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Abstract. Stories about everyday situations are an essential part
of human communication, motivating the need to develop AI agents
that can reliably understand these stories. Despite the long list of su-
pervised methods for story completion and procedural understand-
ing, current AI fails to generalize its procedural reasoning to un-
seen stories. This paper is based on the hypothesis that the general-
ization can be improved by associating downstream prediction with
fine-grained modeling and the abstraction of procedural knowledge
in stories. To test this hypothesis, we design LEAP: a comprehen-
sive framework that reasons over stories by jointly considering their
(1) overall plausibility, (2) conflict sentence pairs, and (3) participant
physical states. LEAP integrates state-of-the-art modeling architec-
tures, training regimes, and augmentation strategies based on natural
and synthetic stories. To address the lack of densely annotated train-
ing data on participants and their physical states, we devise a robust
automatic labeler based on semantic parsing and few-shot prompt-
ing with large language models. Our experiments with in- and out-
of-domain tasks reveal insights into the interplay of architectures,
training regimes, and augmentation strategies. LEAP’s labeler con-
sistently improves performance on out-of-domain datasets, while our
case studies show that the dense annotation supports explainability.

1 Introduction

Building AI agents that understand stories is central to many do-
mains, ranging from cooking [28] to science [12]. This is because
practically any situation can be associated with a story that requires
an agent to judge and explain its plausibility [7]. How does one de-

cide whether a story is plausible? Let us consider the two similar
stories shown in Figure 1. Story A makes sense because taking out
the notebook is often followed by writing, and a key affordance of
notebooks is to enable writing. Meanwhile, story B is implausible, as
having the notebook at a different location hinders the possibility of
writing in it. Thus, to understand stories about everyday situations, a
model needs to be able to track the states of the relevant participants,
understand the implications of described events, detect anomalous
and unexpected behaviors, and project alternative and counterfactual
scenarios [31].

While story comprehension has been a popular goal over the past
decade [30], state-of-the-art methods typically lack pragmatic in-
ference and focus solely on end-task goal prediction, which lacks
the transparency of the intermediate reasoning process. The require-
ment of benchmark-specific training also limits their generalization
to novel benchmarks and tasks. A parallel stream of research [28, 21]
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has developed methods for state tracking of participants in the do-
mains of science and cooking to increase the model’s interpretability.
A recent task of procedural reasoning about physical processes [33]
measures the ability of methods to simultaneously predict the plausi-
ble story, the conflicting sentence pairs for the implausible story, and
the physical states of the participants. Although this task provides a
natural bridge between the model’s procedural understanding and the
overall story assessment, it has only been considered in a supervised
setting, raising questions about the generalizability of the findings on
unseen data. Moreover, such fine-grained reasoning requires densely
annotated stories, i.e., every participant’s physical state need to be
annotated for every step of the story. This naturally leads to high
annotation costs and has limited the size of such datasets to a small
scale. We hypothesize that training with fine-grained objectives (e.g.,
detecting conflicting sentences and modeling participants’ physical
states) can effectively prevent the model from learning shortcuts,
therefore improving the generalization to unseen scenarios. To our
knowledge, no existing effort has studied the transfer ability of such
fine-grained procedural knowledge to unseen tasks, nor addressed the
inherent lack of densely annotated data about story procedures.

In this paper, we study the ability of AI models to transfer proce-

dural knowledge across story-based tasks in a transparent manner.
Our contributions are as follows:

1. A comprehensive framework called LEAP (Learning from Ex-
perience by Annotating Procedures), that integrates state-of-the-
art language model (LM) architectures, training regimes, and aug-
mentation strategies. LEAP is designed to study the ability of
models to transfer knowledge about procedures across story tasks.

2. An automatic labeler within LEAP that densely annotates col-
lected stories based on semantic parsing and few-shot prompting.
LEAP’s labeler can be generically applied to annotate participants
and their attributes in arbitrary realistic and synthetic stories.

3. An extensive evaluation of a wide range of models on repre-
sentative procedural-driven tasks covering different transfer capa-
bilities, task formats, and domains. We provide insights into the
strengths and weaknesses of current models to reason over novel
stories, and we showcase the ability of the developed labeler to
generalize better with existing supervised methods.

We release our code and data1 to support future research.

2 Related Work
Story Understanding has been a popular task over the past decade,
resulting in many popular benchmarks [25, 18] and methods [19, 11].
1 https://github.com/1171-jpg/LEAP
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Figure 1: An illustration of the LEAP framework, which transfers procedural knowledge from a source task through zero-shot evaluation on
unseen tasks. The model structure is presented in the green box. LEAP includes various story modeling strategies and training regimes. To
address data sparsity, LEAP supports three data augmentation methods: participant abstraction, word insertion, and automatic labeling.

