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Abstract

The evolute of a plane curve is the envelope of its normals. Replacing the normals
by the lines that make a fixed angle with the curve yields its skew evolute. We study
the geometry and dynamics of the skew evolute maps and of their inverses, the skew
involute maps. Among the motivations for this study are relations of this subject
with tire track geometry and with mathematical billiards. We prove a version of the
4-vertex theorem where the role of circles is played by logarithmic spirals.

1 Introduction

The evolute of a smooth plane curve is the envelope of its normals. In this article we
consider the following modification of this construction.

Let v be a smooth oriented curve and o a fixed angle. Turn each tangent line of ~
through angle o about the tangency point, and let I" be the envelope of this 1-parameter
family of lines. We call I' a skew evolute of v and write I' = £,(7). See Figure [l The
usual evolute corresponds to the case @ = 7/2; and if & = 0, then I' = . Likewise, we call
v a skew involute of I' and write v = Z,(I").

This subject goes back to the early 18th century, see [18] (we learned about this reference
from [9]). However, it continues to attract attention; see [1} 2], 9, 11} [13] 19 27] for a sampler
of this century work.

What we called “skew evolute” is traditionally called “evolutoid”. The reason we use
a different term is to emphasize the similarity with the classical evolutes and involutes.
Indeed, what we call “skew involutes” were called “tanvolutes” in [2]. It seems that the
terminology has not completely crystalized yet.

A study of skew evolutes necessarily involves curves with cusps; indeed, the evolute of
a closed simple curve has at least four cusps, as the classical 4-vertex theorem implies. We
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Figure 1: A skew evolute of an ellipse.

study the dynamics of the transformations &, and Z, on the class of curves called hedgehogs
that will be defined below.

There are four motivations for this study. First, this is a generalization of the work done
in 3], where iterations of evolutes and involutes were considered, both in the continuous
and discrete settings (when curves are replaced by polygons).

Second, there is a relation with the recent study of bicycle kinematics that we now
describe.

Bicycle is modeled by an oriented segment of fixed length that can move in such a way
that the velocity of its rear end is always aligned with the segment (the rear wheel is fixed
on the bicycle frame). The bicycle leaves two tracks, the rear track v and the front track
I', and they are related as shown on the left of Figure . See, e.g., [5 8].

r o

Figure 2: The correspondence between the rear and front bicycle tracks and the dual
picture.

This model of bicycle can be also considered in the spherical geometry, see [12]. In the
spherical geometry one has a duality between points and oriented great circles, the pole-
equator correspondence. This spherical duality extends to smooth curves and, applied to
the left part of Figure [2] it yields the right part, where the angle « equals the spherical
length ¢.



However, we consider the right part of Figure [2] as drawn in the plane. In this way, the
map that takes the rear bicycle track to the front track is analogous to the map that takes
a curve to its skew evolute. As we will see, unlike the former map, the latter one is a linear
map, and it is much easier to study.

Third, there is a connection to the theory of mathematical billiards, which we mention
now, and also later in the article.

Mirror equation. One can view the right part of Figure [2| as depicting the motion of a
bicycle with a “stretchable” frame: ~ is the front track, I' is the rear track, the length
of the bicycle ¢ and the steering angle « are both variable. Let ~(¢) be the arc length
parameterization and (7, N') be the Frenet frame along v. Then the rear end of the bicycle
segment is v+ £(7T cos o+ N sin ). The condition that the velocity of this point is aligned
with the segment yields the bicycle differential equation (see, e.g., [8]):

doa sina(t)

where k is the curvature of .

Figure 3: Mirror equation for billiard caustics.

Writing the same equation for 7 — o and adding them yields the mirror equation, well
known in the theory of billiards (e.g., [22], Theorem 5.28):

1 1 2k

61 162 SiIlO/

see Figure

Remark 1.1 Equation also appears in the study of the Josephson effect (the cur-
rent through a very narrow insulator separating two superconductors) by Yu. Bibilo, V.
Buchstaber, A. Glutsyuk, O. Karpov, A. Klimenko, O. Romaskevich, S. Tertychnyi; see
[4, 16, [7, 14] and the references therein.

