash-

encoding is effective, it may not be optimal. Although it is out

of the scope of this paper, our future endeavors will optimize

the hash-encoding algorithm by conducting a comprehensive

analysis of the security level and accuracy.

The HV hash-encoding in PP-HDC is non-reversible, which

means the original HVs cannot be fully recovered from the

hashed HVs. The main reason is that some elements are

digested during the hash-encoding process. For instance, as

depicted in Fig. 2, a “0” element in the HV will digest the

elements nearby no matter what the values are. Meanwhile, the

selection of s can also lead to different hash-encoding effects

and information digestion. Moreover, PP-HDC provides the

capability to perform HDC training and inference directly on

the hashed HVs, allowing the training of a hashed HDC model.

Consequently, users can securely transmit the hashed HVs to

the cloud or other users without the risk of privacy leakage.

B. Privacy Preservation for Inference Output

In the context of MLaaS, the unencrypted inference result of

the user’s data will be exposed to the cloud, which can pose a

serious risk to user data privacy. However, prior research [10],

[12] has largely overlooked the inference output privacy. To ad-

dress this gap, we propose a multi-model-based HDC inference

approach to protect the privacy of inference output on the cloud.

The multi-model-based inference stems from the attribute of the

HDC algorithm, where the base HVs should be the same during

the encoding of class HVs and query HVs. In other words, HDC

necessitates that all training and testing samples utilize the same

IM for encoding. Any mismatch of IMs will lead to accuracy

degradation to the level of random guessing. This phenomenon

is caused by the quasi-orthogonality of randomly generated

base HVs in IMs. We will further discuss the observation based

on our experimental results in Sec. VI-D.

Inspired by this inherent property of HDC, the multi-model

inference comprises the following process: We first generate

k different sets of IMs {IM1, . . . , IMk} and train k hashed

HDC models based on HV hash-encoding in PP-HDC. Each

set of IMs is matched one-to-one with a hashed model. The k
hashed models and the corresponding k sets of IMs are publicly

accessible to all the users. Subsequently, the user can select

one of the k IMs provided on the cloud to encode and hash-

encode their input data and transmit the hashed HVs to the

cloud for inference. When the user selects one of the k IMs,

denoted as IMi, a private key vi is generated simultaneously

to signify the index of the chosen IM. On the cloud side,

the user’s hashed HV is concurrently processed by all the k
pre-trained hashed HDC models for inference. Consequently,

the cloud provides the k-length encrypted inference result to

the user instead of a single inference outcome. The cloud has

no knowledge of which inference outcome corresponds to the

user’s true inference result, the privacy of the user’s inference

output remains secured. Upon receiving the encrypted inference

result, the user can simply decode the true inference outcome

through the private key.
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VI. EXPERIMENT RESULTS

A. Experimental Setup

In order to assess the privacy-preserving performance

of PP-HDC, we conduct experiments on three real image

datasets, MNIST [13], Breast MNIST (BREAST) and Pneu-

monia MNIST (PNEU)[18]. These three datasets encompass a

range of tasks, from handwritten digit recognition to medical

image classification, while all of these image datasets neces-

sitate a privacy-preserving strategy to protect data privacy and

inference privacy from leakage.

In our experiments, we implement PP-HDC using Python on

a Raspberry Pi, to comprehensively evaluate the performance

and overhead of PP-HDC. To quantitatively evaluate the privacy

preservation achieved by PP-HDC, we utilize two metrics,

the peak signal-to-noise ratio (PSNR) and mean squared error

(MSE), similar to the approach in the previous work [12]. In

our experiment, we compare the PSNR and the MSE values

between the original image and reconstructed images generated

from the hashed HV to assess the efficacy of PP-HDC pri-

vacy preservation. The PSNR metric indicates the quality of

reconstruction results from the corresponding HV and the MSE

metric quantifies the deviation between the original and the

reconstructed images. Lower PSNR and higher MSE indicate

stronger privacy preservation performance.