While some previous work has studied the effect of commonsense
knowledge on story understanding [8], they only focus on the su-
pervised setting and in-domain evaluation. Conversely, our paper fo-
cuses on the zero-shot evaluation setting and studies the transfer of
procedural knowledge with different data augmentation strategies.
Procedural Reasoning Unlike story understanding task which only
requires the final prediction label, procedural reasoning requires the
model to track the states of the participants at every step in a process
[5, 12]. Many dedicated methods have been developed for proce-
dural reasoning [28, 38]. More recently, Storks et al. [33] proposed
the TRIP benchmark to bridge the gap between procedural reasoning
and story understanding, where the model needs to perform tiered
reasoning over story pairs. Ma et al. [21] proposed a procedural rea-
soning model that can be extended to perform story understanding
tasks. However, there has been no study of the zero-shot generaliza-
tion ability of these aforementioned models.
In-Context Learning and Semantic Annotation With the recent
progress of pre-trained large LMs (LLMs), prompting has become a
popular approach to tackle many NLP tasks [6]. More specifically,
zero-shot prompting directly feeds in the input to the model to elicit
an output [35], while few-shot prompting additionally appends ex-
ample demonstrations to the input to better guide the model’s predic-
tion [29]. Most of the previous work on prompting studied tasks that
require simple outputs, e.g., classification [24], and only a few have
attempted to apply prompting to semantic annotation tasks that re-
quire complex structured outputs. Spiliopoulou et al. [32] only focus
on detecting the change of attributes and Madaan et al. [22] adapts
LM annotation to in-domain data. In contrast, we not only explore
prompting for procedural reasoning but also study the transfer abil-
ity of the elicited procedural knowledge to other tasks.

3 LEAP: Procedural Transfer Framework
We introduce a framework called LEAP (Learning from Experience
by Annotating Procedures) that enables the transfer of explicit pro-
cedural knowledge from a source task S to target tasks T1, T2, ... in
a zero-shot manner. S consists of pairs of plausible and implausible
stories (P, P 0). Each story comprises n sentences s1, s2, ...sn and is
annotated with three procedural components: (1) the preconditions
and the effects for each attribute a 2 A of each participant e 2 E
at every step in the story (or E0 for P 0, which is different from E);
(2) a pair of conflicting sentences (s,s0) in the implausible story; and
(3) a plausibility label of the story, Pplau 2 {0, 1}. A model that
learned procedural knowledge rather than spurious correlations from
the source task should be able to generalize to unseen tasks that re-

quire similar kinds of reasoning. To test this, we select target tasks Ti

that are in multiple-choice format, where given a partial procedure
description, a model has to select the answer that optimally com-
pletes the procedure.

The model structure, shown in green in the center of Figure 1,
is loosely based on CGLI [21], which achieves state-of-the-art re-
sults on procedural understanding tasks. The architecture is based
on a Transformer language model, which encodes a pair of stories
in parallel and provides its encoding to three distinct output layers
that are used to perform the stratified reasoning on three procedural
components. An Attribute classifier predicts the preconditions and
the effects for each attribute of each participant. A Conflict detector

predicts the conflict sentences in the implausible story. A Story clas-

sifier determines which story is plausible. LEAP extends this general
model with two story modeling methods, three training regimes, and
three augmentation strategies. We also evaluate the LEAP variants
on five out-of-domain tasks. A comprehensive overview of LEAP is
shown in Figure 1.

3.1 Story Modeling

LEAP includes two ways of modeling stories: single and joint (as
pairs). We will introduce the detail of the model structure and its spe-
cial layers design for procedural components in Single Story Model.
And we explain how to modify Joint Story Model to combine the
story information and consider pairs jointly.
Single Story Model Given a story P and a set of participants in the
story E, we create a separate input sequence based on every partici-
pant e 2 E following [21]:

Cinput = [CLS]e[SEP ]s1[SEP ]...sn[SEP ] (1)

where s1, ...sn are sentences in P . We then add timestep embeddings
(0=padding or pseudo question, 1=past, 2=current, 3=future) [28] to
mark the current reasoning step. The input embeddings and timestep
embeddings are summed and encoded by the LM encoder. The [CLS]
token representations from the input sequence of every timestep are
extracted for output modeling, resulting in C 2 Rn⇥d where n is the
number of steps in the story and d is the hidden dimension. We pass
C to the attribute classifier, conflict detector, and story classifier for
reasoning procedural components separately.

Attribute classifier is a typical two-layer feed-forward classifica-
tion module that takes Ci 2 Rd (i 2 n) in each sentence and predicts
corresponding precondition and effect attributes. Given A attributes,



we include A precondition classifiers and A effect classifiers.

✓attri = WT
a (tanh(WT

d Ci)) (2)
Pattri = agrmax(✓attri) (3)

where ✓attri 2 Ra and a is the number of possible labels of the
attribute, e.g., temperature has three labels: not related, cold, and
hot.

Conflict detector concatenates every pair of step representations
[Ci;Cj] 2 R2d and processes them through a linear layer. Then, bi-
nary classification is applied to every sentence pair to predict whether
it has conflicts.

