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Introduction -Li Battery 
Heat Generation
Sources of Heat:
• Cathode intercalation
• Anode intercalation
• electrical resistance within battery (IR drop)
• Collision between Li+, electrolyte particles, and electrodes 

(activation / ohmic, & concentration polarization)
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Radial thermal conductivity measurements of lithium-ion battery cells [2]

*Fire and Thermal Runaway Propagation Challenges in 
Electric Vehicles [1]



Introduction - Single Phase Static Direct Immersive Cooling

• Single Phase: Coolant remains as a single form
• Static: No external force is used to move the coolant
• Direct: Fluid is contacting the battery’s body
• Immersive Cooling: parts of / whole battery is inside the 

coolant for heat transfer
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Immersion cooling for lithium-
ion batteries – A Review [3]

Performance evaluation of a hydrostatic flow immersion 
cooling system for high-current discharge Li-Ion Batteries [4]



Objective I. - Milestones & Current Agenda
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1. Create Accurate Battery Model 2. Validate and Tune the Model with Experimental Data

3. Use the model to optimize the battery configuration4. Validate the result from step 3

CFD simulation of Single Cell Lithium Ion Battery with fins, 
PCM & enclosure with heat generation [5]

How to accurately simulate batteries from detailed 
electrodes to the pack thermal management scale [6]Electric Vehicle Li-ion Battery Pack [7]



Objective I. - Milestones & Current Agenda

5

1. Create Accurate Battery Model 2. Validate and Tune the Model with Experimental Data

3. Use the model to optimize the battery configuration4. Validate the result from step 3
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Main Objective for this SURF Research
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*TIM: Thermal Interface Material

Method I. Preliminary Measurement



Result I. Preliminary Measurement
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Result I. Preliminary Measurement
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• New Objective: Identify the most accurate 
and precise measurement method
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Pointed Down
Without TIM

Pointed Up
With TIM

*TIM: Thermal Interface Material

Objective II. Seeking Ideal Thermocouple Attachment Me



Is the battery temp uniform on the same altitude?
• IR Camara is used to validate the homogeneous 

horizontal heat generation

Are thermocouples calibrated?
• Water bath is used to validate the accuracy and 

precisions of the thermocouple

Are the thermal hotplate generating uniform temp?
• IR Camara is used to validate homogeneous 

temperature across the top surface of the 
aluminum block
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Method II. Validating Assumptions



Verified:

• Homogeneous horizontal heat 
generation of the battery
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Result II. Is Battery Providing Uniform Temperature






Verified:

• Homogeneous horizontal heat 
generation of the battery

• Homogeneous temperature 
across the aluminum block 
surface
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Result II. Is Test Bed Providing Uniform Temperature
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Method III. Finding Ideal Thermocouple attachment Meth
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Copper Tape without TIM

Kapton Tape without TIM Kapton Tape with TIM

Copper Tape with TIM
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Embedded Method & 
Embedded with TIM

Perpendicular with TIM

Method III. Finding Ideal Thermocouple attachment Meth
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Temp reach the 
highest

Method III. Finding Ideal Thermocouple attachment Meth



* Assume Normal Distribution
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Actual Temp.
Number Line

Data Points

* What Are the Differences between Accuracy and Precision? [8]

Method III. Finding Ideal Thermocouple attachment Meth
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* What Are the Differences between Accuracy and Precision? [8]

Method III. Finding Ideal Thermocouple attachment Meth
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Temp reach the 
highest

Result III. Finding Ideal Thermocouple attachment Metho
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Result III. Finding Ideal Thermocouple attachment Metho
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Result III. Finding Ideal Thermocouple attachment Metho



Method IV. Finding Ideal Thermocouple attachment Met
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Method IV. Finding Ideal Thermocouple attachment Method
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Method IV. Finding Ideal Thermocouple attachment Method



Future Direction

• Complete Testing different 
Battery’s Measurement

• Construct battery simulator to 
access accurate performance of 
thermocouples

• Innovate better thermocouple attachment 
methods (ex. Silicon)

• Compare battery measurement with IR 
camara in air

• Devise fixtures or tools that assist attaching 
the thermocouples
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Learning Experience
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Old Method

New Method

Learning Experience
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Learning Experience
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Q & A
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