And for the fourth motivation, our topic is related with the classic 4-vertex theorem
that, in its simplest form, asserts that the curvature of a plane oval has at least four critical



points, the vertices. These vertices are the points where the osculating circle is 3rd order
tangent to the curve. We establish a version of the 4-vertex theorem, where the role of
circles is played by logarithmic spirals: they are the orbits of 1-parameter subgroups of the
isometry group in the similarity geometry. Namely, a plane oval has at least four points of
4th order tangency with a logarithmic spiral.

2 (Co)oriented lines, support functions, hedgehogs,
hypocycloids

An oriented line in the plane is characterized by its direction « and the support number p,
the signed distance from the origin to the line, Figure |4, The coorientation of an oriented
line is given by the direction ¢ = o — /2.

p<0

p>0

Figure 4: The space of oriented lines.

Let «v be an oriented smooth strictly convex closed curve. It can be parameterized by
¢ € S = R/277Z, the direction of its outward normal vectors, and the support numbers of
the tangent lines are given by a function p(¢). This is the support function of ~.

The support function uniquely characterizes the curve, except that a change of the
origin amounts to adding to p(¢) a first harmonic, a linear combination of cos ¢ and sin ¢.
The equation of the curve, defined by its support function, is

7(¢) = (p(¢) cos ¢ — p(¢) sin §, p(¢) sin ¢ + p'(¢) cos ¢). (2)
The length of v and the area bounded by it are given by

L- / "p(6) db, A= / "2(6) — (0)2(6)] do,

2
and the curvature radius of v by p(¢) + p” (), see, e.g., [20].
Replacing a curve by its equidistant curve amounts to adding a constant to the support
function. The curves equidistant to convex ones still do not have inflections and are
characterized by their support functions p : S* — R, but they may have cusps, where the
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radius of curvature vanishes. The tangent lines are well defined at the cusps, and their
coorientation is continuous therein (unlike the orientation that reverses at the cusps).

The cooriented curves described by the support functions are often called hedgehogs,
and this is the class of curves that we consider here. The orientation of a smooth arc of
a hedgehog is obtained from its coorientation by a 90° rotation in the positive direction.
The above formulas for perimeter and area are still valid, but these quantities are signed
(for example, the sign of the length changes as one traverses a cusp).

An equivalent characterization of hedgehogs is that they are equidistant curves of convex
curves (the support functions of equidistant curves differ by additive constants).

A hypocycloid is the hedgehog whose support function is a pure harmonic, a linear
combination of cos(k¢) and sin(k¢). The number & > 2 is the order of a hypocycloid, see
Figure [5l We consider circles as the hypocycloids of order zero.

Figure 5: Hypocycloids of order 2,3, and 4 (the middle curve is traversed twice).

3 Known results

In this section we present known results on skew evolutes and skew involutes.
Let v be a hedgehog with the support function p(¢), and let I' = &, be its skew-evolute
with the support function g(¢). Then

q(¢) = p(¢p — a)cosa+p'(¢p — a)sina, (3)

see [13]. In particular, L(T') = cosa L(7).

Denote the linear differential operator on the right hand side of (3)) by D, (p)(¢).

The Steiner point, or the curvature centroid, St(7), of a curve v is its center of mass
with the density equal to the curvature. In terms of the support function, it is given by

St(y) = - /0 " p($) (cos ¢, sin @) do.

T

A hedgehog v and its skew evolute I' = &,(7) share their Steiner points, see [1].

For a quick proof, note that the Steiner point is characterized by the condition that, if
it is chosen as the origin, then the support function is L?-orthogonal to the first harmon-
ics, that is, its Fourier expansion does not contain the first harmonics. This property is
preserved by the operator D,, and the result follows.



The evolute of a curve is the locus of the centers of its osculating circles. For skew
evolutes, the role of circles is played by the logarithmic spirals.

A logarithmic spiral centered at the origin is characterized by the property that the
position vector of every point makes a constant angle a with the direction of the curve at
this point. If & = 7/2, the spiral is a circle.

Call such logarithmic spirals a-spirals. They form a 1-parameter family of curves.
Allowing parallel translation of the origin, results in a 3-parameter family of a-spiral (sim-
ilarly to circles). It follows that, for every «, a smooth curve has an osculating a-spiral
at every point (it approximates the curve to second order). A hyper-osculating a-spiral is
tangent to the curve to higher order.