Cconfl = Stack(Concat(Ci, Cj)) (4)
Pconfl = Sigmoid(WconflCconfl) (5)

Story classifier computes the mean of the step representations
Ci 2 Rd to form a story representation Csto 2 Rd for the final label
prediction. We project Csto to a two-dimensional vector using a lin-
ear classifier to represent the plausible and implausible class logits.
Thus, each story is classified separately.

Csto = Mean(C) (6)

Psto = Softmax(WT
stoCsto) (7)

Joint Story Model An obvious drawback of single-story modeling
is that the relationship between the stories of the pair is not captured.
However, since our model expects a unique input sequence for every
participant in the story, it may be hard to construct parallel input se-
quences for stories that do not have identical participants. To remedy
this, we first obtain the common participant set, Ec = E \ E0, and
then construct parallel input sequences for every e 2 Ec as equation
[1]. Then for unaligned participants, we create a dummy participant
e0 to fill in the slot in the corresponding input sequence.

Cdummy = [CLS]e0[SEP ]s1[SEP ]...sn[SEP ] (8)

Hence, both stories will have an equal number of participant-based
input sequences (C for story P , C0 for story P 0). Both C and C0

will still go through equations [2-5] to predict each story’s participant
attributes and conflict sentences. After obtaining Csto and C0

sto from
the pair of stories, we concatenate these two vectors and perform
classification with a linear layer of size Rd⇥1 to predict the plausible
story. Hence both stories are jointly considered for prediction.

Psto = WT
jointCsto P 0

sto = WT
jointC

0
sto (9)

Pjoint = Softmax(Concat(Psto, P
0
sto)) (10)

Both single and joint-story settings will give predictions on con-
flict sentences and story plausibility for each participant or partici-
pant pair. We take the mean of all participant predictions as the final
prediction.

3.2 Training Regimes

As the model optimizes over multiple objectives, we experiment with
story, participant, and sentence-centric training regimes.
Story Centric optimizes all three losses, i.e., story, conflict, and at-
tribute loss, for each participant in the story.

L = Lsto + Lconfl +
1
A

AX

i=0

(Li
prec + Li

effe) (11)

Here we set the story label to implausible for all participants from
the implausible story.
Participant Centric modifies the story-centric loss by setting the
story label to implausible only for participants that appear in the con-
flicting sentences of the implausible story.
Sentence Centric omits the story loss, only optimizing the attribute
and conflict losses.

L = Lconfl +
1
A

AX

i=0

(Li
prec + Li

e↵e) (12)

In the final story prediction of sentence-centric loss, we obtain the
negative summation of all Pconfl and detect which story is more
plausible.

3.3 Augmentation Strategies

Procedural text understanding requires dense annotation of two pro-
cedural components in each step: (1) participants with relevant phys-
ical attributes, and (2) state labels for each physical attribute. Due to
the laborious annotation requirement, most existing benchmarks are
small in scale, which may hinder the learning of generalizable mod-
els. Instead of relying on manual annotation (e.g., by crowdsourcing),
we propose a cheap and automatic data augmentation for training
procedural reasoning models.
In-Domain Augmentation We define two in-domain methods: Par-
ticipant Abstraction and Word Insertion. The Participant Abstraction

augmentation is inspired by Höpner et al. [15]’s idea to replace spe-
cific concepts with more general ones to aid reinforcement learning.
We replace all non-human participants with their direct hypernym
in WordNet [23] to generate the new dataset. For example, “bread"
! “baked goods", and “pan" ! “cooking utensil". The intuition is
that the hypernym shares similar physical properties with the origi-
nal participant, enabling the reuse of the original attribute annotation.
Word Insertion adds adjectives and adverbs to the existing sentences
in the in-domain corpus. It selects suitable words based on a contex-
tual word embedding of the original sentence, obtained with a pre-
trained LM, e.g., “Tom ate the cold soup" ! “Tom ate the wonderful
cold tomato soup". As word insertion merely enriches the participant
information, we directly reuse the attribute annotation.
External Data Augmentation We experiment with two kinds of ex-
ternal data: Natural Stories and Synthetic Stories. As Natural Sto-

ries, we select ROCStories [25], a popular story cloze task dataset
about everyday events. We use Synthetic Stories that are automati-
cally generated from the Commonsense Knowledge Graph (CSKG)
[17] based on psychological axioms [14]. The synthetic dataset, gen-
erated by [16] has over 100k plausible commonsense stories based
on three story types with corresponding templates: unmet expecta-
tions, substitutions, and object modifications. Each plausible story is
associated with an implausible story based on graph patterns. For our
experiments, we use a stratified sample of 3K synthetic story pairs.

Unlike in-domain augmentation data, the external stories do not
come with the dense attribute annotations assumed by LEAP. To
bridge this gap, LEAP includes a novel labeler that can automati-
cally extract participants and annotate their attributes without train-
ing, which we describe next.