B. Hash-encoding Configuration

To determine the optimal hyperparameter in PP-HDC, we

conduct a comprehensive analysis on the s in hash-encoding.

Here we conduct an ablation experiment where we select

different values of s in {1, 2, 3}. As shown in the left side

of Fig. 3, the increase in the value of s leads to a quite minor

influence on the PSNR of the reversed-engineered image, with

a difference of approximately 1%. However, the accuracy of

PP-HDC has a noticeable degradation due to the increase of s.

On the right side of Fig. 3, when we select s = 3 instead of 1,

the accuracy for MNIST declines by over 15% compared with

the baseline (s = 0). The phenomenon is consistent with other

datasets. Hence, we select s = 1 in PP-HDC for all subsequent

experiments since s = 1 is enough to achieve satisfactory

privacy preservation and maintain acceptable accuracy.

Fig. 3. Impact of different value of s in PP-HDC. left: Different values of s

yield similar degrees of information obfuscation. right: Accuracy comparison
of different hashed HDC models using varying values of s.

C. Evaluation of Privacy Preservation for Inference Input

The experimental results are denoted in Fig. 4, HV hash-

encoding leads to a negligible decline in accuracy (0.5% on the

MNIST dataset, 0.7% on the BREAST dataset and 1% on the

PNEU dataset), which outperforms the Prive-HD [12] that intro-

duces more than 15% accuracy drop [12]. Additionally, we also

quantify the computational overhead of the HV hash-encoding

by assessing the extra energy consumption on Raspberry Pi. As

presented in Fig. 4, our results reveal that PP-HDC only incurs

2.1%, 4.2% and 4.9% extra energy overhead.

Fig. 4. Comparison of accuracy and energy efficiency between the original
HDC model and PP-HDC. PP-HDC provides inference input privacy preser-
vation with negligible accuracy drop and computational overhead.

Furthermore, we compare the information obfuscation of

different approaches across three datasets, and the experi-

mental results are presented in Fig. 5. Here we utilize the

MNIST dataset as an example. The first column denotes that,

without any privacy preservation, the reconstructed image will

expose almost all the information. In the second column,

we implement the 1-bit quantization and dimension masking

approaches proposed in Prive-HD [12], yet the reconstructed

image is sufficiently clear. However, as depicted in the third

column, the reconstruction image from the HV hashed by

PP-HDC exhibits minimal information disclosure. According to

our observation, the PSNR of the reconstructed image from the

hashed HV is only 7.126 dB, which achieves 1.5X lower PSNR

than the PSNR of the reconstruction obtained from Prive-

HD (10.824 dB). PP-HDC demonstrates superior information

concealing compared to the previous approaches.

D. Evaluation of Privacy Preservation for Inference Output

Here we investigate the performance of privacy preservation

on the inference output. We select k = 7 which means we

pre-train seven different models based on seven different sets

of item memories (IMs). Notably, the proposed multi-model

inference approach demonstrates no accuracy loss since it does

not disturb the inference process itself. We evaluate the query

HVs encoded with seven IMs on seven different pre-trained

models, as Fig. 6 illustrates, the inference results are presented

as a (7, 7) matrix. Each element indicates the accuracy of

the HDC model corresponding to the IMs pair. For instance,

the element (i, j) denotes the accuracy of the query HVs

encoded with IMj while the model is established with IMi.

One noteworthy observation is that when the selected IMs are

mismatched, i.e., i ;= j, the inference accuracy is close to

random guessing, where the class HVs and query HVs are

orthogonal. On the contrary, if and only if i = j, the inference

accuracy remains at the original level without any loss, as

demonstrated by the diagonal elements in the inference matrix.
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MSE = 0.0002