Therefore the skew evolute &,(7) is the locus of centers of the osculating a-spirals of
the curve . The cusps of &,(7) correspond to hyper-osculating a-spirals, see [26].

The cusps of a skew evolute happen when its radius of curvature r(¢) vanishes. In view
of equation , this amounts to the equation 7 cosa + r'sina = 0, or 7’ /r = — cot . See
[9] for a study of cusps of skew evolutes.

Let " be a hedgehog. Given «a, does I' have a closed skew-involute, and if so, how
many? For o = 7/2, the involute is provided by the string construction, and a necessary
and sufficient condition for it to close up is that the signed length of I' vanishes, in which
case one has a 1-parameter family of involutes.

However, if a # 7/2, then there exists a unique closed skew-involute Z,(I"), see [2].
The reason is that the monodromy of the linear differential equation is a homothety of
the real line with coefficient # 1. Such a map has a unique fixed point, corresponding to
the desired periodic solution.

Comparing with the bicycle kinematics, we observe the following difference. Given a
closed front bicycle track, the rear track is determined by a first order ordinary Riccati
differential equation, equivalent to equation , see, e.g., [§]. Unlike the case of skew
involutes, the monodromy of this equation takes values in the group SL(2,R), acting on
the circle RP' of the initial positions of the bicycle by fractional-linear transformations.
Generically, such a transformation has either zero or two fixed points.

4 Three examples

The following examples concern locally convex curves that are not closed, and their support
functions are not periodic anymore. However formula is still valid.

Cycloid. It is well known that the evolute of a cycloid is congruent to the cycloid by
parallel translation. The same holds for skew evolutes, see Figure [6]

Indeed, the support function of a cycloid is p(¢) = —¢@cos¢. Using equation (3)), we
find that the support function of the skew evolute is

q(¢) = —pcos ¢ + (o — cos asin ) cos ¢ + sin® asin ¢.

Thus the support function has changed by a first harmonic, which amounts to a parallel
translation of the curve.



Figure 6: Left: a cycloid and its skew evolute. Right: a logarithmic spiral and its skew
evolute.

Logarithmic spiral. Logarithmic spirals are congruent to their skew evolutes by
rotation, see Figure [l Indeed, the support function of an origin-centered logarithmic
spiral is p(¢) = e“?. Hence the support function of its skew evolute is

q(¢) = e™**(cosa + csina)e®®,
which is obtained from e® by a parameter shift. If ¢ = — cot o, the skew evolute reduces
to a point.
A slight generalization is a curve v whose support function is p(¢) = c;e”? + cyeb2?. If

(cosa + by sina)”™ = (cosa + bysina)™,

then &,() is congruent to 7 by rotation.

Parabola. A calculation, that we do not present, shows that the skew evolute of the
parabola (t,t*/2) has a cusp for 3t = — cot «, see Figure . Thus the skew evolute of a
parabola has a unique cusp for every a € (0, 7).

5 New results

Now we present results that, to the best of our knowledge, are not found in the literature.

First, let us look at the above defined linear operator D, in detail. It preserves the
2-dimensional space of kth harmonics. In the basis (cos(k¢),sin(k¢)), it is given by the
matrix

(4)

This is a linear similarity, a composition of rotation and dilation; the dilation coefficient is
equal to v/1 + (k2 — 1) sin? . In particular, for o # 7/2, the operator D, is invertible.
Since similarities with a fixed center commute, we have

cos?a + ksin*a, (k—1)cosasina
—(k—1)cosasina, cos?a+ksin®a /)
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Figure 7: Skew evolutes of a parabola with o = 7/10, 7/5,37/10, and 27 /5.

Corollary 5.1 One has
Epo0Eg=E30&, and I,0T15=Tg01,.

Next we ask how the shape of a hedgehog evolves under iterations of the skew evolute
or skew involute operations.

Theorem 1 (i) Assume that the support function of v is a trigonometric polynomial of
degree d. Then the iterated skew evolutes of v converge, in shape, to a hypocycloid of order
d.

(i) If the Fourier series of the support function of v has a free term, then its iterated skew
inwvolutes converge, in shape, to a circle. If the Fourier series starts with dth harmonics,
then the iterated skew involutes converge, in shape, to a hypocycloid of order d.

Proof. For the first statement, formula implies that, under iterations, the highest
harmonics grow faster than the lower ones. This implies the result.

