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Introduction Results and Discussion

Above proposed heat transfer correlations can be trained with 
either numerical or experimental data sets.

Predictions are very accurate and computationally efficient.
Requires only two mass flow rates for each fluid at a given

discharge rate to train h correlations.
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Conclusion
 Proposed models including the numerical data-driven learning

provide an efficient trade-off between computation cost and
accuracy.

 The developed model can be easily upscaled for large BTMS,
therefore will accelerate the design and analysis of
immersion cooling systems.

 Approach will be handy in real-time applications such as
dynamic immersion cooling where parameters are tuned
based on operating conditions.

Types of Fully-Coupled Immersion Cooling Model
Model Implementation for Immersion Cooling
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Quasi-Analytical Immersion Cooling Model: Dielectric Fluid
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 Usually heat transfer correlations have been developed to 
predict heat transfer as function of dimensionless numbers 
like Reynolds number (Re), Prandtl number (Pr).

 For the cylinder in the duct cross flow, heat transfer 
correlation from literature [2]:

𝒉𝒉 = ⁄𝝀𝝀 𝑫𝑫 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝑹𝑹𝑹𝑹𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝑷𝑷𝑷𝑷 ⁄𝟒𝟒 𝟑𝟑 𝟒𝟒 + ⁄𝑫𝑫 𝑾𝑾
 Above correlation accounts geometry affects using diameter 

(D) and width of the duct (W).
 For this configuration, analytical model predicts ∆𝑇𝑇 in 

agreement with numerical model.

Trained heat transfer correlations,
𝒉𝒉 = ⁄𝝀𝝀 𝑫𝑫 𝒂𝒂𝑹𝑹𝑹𝑹𝒃𝒃𝑷𝑷𝑷𝑷𝒄𝒄 𝟒𝟒 + ⁄𝑫𝑫 𝑾𝑾 𝟒𝟒 + 𝑹𝑹 ⁄−𝑭𝑭𝑭𝑭 𝒅𝒅 , 𝒉𝒉 = 𝒇𝒇 𝒂𝒂,𝒃𝒃, 𝒄𝒄,𝒅𝒅

P2D Electrochemical 
model: 

4 partial differential eqns. 
& 1 algebraic equation

Thermo-fluid model: 
Lumped model using heat 
transfer coefficient (h) to 
account cooling behavior

Comparison: Average temperature rise (∆𝑻𝑻) & Cell potential (𝑽𝑽𝑪𝑪𝑹𝑹𝑪𝑪𝑪𝑪)

Immersion cooling, where the
cooling fluid flows in direct contact
with the Li-ion cell, provides
superior temperature control
compared to other battery thermal
management systems (BTMSs).
Numerical models must fully couple

the electrochemical and thermal-
fluid physics solvers for accurate
design and evaluation.
However, this is computationally

expensive and may not be feasible,
for large BTMSs.
Our work focuses on developing a

computationally-efficient approach
to couple the electrochemical and
thermo-fluid physics to study
immersion cooling-based BTMSs.

Fully coupled thermo-fluid-
electrochemical simulations 
of a single 18650 cylindrical 

cell take ~1 to 4 days
for a mass flow rate of 0.01 kg/s 

and 3C discharge rate. 
Computational time depends on 

whether the fluid properties 
depend on temperature. 
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Computational time for 
real systems with 

many cells becomes 
computationally 

infeasible

DIW: Deionized water
MO: Mineral oil

Analytical Model of Immersion Cooling Model: Dielectric Fluid

Pro: Predicts right 
trend and order of 
magnitude of ∆𝑇𝑇.

Con: Exact 
magnitude of ∆𝑇𝑇
differs significantly 
except for air (for 
this configuration). 

Analytical Model of Immersion Cooling Model: Air

 All models have 
been implemented 
in MATLAB.

 Both submodules   
(electrochemical & 
thermo-fluid) are 
solved recursively 
marching ahead in 
time.

 Fully numerical is 
used as reference 
to judge accuracy.
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𝒉𝒉 = ⁄𝝀𝝀 𝑫𝑫 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝑹𝑹𝑹𝑹𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝑷𝑷𝑷𝑷 ⁄𝟒𝟒 𝟑𝟑 𝟒𝟒 + ⁄𝑫𝑫 𝑾𝑾

Primary reasons that analytical model does not predict exact 
magnitudes of ∆𝑇𝑇 :

1. Heat transfer correlations are usually developed for steady 
state condition.

2. Geometry used for correlations are different from the actual 
configurations.

3. Valid for standard boundary condition: Constant 
temperature or heat flux.
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Fitted values of power 
law coefficients for two 
fluids:

MO
a = 0.55  c = 1/3 

b =  0.26  d = 5.62

DIW
a = 0.51 c = 1/3

b =  0.28  d = 11.10

There is a significant 
difference in the transient 
term ‘d’ between the two 
fluids.

MSE: Mean squared error
MEA: Mean absolute error

*System: Processor - Intel(R)Xeon(R)@3.30GHz & RAM-16GB.  **For same set of parameters and properties.
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