PSNR = 35.808

MSE = 0.083

PSNR = 10.824

MSE = 0.194

PSNR = 7.126

Decoded PriveHD PP-HDC

(a) MNIST

MSE = 0.0001

PSNR = 43.436

MSE = 0.228

PSNR = 6.417

MSE = 0.389

PSNR = 4.099

Decoded PriveHD PP-HDC

(b) BREAST

MSE = 0.0002

PSNR = 36.568

MSE = 0.261

PSNR = 5.85

MSE = 0.402

PSNR = 3.962

Decoded PriveHD PP-HDC

(c) PNEU
Fig. 5. The privacy preservation performance comparison of different approaches across three datasets. Each result contains three columns that illustrate the
following: (1) The reconstructed image of the original HV using HDC decoding, (2) The reconstructed image of HV implemented with the Prive-HD approach,
and (3) The reconstructed image of the PP-HDC hashed HV.

Fig. 6. Evaluation of multi-model inference in PP-HDC. Only the private key indicates the correct inference outcome in the encrypted inference result.

VII. SECURITY VALIDATION ANALYSIS

In this section, we primarily focus on the information leakage

hazard of PP-HDC, the adversary can retrieve information from

the inference input (the hashed HV) and inference output (the

encrypted inference result).

A. Threat Model

As mentioned in Sec. V, the cloud provider is an untrusted

semi-honest server. Additionally, we consider some malicious

users in the MLaaS environment are also honest-but-curious

(HBC), which means they can eavesdrop and spy on other users.

According to the threat model we considered, the adversary can

be either the cloud or malicious users, and have access to all

of the k sets of item memories (IMs) and the k pre-trained

models. Furthermore, the adversary is well-informed about the

proposed privacy preservation methodology in PP-HDC.

B. Information Recovery of the Original HV

Under this attack scenario, the adversary aims to retrieve

the original HV from the hashed HV. To model this attack,

the Z3 SMT solver [4] was utilized with a model that was

given a 5-symbol hashed HV sub-vector and iteratively solved

to determine all possible input patterns for the given hashed

output. As shown in Fig. 7, each 5-symbol hashed HV block

was fed with the seven inputs from the original HV.

The 5-symbol hashed sub-vector model was chosen as the

influence of the middle three (a2 through a4) is completely

captured by the output model. Thus, no other hashed output

values would be altered by a change in a2 through a4. Then the

z3 SMT solver model is iteratively shifted by one symbol over

the entire hashed HV to get the number of possible solutions

(a0 through a6) for each 5-symbol block of the hashed HV

(e0 through e4). If a given symbol is fixed, meaning that the

Encoded HV

Hashed HV

ÿ0 ÿ1 ÿ2 ÿ3 ÿ4 ÿ5 ÿ6
ÿ0 ÿ1 ÿ2 ÿ3 ÿ4

Hash-encoding

Fig. 7. z3 SMT model utilized to evaluate bits of interest a2 through a4. Any
known symbols in a0-a6 are set before the model is run.

value is constant for all possible solutions, the constant value

is propagated to the next window of analyzed symbols. Thus,

a map of all known values is kept track of during the analysis

and the results are validated against the original HV.

C. PP-HDC against Brute Force Attack

According to the PP-HDC configuration, the benchmark HVs

have values in {21, 0, 1} and the average number of possible

solutions per seven bits was found to be 207.28 with the number

of fixed symbols being an average of 1745. The reason for the

number of the known symbols of the original HV has to do

with the information loss when multiplying by a “0” during the

HV hash-encoding. A randomly generated HV with elements

in {21, 0, 1} has an entropy of approximately 7.7 bits per 7-

symbols of the original output. This equates to the search space

for the adversary of 27.7∗10000/7 j 211000. Notably, the search

space is significantly lower than the theoretical search space

of the original HV of 310000, but the number of unknown

bits remains very large and is not susceptible to brute force

attack. For example, even a supercomputer with 100 billion

cores running at 100 GHz would require 6.7 7 103281 years to

search through the entire 211000 search space, assuming one

HV could be tried every CPU cycle. Additionally, even though

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on July 30,2024 at 03:54:56 UTC from IEEE Xplore.  Restrictions apply. 



some of the elements are recoverable in the original HV, the

orthogonality between the HV before and after hash-encoding

means the information in those two HVs is not relevant.