4 Automatic Story Labeling
LEAP’s labeler consists of Participant Annotation and Attribute An-

notation (Figure 2). We annotate participants based on semantic rules
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def main():
   Steve = Node()
   soup = Node()
   fridge = Node()
   def Steve_got_some_soup
        _from_fridge():
        soup.temperature.activate()
        fridge.temperature.activate()
#END

Codex

bread.temperature.activate()

bread.temperature = cold

demonstration

demonstration

Input template
def main():
   Tom = Node()
   bread = Node()
   shelf = Node()
   def Tom_found_a_cold_bread_on
          _the_top_of_shelf():

def main():
   bread = Node()
   def Tom_found_a_cold_bread_on
          _the_top_of_shelf():

Input template

Codex

Active Attribute Detection

Attribute State Annotation

def main():
   apple= Node()
   def Alice_got_an_applce
         _from_fridge():
        apple.temperature = cold
#END
def main():
   egg= Node()
   def Tony_cooked_an_egg
         _on_the_pan():
         egg.temperature = hot
#END

(b) Attribute Annotation

Figure 2: An overview of the LEAP’s labeler. The labeler first annotates all participants in the story (a). The participants must belong to one of
the pre-defined ontology classes, be involved in at least one semantic role relation, and be physical in nature. For each participant, we construct
the corresponding Python function code and adapt few-shot prompting in Codex to label its attribute states automatically (b).

and verify each participant using WordNet. To annotate the attribute
states of each participant, we devise a method for code-style few-shot
LM prompting.

4.1 Participant Annotation

Participant Candidate Extraction Participants, including physical
properties and phrases (e.g., birthday cake), lack a standardized de-
tection method with high accuracy. We propose an innovative ap-
proach utilizing the TRIPS [1] parser’s semantic information for par-
ticipant identification. TRIPS generates logical forms for sentences,
constructs a tiered ontology assigning words to specific classes, and
identifies their semantic roles. We manually select eleven ontology
classes and nine semantic roles (see appendix) and extract possible
participants based on ontology class membership and semantic role
involvement. Figure 2 (a) illustrates the exclusion of “cold” due to
non-membership in ontology classes and “a” for lacking semantic
role involvement. We combine participants sharing the same seman-
tic roles in the sentence to form new participant phrases. This ap-
proach allows us to extract composite concepts like “dog cage”, and
even rare phrases like “guinea pig cage”.
Physical Participant Filtering We then filter out non-physical par-
ticipants because the annotated attributes only apply to physical ones.
Notably, participant forms with ambiguous meanings can be physical
in some contexts (e.g., light -> lamp) and non-physical in others (e.g.,
light -> sunshine). To enhance our method’s generalizability, we use
a word sense disambiguation model [2] to pick the appropriate word
meaning in the story context. Finally, we check its physicality by
traversing the WordNet hypernym tree of a synset iteratively until
reaching the “physical entity" or “abstract entity" synset.

4.2 Attribute Annotation

For attribute annotation, we expect the model to provide participants’
physical attribute states at every step of the story, which is essen-
tially a structured prediction task. Inspired by recent findings that
code-style prompts are more effective for structure-aware tasks [22],

we expect that code format is more suitable than natural language in
guiding the model to annotate stories. We propose to convert story
inputs into Python-style prompts and leverage Codex [9] to generate
the attribute annotation. As shown in Figure 2 (b), we convert the
story prompt s into a Python function sp, where each participant is
defined as a Node class and each sentence in the story is converted
to a function name. The attribute annotations a for a sentence are
added as statements in the corresponding function. Then the evalua-
tion story is converted to the same format to elicit outputs. Formally,
for each evaluation story se to be annotated, the input to the prompt-
ing pipeline is:

ae = Codex(sp1 � a1 � · · ·� spk � ak � spe) (13)

where k is the number of demonstrations and the attribute annotation
ae is the output completion result of Codex.

A remaining challenge is that our stories have many participants,
and we seek to extract a large set of attributes, resulting in large and
sparse output space. In other words, only a few attributes for a subset
of participants has non-trivial labels at any step of the story, while the
rest are irrelevant, which makes the method by [22] insufficient for
our case. To overcome the skewed label distribution, we propose a
novel two-stage method that divides attribute annotation into Active

Attribute Detection and Attribute State Annotation.
Active Attribute Detection As shown in Figure 2 (b), we first
prompt Codex to detect the active participants among all possible
participants at every step. Here, Codex sees k = 4 examples from
in-domain data as prompt demonstrations and predicts the active par-
ticipants for each attribute.
Attribute State Annotation For each active participant in the sen-
tence, we perform another round of prompting to label its attribute
state, as shown in the bottom right of Figure 2 (b). For attribute state
annotation, We compute the word embedding of the participants and
the sentence embedding of context for all possible demonstrations
and pick the ones with the highest average cosine similarity. Then
we apply Codex to generate the attribute state of the participant.