Likewise, under D, ', the free term of the Fourier series is multiplied by 1/cosa > 1,
whereas the space of kth harmonics is stretched by the factor 1/4/1 + (k2 — 1)sin’a < 1.
In the first case, the free term dominates under iterations, and in the second case, so does
the first non-trivial harmonic. O




Corollary 5.2 A hedgehog is similar to its skew involute if and only if it is a hypocycloid.

In the case of evolutes and involutes (o« = 7/2), the above results were obtained in [3].
The next theorem extends another result in [3] from evolutes to skew evolutes.

Theorem 2 Assume that the support function p(¢) of a hedgehog 7y is not a trigonometric
polynomial, that is, its Fourier expansion contains infinitely many terms. Then the number
of cusps of the iterated skew evolutes increases without bound.

Proof. The proof consists of two steps.

Claim 1: The number of sign changes of the functions DI(p) increases without bound
as n — o0.

This is a slight generalization of the theorem by Polya and Wiener [17] where the case
of the operator p — p’ is considered. Since this argument is not sufficiently well known,
we present it here.

Let

p(o) = are’™, a_y = ay,

kEZ

be the Fourier expansion of p. It suffices to proof the statement for a simpler operator
F(p) =p' + cp, that is,
Fip— Z(c + ik)aze™?
keZ

The claim is that if a,, # 0 then, for sufficiently large n, the function F™(p) has at least
2m sign changes.

Let Z(f) denote the number of sign changes of a periodic function f. A version of
Rolle’s theorem, Lemma 1 in [17], asserts that, for every b € R,

kig
(5] 22 (x )
keZ kEZ

Apply this to f = F"(p), b> = m? + 2¢%, and iterate the inequality n times:

i <Z<c+z‘k>”akem) - (Z (g:gizafm ) )

kEZ kEZ

= (Z 2V + m2(c+ ik)|"ae ¢’) |

~ (m? + 2¢% + k2)»

Let ¢n(¢) = Y 1cz ck€® be the function on the right. Then

il 2V + m2y/c? + k2 n| |
el = al.
i m2 + 2c¢2 + k2 F



One has

2v/c2 + m2v/c? + k2
m? 4+ 2¢2 + k2
unless £ = m, in which case this coefficient equals 1. This implies that, for sufficiently

large n,
[em| > D lexl,
k#m

<1

Y

as in [17]. For such n, Z(g,) equals the number of sign changes of its mth harmonic, that
is, equals 2m, as needed.

Claim 2: If the support function of a hedgehog v has 2m sign changes, then ~ has at
least m cusps.

Indeed, if the support function of v has 2m zeros, then there are 2m tangents from the
origin O to 7. Each arc of a hedgehog between its cusps is convex, and there are at most
two tangents from O to it. Therefore there must be at least m such arcs, and at least as
many cusps. O

Theorems [I] and [2] imply

Corollary 5.3 If all iterated skew evolutes of a hedgehog v are free from cusps, then 7y is
a circle.

What is an analog of this statement in terms of the bicycle model? Since the projective
duality interchanges cusps and inflections, we are led to the following formulation.

Let v be a smooth oriented closed curve, L a fixed positive number. Denote by 7T (7)
the locus of endpoints of the positve tangent segments to v of length L. That is, 7 (v) is
the front track of the bicycle whose rear track is 7.

Conjecture 3 Assume that all iterations T*(v),k > 0, are convex curves. Then v is a
circle.

Continuous limit. Let us consider the limit of the skew evolute transformation as o —
0. Expanding equation to second order in « gives

042

a(9) = (p<¢> —ap/(9) + %2p/'(¢> (1 _ 7) 0 (0) -t (6))a = plo) - T

2

(p(0)+1"(9)),

which, in the limit, and ignoring the constant 1/2, becomes the evolution equation on the
support function: p = —(p + p”).
Equation implies that the respective vector field along the curve v(¢) is

(=(p+1")cosp+ (p +p")sing, —(p+p") sing — (p 4+ p"”) cos ¢).

The normal component of this field, that is, its dot product with —(cos ¢, sin ¢), equals
p + p”. That is, every point moves in the internal normal direction with the speed equal
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to the curvature radius, in contrast with the curve shortening flow where the speed equals
the curvature.