D. PP-HDC against Inference Output Knowledge Attack

In PP-HDC, the primary information accessible to the ad-

versary is the encrypted inference results themselves during the

inference process. However, an untrusted cloud would also have

access to the cosine similarities between the hashed HV and

each of the k pre-trained models. We assume that an adversary

is given the hashed HV input and the encrypted inference

results consist of k inference outcomes from each of the pre-

trained hashed models, similar to the situation depicted in

Fig. 6. The adversary wins if the correct inference results can be

produced with a greater than a 1/k probability. Consequently,

we conduct an inference experiment based on MNIST dataset

with k = 7, and the experimental results are denoted as Fig.8.

Fig. 8. An multi-model inference analysis based on PP-HDC, here we select
an image “9” from MNIST dataset and the number of pre-trained models k =
7. Each node represents a one-time similarity measurement between the query
HV and one class HV in the pre-trained model.

Based on our implementation, it is worth mentioning that

PP-HDC provides a solid concealment on inference results by

generating the encrypted inference results following a close

to random distribution over label “0” to “9”. The adversary

cannot access the true prediction outcome by searching over

the encrypted inference results. The experimental results are

consistent with the scenarios aforementioned in Sec. VI-D, the

cosine similarity is close to zero when the IMs are mismatched.

Since the adversary cannot statistically access the true inference

outcome, another way is to select the maximal cosine similarity

as the possible label. However, as indicated in Fig.8, the

maximal similarity achieves 0.154 and points to the label “7”

as the inference outcome while the true inference outcome is

“9” with a cosine similarity of 0.133. Therefore, given the class

vectors alone, the adversary is not able to determine the correct

model being used and is thus unaware of the inference result.

VIII. CONCLUSION

This paper focuses on the privacy-preserving inference of

an emerging neuro-symbolic learning method named HDC.

Specifically, we propose PP-HDC, a privacy-preserving infer-

ence framework for HDC that can preserve privacy on both

inference input and output. By leveraging a novel HV hash-

encoding approach, the hashed HVs preserve their dimensional-

ity and original distance properties in high-dimensional space,

which is essential to the subsequent processing. Our exper-

imental results denote that the proposed HV hash-encoding

in PP-HDC can largely obfuscate the information on the

input data, outperforming existing state-of-the-art methods.

Furthermore, we present a multi-model inference approach

to prevent the cloud from accessing the inference outcome.

Notably, PP-HDC accomplishes the inference input and output

privacy preservation with minimal accuracy drop compared

with existing work. Moreover, we conduct a comprehensive

security validation analysis of PP-HDC. This paper aims to

open up new directions and challenges for future privacy-

preserving and secure HDC model designing.
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[14] Paulevé et al. Locality sensitive hashing: A comparison of hash function
types and querying mechanisms. Pattern recognition letters, 31(11):1348–
1358, 2010.

[15] Lianyong Qi et al. A two-stage locality-sensitive hashing based approach
for privacy-preserving mobile service recommendation in cross-platform
edge environment. Future Generation Computer Systems, 88:636–643,
2018.

[16] Lianyong Qi et al. Privacy-aware cross-platform service recommendation
based on enhanced locality-sensitive hashing. IEEE Transactions on

Network Science and Engineering, 8(2):1145–1153, 2020.
[17] Ronald L Rivest et al. On data banks and privacy homomorphisms.

Foundations of secure computation, 4(11), 1978.
[18] Jiancheng Yang et al. Medmnist classification decathlon: A lightweight

automl benchmark for medical image analysis. In 2021 IEEE 18th ISBI.
IEEE, 2021.

[19] Quanling Zhao et al. Fedhd: federated learning with hyperdimensional
computing. In Proceedings of the 28th Annual International Conference

on Mobile Computing And Networking, pages 791–793, 2022.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on July 30,2024 at 03:54:56 UTC from IEEE Xplore.  Restrictions apply. 