Table 1: Main evaluation results across five commonsense tasks with different data augmentation methods. We also included the zero-shot
evaluation result of previous studies as well as the supervised setting. We reran TRIP and CGLI and obtained their zero-shot evaluation result
as baselines. As TRIP, CGLI, and our model follow a participant-based input construction, we ran our labeler on five target tasks to extract
participants. We report the average of three runs and their variation with different seeds. On the ROCStories dataset, we only use the CSKG
portion of our augmentation data to respect the zero-shot setting - this result is marked with an asterisk (*) in the table.

Training Model Data In domain (TRIP) Out of domain
size Acc Con Ver ROC CODAH PIQA aNLI RICA

Random - - - - - 49.5 25.1 50.2 49.6 50.7

ZSQA LM - - - - 70.2 49.5 67.6 65.5 50.3
LM w/ CSKG 692K - - - 89.7 68.5 72.472.472.4 70.5 51.7

TRIP

TRIP 0.8K 78.2 22.2 7.8 61.2 30.7 51.5 50.4 52.3
CGLI 0.8K 94.1 77.3 28.0 76.9 43.3 54.4 60.0 49.6
LEAP (no aug.) 0.8K 97.30.2 78.478.478.41.0 27.61.2 86.50.3 45.91.7 59.00.7 64.61.5 54.20.4
LEAP w/ labeler aug. 5.6K 97.00.7 70.02.8 11.33.3 *90.60.4 68.768.768.70.6 68.61.0 71.871.871.80.9 57.557.557.50.2
LEAP w/ insertion aug. 1.6K 97.897.897.80.3 75.11.3 30.130.130.11.1 85.11.0 43.90.3 57.70.8 63.50.7 54.60.6
LEAP w/ abstraction aug. 1.6K 97.20.7 74.63.1 26.73.4 83.50.9 41.50.9 57.30.4 60.60.8 53.10.9

Supervised LM - - - - †97.9 83.1 79.2 85.6 52.3

5 Experimental Setup
Datasets As a source task, we use the recently introduced TRIP [33]
dataset, which contains 800 story pairs in total. Our target tasks are:
1) ROCStories [25], a story cloze task of selecting the plausible story
ending out of two options. 2) PhysicalIQA (PIQA) [4], a two-choice
question-answering dataset where the task is to pick the more plausi-
ble continuations out of two. 3) aNLI [3], where given the beginning
and the ending of a story, the task is to choose the more plausible
hypothesis out of two options. 4) CODAH [10], a multiple-choice
sentence completion dataset where the task is to pick the most com-
monsensical choice. 5) RICA [40], a two-choice question-answering
task of choosing a reasonable conclusion based on implicit common-
sense relationships. We select these benchmarks because they repre-
sent a variety of tasks that can benefit from procedural reasoning. We
provide further information about the datasets in the appendix.
Metrics We evaluate the procedural story understanding perfor-
mance on the TRIP test dataset with three metrics: 1) accuracy of
story classification, 2) consistency as a proportion of examples where
both story and conflict sentences are correctly classified, and 3)
verifiability as a proportion of examples with correct score on the
first two metrics and with correct conflicting participant attributes in
conflict sentences. For zero-shot evaluation, we report accuracy on
the corresponding dev sets, as the test sets are not publicly available.
Baselines We compare against the following baselines. 1) As zero-
shot QA (ZSQA) baselines, we consider the original RoBERTa-Large

pre-trained model without any adaptation, and RoBERTa-L (CSKG)

[20], which is adapted on 692K synthetic QA pairs generated from
CSKG [17]. 2) We include baselines trained on the TRIP data with
the same three losses introduced in section 3, namely, the original pa-
per baseline [33] and CGLI [21]. 3) To contextualize the results, we
also show the random baseline as a lower bound, and the supervised
fine-tuned LM as an upper bound of zero-shot evaluation. For ROC-
stories, the supervised result is on the test dataset as training data is
unlabeled and LM is trained on the dev set. We include implementa-
tion details in the appendix.

6 Results
Our experiments target six questions: 1) How does LEAP perform

on in-domain tasks? 2) How does LEAP perform on out-of-domain

tasks? 3) What is the optimal LEAP architecture for transferring

knowledge to out-of-domain stories? 4) What is the effect of various

Table 2: In-domain and out-of-domain zero-shot evaluation results of
different LEAP models (modeling one1 or jointly two stories2) and
training losses (participant-, story-, and sentence-centric). The joint
model makes the decision based on both story pairs and cannot be
trained with participant-centric loss. Out-of-domain benchmarks: RS
= ROCStories, CD = CODAH, QA = PIQA, aN = aNLI, RI = RICA.