For convex curves, the & — 0 continuous limit of the skew involute map is a curve
evolution in which every point moves along the exterior normal with the speed equal to
the curvature radius. Under this flow, the limiting shape of a curve is circular.

6 An “integrable” map on hedgehogs

Given a bicycle rear track, one can traverse it in the opposite directions, creating two front
tracks. This relation between curves is completely integrable, see [5]. Equivalently, two
smooth curves, I'y and I'y, are in the bicycle correspondence if two points, x; and x5, can
traverse them in such a way that the distance between them remains constant (twice the
bicycle frame) and the velocity of the midpoint of the segment x;xs is aligned with this
segment (this is how the rear wheel moves).

An analog of this relation in our setting is as follows.

Fix an angle o and consider a hedgehog I';. One constructs its skew-involute v, and then
Iy, the skew-evolute of v with the angle —a. We obtain a map M, =& _,07Z, : 'y — T's.
See Figure

-

Figure 8: Left: the image of an ellipse under the map M,. Right: the curve with the
support function p(¢) = 5% (black) and its images under M, for a = 0.5,0.9 and 1.2
(blue, red, and green, respectively).

Equivalently, two points, x; and x,, traverse the curves I'y and I's in such a way that
the angle between the (co)oriented tangent lines at z; and x5 is 2a, and the intersection
point of these lines moves in the direction of the bisector between these oriented lines, see

Figure [9]
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Figure 9: The map M,

Let p; and py be the support functions of these curves. The next formula follows from
equation ({3)):
Po(@) — pa(o) cot v = —pfi (¢ — 2c0) — p1(d — 2c) cot a. (5)

The next lemma lists some properties of the maps M,,.

Lemma 6.1 1) A curve I' and M, (") share their Steiner points;
2) The maps commute: M, o Mg = Mgo M,;
8) One has My ™' = M_,.

Proof. The first two properties follow from those of the skew evolute map. For the third,
one has 7, = £, !, hence M, = &_,0&, L. It follows that M, ' =&, 0& ' = M_,.
O

The maps M, are integrable in the following sense.

Proposition 6.2 For every k and every «, the sum of the squares of kth Fourier coeffi-
cients of the support function is preserved by the map My if

p(9) = Zawkw, a—j = ar,

keZ

is a Fourier expansion of the support function of I', then the amplitude |ay| is an integral
of the map M, for every k > 0.

Proof. As before, the map preserves the the 2-dimensional spaces of kth harmonics. A
direct calculation, using equation , shows that this map is a rotation. More precisely,
define the angle 8 by tan 5, = ktana. Then the Fourier coefficients are transformed as
follows:

ay — ape? P,
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and the action of M,, on the space of kth harmonics is the rotation by 2(8; — «). O

In particular, hypocycloids evolve by rotations. In this sense, they behave as solitons
of the map M,,.

In addition to the signed length L(I') and signed area A(T"), let R(I") = f027r r?(¢)do,
where r(¢) is the curvature radius of the curve I

Corollary 6.3 One has

L) = LIM,I)), A(T") = A(M4(I')), and R(I') = R(M(I)).

Proof. The first equality directly follows from equation ({5)).
Let
p((ﬁ) = Z akekid)a Q((Zﬁ) = Z amemi¢7 a_jp = ag, b_,, = Em’
kEZ meZ

be the Fourier expansions of two periodic functions. Then

1 2

p(6)a($)dd = aoho + Y (axbi + axby).

o
0 k>0

Let p(¢) be the support function of I'. Then r(¢) = p(¢) + p”(¢), and

1

A =5 [ 6o - ondo. BRI = [ 000 + @) de,

see, e.g, [20]. It follows that

rAD) = a5 +2) (1= K)|al, RIT) =aj+2) (1- k)|,

k>0 k>0

and the result follows from Lemma [6.2] O

Consider the space of hedgehogs whose support functions are trigonometric polynomials
of degree d. This space is 2d + 1-dimensional. Fixing the amplitudes of each harmonic, we
obtain a space H4, a d-dimensional torus. If I' € H,4, then so is M, (I"). Geometrically, this
space consists of the Minkowski sums of hypocycloids of orders 0, 1, ..., d, scaled according
to the fixed amplitudes, and each rotated through all angles independently of each other.