LEAP In domain (TRIP) Out of domain
Loss Acc / Con / Ver RS CD QA aN RI
Part1 94.5 / 70.7 / 21.9 71.8 33.5 52.0 54.9 54.254.254.2
Sto1 95.8 / 73.2 / 23.2 80.6 41.4 55.0 60.5 52.1
Sent1 92.9 / 66.3 / 20.9 56.0 22.9 46.4 49.7 49.1
Sto2 97.397.397.3 / 78.478.478.4 / 27.627.627.6 86.586.586.5 45.945.945.9 59.059.059.0 64.664.664.6 54.254.254.2
Sent2 92.9 / 69.2 / 24.5 60.2 24.6 49.5 50.3 50.2

augmentation strategies? 5) How does the LEAP labeling method

compare to supervised labeling systems? 6) Does the LEAP attribute

labeling and compositional design help explainability?

In-Domain Results On the in-domain task (Table 1), LEAP out-
performs the procedural understanding baselines that are trained on
the same data. Compared to the stronger baseline, CGLI, LEAP per-
forms better in terms of accuracy and consistency, and on par in terms
of verifiability. We also observe that story augmentation is detrimen-
tal to in-domain performance, which we attribute to the distribution
shift of the additional data.
Out-of-Domain Results The results of the zero-shot transfer experi-
ments (Table 1) show that LEAP outperforms the baselines, demon-
strating the strong generalization achieved by model engineering and
data augmentation. Despite using orders of magnitude fewer data
for training, LEAP still outperforms RoBERTa-L(CSKG) on four
out of five commonsense story tasks, showing the efficient data uti-
lization of LEAP. We note that LEAP’s performance is lower than
[20] on PIQA and only slightly higher on CODAH. While this can
be expected given the focus on QA of [20], we also hypothesize
that the model performance is directly linked to the breadth of re-
quired knowledge. We compute the percentage of task participants
that are unseen during training with the augmented data, observing
that 66.7% of participants in PIQA are unseen, compared to 55.0%
for CODAH and 43.7% for aNLI. This emphasizes the importance
of suitable data augmentation and labeling, which is a key challenge
addressed by our paper. We also note that although the story augmen-
tation hurts the in-domain performance, it improves 3 to 23 absolute
points across the datasets for out-of-domain evaluation. This is an



Table 3: Comparison of augmentation methods labeled with LEAP and CGLI. We report the average performance of three runs with variance.

LEAP In domain (TRIP) Out of domain
Augmentation Data Labeler Accuracy Consistency Verifiability ROCStories CODAH PIQA aNLI RICA
No augmentation - 97.30.2 78.478.478.41.0 27.61.2 86.50.3 45.91.7 59.00.7 64.61.5 54.20.4

CSKG
- 95.70.1 45.13.2 17.45.1 89.60.7 57.91.9 66.00.6 67.40.7 55.50.1
CGLI 95.90.6 69.11.9 24.52.9 90.00.8 61.60.5 66.10.7 68.11.3 53.20.1
LEAP 96.20.7 68.90.8 16.03.5 90.690.690.60.4 62.11.1 67.20.8 67.91.0 56.30.1

ROCStories
- 96.30.4 71.76.7 21.14.1 - 65.12.5 64.60.6 68.40.2 55.30.7
CGLI 96.70.3 72.81.8 21.71.4 - 61.50.5 63.00.3 68.30.1 53.30.1
LEAP 97.00.4 72.70.6 12.01.6 - 62.81.0 64.31.0 68.50.3 56.00.1

CSKG+ROCStories
- 95.31.3 33.66.5 8.93.7 - 68.768.768.70.9 67.20.7 70.61.1 54.10.8
CGLI 96.71.4 70.03.0 27.02.5 - 67.70.7 66.50.3 70.00.8 54.60.3
LEAP 97.00.7 70.02.8 11.33.3 - 68.768.768.70.6 68.668.668.61.0 71.871.871.80.9 57.557.557.50.2

Participant Abstraction n/a 97.897.897.80.3 75.11.3 30.130.130.11.1 85.11.0 43.90.3 57.70.8 63.50.7 54.60.6
Word Insertion n/a 97.20.7 74.63.1 26.73.4 83.50.9 41.50.9 57.30.4 60.60.8 53.10.9

Table 4: Labeling result on attribute states annotation.

Labeler Type Prec.f1 Eff.f1
TRIP supervised 51.2 51.2
CGLI supervised 72.1 75.6
LEAP few-shot 61.2 70.3

interesting phenomenon that we explore further in later analysis.
Comparison of LEAP Architectures Table 2 shows the impact
of story modeling and training regime choices within LEAP. The
model architecture with story pairs and story-centric loss has the
best performance on both in- and out-of-domain evaluations. Joint

story modeling outperforms single story modeling in all metrics, in-
dicating that the model benefits from considering the story pair input
together and gaining insight from the direct comparison of stories.
Among the different regimes, since models are able to handle the
input globally, participant-centric loss, which provides fine-grained
and local labels, can bring confusion and lead to a decline in per-
formance. Sentence-centric loss has the worst performance for both
story modeling options, and its zero-shot evaluation result is similar
to or worse than random. Sentence-centric loss guides LEAP to find
conflict sentence pairs in the story, which is reasonable for the in-
domain task as each story pair must contain conflicting sentences but
does not generalize well to out-of-domain tasks. Our analysis reveals
that the incorrect answers on these out-of-domain tasks are often less
commonsensical but not necessarily conflicting.
Effect of Augmentation As data augmentation helps with out-of-
domain tasks and is harmful to in-domain tasks (cf. Table 1), we
next investigate the impact of different augmentation strategies and
labeling methods on these tasks. Here we use LEAP’s labeler to ex-
tract participants from augmented stories and use either CGLI or
LEAP to do annotation because CGLI does not perform partici-
pant annotation. The results in Table 3 show that story augmentation
leads to lower results in the in-domain setting and improved out-of-
domain accuracy regardless of the data partition or labeler, which
is consistent with Table 1. Regarding data splits, CSKG and ROC-
Stories perform comparably to each other as augmentation sources,
whereas their combination reaches optimal performance, demon-
strating the benefit of combining synthetic and natural data sources.
Conversely, augmentation strategies that modify in-domain data in-
crease the model’s performance on the in-domain tasks but decrease
its performance on the zero-shot evaluation tasks. These findings
suggest that augmentation with additional data helps LEAP to gen-

eralize better to unseen stories, whereas modification strategies in-
crease the overfitting to the in-domain data.
Comparison of Labeling Methods We also compare the labeling
methods of CGLI and LEAP in Table 3. Here, we observe that using
CGLI leads to better in-domain performance but LEAP outperforms
CGLI on 12 out of 13 zero-shot evaluations. This indicates that CGLI
fits the TRIP data distribution well, but may not generalize as well to
new tasks. As CGLI uses the TRIP task to learn its attribute extractor,
it is possible that it may also learn to fit the dataset artifacts or an-
notation errors. Meanwhile, LEAP leverages few-shot prompting to
annotate new stories, which does not directly fit the task and is more
generalizable to out-of-domain cases. Finally, augmentation without
any fine-grained annotations (no labeler) leads to a drastic drop in in-
domain performance and worse results on out-of-domain when using
synthetic stories. This suggests that high-quality fine-grained labels
are necessary for achieving robust procedural reasoning.
Intrinsic Evaluation of LEAP Labeler We measure the intrinsic
performance of the two LEAP’s labeler components on TRIP. For
Participant Annotation, we compare against spaCy.2 To extract par-
ticipants with spaCy, we extract nouns from the story and combine
them into possible noun phrases based on their location in the text.
Compared to the gold participants in each story in TRIP, our la-
beler reaches 90.0% precision and 93.5% recall, while spaCy reaches
69.1% precision and 89.0% recall. This means that using spaCy di-
rectly leads to more noisy participant annotation. It also confirms
that filtering participants based on semantic rules and physical prop-
erties is more effective. For Attribute Annotation, we compare our
labeler with TRIP and CGLI on the in-domain task, and observe a
gap in favor of the supervised methods (Table 4), as can be expected.
Notably, prompting LLMs to solve the complex reasoning task di-
rectly has been popular in recent works [36], which found that Codex
may fail to complete the reasoning path for complex stories requir-
ing multiple-step reasoning or causality. In our case, we could have
directly prompted Codex to solve the procedural reasoning task. In-
deed, we see that Codex achieves decent attribute annotation perfor-
mance on the TRIP dataset. Despite their promising results on these
tasks, LLMs like Codex only have limited access through API calls,
and they can be prohibitively expensive to run in many scenarios.
Thus, we opt to use it for knowledge distillation, by annotating data
that can transfer its knowledge to accessible models like RoBERTa.
Qualitative Analysis We conduct qualitative analysis to better un-
derstand the attribute labeling of CGLI and LEAP. Figure 3 shows
the annotation of these two methods on one in-domain (from TRIP)

2 https://spacy.io/
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Figure 3: Case study of LEAP and CGLI attribute annotation on in-
and out-domain tasks. All active participants are rounded in a dotted
cycle with the actual attribute state. Green means correct labeling
result, red means incorrect and yellow means the noise answer.

and one out-of-domain (ROCStories) story. For TRIP, we use the
ground truth attribute annotation to evaluate the result, while for
ROCStories, we manually evaluate the labeling result. For the in-
domain story (Figure 3, left), all attribute states produced by CGLI
are correct, whereas a small portion of LEAP’s labels is incorrect.
However, we observe that the labels produced by the LEAP ’s labeler
actually make sense even if they do not match the TRIP annotation,
e.g., a hot pizza is definitely edible. This highlights annotation bias in
TRIP that can be acquired and amplified by supervised models. On
the zero-shot task, we observe that CGLI tends to label fewer par-
ticipants compared to LEAP. In particular, in the last sentence, even
though CGLI believes that cocoa exists, it still misses its temperature

state. The lower generalizability of CGLI can be attributed to cocoa

being an unseen participant for CGLI during training.
Besides reaching promising results on zero-shot evaluation,

LEAP is also inherently interpretable through its tiered reasoning
process. Consider the following story from ROCStories: 1) I decided

to go on a bike ride with my brother. 2) We both headed out in the

morning. 3) We were having a lot of fun. 4) Suddenly, he hit a rock

and broke his wheel! 5) Watching my brother crash was fun. For this
story, our model infers the participant wheel is not functional after
sentence 4, and that sentence 4 is in conflict with sentence 5. Based
on this information, LEAP successfully classifies this story as im-
plausible, demonstrating an interpretable and robust reasoning chain.