The map M, is a rotation of this torus: the kth factor S! is rotated by 2(8; — «),
where 3y are as in the proof of Lemma For a generic «, it is natural to expect the
angles [ to be rationally independent.

Conjecture 4 For a generic «, the orbit of a point is dense in the torus Hq.
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7 Gutkin vs Wegner

Circles are invariant under M,, for every a. Are there other invariant curves?

This question is an analog of the following “bicycle” problem: which curves are in the
bicycle correspondence with themselves? This problem is equivalent to Ulam’s problem to
describe the bodies that float in equilibrium in all positions (in dimension 2), problem 19
of The Scottish Book [21].

This Ulam’s problem is not completely solved, but there is a wealth of results in this
direction, including constructions of such curves by F. Wegner: these curves are pressurized
elastica, and they are solitons of the planar filament equation, a completely integrable
partial differential equation of soliton type. See [23] 24], 25] and [5].

However, due to linearity, the problem at hand is considerably simpler, and it was
solved by E. Gutkin in the billiard set-up [10].

Indeed, if M,(I') =T for a convex curve I'; and v = Z,(I") is also convex, then I is
a caustic of the billiard inside ~, having the special property that the billiard trajectories
tangent to I' make angle o with the billiard curve ~; see also [1].

Theorem 5 (Gutkin) A necessary and sufficient condition for such non-circular curves
[ to exist is that k tan o = tan(ka) for some k > 2.

Proof. To show necessity, set po = p1 =: p in and rewrite it as
Py(¢+ ) sina — pa(¢p + ) cos v + p1 (¢ — ) cos v + pli (¢ — ) sinew = 0. (6)
If .
p(¢) = po + Z ay, cos(ke) + by sin(ke),

1

then equation (6)) implies
ag(sin(ka) cos a — k cos(ka) sin o) = by (sin(ka) cos o« — k cos(ka) sinar) = 0.
If the curve is not a circle, then a; # 0 or b, # 0 for some k£ > 2, and then
sin(ka) cos v = k cos(ka) sin av,

as needed.

For sufficiency, one can take a “fattened” hypocycloid of order k, that is, add a suf-
ficiently large constant to the support function of the hypocycloid. This yields a convex
curve having the desired property. O
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8 A 4-vertex theorem

Logarithmic spirals comprise a 4-parameter family; their support functions are
p(¢) = ce® + acos ¢ + bsin ¢, (7)

where the constants a, b, ¢, k are parameters.

Let v be an oval. At every point one has the osculating logarithmic spiral that ap-
proximates v up to 3rd derivatives, and by a wverter we mean here a point where the
approximation is up to the 4th derivatives.

Theorem 6 An oval v has at least four vertices.

Proof. Let p(¢) be the support function of v, and let R(¢) be its radius of curvature.
Then R =p+ p”.
At a vertex, in addition to , one has
P (¢) = kce™ — asin ¢ + bcos @,
p"(¢) = k*ce™ — acos¢ — bsin ¢
p"(¢) = k3ce™ 4 asin ¢ — bcos
" (¢) = k'ce® + acos ¢ + bsin ¢.

Expressing ce*® from and substituting to , we see that equations and are
compatible if and only if

(8)

(p +p//)(p// +piv> — (p/ _|_p///>27
or

RR" = (R)% (9)

We want to show that () has at least four solutions on the circle. Rewrite it as (In R)” = 0.

Alternatively, the same equation can be established as follows. Let (¢) be the curvature
radius of the logarithmic spiral . Then 7 = p +p” = c(1 + k*)e*. Hence Inr =
Inc+In(1+ k%) + ka, and (Inr)” = 0. This implies that a logarithmic spiral approximates
an oval up to the 4th derivatives if and only if (In R)” = 0.

Let ¢ be the average value of the function p(¢). Then the Fourier expansion of the
function p + p” — ¢ starts with harmonics of order > 2.

Recall the Sturm-Hurwitz theorem: the number of sign changes of a 2w-periodic func-
tion is not less than that of the first harmonic in its Fourier expansion (see, e.g., [16],
Appendix 8.1). By this theorem, the function p + p” — ¢ has at least four zeros. Therefore
R = p+ p” assumes the value /¢ at least four times.

Thus In R — In ¢ has at least four zeros. By Rolle’s theorem, so does (In R)’, and hence
(In R)”, as needed. O
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