7 Discussion
Our experiments provide insights into the interplay of modeling ar-
chitectures, training regimes, and augmentation strategies for both
in- and out-of-domain reasoning over narratives. Our model, with-
out any augmentation, reaches new state-of-the-art accuracy, consis-
tency, and verifiability on an in-domain task. With augmentation, we
are able to generalize much better on out-of-domain tasks, increasing
the accuracy by 3 - 23 absolute points across datasets and perform-
ing better or competitive to prior baselines. Dense annotation of data
either by our novel labeler or by recent work (CGLI) improves the
effectiveness of the augmentation data. As our labeler is a few-shot
system, it is able to generalize better to unseen stories. Finally, we
observe that the joint modeling of stories with a compositional loss
function brings the best performance. Our qualitative analysis shows
that the better generalization of LEAP on out-of-domain tasks is ac-
companied by robust participant annotation and tiered reasoning.

With these insights in mind, we revisit three assumptions of our
work and discuss future directions to improve on them:

Dynamic Selection of Augmentation Stories While our labeler

can in theory be applied to any story, in this paper, we limit the aug-
mentation stories to a single kind of synthetic stories (generated from
a CSKG) and a single collection of realistic stories sourced from a
popular corpus. Intuitively, the set of stories that can best benefit the
model adaptation would depend on the downstream task, e.g., for
a commonsense reasoning task, stories with procedural reasoning
about household situations may benefit more than fables or fanfic-
tion stories. While the Web provides an extensive collection of di-
verse stories, dynamic selection of stories for training augmentation
has traditionally been extremely prohibitive due to the high costs of
dense annotation. However, our few-shot labeler, enabled by SOTA
techniques, opens the possibility for customizable collections of sto-
ries to be generated for tasks, or even subtasks. Prior work [37] has
investigated sampling methods for a static collection of data; it is a
key future work to investigate active learning strategies [39] for col-
lecting and annotating augmentation data (semi-)automatically.

Comprehensive Labeling of Stories The participant states in this
work are described with a relatively rich set of 20 physical attributes
(e.g., temperature). As such, our model is largely geared toward mod-
eling the physical world. Our current method can be expanded with
complementary aspects of stories, such as the mental states of partic-
ipants and causal links between events. The psychological axioms by
Gordon and Hobbs [14] and the GLUCOSE dataset [26] with ROC-
Stories event links provide a starting point for both directions, re-
spectively. Moreover, all of our current attributes, except location,
have binary (true/false, or high/low) values as states. Finer-grained
annotation, e.g., with qualitative knowledge [13], can be considered
in the future to improve the reasoning precision. The combination of
manually created theories and resources with generic LM methods
like our labeler provides an opportunity for a more comprehensive
annotation of participant states posed as a generative task.

Comprehensive Understanding of Narratives Our evaluation in
this paper follows the common practice of evaluating popular bench-
marks with short stories, such as ROCStories, and TRIP. We believe
that the development of methods that understand a wide range of nar-
ratives precludes the creation of a diverse set of story benchmarks, in-
cluding fictional stories [27], and interactive story-driven games [34].
Curiously, as LM-based reasoning methods have been shown to rely
on the surface similarity between the training and the test data (e.g.,
in terms of token length) [37], a general method would require the
aforementioned dynamic selection of stories, but also novel methods
that can abstract over surface properties better.

8 Conclusions
Our work devised LEAP: a framework for understanding stories
through explainable procedural reasoning. LEAP integrates model-
ing architectures, training regimes, and augmentation strategies, se-
lected with the aim to understand both in- and out-of-domain sto-
ries. LEAP alleviates the training data bottleneck with a novel label-
ing method that combines semantic parsing and structure-aware lan-
guage models to annotate unseen stories in a robust manner. Our ex-
periments showed that joint modeling of stories with a compositional
loss function obtained new SOTA results on in-domain tasks. Aug-
mentation with our labeler coupled with external natural or synthetic
stories led to a significant increase in performance across out-of-
domain tasks, showing strong generalization. Our preliminary exper-
iments show that the labeler based on ChatGPT can perform worse
than Codex, but the gap is not big. In the future, we will enhance
LEAP with a dynamic selection of augmentation stories, increase
the generality of the labeler by inferring mental states with fine-



grained values, and evaluate the explainability of LEAP with user
studies on representative story tasks.
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